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A MODIS based tool to assess 
inundation patterns: an example 
for the Paraná Delta River

ABSTRACT
Wetlands are one of the most productive yet altered ecosystems due to human activities across the world. 

They rely largely on their water flow to provide several ecosystem functions. Then, to develop a land use plan 
that allows a productive use maintaining the ecological integrity it is critical to understand the flooding patterns. 
In that sense, the capability of remote sensors to estimate water cover for large areas at detailed spatial and 
temporal scales can help to develop managerial decision tools. However, the temporal and spatial variation of 
water components may alter it spectral properties. We studied the capability of different MODIS derived spec
tral indices to estimate water cover or water presence-absence. The study region was the Paraná Delta River, 
which is a 2 Mha wetland area. Between all the models evaluated, one based on the spectral index NDWI1 
((Red – SWIR) / (Red + SWIR)) was the most accurate. A NDWI1 = -0.2 threshold allowed to separate those 
pixels with less than those with more than 60% of water cover with an accuracy of 91%. By this model, we des
cribed the flooding patterns of different landscape units of the region during the last 12 years and classified the 
region according to the impact of ordinary and extraordinary flooding events. We consider this information can 
help to improve the knowledge about the hydrodynamics, monitor the impact of some activities and develop a 
more sustainable regional planning. 

Keywords: water surface detection, spatial and temporal dynamics, unsupervised classification, water cover 
changes, normalized difference water index (NDWI).

RESUMEN

Los humedales están entre los ecosistemas más productivos y, a su vez, están fuertemente alterados por el 
ser humano. Los múltiples servicios que proveen dependen en gran medida del flujo de agua. Por ello, para 
desarrollar un plan de uso de la tierra que permita un uso productivo manteniendo la integridad ecológica es 
fundamental comprender los patrones de inundación. En ese sentido, la capacidad de los sensores remotos 
de estimar la cobertura de agua en áreas grandes a escalas espaciales y temporales detalladas contribuirían 
a desarrollar herramientas que favorezcan la toma de decisiones. Sin embargo, la variación temporal y es
pacial de los componentes del agua puede alterar sus propiedades espectrales. Se estudió la capacidad de 
diferentes índices espectrales derivados del sensor MODIS para estimar la cobertura de agua o la presencia/
ausencia de agua. La región de estudio fue el Delta del Río Paraná, un humedal de 2 millones de hectáreas. 
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 INTRODUCTION

Wetlands are saturated with water, either permanently or 
seasonally and present structural and functional properties 
different from other ecosystems. They regulate water and 
biogeochemical cycles and provide several ecological ser
vices like water purification, flood control and biodiversity 
preservation, among others (Bucher, 1999; Bedford et al., 
2001; Keddy, 2010). Wetlands are the more altered eco
system on Earth due to human activities (Costanza et al., 
1997; Mitsch and Gosselink, 2000; Dudgeon et al. 2006). 
In many cases, the productive use of wetlands is based on 
its transformation to terrestrial ecosystems (e.g. embank
ments), which alters drastically their hydrological functio-
ning and thus its capacity to provide ecological services 
(Bunn and Arthington, 2002; Mitsch, 2014).

The Delta of the Paraná River surrounds the most popu-
lated area of Argentina. More than fifteen million people 
benefit from its ecological services such as water supply 
and recreation, then, environmental conflicts product of its 
management are clearly visible by society. Extensive far-
ming is the most traditional productive activity. However, 
in the last two decades, livestock has intensified and new 
activities appeared such as forestry, agriculture or urba-
nization, among others. These new activities are often ac
companied by infrastructure projects that alter the hydrody
namics of the system (Donadille et al., 2010). Even though 
wetlands are resilient systems (Quintana et al., 2008), the 
new activi ties already caused environmental problems (as 
the great fires of 2008; Sione et al., 2008). It is necessary to 
define levels of human intervention that preserve the eco
logical integrity of the systems for which it is necessary to 
have information about its hydrodynamic process.

Similar to other wetlands of the world, structure and func
tioning of the Paraná Delta varies widely in space and time 
(Bunn and Arthington, 2002). Alternating periods of high and 
low water and occurrence of extraordinary flooding events are 
part of the natural dynamics that help to maintain their ecolo
gical integrity (Bó and Malvárez, 1999). In turn, the interaction 
between hydrological and geomorphological processes de
fines a wide variety of environments with its own functional 
characteristics (Malvárez, 1999). Currently, there are regional 
flooding forecasting systems (provided by the Water National 

Institute) and static maps of landscape and vegetation units 
(Malvárez, 1999; Salvia et al., 2007, Morandeira et al., 2011). 
However, to deal with such diverse ecosystems, a tool that 
provides timely information on which converge detailed spatial 
and temporal resolutions is needed. In that sense, there are 
studies of vegetation and inundation dynamics based in NDVI 
time series (Salvia, 2010; Borro et al., 2014).

Remote sensors allow carrying out studies of large a re
as at detailed spatial and temporal scales. There are some 
products specifically developed to register wetlands flood
ing. Some of these products are the Small Water Bodies 
monitoring product (Bartholomé, 2008) and the NASA 
Earth System Data Record of inundated wetlands (NASA 
JPL wetland, 2013), among others. However, none of these 
systems meet simultaneously the three desired attributes 
required for this kind of ecosystems: fine temporal and spa
tial scales and near real time availability. Papers describing 
the regional hydrodynamics agree that the Moderate Reso
lution Imaging Spectroradiometer (MODIS) sensor, on board 
on AQUA/TERRA platforms, is the most suitable for this kind 
of studies (Brakenridge and Anderson, 2006; Sakamoto et 
al., 2007; Islam et al., 2009; Chen et al., 2014; Pekel et al., 
2014). Some models based on different spectral indices de
rived from MODIS have been proposed (Sakamoto et al., 
2007; Chen et al., 2014; Pekel et al.; 2014). These indices 
rely on the absorbance of water at the near infrared (NIR) 
and shortwave infrared (SWIR) bands of the electromagnet
ic spectrum (Brakenridge and Anderson, 2006). As some 
components of water that vary spatially and temporally (e.g. 
phytoplankton, or dissolved organic matter) affect spectral 
properties (Arst, 2003; Pekel et al., 2014) it is necessary to 
assess which indices are best suited for the study region, 
where water and sediment pulses can influence the turbidity 
and spectral properties of water (Minotti and Borro, 2011).

The objective of this work was to develop a water cover es
timation model based on MODIS information to describe the 
inundation patterns of the Paraná Delta. First, we evaluated 
the accuracy of different vegetation indices to estimate water 
cover under different water scenarios. Then, the best model 
was used to describe the inundation patterns for a period 
of 12 years every 16 days. This provides a tool towards a 
more sustainable production in the Paraná Delta Region and 
a base reference for other similar areas of the world.

Entre todos los modelos evaluados, uno basado en el índice espectral NDWI1 ((Rojo - SWIR) / (Rojo + SWIR)) 
fue el más preciso. Un valor umbral de NDWI1 = -0,2 permitió separar píxeles con menos de 60% de cobertura 
de agua de aquellos con más del 60% con una precisión del 91%. Mediante este modelo se describieron los 
patrones de inundación de diferentes unidades de paisaje de la región durante los últimos 12 años y se clasi
ficó la región de acuerdo al impacto de los eventos de inundación ordinarios y extraordinarios. Consideramos 
que esta información puede ayudar a mejorar el conocimiento sobre la hidrodinámica, monitorear el impacto 
de algunas actividades y desarrollar una planificación regional más sostenible.

Palabras clave: detección de agua superficial, dinámica espacial y temporal, clasificación no supervisada, 
cambios en la cobertura de agua, índice de diferencia normalizada del agua (NDWI).
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MATERIALS AND METHODS

2.1 Study area

The Paraná Delta covers an area of around 17500 km2 
(Malvárez, 1997; figure 1). It is the terminal portion of the 
Paraná River Basin, which is the second largest in South 
America (2.6 Mkm2). The hydrology of the Paraná Delta is 
mainly influenced by the hydrological regime of the Paraná 
River, which depends on precipitations that are higher 
during summer months. The hydrology of the Paraná Delta 
is also influenced by the hydrological regimes of the Uru
guay and Gualeguay rivers and by astronomical or meteo
rological tides of the Río de la Plata River, which affect di ffe-
rent sectors (Mujica, 1979, Quintana and Bó, 2011). Local 
rainfall is less important, and affects only those sectors not 
influenced by flooding from rivers (Quintana and Bó, 2011).

At regional scale, different landscape units are associa-
ted to pography and hydrological regime (Malvárez, 1997; 
figure 1). Landscape units share a common heterogeneity 
pattern with uplands at the perimeter of the islands, medi
um lands and frequently flooded lowlands, although their 
proportion varies between units. The unit A is dominated 
by non-vegetated lagoons surrounded by semi-permanent
ly flooded and meander plains. The unit B is dominated 
by NO-SE rivers surrounded by uplands, and lagoons su-

Figure 1. Map of the Paraná Delta River Region, with the lands
cape units defined by Malvárez (1999, indicated with letters and 
numbers). Blue arrows indicate the main rivers that affect the hy
dro-patterns of the Paraná Delta (their size is proportional to the 
flow of the rivers). The city of Victoria is also marked. Top-right 
map: location of the study region (rectangle) within Argentina (dark 
gray) and the rest of South America (light gray). The Paraná River 
is marked with a blue line and its watershed is shadowed.

rrounded by marshes. The unit C is dominated by paral
lel sand ridges separated by depressions into three units: 
ridges with grasslands (C1), ridges with forests (C2), and 
ridges with forests and streams that drain to the Paraná 
River (C3). The unit D is dominated by a very flat semi-per
manently flooded plain with lagoons and streams. The unit 
E presents uplands due to meanders, whose turns en
close permanent lagoons. The unit F is an extensive and 
low drained flood-plain formed during the Holocene marine 
ingression. The unit G is formed by ancient deltas of the 
Nogoyá, Clé and Gualeguay rivers. The H unit is formed by 
the Ibicuy Island that was included in the region after sea 
regression. The lower delta unit (which includes the Paraná 
and Uruguay River units) is the only strictly deltaic region, 
with a bidirectional hydrological regime. A great proportion 
of this unit was drained for forestation.

2.2 Water cover estimation

As ground truth we used 30 m spatial resolution wa
ter presence-absence maps developed by Sepulcri et al. 
(2012) from eight LANDSAT images from different water 
scenarios defined from the annual average flow of the 
Paraná River: low water: 10/01/2009, 02/05/2009, normal: 
23/02/2003, 25/05/2003, 04/03/2005, 05/04/2005 and high 
water: 29/05/2007, 12/01/2010. These maps were calcu
lated by photointerpretation following a non-supervised 
“isodata” classification (maximum 30 classes, Ball and 
Hall 1965) based on three normalized vegetation indices 
derived from LANDSAT images: NDVI, NDSI and NDWI, 
based on the 4 (750-900 nm) and 3 (630-690 nm), 5 (1550-
1750 nm) and 4, and 2 (525-605 nm) and 7 (2090-2350 
nm) LANDSAT bands, respectively. To assess accuracy of 
LANDSAT based maps we compared them with ten 3 x 3 
km2 high resolution images from close dates (less than 10 
days) and where water height remained constant. Images 
were extracted from Google Earth Pro and classified into 
water presence-absence by photointerpretation. Conside-
ring Google Earth images as ground truth, mean (± stan
dard deviation) underestimation and overestimation errors 
of LANDSAT based maps were 5.2% (±4.5) and 2% (±1.5) 
respectively. For image processing we used the GRASS 
software (http://grass.osgeo.org/).

To merge the ground truth (LANDSAT water presence-ab
sence maps) and MODIS images we overlapped the 250 m 
MODIS grid with the water presence-absence maps and 
calculated the proportion of LANDSAT pixels classified as 
water inside each MODIS pixel. To avoid confounding tem
poral and spatial variation we selected only those pixels 
that were within 6 water cover ranges (0-10, 10-30, 30-50, 
50-70, 70-90, 90-100%) for the 8 dates. They covered 24% 
of the area (21% corresponded to the range 0-10, 2.5% to 
the range 90-100 and 0.5% corresponded to the 4 interme
diate ranges). We evaluated as response variables either 
water cover inside MODIS pixels (sub-pixel resolution) or 
water presence-absence (pixel resolution). To define water 
presence-absence we evaluated different pixel water pro
portion thresholds.
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As water cover or presence estimators we evaluated 
several water related spectral indices previously used to 
assess water, and the color components expressed in the 
HSV space (Hue, Saturation and Value) derived from MO
DIS bands (table 1). According to the HSV model, H and S 
represent the chromaticity, while V represents the bright
ness. H is the perceived color and is expressed in degrees, 
where 0º or 360º represent the red, 120º the green, and 240º 
the blue colors. In turn, S express how far from the grey is 
a color at a given V (Pekel et al., 2014). These indices are 
mainly based on the liquid water absorption features in the 
infrared range (around 970, 1200, 1450 and 1950 nm, Cu-
rran 1989, Asner 1998). We also evaluated an index based 
on temperature (i.e. the diurnal land surface temperature 
difference, based on the MODIS 11A2 product, Wan et al., 
2002), but due to it lower spatial resolution (1 km), and not 
better performance, we decided not to show the results.

To calculate water cover or presence estimators, we ob
tained the MODIS pixel values for the required bands and 
for all the studied area from the MODIS 16 days composite 
that included the eight LANDSAT images defined above. 
The 250 m spatial resolution bands (Red and NIR) were 
obtained from the MOD13Q1 16 days composite, while the 

500 m spatial resolution bands (Blue, NIR, NIR2 and SWIR) 
were obtained from the MOD09A1 8 days compo site and 
were resampled to 250 m with the nearest neighbor method. 
All the MODIS pixels for the eight dates presented “Good 
Data” according to the “pixel reliability” layer, which con
tains ranked values describing overall pixel quality.

To evaluate the best water cover or presence estima
tor we developed regression and tree models with the R 
software (R Core Team 2013). For water cover estimation 
(sub-pixel resolution), regression models included simple 
or multiple estimators and linear or nonlinear relationships. 
As there can be a saturation response between water cover 
and the spectral indices used as estimators (Tucker, 1977) 
linear models included thresholds of the estimators. The 
optimal number of predictors for multiple regression models 
was assessed by the Bayesian Information Criterion (BIC. 
Schartz, 1978) using the “regsubsets” function of the leaps 
“R” package (Lumley 2017). The BIC penalizes models by 
the number of parameters to reduce over-fitting. Non-linear 
logistic models were performed with the “glm” function of 
the MASS “R” package (Venables and Ripley, 2002). Tree 
models were performed with the “tree” function of the Party 
“R” package (Hothorn et al., 2006). They included all the 

Spectral indices Calculated as Source

Normalized Difference Vegetation Index 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁=  
(NIR −  Red)
(NIR +  Red)

  Tucker, 1979      

Enhanced Vegetation Index 𝐸𝐸𝐸𝐸𝐸𝐸  2.5 
(NIR −  Red)

(NIR +  6 Red −  7.5 Blue +  1)
 = Huete et al., 2002

Normalized Difference Water Index 1 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁=𝑁
(Red𝑁 − 𝑁SWIR)
(Red𝑁 + 𝑁SWIR)

 Sakamoto et al., 
2007

Land Surface Water Index 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  
(NIR −  SWIR)
(NIR +  SWIR)

 = Sakamoto et al., 
2007

Normalized Difference Water Index 2 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
(NIR −  NIR2) 
(NIR +  NIR2)

 2 Gao et al., 1996

Value V =  max(MIR, NIR, Red) 

Pekel et al., 2014

Saturation S =  
(V −  min(MIR, NIR, Red))

𝑉𝑉

Hue 𝐻𝐻

0 if V =  min(MIR, NIR, Red)

60 (NIR –  Red)
(( (V −  min MIR, NIR, Red ) ))  + 360  mod 360 if V =  MIR

60 
(Red –  MIR)

(V −  min(MIR, NIR, Red)
 +  120 if V =  NIR

60 
(MIR −  NIR)

(V −  min(MIR, NIR, Red)
 +  240 if V =  Red

 

Table 1. Spectral indices and HSV models utilized for the water cover estimation models. NIR is the surface reflectance value in the near 
infrared (841-876 nm, MODIS Band2), Red (620-670 nm, Band 1), Blue (459-479 nm, Band 3), NIR2 (1230-1250 nm, Band 5), and SWIR 
is the short-wave infrared (1628-1652 nm, Band 6), and MIR is the medium infrared (2105–2155 nm, Band 7).
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estimators with 2, 4 and 8 final nodes. We did not include a 
higher number of final nodes because they lead to over-fit
ting errors. For water presence-absence estimation (pixel 
resolution), we used tree models. To evaluate accuracy of 
both water cover and water presence-absence models we 
used a re-sampling method. First, we built the above men
tioned models based on 50 pixels randomly selected from 
each of four water cover ranges (0-25, 25-50, 50-75 and 
75-100%) and date (N = 1600 pixels). Second, we tested 
those models with 1600 pixels randomly selected into the 
whole image. We used the coefficient of determination R2 
to evaluate model fit, and root mean square error (RMSE) 
and Kappa index to evaluate model accuracy. We recorded 
the values of the evaluators for each resampling (N = 1000) 
and finally, we calculated mean and standard deviation va-
lues to compare and select the best model.

2.3 Inundation patterns assessment

After choosing the best model, we characterized the inunda
tion patterns of the study area. The study period extended from 
January 2001 to December 2012 and integrated 276 16-days 
MODIS images. We only included data for pixels with “Good 
Data” according to the pixel reliability band. Besides, 16 ima-
ges with a high proportion (>30%) of low quality pixels were 
completely excluded; 3 images for 2012 and between 0 and 2 
for the rest of the years. During the study period there were two 
extraordinary flooding events that exceeded evacuation levels 
on the riparian cities. The 2007 event extended from March to 
September (12 MODIS scenes), while the 2010 event exten-
ded from July 2009 to September 2010 (25 MODIS scenes).

With the remaining 260 “good quality” MODIS scenes, we 
generated water presence-absence maps to characterize 

Figure 2. Relationship between water cover inside MODIS pixels derived from LANDSAT images and MODIS spectral indices. Each 
point represents the average value of all the pixels inside each water cover range (0-10, 11-30, 31-50, 51-70, 71-90, 91-100%) and date. 
Legend in the top left indicates MODIS composite dates containing LANDSAT images; each date is represented by a different symbol.
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the inundation patterns by two ways. The first way consis-
ted on overlapping water presence-absence maps with the 
landscape units’ map (Malvárez, 1999; figure 1). Then, we 
described average water cover and intra- and inter-annual 
variation for each landscape unit. The second way consis ted 
on developing a classification based on the water pre sence-
absence maps and relating water cover with river height. The 
classification was done in three steps. First step, we obtained 
the two extreme classes which included those pixels never 
classified as water and those classified as water most of the 
dates (> 80% of the MODIS scenes). Second step, we ob
tained three classes that included pixels classified as water 
only during the extraordinary flooding events: only during 
2007, only during 2010 or in both events. Third step, we de
veloped an unsupervised classification based on water pre-
sence for the remaining area. We performed a principal com
ponent analysis based on water presence of the 223 MODIS 
scenes that did not include extraordinary flooding events to 
reduce data dimensionality (GRASS i.pca command). Then, 
with the firsts three axis, that explained 43% of the variation, 
we obtained five classes by an “isodata” clustering algorithm 
(GRASS i.cluster and i.maxlik commands). Once obtained 
the classification, we evaluated the relationship between wa
ter height of the Paraná river at the location of Victoria (figure 
1) and the percentage of pixels classified as water for a 7x7 
moving window as a first approach to relate water cover with a 
variable related to hydrodynamics process.

RESULTS AND DISCUSSION
3.1 Water cover estimation based in MODIS
Water cover into MODIS pixels was associated to spec

tral indices (figure 2). As described by Guershman et al. 

(2011), NDVI and EVI presented a non-linear negative re
lationship with water cover inside pixels (figures 2 A-B). It 
was observed a high variability between dates, especially at 
low water cover values, which could be associated to the 
sensibility of both indices to changes in the vegetation cover 
and status (Baret and Guyot, 1991; Gamon et al., 1995; Van 
Leeuwen and Huete, 1996; Huete et al., 2002), which have 
a higher weight when water cover is low. This pattern shows 
the limitations of both indices for the objective of this work (to 
estimate water cover), but also warns about their limitation 
to estimate aspects of vegetation (e.g. fraction of incoming 
radiation absorbed by the vegetation, primary productivity) 
on systems of highly variable water cover. In these systems, 
water level and the amount of water above and below water 
highly affect the spectral signal (Beget et al., 2013) and other 
spectral indices can be more accurate (i.e. the Visible Atmos-
pheric Resistant Index, Gosh et al., 2016).

From the three indices previously used to detect water 
(figure 2 C-E), the NDWI1 was the most closely related with 
water and showed an asymptotic relationship. The NDW1 
was less variable between dates than the NDVI and the 
EVI, probably associated to the higher sensitivity to water 
cover (Beget et al., 2013) and lower sensitivity to vegetation 
status of the shortwave infrared compared to the near infra
red (Curran, 1989; Asner, 1998).

Between the three components that define the color (fi-
gure 2 F-H), the H index (associated to the perceived color) 
was the closely related to water cover. As NDWI1, the 
relationship between water cover and H was asymptotic. 
However, the range in which H remained sensitive to water 
cover was more limited, which reduced the capacity of H to 

Figure 3. A) Relationship between water cover inside MODIS pixels and NDWI1 for 20000 randomly selected pixels. Darker colors indi
cate a higher density of pixels. Dashed lines represent the best fit lines for linear (Water Cover = 66 x NDWI1 + 57) and sigmoid (Water 
Cover = [exp(0.86 + 4.6 x NDWI1)] / [1 + exp(0.86 + 4.6 x NDWI1)]) models. B) Relationship between H (left) and NDVI (right) with NDWI1 
for 20000 randomly selected MODIS pixels. Color intensity indicates water cover inside pixels. Partition of the x axis and horizontal lines 
indicate the threshold values of the tree model separating water cover levels (first node: NDWI1 = -0.29, second node: H = 119 and third 
node: NDVI = 0.37). 
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discriminate intermediate water cover levels. At maximum 
water cover, H was around 160º which means higher re-
lative values of near infrared and red bands compared to 
medium infrared and coincides with the higher water ab
sorption in the medium infrared (Beget et al., 2013). The V 
associated to brightness captured better the difference be
tween dates than between water cover ranges. This could 
be due to factors that affect the complete scene like sun 
and observation angles, or atmospheric effects rather that 
land cover type (e.g. Pekel et al., 2014).

The capacity to predict water cover of the linear with 
thresholds, non-linear, and tree models was similar to that 
found in previous works (Huang et al., 2014) although 
higher errors were observed at intermediate water cover 
levels (figure 3, table 2). Predictive accuracy was not im
proved by increasing the complexity of models. Including 
other indices in the regression models based on NDWI1, or 
more than four final nodes in tree models did not improve 
model accuracy significantly (p > 0.5). The coefficient of de
termination (R2) and the prediction error (RMSE) between 
observed and predicted values was not different (p > 0.01) 
between models (table 2). However, the Kappa coefficient 
was slightly higher (p=0.09) for the sigmoid than for the tree 
model, but was not different from the linear with thresholds 
model. This difference was due to the higher number of pixels 
in the extreme water cover ranges where sigmoid and lin
ear with thresholds models were more accurate.

Water presence or absence estimation models, even 
though resigned sub-pixel resolution, improved the predictive 
accuracy compared to water cover estimation models. Due to 
the higher simplicity and accuracy of the water presence-ab
sence estimation models we considered that they were more 
adequate to assess regional inundation patterns (see section 
3.2). The red and SWIR bands, combined in the NDWI1, cap
ture most of the information of water. The predictive accuracy 
of models based in a NDWI1 threshold was not significantly 
improved by models including a higher number of estimators 
and was similar to that obtained in other studies using more 
complex decision rules (Sakamoto et al., 2007; Ordoyne et al., 
2008; Guershman et al., 2011; Pekel et al., 2014).

Water cover threshold to classify a MODIS pixel as wa
ter or non-water affected predictive accuracy and bias. Un

derestimation and overestimation errors decreased as the 
threshold increased, but the overestimation was higher at 
low threshold values and decreased more steeply than the 
underestimation error (figure 4). The Kappa index increased 
monotonically until threshold values around 60% (which co
incides with a NDWI1 of -0.2), where underestimation and 
overestimation errors were equilibrated. An optimal threshold 
of water cover between 50% and 80% was also found in 
other wetland region (Ticehurst et al., 2015). Besides being 
equilibrated in underestimation and overestimation errors, 
a 60% of the water cover is enough to affect the possible 
land management decisions. In forest with 40% of tree co-
ver, a 60% of water cover would mean that the understory 
is completely covered with water.

3.2 Inundation patterns of the Paraná Delta River

The estimation of water presence-absence based on 
NDWI1 every 16 days for 12 years showed differences 
between landscape units (Malvárez, 1999) on mean wa
ter cover and on its temporal variation (figure 5). We ag
gregated landscape units into three groups according to 
inundation patterns: 1) those with high within year water co-
ver variation (standard deviation > 2.5%, units A, B, F and 
G, figure 5 A), 2) those with high within year water cover 
variation mainly in years with extraordinary flooding (water 
cover during flooding more than 5 times higher than during 
normal years, units D, E, H and Paraná de las Palmas N., 
figure 5 B), and 3) those having low water cover variation 
within and among years Delta (Paraná de las Palmas S., 
Paraná Guazú and Uruguay River, figure 5 C). Units of 
the first group were located at the north-east portion. From 
these, the unit B where temporal lagoons are more frequent 
(Malvárez, 1999; Borro et al., 2011) was the only one that 
decreased water cover during the 2008 drought. Units of 
the second group were located at the southeast. The high 

Table 2. Water cover classification accuracy for the three kind of 
models: linear with lower an upper threshold, sigmoid and tree with 
four final nodes. Accuracy was assessed by the coefficient of de
termination (R2), the prediction error expressed by the root mean 
square error (RMSE) and the Kappa coefficient (k). To calculate 
k, water inside MODIS pixels was aggregated into four ranges 
(0-0.25, 0.25-0.50, 0.50-0.75 and 0.75-1.0). Values represent the 
mean (and standard deviation) for 1000 re-samples.

Figure 4. Changes in prediction error (black lines), NDWI1 threshold 
(gray line) and Kappa coefficient (dotted gray line) for water pre-
sence or absence estimation models based on NDWI1 according 
to the water cover inside a pixel MODIS used to define the pixel 
as water.

 Linear Sigmoid Tree

R2 0.62 (0.04) 0.63 (0.04) 0.60 (0.04)

RMSE 22.2 (1.30) 22.3 (0.97) 22.4 (0.91)

k 0.45 (0.05) 0.47 (0.03) 0.44 (0.04)
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Figure 5. Mean +/- intra-annual standard deviation for water cover for each year (2001-2012) and vegetation unit (Malvárez, 1999). Years 
with extreme flooding events (2007 and 2010) are marked in thick gray line. Vegetation units are divided into three plots according to its 
location: A) north-east (units A, B, F and G), B) south-east (units C, D, E, H and Paraná de las Palmas N.) and C) lower Delta (Paraná de 
las Palmas S, Paraná Guazú and Río Uruguay).

Figure 6. Maps showing the two extreme classes (A) and the three classes representing areas covered with water only during extreme 
flooding events obtained (B). The area never covered with water and more than 80% of the dates was 4695, 1632 km², while the area 
covered with water only during 2007, 2010 and during both years was 1486, 480 and 1406 km², respectively.
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variation during flooding years is particularly evident in the 
C3 unit, which is the only that drains to the Uruguay River. 
Units of the third group were located at the Lower Delta. 
They are influenced by the Paraná and Río de La Plata 
Rivers. Extraordinary flooding events were not evident on 
these units. Instead, a flooding event of the Uruguay River 
that occurred during the 2009 is evident in the Uruguay Ri
ver unit. The proportion of different vegetation units, which 
are distributed and highly fragmented across the region 
(Salvia et al., 2007) could explain this inundation patterns.

The land cover classification based on water presence 
or absence maps showed the strong variability of the study 
area (figures 6 and 7). Extreme classes (figure 6 A) co-
vered only 27% of the area; 21% was never covered by 

water while 6% was covered by water more than 80% of 
the dates. The 3 classes that only included water during the 
extraordinary flooding events covered 14% of the area (fi-
gure 6 B). In contrast, most of the area (58%) was covered 
by pixels that presented water not only during extraordinary 
flooding events, which were aggregated on five classes (fi-
gure 7). Classes that presented water a few dates moreover 
extraordinary flooding events (classes A and B) co vered the 
larger area. The Class A covered mainly the Lower Delta 
and the right margin of the Paraná River, while the Class B 
covered the central zone of the Medium Delta. The Class B 
showed higher sensitivity to flooding events than the Class 
A, expressed by an earlier incidence of the 2010 flooding 
(that begins at the end of 2009), and a larger water cover 
during 2011. Classes C, D and E presented a larger mean 

Figure 7. Left) Maps showing the five classes that varied its water cover not only during extraordinary flooding events obtained in the 
classification based on water cover maps. Right) Water cover along the year for each of the twelve years (2001-2012) and class (A, B, C, 
D and E). Years with extreme flooding events are marked with tick lines (2007 full and 2010 dashed). The area covered by the classes A, 
B, C, D and E was 6352, 3996, 1067, 1061 and 696 km² respectively.
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Figure 8. Relationship between time series of water height of the 
Paraná river at the location of Victoria and the percentage of pixels 
classified as water for a 7x7 pixels moving window. Red satura
tion indicates the coefficient of determination (R2) of linear models 
between water height and water cover of each 7x7 pixels window. 
Areas never covered by water and more than 80% of the dates are 
marked in gray and black respectively.

water cover. Classes C and D were located at the north 
of the Lower and Medium Paraná, respectively, while the 
Class E was spread across all the region, associated to 
water courses. On class C, there were several peaks simi
lar to the extraordinary flooding events, but there were also 
periods were water cover was near to zero. In contrast, on 
Class D, although both extraordinary flooding events were 
more notorious, water cover was less frequently near to 
zero. Class E presented the higher mean water cover. Al
ways at least 30% of the pixels were covered by water and 
extraordinary flooding events were not notorious.

Some studies showed an association between time se
ries of water area and water level in lakes (Zhu et al., 2014; 
Hu et al., 2015) and marshlands (Ordoyne et al., 2008). Simi
larly, we found a correlation between water level of the Paraná 
River at Victoria and water cover (figure 8). Particularly for the 
classes D, B and A from this work (figure 7), water level at Victo
ria explained, in average, 52%, 47%, and 30% of the variations 
in water cover respectively. This analysis allowed to identify 
those areas more linked to the Paraná River level fluctuations. 

CONCLUSIONS

A tool that provides frequent and spatially explicit water 
cover estimations was developed and used. Many water 
related spectral indices were evaluated. Even though none 
of them accurately estimated water cover inside pixel MO
DIS (sub-pixel resolution), water presence or absence (pixel 
resolution) was accurately estimated by a model based on 
a MODIS NDWI1 threshold, which accurately separated 

pixels with less and more than 60% of water cover. More 
complex models did not improve accuracy.

By using the model, it was possible to map water cover 
in the region every 16 days for 12 years at 5 ha spatial 
resolution. Mean water cover and its temporal variation of 
previously defined landscape units (Malvárez, 1999) was 
assessed. Besides, a new classification based on the fre
quency and incidence of flooding events was developed 
and related to water level. These results demonstrated the 
utility of MODIS time series to characterize the hydrologi
cal patterns of the Paraná Delta. Further, the availability of 
new high spatial and temporal resolution radar and optical 
sensors (i.e. the Sentinel mission) can help to describe dy
namics at a finer grain scale.

Spatially explicit water cover estimation can complement 
existing static information and in situ and monitoring sta
tions. For example, the relationship of water cover with wa
ter level at different locations could improve flooding alert 
systems. Also, the combination of water cover and forage 
productivity estimations could allow having an idea of the 
temporal variation in the regional carrying capacity due to 
changes in the usable area. Besides, as this information 
can be delivered at almost real time, it could help for deci
sion making during extraordinary flooding events.
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