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Abstract
In engineering applications related to video surveillance, the use ofmonocular omnidirectional
cameras would reduce costs and complications associatedwith infrastructure, installation,
synchronization,maintenance and operation ofmultiple cameras. Thismakes omnidirectional
cameras very useful for transport analysis, a key task ofwhich is to accurately geolocate vehicles and/
or pedestrians observed in an ample region. The problemofmeasuring on the planewas previously
solved formonocular central perspective images. However, the problemof determining uncertainties
in geolocalization usingmonocular omnidirectional images, has not been addressed. This problem is
not trivial due to the complexity of the image formationmodels associatedwith these cameras. The
contributions of this work are: (1)The geolocation problem is solved using omnidirectional
monocular images through a Bayesian inference approach. (2)The calculation of Bayesian
marginalization integrals is simplified throughfirst-order approximations. (3)The accuracy of the
estimated positions and uncertainties is shown throughMonteCarlo simulations under realistic
measurement conditions. (4)Themethod to geolocate a vehicle’s trajectory on a satellitemap is
applied in an urban setting.

1. Introduction

Currently, central perspective projection cameras (described by the pin-holemodel) are used to solve these
video-surveillance tasks. These cameras typically have amaximumfield of view of approximately 60°×60°, so
in order to observe an ample region, it’s necessary to use numerous cameras increasing costs and complications
associatedwith infrastructure, installation, synchronization,maintenance and operation. A very common
solution is to use pan-tilt-zoom (PTZ) cameras whose direction of observation can be remotely commanded by
an operator. However, they have the limitation that they can only observe one region at a time, that is when the
operator reorients the camera it loses vision fromother regions. Additionally, for the PTZ camera tomonitor a
broad panoramawithout being continuously controlled by a human operator requires programming frequent
automatic reorientations, generatingmechanical friction and reducing the camera’s lifespan.

The limitationsmentioned above can be solved using omnidirectional cameras (OCs)with a visualfield of
approximately 360°×180°, allowing the observation of the hemisphere of interest of the scene [1, 2]. There are
several sensors which can be used to achieve awidefield vision, such as: synthetic compound eyes, catadioptric
and dioptric cameras. Synthetic compound eyes are sensors of reduced size that generally use a set of
photodiodesmimicking an ommatidiumordered array [3]. Due to the size and reducedweight of these sensors,
they are widely used in smallmobile robots; however, given their low resolution they are not used in video
surveillance tasks. Catadrioptic cameras use a standard digital camera alongwith a specially curved reflective
surface to increase camera’sfield of view. [4, 5]. This is a convenient and flexible approach, since themirror
profile can be adapted to achieve greater resolution in certain directions of interest. Nevertheless catadioptric
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OCs tend to be rather bulky and costly. Finally, the omnidirectional dioptric cameras employ afisheye lenswith
afield of view sowide that it extends a few degrees behind the camera. Fisheye lenses resemble the natural
underwater phenomenon of how afish sees a hemispherical upward view frombeneath thewater, known as
Snell’s window. At present there are different commercial versions of these cameras that can produce a
reasonable angular resolution using high resolutionCCD sensors (around 5mega pixels) [6].

Given the previouslymentioned potential advantages of usingOCs this work is focused on the development
of awide-field video surveillance for themonitoring of urban scenes. In this application, the objects of interest
(for example vehicles and/or pedestrians) are bound to earth’s surface due to the gravitational pull [2, 7, 8], and
most of the events which need attention or cautionarymeasures, take place below the horizon. Therefore the
objective of this system is tomeasure the geographical location of objects on the terrestrial plane alongwith
determining the uncertainty of themeasurement (figure 1(a)).

The problemofmeasuring in theworld plane from central perspective images, and accurately predicting the
uncertainty of thesemeasurements was solved byCriminisi et al [9]. They use a homography transformation to
map positions from the image to aworld plane predicting uncertainty with a first ordermodel, and take into
account uncertainties in the image input points and in the homographymatrix. They use a linear distortion
model and estimate projection parametersminimizing the projection error in theworld plane and demonstrate
thatfirst order analysis is accurate.

In order tomakemeasurements of the location of objects over a terrestial planewith theOCs, thefirst step is
tomodel and correct the distortions (figure 1(a)). In this sense, there is a wide bibliography [4, 10, 11] on
calibration of catadioptric and dioptricOCs.However, the problemof determining uncertainties in the process
of predicting locationwithOCs has not been addressed. This problem is not trivial due to the complexity of the
image formationmodels associatedwith these cameras, thus approaching it from aBayesian perspective is the
main contribution of this work.

The Bayesian approach is well suited to formulate both, camera calibration and position estimation
problems in explicit probabilistic terms It has been demonstrated for the case of 3D reconstruction by
Sundareswara and Schrater [12] that Bayesian predictionmarginalizes on the parametersmaking it less
susceptible to statistical fluctuations than the plug-in approachwhere only the value of themost likely parameter
is used. Together withCivera et al [13] they use a Bayesian approach to intrinsic and extrinsic calibration in
addition to 3D scene estimation. But they rely onmultiple view geometry because they use themovement of the
camera. Also due to the complexity of the projectionmodels, sampling algorithms are used for the estimation of
parameters (calibration) and scene positions.

This paper faces the problemof calibration and predictionwith a Bayesian approachwith a single staticOC
already installed in an urban setting and develops a calibrationmethod for localization in the ground plane. The
calibration is simple and only requires an operator tomanuallymatch some fiducial points in both a satellite
image and theOC image. Bayesianmarginalizations integrals are simplified by assuming the projection function
can be approximated by afirst order Taylor series which result in fast calculations. Thismakes themethod
suitable for real time localisationwith uncertainty.

This work is organized as follows: In section 2 theworkflowof the proposedmethod is described, the
geometricmodel of image formation (projection) thatmapsworld coordinates to image coordinates, and the
inverse (back-projection) inwhichworld coordinates from image coordinates can be obtained. In section 3 the
Bayesian approach is described in detail, alongwith its implementation in Python scripts to be applied to real
data. In section 4 the linear approximation and the prediction algorithm are shown to be valid estimations
throughMonte Carlo simulations under realistic conditions of application, later applying thismethod in real
data for the geolocation of vehicle trajectories.

2.Materials andmethods

2.1.Workflowof the proposedmethod
Themodel of image formation depends on both theOC’s intrinsic parameters (such as focal length, radial
distortion andCCDoptical center, symbolised as G) and extrinsic parameters describing the relative pose of the
camera to theworld (position and orientation, symbolised asQ) [14, 15]. A back-projection function  mapping
coordinates XI toworld plane coordinates Xw using the camera’s parameters G andQ can be calculated
(figure 1(a)).

The calibration’sfirst step (figure 1(b)) is performed in the laboratory by detectingmultiple corners of a
chessboardwith known position in theworld plane (Xw). This process generates an extensive set of training data
called 1 fromwhich an estimate the intrinsic parameters and their uncertainties (denoted as themean m̂G, and

the variance ˆGC ). After this, it is assumed that theOC is installed in thefield observing the region of interest
(figure 1(c)). In this setup, a reduced set of world points ¢Xw and their correspondence in the image are observed
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(denoted as the calibration dataset 2)which allow to estimatemean and variance of pose ( ˆ ˆmQ QC, ). Those
calculations associatedwith the estimation ofmodel parameters { }G Q, are performed offline. After this process
the objective is to project the coordinates of a newdetection in the image ( ¢XI ) to theworld plane (m̂w) and their
uncertainties (Ĉw), which is intended to be computed online, see figure 1(d). Formally, the estimation of the
probability density function(PDF) ( ∣ )¢ ¢  p X X C, , ,w I I 1 2 (the probability of position in themap Xw given the

measurement in the image ¢ ¢X C,I I and the calibration data) is performed. The linear propagation of

Figure 1.Proposedmethod for geolocationwith uncertainties from images obtainedwith an omnidirectional camera. (a)The back-
projectionmapping ( )= G QX X , ,w I calculates the position on theworld plane Xw , given the position in the image XI, the intrinsic
parameters G and extrinsic parametersQ. (b) Intrinsic calibration. N images of a known chessboard are acquired and the corners in
each image are automatically detected. This process generates the dataset 1 that allows to calculate themean and variance of the
intrinsic parameters, ˆ ˆmG GC, throughmaximum likelihood estimation. (c)Extrinsic calibration. On the left is showed an image of the
plane of interest acquiredwith theOC.On the right, a satellite image of the same area. A few points that can be detected in both images
(red dots) are identified.With this dataset, denoted 2, (and additional a priori information about theOC’s pose, provided by the
camera installer) the extrinsic parameters associatedwith the position and orientation of the camera ˆ ˆmQ QC, are estimated by
MaximumaPosteriori estimation. (d)Geolocation of objects. An object of interest is detected in theOC image ( ¢XI , with ¢CI
uncertainty). This information is combinedwith the estimates of the calibration parameters to predict the object position in theworld
reference frame and the associated uncertainty, ˆ ˆm C,w w .
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uncertainties approach is taken, since it is computationally inexpensive and also accurate, as further
demonstrated.

2.2. Camera
In this work afisheye IP cameraVIVOTEKFE8172 (figure 2(a)) is used. It has afield of view (FOV) of
360°×183° allowing for the observation of a full hemisphere, this camera is compact and easily connected over
Ethernet port. A simplified intrinsicmodel for thisOC is shown infigure 2(b). It is observed that an incident ray
from the point Pwith an angle θwith respect to the optical axis, is refracted in the projection center of the camera
forming an exit angle different from the one of entrance, and projecting into the image plane (corresponding to
theCCD sensor) at a distance rd from the projection center. Themodel offisheye cameras is specified by defining
a relationship between rd and θ, this being in general strongly non linear. This differs from themodel of central
perspective projection cameras, for which input and output angles are the same (pin-holemodel). In a previous
work [1], a calibration of theVIVOTEKFE8172 camerawas performed showing that the stereographicmodel is
a good characterisation of lens’ distortion (figure 2(d)). It is given by the relation ( )q=r k tan 2d , where k is the
central distance. At full resolution, 1920×1920, radial distortion parameter obtainedwas =k 952.16 px.

In order to improve system’s performance in terms of framerate, the resolution is set to 1600×900 and set
the camera to ‘wide’mode obtaining a FOVof 183°horizontally and about 120° vertically. This doesn’t hinder
performance because the FOVof fullfisheyemode covers an area so extense that a large part of the image
corresponds to uninteresting regionswhile full resolutionmode reduces camera’s frameratewith little visual
information addedwith respect to 1600×900.

2.3. Stereographic projectionmodel
Aprojectionmodel describes the path of a light ray that originates from a 3Dworld position (see figure 3) as it
passes through the camera lens and hits the CCDchip incrementing image pixel’s intensitymeasure(figure 3).
This process is broken down in two steps [1, 15, 16]. First, the 3Dposition of the light source Xw is rotated and
translated to the camera’s frame of reference yielding Xc. Information about distance to the camera is
eliminated, only direction of arrival of light’s raywith respect to the cameramatters, yielding Xh a 2D vector.
Second, it goes through a function thatmodels lens distortion and projection to theCCDchip, yielding XI.
Given that third dimension is lost, it is not possible in general to back-project Xw from XI, but with the
hypothesis that the light source is at ground level plane the back-projection function can be solved.

Figure 2. (a) Fisheye cameraVIVOTEKFE8172 used in this work. (b) Intrinsicmodel for thefisheye camera. (c) Image obtainedwith
theOC camera of a grid-like set of calibration points. Notice the strong distortions in the image [1]. The red box indicates the region
observed by theOC camera in ‘Wide’mode (instead of full fisheyemode). (d)Relationship between rd distance versus θ incidence
angle for three intrinsicmodels [10, 11]: equiangular, equisolid and stereographic, the latter showing the best fit.
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There are several proposedmodels of optical distortion [10, 17], in [1] it is shown that the stereographic
model is a good description for theOCused (figure 2(d)) and is easy tofit having only one parameter describing
distortion. Although there aremore general distortionmodels, they havemore parameters than needed for this
case [18]. In the rest of this section the projection and back-projection function is formulated following
OpenCV’s projectionmodel.

Thefirst step is to transform theworld position to the frame of reference of the camera. Theworld
coordinates of an object [ ]= X x y z, ,w w w w , expressed in the reference frame of theworld, are rotated and
translated to the frame of reference of the camera, in symbols

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
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The rotationmatrix R is calculated from three parameters that express the orientation, followingOpenCV’s
convention r r r, ,x y z are the components of the Rodrigues vector [19, 20]. These six parameters that describe the
rotation and translation are the extrinsic parameters, the concatenation of the Rodrigues vector and translation
vector: [ ]Q º r r r t t t, , , , ,x y z x y z . Information about distance to the camera is eliminated by projecting to the
image plane placed at =z 1c . The nowbidimensional coordinates [ ]º X x y,h h h are

⎡
⎣⎢
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⎦⎥

⎡
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⎦⎥ ( )= =X
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x
y z . 2h
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Optical distortion is applied to Xh. The stereographicmodel only deals with radial distortion, assuming
cylindrical symmetry. The radius in the image plane (defined as follows in equation (3)) is used to calculate the
polar angle between light ray and the optical axis (equation (4)). The stereographicmodel applies a nonlinear
distortion on it (equation (5)), here it introduces the only non-linear parameter k that scales to pixels units. In
symbols all this steps are:

( )= +r x y , 3h h
2

h
2

( ) ( )q = rarctan , 4h

( ) ( )q=r k tan 2 , 5d

Figure 3. Image formationmodel when theOC camera observes the Xw point on theworld plane ( =z 0w ). The incident ray forms an
angle θwith the optical axis of the camera (which corresponds the axis z of the camera’s frame of reference). This ray is refracted
according to the stereographicmodel (seefigure 2(b))which projects on the CCD sensor.
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Conventionally the origin of pixel coordinates is located at the top left corner of the image, thus the
coordinates are appropriately displaced by [ ]c c,x y to obtain [ ]= X u v,I . The parameters that depend solely on
the camera and describe the optical distortion are intrinsic parameters [ ]G = c c k, ,x y .

OpenCV’s formulation of the projectionmodel is followed, except for the specific formof the radial
distortion function. Thismakes it fairly easy to later extend the procedure here explained toOpenCV’s
distortionmodels.

2.4. Stereographic back-projection
Since the goal is to predict the real world position of objects, themodel of image formation from the previous
sectionmust be inverted. Tomap image positions intoworld positions themodel of image formation is followed
reversing every step so that a position in the image XI can be transformed to a position in the physical world Xw.
The back-projection is referred as the function  thatmaps [ ]u v, to [ ]x y,w w using the intrinsic parameters
[ ]c c k, ,x y and extrinsic parameters [ ]r r r t t t, , , , ,x y z x y z , in otherwords ( )Q G  X X, ,I w. The calculations
are shown in algorithm1.

Algorithm1.Back-projection function

1:function  [ ] [ ] [ ]u v c c k r r r t t t, , , , , , , , , ,x y x y z x y z

Intrinsic correction:
2: ( ) ( )¬ - + -r u c v cx yd

2 2

3: ( )q ¬ r k2 arctan d

4: q¬r tanh

5: ¬x x r rh d h d

6: ¬y y r rh d h d

Extrinsic projection:
7: ( )¬ r r rR Rodrigues , ,x y z >Rodrigues rotation formula

8:

9:[ ] · [ ]¬  t t t t t tR, , , ,x y z1 2 3 >Rotate translation vector
10:

11: ( )¬ + +z t R x R y Rc 3 13 h 23 h 33 >Solve collinearity equations
12: ( )¬ + + -x z R x R y R tw c 11 h 21 h 31 1

13: ( )¬ + + -y z R x R y R tw c 12 h 22 h 32 2

14:returnx y,w w

15:end function

First, in line 2 the image position is displaced to be expressed in reference to the optical center [ ]c c,x y . The
radiuswith respect to the optical center in pixels is used to calculate the angle of arrival of the light ray using
parameter k in line 3. The tangent of this angle is the radius in homogeneous coordinates (see line 4), which by
simple proportionality serves to calculate Xh as shown in line 5.

[ ]x y,h h is a 2D vector on the plane =z 1c in the frame of reference of the camera. To project to theworld
frame of reference a 3Dposition needs to be calculated. Themissing 3rd dimensional information (distance of
the object to the camera) ismade up as in [7]with a reasonable hypothesis in the context of trafficmonitoring:
the object of interest is on the ground. Thus far [ ]x y,h h is known and solving for [ ]x y,w w gives [ ]x y,h h , the
parametrization of the pose (Rij is the element i, j of the rotationmatrix R) and the hypothesis =z 0w .Working
with equations (1) and (2) yields thewell known collinearity equations. The solution is shown in lines 9
through 13.

2.5. Previouswork on intrinsic calibration andpython libraries
Themostwidely used camera calibration procedure is based in Zhang [21], Bouguet [22] for its ease of use. The
calibration procedure usually is: print a chessboard-like pattern and attach it to a planar surface. Take about 10
images of the pattern in different positions with respect to the camera. Detect chessboard corner points in the
image automatically. Feed the detected corner points and its corresponding planar coordinates to the algorithm,
it will return the distortion parameters of the camera and the rotation-translation of the chessboard in each
image.

OpenCV [16] is an open source computer vision library that has been largely adopted as the primary
development tool by the community of researchers and developers in computer vision [23]. It includes solutions
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for camera calibration [21, 22] and camera pose estimation [24] for a variety of optical distortionmodels
includingOCs. Among the solutions it provides, it estimates distortion parameters, extrinsic parameters and
perspective transformation. As it will be explained in section 5 this paper’s contribution can be added to
OpenCV to yield amore complete treatment of uncertainties.

3. Bayesian approach to calibration

In this section an approach to camera calibration fromaBayesian perspective is proposed. The starting point is
the general expression of the predictive distribution. From there, the two step calibration process is deduced:
intrinsic and extrinsic calibration; in both cases the posterior probability of the parameters given the calibration
data is estimated.With the estimated posteriors on the parameters, the predictive distribution is aproximated as
a linear propagation of uncertainty.

The predictive distribution of theworld position of an object is conditioned on ameasurement on the image
and on previous data, ( ∣ )¢ ¢  p X X C, , ,w I I 1 2 [25, 26] (see figure 1(d)). Following the standard procedures of
camera calibration, previous data is separated in two, intrinsic calibration data, 1, and extrinsic calibration
data, 2. The newmeasurement corresponds to the detection of an object in the image, ¢XI . This detection
process gives a position in the image but alsomust report some quantification of the uncertainty of detection. It
will be denoted by a covariancematrix ¢CI that is considered to come directly from the detection algorithm.

It follows that the predictive PDF can be expanded as

( ∣ ) ( ∣ ) ( ∣ )

( ∣ ) ( ∣ ) ( )
ò¢ ¢ = G Q ¢ ¢

G Q G Q

 

  

p X X p X X p X X

p p X

C C, , , , , ,

, d d d . 7

w I I 1 2 w I I I I

1 2 1 I

There are four terms in the integrand:

• Thefirst term is theDirac delta function on the back-projection, ( ∣ ) [ ( )]dG Q = - G Qp X X X X, , , ,w I w I .

• The second termdescribes the PDF of the random varible that represents the position in the image, assumed
normal given a noisymeasurement parameterised by ¢ ¢X C,I I. In symbols ( ∣ ) ( ∣ )¢ ¢ = ¢ ¢p X X X XC C, ,I I I I I I .

• The third term ( ∣ )G p 1 is the posterior probability of the intrinsic parameters given the intrinsic calibration
data. It will be addressed in section 3.1. The result is the estimation of themean and variance of said PDF,
assumed normal; that is, ( ∣ ) ( ∣ ˆ ˆ )mG = G G G p C,1 .

• The fourth term ( ∣ )Q  p ,2 1 is the posterior probability of the pose of the camera given the extrinsic
calibration data, and the intrinsic calibration as well. This is because the extrinsic calibration requires the
results of the intrisic calibration as will be explained in section 3.2. Again, the estimated posterior is a normal
distribution ( ∣ ) ( ∣ ˆ ˆ )mQ = Q Q Q  p C, ,2 1 .

Replacingwith the normal PDFs that will be estimated in the following pages yields

( ∣ ) [ ( )] ( ∣ )

( ∣ ˆ ˆ ) ( ∣ ˆ ˆ ) ( )
ò d

m m

¢ ¢ = - G Q ¢ ¢

G Q G QG G Q Q

   

 

p X X X X X X

X

C C

C C

, , , , , ,

, , d d d . 8

w I I 1 2 w I I I I

I

Figure 4 shows a graphical representation of the calculation of the predictive distribution for the hypothetical
case inwhich variables X X,I w were one-dimensional.

It is important to note that, even though all the PDFs in the integrandwere approximated to normal
distributions, the integral is still hard to evaluate due to the non-linearity of  . The integral could be solved
using expensive computational strategies, but as explained above the goal is to perform this calculation online.
Linearising  around ˆ ˆm m¢ G QX , ,I reduces the calculation to a simple linear combination ofmutually
independent normal randomvectors [27],

( ∣ ) ( ∣ ˆ ˆ ) ( )m¢ ¢ =  p X X XC C, , , , 9w I I 1 2 w w w

ˆ ( ˆ ˆ ) ( )m m m= ¢ G Q Xwhere , , , 10w I

ˆ ˆ ˆ ( )= ¢ + +G G G Q Q Q
      C J C J J C J J C Jand . 11X Xw II I

Inwords, the approximately normal PDF of the predicted position in theworld has amean that is a direct
evaluation of the back-projection function on themeans of the detected image position and the parameters; and
a covariance that combines the uncertainty on the detection and parameters through the Jacobian J .
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3.1. Intrinsic calibration
Let {( )}( ) ( ) ( )= ¢ ¢ ¢ X X C, ,i j i j i j

i j1 w
,

I
,

I
,

, be the data set for intrinsic calibrationwhere each tuple i j, consist of world

coordinates ( )¢X i j
w

, and is corresponding projection in the image ( )¢X i j
I

, (seefigure 1(b)), index [ ]Îi N1,
denoting the different images and [ ]Îj M1, each corner in the chessboard calibration pattern. Detections
might not have the same accuracy so ( )¢C i j

I
, is included in the list of calibration data.

All the parameters for this data set are { { } }( )W = G Q, i
i , where { }( )Q i

i is the list of extrinsic parameters of
every picture. The posterior density of the parameters given the data

( ∣ )
( ∣ ) ( )

( )
( )W =

W W





p

p p

p
. 121

1

1

Since at this point there is no prior information on W the posterior can be equated to the likelihood, which in
turn is the product of the probability of each data tuple given the parameters. In symbols

( ∣ ) ( ∣ ) ( )( ) ( ) ( ) ( )W µ ¢ ¢ ¢ G Qp p X X C, , , . 13
i j

i j i j i j i
1

,
w

,
I

,
I

,

Every term in the productorial is the probability ofmeasured data ( )i j, conditioned on the parameters. Taking
( ∣ )( ) ( ) ( ) ( )¢ ¢ ¢ G Qp X X C, , ,i j i j i j i

w
,

I
,

I
, and applying the definition of conditional probability to leave ( ) ( )¢ ¢X C,i j i j

I
,

I
, on

the right side of the conditional quickly leads to

( ∣ ) ( ∣ ˆ ˆ ) ( )( ) ( ) ( ) mW µ ¢ p X C, 14
i j

i j i j i j
1

,
w

,
w

,
w

,

ˆ ( ) ( )( ) ( ) ( )m = ¢ G Q Xwhere , , , 15i j i j i
w

,
I

,

ˆ ( )( ) ( )= ¢  C J C Jand . 16
i j

X
i j

Xw
,

I
,

I I

Which looks like a simplified version of equation (9) because there is no PDF on ( )G Q, i , but it arised under a
similar procedure. The probability of ∣W 1 in equation (13) can be evaluated numerically for some value of W, it
requires the calibration data and to compute  and its derivative with respect to XI as shown in equation (14).
Methods likeMetropolis-Hastings [28] can estimate themean and variance of ∣W 1. But recall that out of

{ { } }( )W = G Q, i
i the camera positionswith respect to the calibration pattern are of no use later on, the objective

of the intrinsic calibration is G only because the optical distortion is a constant intrinsic to the camera. The
estimation of { }( )Q i

i is ancillary.Marginalizingwith respect to { }( )Q i
i is trivial under the reasonable assumption

that ∣W 1 is approximately normal and G and { }( )Q i
i are independent. Intrinsic calibration results in the

estimation of

Figure 4.Unidimensional diagram to illustrate how the PDF associated to the detected input ( ∣ )¢ ¢p X X C,I I I is combinedwith the PDF
of the calibration (posterior density of the parameters given the data, ( ∣ )G Q  p , ,1 2 ) in blue to yield the PDF in the output

( ∣ ˆ ˆ )m  p X C, , ,w w w 1 2 .
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( ∣ ) ( ∣ ˆ ˆ ) ( )mG = G G G p C, . 171

where ˆ ˆmG GC, are the components of themean and variance of ∣W 1 (obtained byMetropolis-Hastings) that
correspond to G.

3.2. Extrinsic calibration
After intrinsic calibration in controlled conditions, where the PDF of Gwas estimated, the camera is set up in
some urban location pointing to some zone of interest (figure 1(c)). Calibration data is now a set denoted as 2

of M points on the real world and its associated image coordinates {( )}( ) ( ) ( )¢ ¢ ¢X X C, ,j j j
jw I I with [ ]Îj M1, . The

extrinsic calibration is the procedure to estimatemean and variance of the camera poseQ.
By the law of total probability and assuming independence betweenQ and 1 and between G and 2 the

posterior onQ is

( ∣ ) ( ∣ ) ( ∣ ) ( )òQ = Q G G G
G

   p p p, , d 182 1 2 1

where ( ∣ ) ( ∣ ˆ ˆ )mG = G G G p C,1 (equation (17)). By Bayes’ rule ( ∣ ) ( ∣ ) ( ∣ )Q G µ Q G Q G p p p, ,2 2 but asQ and
G are independent ( ∣ ) ( )Q G = Qp p . The posterior distribution ofQ is

( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )òQ µ Q Q G G G
G

   p p p p, , d . 192 1 2 1

Notice that a nonflat prior on the camera pose is allowed ( )Qp , as this is a physicalmagnitude forwhich there
might be some information after installation, unlike the camera intrinsic parameters that depend on themodel,
whichmight be quite obscure to elucidate.

As in equation (14) the likelihood ( ∣ )Q Gp ,2 can be calculated as the product of the likelihood of each data
tuple resulting in

( ∣ ) ( ) ( ∣ ˆ ˆ )

ˆ ( ˆ )

ˆ ˆ ( )

( ) ( ) ( )

( ) ( )

( ) ( )

 m

m m

Q µ Q ¢

= ¢ Q

= ¢ +

G

G G G

  



   

p p X

X

C

C J C J J C J

, , ,

where , , ,

and . 20

j

j j j

j j

j
X

j
X

T T

2 1 w w w

w I

w II I

Now the derivative of  respect to G is also required and computing G
J . Numericalmethods, again, can

estimate themean m̂G and variance
ˆGC of ∣Q  ,2 1 from equation (20), such that

( ∣ ) ( ∣ ˆ ˆ ) ( )mQ = Q G G  p C, , . 212 1

3.3. Summing up calibration and prediction
In brief, the procedure is as follows. Taking images of a calibration pattern in the laboratory as infigure 1(b)
produces the intrinsic calibration data 1 and the result of calibration is to parameterize the posterior PDF of the
intrinsic parameters ( ∣ )G p 1 with amean m̂G and variance

ˆGC . This is done computing the posterior via
equation (14) (refer to section 4 formore details) and standardmethods of numerical integration like
Metropolis-Hastings.When the camera is finally installed in itsfinal position the extrinsic calibration points can
be extracted 2 (figure 1(c)) that are used to estimate themean and variance ˆ ˆmQ QC, of the posterior PDF

( ∣ )Q  p ,1 2 (computed as shown in equation (20)). This completes the calibration.With a new detection of a
vehicle ¢ ¢X C,I I the predicted PDF in theworld frame of reference is calculatedwith equation (9) as ilustrated in
figure 1(d). This prediction can be performed online since the computational cost is negligible.

4. Results

In this section it is shown that the linear approximation for uncertainty propagation delivers significant accuracy
when compared to amore proper but computationally intensive nonlinearMonte Carlo estimation. The two-
step calibration and prediction are applied to simulated data cases: first generate data of realistic chessboard
pictures for the intrinsic calibration and a total of six final camera installation positions and orientations for the
extrinsic calibration. Then use real chessboard data obtained in controlled conditions to estimate the intrinsic
parameters; the camerawas installed at a testing site and calibration points weremanually obtained from images
to estimate the extrinsic parameters. Finally, the uncertainty of the predictedworld positions for a vehicle
detectedwithin the video sequence is shown.

As a pattern for intrinsic calibration a 37 cm long chessboardwith 9×6 interior corners was used. =N 33
pictures were taken and then appliedOpenCV corner detector as shown infigure 5(a). These pictures were taken
to cover thefield of view, as suggested by Fraser [18], the detected corners are shown infigure 5(b). OpenCV’s

9

Eng. Res. Express 2 (2020) 025041 S I Arroyo et al



calibrateCamera function takes the detected corners and their corresponding positions in 3D (figure 5(c)) and
returns 33 camera poses shown infigure 5(d). The detected chessboard corners and the estimated camera poses
are used either as initial conditions for the sampling algorithms or as ground truth to generate synthetic data, as
explained in the following subsections.

Both the acquisition of video/images and off-line data processingwere carried out in a desktop computer
running under Linux operating systemusing Python [29] scripts with the aid of the librariesNumPy [30], SciPy
[31],Matplotlib [32], OpenCV [16] and the Spyder IDE [33]. AsOpenCV implements the calibration algorithms
of Bouguet [22] it was adopted as starting point for calculations, and for general imagemanipulation. The library
PyMC3 [34]was used forMonte Carlo simulations.

4.1. Comparing linear approximationwithMonteCarlo
In this section thefirst order approximation of the propagation function against aMonte Carlo (MC) evaluation
of the nonlinearmapping are compared. The heart of the stereographicmodel is a highly nonlinear radial
distortion function because itmust conform to the severe optical distortion that characterizes theOC.Andmore
generally, any image formationmodel includes a perspective projection that is strongly nonlinear in the camera
pose so it is not at all evident that the linear approximationwould hold in practice.

In a similar fashion as done byCriminisi et al [35] a population of tuples ( )G QX , ,I that follownormal
distributions are generated. Each variable then ( )m~ X C,I I I , ( )mG ~ G G C, and ( )mQ ~ Q Q C, . The
resulting set of points will be comparedwith the parameterized normal PDF obtained by linear propagation of
the normal distributions where the points were drawn from. If the linear approximation is valid then themean
and covariance of theMCparticles will be close to the propagatedmean and covariance.

The data gathered for the intrinsic calibration is a useful source of realistic image coordinates. Instead of
arbitrarily defining a number of poses that imitate chessboard calibration data it was preferred to borrow some
camera poses associated to a real data set as it covers a reasonable range of positions. Taking the 33OpenCV’s
estimated camera poses as the set of { }( )Q ;i

i alongwith the 3Dworld positions of the chessboard corners and
intrinsic values G that arise from author’s previousworkwith the camera and the understanding of the
stereographicmodel. Define [ ]G = 800, 465, 800 . The center of optical distortion is at the center of the image
(hence cx and cy are taken from the image size) and the optical distortion parameter k is half thewidth of the
image because it is interpreted as the radiuswhen the incoming light ray is perpendicular to the optical axis.

To generate the population of samples forMC the image corners are first fabricated. Using equations (1)–(6)
to project the 54 chessboardworld coordinates ( )X i j

w
, to image coordinates for each pose. Ending upwith 33 sets

of 54 pixel coordinates ( )m i j
I

, . The detected image coordinates are determinedwith 1 pixel standard deviation
(therefore =C II 2). It is considered reasonable (and this is later confirmed empirically) that the intrinsic and
extrinsic parameters have been determined to about three significant digits, that is the standard deviation is 10−3

of the parameter value, hence defining G QC C, .

Figure 5. (a)Three out of the 33 images of the calibration pattern, a 9×6 chessboard. (b)Anoverlap of all detected corners is shown.
(c)The 3D coordinates of the corners in theworld frame of reference. (d)The 33 poses of the camera thatOpenCV calibrates along
with the intrinsic parameters of the camera (with a differentmodel than the author’s).
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Next step is to generate the set of =N 5000MC MonteCarlo samples, drawing image detection positions,
intrinsic and extrinsic parameters according to themeans and covariances justmentioned. TheNMC tuples are
then fed to the back-projection function.Not only thefinal outcome inworld coordinates are examined but also
the intermediate coordinates Xh, similar to a central perspective camera without distortion.

Infigure 6(a) the image coordinates sampled from aGaussian distribution, 5000 samples for each corner
detected, the zoomed inset on the right shows the comparison between the samples for a detected corner, the
covariance ellipses of 90%probability, both estimated from theMonte Carlo samples (in black) and theoretical
first order analysis (in red). Infigure 6(b) the same samples were corrected for intrinsic distortion (lines 2–5 of
algorithm1) and it can be seen that the ellipses have become elongated in the radial direction, also, the difference
betweenMCand the linear approximation has been accentuated due to the linearising error in the radial
direction. Infigure 6(c) the perspective projection is performed (lines 11–13). The uncertainty in the six pose
parameters addsmore uncertainty but the estimations of covariances fromMonteCarlo and linear propagation
are indistinguishable.

There are 33×54 calibration points, each of themwas used to produce a pair of prediction PDFs.One by
linearly propagating uncertainties and a second one by fitting aGaussian distribution to theMCback-projected
samples. To visually assess the similarity between the two PDFs for all 1782 calibration points, the covariance
ellipse associated to the PDF obtained by first order propagation are transformed to a new basewhere its
corresponding numericalMC counterpart becomes the unitary normal distributionwith zeromean. Ilustrated
in 6(d), then subtract the center of the ellipse from linear propagation and apply a change of base such that this
ellipse becomes a unitary circle. Plotting the transformed first order covariance ellipses infigure 6(e) in red lines
and as reference theMCcovariance circle in red showing all the red ellipses superimposed result in a blue halo
around the reference circle.

Figure 6. (a)–(c)The comparison ofMCand linear error propagation, on the inset on the right the 5000 dots are theMCpopulation,
the black line is their covariance ellipse of 90% confidence to be comparedwith the covariance ellipse obtained via linear propagation
of uncertainty. On the left, theMCpopulations of the 54 calibration points. (a)Notice the curvature due to optical distortion. (b)The
optical distortion has been corrected. (c)The propagation to theworld plane, the covariance ellipses ofMCand the predicted ones are
virtually indistinguishable. (d)Normalizing so that the 54×33MCcovariances become the identitymatrix puts all linearly predicted
covariances on equal footing for comparison. (e)Normalised covariance ellipses form a thin halo around the unit circle, showing that
for all cases the discrepancy betweenMCand linear propagation is very small.
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4.2. Intrinsic calibrationwith synthetic data
To test the intrinsic calibration the posterior probability distribution of the three intrinsic parameters of the
camera is estimated. first and secondmoment. Figure 5 shows the 33 camera poses with respect to the
checkboard points and all corner detections in one single image.

The 3 intrinsic parameters and the 33×6 extrinsic parameters (6 per image) form amultivariate random
vector of 201 components. The probability of the vector is evaluated as shown in equation (13). Therewere
drawed 442 chains of 50 samples withDifferential EvolutionMetropolis (DEM) [34, 36]. The starting values for
the chainswere defined ad hoc tominimize the burn-in period. The histograms of the samples from this section
and the ones to followwere unimodal and bell shaped.

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ˆ ( )=

-

-
GC

0.00247 0.000 20 0.00030
0.00020 0.003 79 0.00123
0.00030 0.001 23 0.01793

22

Table 1 compares the true values of the parameters with the estimations from the samples, the disparity is in
the sixth significant digit, it is due to the statistical fluctuation of the artificially added detection noise (standard
deviation of 1 pixel). This shows that the expectation of the posterior probability is a good estimator of the true
parameter values. The variance of the samples comes from thewidth of the dispersion of said noise, themore
uncertain the detection in the image the less informative the posterior.

4.3. Intrinsic calibrationwith real data
To estimate the intrinsic parameters of theOC it is followed the same procedure as abovewith experimental
data, the detected corners in the 33 chessboard images (not the ones artificially generated assuming known
distortion parameters and camera poses).

Before sampling a standard non linear optimization function to get better seed values is used. The extrinsic
parameters given byOpenCV’scalibrateCamera and the intrinsic parameters used as ground truth in the
previous section result in a back-projection of the corners that show significant discrepancies to the true
chessboard positions. To provideDEMwith better initial values for sampling, a standard non linear
optimization routine fromScipy [31] that brings the back-projections closer to their target is used.Minimizing
the error function associatedwith the posterior on the parameters (equation (13)). The back-projectionwith the
values from synthetic chessboard (the initial guess) are shown in the left panel offigure 7 and in the right panel
the back-projectionwith the optimized parameters. OpenCV estimates the parametersminimizing the
projection (in image) error, that’s why they are bad estimates for back-projection. The clear improvement in
fitting drastically cuts down the burn-in periodwhen sampling.

Assuming a 1 pixel error in corner detection, themean and variance of 500 chains of 2000 samples are

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ [ ]

ˆ ( )

m =

=
-

-

G

GC

816.45, 472.64, 795.19 ,

0.628 0.051 0.016
0.051 0.640 0.367

0.016 0.367 3.746
. 23

Notice that the variance ismuch greater than the one estimated for the simulated intrinsic calibration because it
now accounts for the error in themodel.

4.4. Extrinsic calibration and predictionswith synthetic data
Following section 4.2where the calibration for a simulated camerawas solved, placement of the same camera is
simulated in an urban environment to perform the extrinsic calibration and test the algorithmwith plausible
ad hoc camera poses.

Themain interest is to test the calibration in a set of realistic conditions in the context ofmonitoring of
vehicles and pedestrian in urban scenes. Camera height above ground { }7.5 m, 15 m ; its optical axis forming
and angle with respect to vertical: { }  0 , 30 , 60 ; and 20 calibration points, in total encompassing 6 situations.

Table 1.Comparison of true intrinsic values and estimation
from samples drawn from the posterior probability distribution.
Each sample is a 201 dimensional vector, only the three
components of the intrinsic parameters are utilized.

TrueValue SamplesMean (m̂G) Samples SD

cx 800 800.001 0.05

cy 452 451.999 0.06

k 800 799.999 0.13
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Points on the z=0 plane are in region of 50 m radius such that are evenly distributed in the observed image, half
of themwill be used to calibrate the pose of the camera and the other half for testing. That is, they are all
projected to image coordinates, tenworld-image pairs will be used to estimate the pose. Then prediction of the
world coordinates of the ten unused image detections to be compared to their correspondingworld coordinates
is performed.

With the calibration points and the estimation of intrinsic parameters previously obtained, the calibration
procedure to sample the six dimensional pose space is applied. In every case 30 chains of 1000MC samples are
drawn. Themeans and variances of the six sets of samples are used to back-project the synthetic image detections
and their uncertainty to the corresponding georeferenced positions. Figure 8 shows the projected ellipses on the
world reference frame, the size of the ellipses and the error with respect to the true position has beenmagnified
by a factor of 10 tomake the disparity visible infigure 8. The projected uncertainty is smaller for positions closer
to the camera and also the ellipses are less elongated because those regions hold a better view factor, as the
projected point gets further away from the camera the uncertainty grows, specially in the radial direction due to
the perspective effect. To visualize all the projections errors it is linearly transformed each projection error to the
spacewhere the projected covariance becomes the identitymatrix as in section 4.1. Infigure 8(c) all the
calibration points have been transformed in this way, for reference the circle of 90%probability is drawn.

Table 2 reports the rootmean squared deviation between the real world positions and the back-projections
of the calibration points and prediction test points. The prediction error on testing points is always greater than
the error on calibration points and both are in the order of 10−1m.

4.5. Extrinsic calibration and predictionwith real data
Following section 4.3 calibration points are used to estimate the camera pose in a real world situation and
geolocate the trajectory of a vehicle.

The camerawas placed 15.7±0.2 m above the ground, this is the a priori information used for calibration.
Manually defining =M 19 calibration points that consist of corresponding pairs of image and latitude-
longitude coordinates. The terrainwhere the experiment took place is even and horizontal, so that the
assumption =z 0w holds. Also this facilitates the conversion of theworld coordinates to and fromdifferent
representations (degrees of latitude-longitude, pixels inside a satellite image,meters) using a simple scaling
factor. The point on thefloor directly below the a priori position of the camerawas defined as the coordinate
origin ( )0 m, 0 m of the ground plane. Detections in the imagewere assigned 1 pixel of standard deviation.
Figure 9 shows the image calibration points and its corresponding latitude-longitude points. The trajectory of a
car as it traverses thefield of view of the camera is shown infigure 9(a) and this detections have 1 pixel of
standard deviation, they correspond to a feature of the car close to the ground.

Using the estimation of intrinsic parameters from section 4.3 and the a priori information, Differential
EvolutionMetropolis returned 60 chains of 9500 samples of 6-D rotation-traslation vectors. Themean and
variance of the samples are

Figure 7. Initial values of distortion parameters and the 33 poses are obtained by simple non linear optimization of the back-projection
error. Red dots are calibration pattern in theworld frame of reference, in blue the back-projection of the detected chessboard corners.
On the right, after the non-linear optimization, the back-projection has improved significantly with respect to before the optimization
(left).
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⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
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ˆ ( )

m = - - -

=

- -
- -
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- - - -

- -

´

Q

Q
-C

2.7441, 1.1450, 0.1767, 3.2703, 2.2972, 17.6410 ,

4.1 0.1 1.0 14.4 56.9 52.2
0.1 2.7 0.6 47.7 1.0 26.3
1.0 0.6 1.8 42.5 14.3 3.5
14.4 47.7 42.5 1554.9 183.6 532.1
56.9 1.0 14.3 183.6 1027.9 921.9

52.2 26.3 3.5 532.1 921.9 1306.9

10 . 245

Where the rotation component of m̂Q (first three elements) is in radians and the translation component is in
meters, the standard deviation of the former being~ 0.3 and∼0.1 mof the latter. m̂G is the rotation-translation
parameters of theworld reference frame from the point of view of the camera, the position of the camera in the

Figure 8. (a)The synthetic calibration points and six cases of camera poses. (b)The back-projected points in the world plane, the
confidence ellipses (six per calibration point) have beenmagnified´10 tomake them visible, in red if the point was used for extrinsic
calibration and in blue if it was used for prediction. To compare all back-projections, in (c) each calibration point is transformed to the
spacewhere the propagated confidence ellipse is the 90% confidence circle.

Table 2. For each combination of orientation angle and height there is a number
of visible calibration and prediction test points (It’s less than tenwhen the
fiduciary points fall out thefield of view of the camera). The rootmean squared
deviation is reported for both training and test points.

Only calibratingwith 10 points

ang[ ]◦ h[m] NTrain NTest

Train

RMSD[m]
Test

RMSD[m]

0 7.5 10 10 0.076 0.136

0 15 10 10 0.083 0.103

30 7.5 8 8 0.096 0.078

30 15 10 10 0.070 0.113

60 7.5 7 6 0.126 0.131

60 15 8 8 0.057 0.119
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world reference frame is calculated by (ˆ ˆ ˆ ) · [ˆ ˆ ˆ ]-  r r r t t tR , , , ,x y z x y y . It yields a height of 17.0 mwith a std of
0.14 m, in the order of the actual height above ground.

The predicted car trace inworld coordinates has an uncertainty that combines the estimated uncertainties of
the intrinsic parameters, extrinsic parameters and image detection. Infigure 10 the blue ellipses are the 90%
probability regions, drawn every few back-projected detections of the car (red dots). The effect that the
perspective projection has on the propagation of uncertainty has two components, one being the distance to the
camera thatmagnifies the uncertainty, the reverse of an inverse-square law. In the inset offigure 10 it is
empirically shown that the area of the 90% confidence ellipse is proportional to the square of the distance to the
camera. The second component is the view factor of the back-projected point with respect to the camera that
stretches the ellipse in a direction radial to the closest point to the camera. In this case the optical distortion and
view factor tend to elongate the confidence ellipses in approximately the same direction, that is why the ellipses
are so stretched. The smallest area of the 90%probability region is 3.15 m2, when the car is closest to the camera,
and increases with the square of the distance as shown in the lower inset of figure 10.

5. Conclusion anddiscussion

Wide-field vision systems (based on synthetic compound eyes or omnidirectional cameras) are currently being
incorporated to engineering applications related to terrestrial and aerialmobile robotics. Despite the advantages
mentioned in section 1,OCs are not widely used in video surveillance applications in urban environments;
where the traditional solution is still the installation ofmany cameras (fixed or PTZ type) eachwith reduced
visualfield.

Themain limitation of using theOC’s in this type of applications is the strong distortions introduced in the
image. Beyond this limitation (resolved by correcting the distortions computationally [4, 14]) the use offisheye
cameras has the advantage of observing a complete hemisphere of the scene at all times. This is very useful in
transport-related applications inwhich themovement of vehicles or pedestrians inwide regionsmust be
analyzed (for example in convoluted road intersections, see figure 10) [2]. In addition, the evaluation of geo
localization uncertainties are needed for estimation algorithms based onBayesian filters (Kalmanfilter, particle
filter, etc) used formotion analysis and prediction, tracking and decisionmaking on vehicular traffic violations.
For these reasons, this work studies the use of amonocular omnidirectional camera to geolocate objects solving
the calibration and prediction problems from aBayesian perspective.

5.1. Bayesian approach to camera calibration
Camera calibration is a critical part of any photogrammetric system. The Bayesian approach is well suited to
formulate both calibration and prediction problem in explicit probabilistic terms, and to incorporate a priori
information about the camera and/or its installation pose.

Sundareswara and Schrater [12] demonstrated that the Bayesian prediction is less susceptible to statistical
fluctuations thanmaximum likelihood estimation. Their work follows similar ideas to the present one butwith
critical differences. Sundareswara and Schrater [12] use a pin holemodel (not dealingwith severe distortions),
they calibrate in one step (instead of two)with several views of the object of interest (here a singlemonocular
view is assumed), estimating the posterior probability of the parameters and the reconstruction at the same time
(here intrinsic calibrationmust be done prior to the installation of the camera). The result of this is a population
of samples of the parameters that is later averaged, formarginalization, during 3D reconstruction (here

Figure 9.Extrinsic calibrationwith real data. Red dots are calibration points, in blue the trace of a car.
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calibrationmeans to estimate amean and a covariance; prediction as linear propagation automatically
incorporatesmarginalization).

Themethodology proposed in this work is designed for vehiclemotion analysis applications in urban
environments and consists of two calibration steps and a computationally efficientmethod for position
prediction. Thefirst step is very similar to standard camera calibration techniques and estimates the posterior
PDF of the optical distortion parameters within the laboratory.

The second step is specific to the proposed back-projection function and estimates the posterior of the
extrinsic parameters. In this case, the Bayesian approach allows for the introduction of a priori information
about the camera pose provided by the installer: in the case of very few calibration points the prior should
decrease the uncertainty of calibration, and also eliminate the ambiguity ofmultiple solutions that are typical of
symmetric calibration rigs [37].

The posterior distributions of the parameters given the data are estimatedwithDifferential Evolution
Metropolis. The population of samples obtained showed that the distributionwas uni-modal and bell shaped.
This observation opens the possibility to replace thismethodwith a non linear optimization to get themost
probable value of the parameter and Laplace approximation to estimate the variance, which has a lower
computational cost [28].

Figure 10. (Top)The detected car positions, theywere back-projected to theworld reference frame (main panel), the propagated
uncertainty is drawn in blue as 90% confidence covariance ellipses. The smallest ellipse has an area of 3.2 m2 and happenswhen the
car is closest to the camera. The inset shows that the area of the ellipses are proportional to the square of the distance to the camera.
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In the prediction step, propagation of uncertainty assumesfirst order approximation and it is shown that the
assumption holds even if the camera has a severe optical distortion byMonte Carlo simulations infigure 6. The
Jacobians for the propagationwere calculated using the chain rule. Also the propagation of uncertainty can be
improved by accounting for highermoments of the PDF and higher orders of Taylor expansion if the higher
order derivatives of the back projection functionwere available.Mekid andVaja [38] derive the expression of the
propagation of up to fourthmoment (including skewness and kurtosis) through aTaylor series truncated at
third order for the case of 2D randomvectors. This could be implemented asmethods of automatic
differentiation became available for high level programming languages [39].

This work assumes perfectmeasurement of world coordinates Xw and that the fiducial points are perfectly
on the ground plane,meaning that =z 0w exactly. This are the only variables not treated as a random, they are
treated as exactmeasurements. But uncertainty on zw could reasonably arise from two factors: the fiducial
points being selected on objects slightly out of the ground plane (on a road humpor bumpor on the sidewalk)
and deviations of the observed surface from the assumed planemodel. Errors in both variables will increase the
uncertainty of the estimated extrinsic parametersΘ; and following from equation (9) this will increase the
uncertainty in geolocation. Expanding themodel to include uncertainty of Xw and zw would complete the
Bayesian formulation. This could done easily by the theoremofmarginalisation of normal PDFs [28]. Also it is
important to note that the retro projectionmodel can be expanded formodels of the ground other than the
horizontal plane, including curved surfaces such as quadrics.

5.2. Results of themethod in simulations and real data
The simulated calibrations showed that the intrinsic parameters were estimatedwith high accuracy and that the
extrinsic calibration predicts world positions that agree perfectly with the propagated confidence ellipse
(figure 8). The ellipses are smaller if projected closer to the camera and if the view factor is small they become
stretched in the radial direction, both effects tend to bemore pronounced as the point projected on the
horizontal plane is further away from the camera.

Calibratingwith real data, the intrinsic parameters are estimatedwith a standard deviation of around one
thousand of the estimated value (equation (23)). The increase with respect to the simulated case is because real
data does not perfectly follow the proposedmodel. The extrinsic calibration returns the camera posewith an
uncertainty of less than 1° for orientation and -10 m1 for position (equation (24)). Predicting theworld position
of a car is shown infigure 10 as 90% confidence ellipses the area of the ellipse is proportional to the squared
distance of the vehicle to the camera, which is the expected behavior of a perspective projection. Accuracy can be
improvedwithmore accurate calibration points and possibly by expanding themodel to describe the curvature
of the ground surface and optical distortion atfiner level of detail.

5.3. Relationship between the proposedmethod and theOpenCV library
OpenCV (Open Source Computer Vision Library) is an open source computer vision andmachine learning
software library which includes a comprehensive set of both classic and state-of-the-art computer vision
algorithms [16] and is widely used by the artificial vision systemdeveloper community. For this reason, this work
followsOpenCV’s formulation for the calibrationmodel except for the specific function thatmodels radial
distortion. This leaves open the possibility to include later other distortionmodels. The adoption of the
stereographicmodel is an appropriate description of the optical distortion for the camera utilized in this work
[1]. The back-projection toworld coordinates is solved analytically (algoritm 1) assuming that the object is on
the horizontal zw=0 plane.

OpenCVprovides functionality that is similar to the solutions here proposed butwith an incomplete
treatment of uncertainty. The functioncalibrateCamera estimates intrinsic parameters byminimizing the
projection error in a least squares estimator fashion [40] following Zhang [21], Bouguet [22]. It also computes
the Jacobian of the projected image coordinates with respect to the parameters but notwith the purpose of
uncertainty propagation, it is used during the global optimization of camera calibration. It returns a vector of
standard deviations of the parameters by an inverse propagation of sorts: itmultiplies the unbiased estimator of
the projected variance by theMoore-Penrose inverse of the Jacobian. There is no treatment of interacting terms
in the covariance, it assumes the parameters are uncorrelated. This work calibrations show (equations (23) and
24) covariancematrices with non negligible interaction terms clearlymeaning that the presented approach can
contribute to improveOpenCV’smethods. AlsocalibrateCamera does not take into account the
uncertainty of the detected corners. The functionsolvePnP solves for the pose of an object given corresponding
3D-2Dpoints andwarpPerspective canmap image coordinates to aworld plane provided the right
transformationmatrix; bothwithout treatment of uncertainty.
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In sum, this work deals with a set of topics relevant to engineering applications of wide field vision systems.
The algorithmdeveloped fulfills the function of predicting the position in amapwith correct quantification of
position uncertainty, thus functioning as a position sensor.
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