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Abstract

In engineering applications related to video surveillance, the use of monocular omnidirectional
cameras would reduce costs and complications associated with infrastructure, installation,
synchronization, maintenance and operation of multiple cameras. This makes omnidirectional
cameras very useful for transport analysis, a key task of which is to accurately geolocate vehicles and/
or pedestrians observed in an ample region. The problem of measuring on the plane was previously
solved for monocular central perspective images. However, the problem of determining uncertainties
in geolocalization using monocular omnidirectional images, has not been addressed. This problem is
not trivial due to the complexity of the image formation models associated with these cameras. The
contributions of this work are: (1) The geolocation problem is solved using omnidirectional
monocular images through a Bayesian inference approach. (2) The calculation of Bayesian
marginalization integrals is simplified through first-order approximations. (3) The accuracy of the
estimated positions and uncertainties is shown through Monte Carlo simulations under realistic
measurement conditions. (4) The method to geolocate a vehicle’s trajectory on a satellite map is
applied in an urban setting.

1. Introduction

Currently, central perspective projection cameras (described by the pin-hole model) are used to solve these
video-surveillance tasks. These cameras typically have a maximum field of view of approximately 60° x 60°, so
in order to observe an ample region, it’s necessary to use numerous cameras increasing costs and complications
associated with infrastructure, installation, synchronization, maintenance and operation. A very common
solution is to use pan-tilt-zoom (PTZ) cameras whose direction of observation can be remotely commanded by
an operator. However, they have the limitation that they can only observe one region at a time, that is when the
operator reorients the camera it loses vision from other regions. Additionally, for the PTZ camera to monitor a
broad panorama without being continuously controlled by a human operator requires programming frequent
automatic reorientations, generating mechanical friction and reducing the camera’s lifespan.

The limitations mentioned above can be solved using omnidirectional cameras (OCs) with a visual field of
approximately 360° x 180°, allowing the observation of the hemisphere of interest of the scene [1, 2]. There are
several sensors which can be used to achieve a wide field vision, such as: synthetic compound eyes, catadioptric
and dioptric cameras. Synthetic compound eyes are sensors of reduced size that generally use a set of
photodiodes mimicking an ommatidium ordered array [3]. Due to the size and reduced weight of these sensors,
they are widely used in small mobile robots; however, given their low resolution they are not used in video
surveillance tasks. Catadrioptic cameras use a standard digital camera along with a specially curved reflective
surface to increase camera’s field of view. [4, 5]. This is a convenient and flexible approach, since the mirror
profile can be adapted to achieve greater resolution in certain directions of interest. Nevertheless catadioptric
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OCs tend to be rather bulky and costly. Finally, the omnidirectional dioptric cameras employ a fisheye lens with
afield of view so wide that it extends a few degrees behind the camera. Fisheye lenses resemble the natural
underwater phenomenon of how a fish sees a hemispherical upward view from beneath the water, known as
Snell’s window. At present there are different commercial versions of these cameras that can produce a
reasonable angular resolution using high resolution CCD sensors (around 5 mega pixels) [6].

Given the previously mentioned potential advantages of using OCs this work is focused on the development
of awide-field video surveillance for the monitoring of urban scenes. In this application, the objects of interest
(for example vehicles and/or pedestrians) are bound to earth’s surface due to the gravitational pull [2, 7, 8], and
most of the events which need attention or cautionary measures, take place below the horizon. Therefore the
objective of this system is to measure the geographical location of objects on the terrestrial plane along with
determining the uncertainty of the measurement (figure 1(a)).

The problem of measuring in the world plane from central perspective images, and accurately predicting the
uncertainty of these measurements was solved by Criminisi et al [9]. They use a homography transformation to
map positions from the image to a world plane predicting uncertainty with a first order model, and take into
account uncertainties in the image input points and in the homography matrix. They use a linear distortion
model and estimate projection parameters minimizing the projection error in the world plane and demonstrate
that first order analysis is accurate.

In order to make measurements of the location of objects over a terrestial plane with the OCs, the first step is
to model and correct the distortions (figure 1(a)). In this sense, there is a wide bibliography [4, 10, 11] on
calibration of catadioptric and dioptric OCs. However, the problem of determining uncertainties in the process
of predicting location with OCs has not been addressed. This problem is not trivial due to the complexity of the
image formation models associated with these cameras, thus approaching it from a Bayesian perspective is the
main contribution of this work.

The Bayesian approach is well suited to formulate both, camera calibration and position estimation
problems in explicit probabilistic terms It has been demonstrated for the case of 3D reconstruction by
Sundareswara and Schrater [12] that Bayesian prediction marginalizes on the parameters making it less
susceptible to statistical fluctuations than the plug-in approach where only the value of the most likely parameter
is used. Together with Civera et al[13] they use a Bayesian approach to intrinsic and extrinsic calibration in
addition to 3D scene estimation. But they rely on multiple view geometry because they use the movement of the
camera. Also due to the complexity of the projection models, sampling algorithms are used for the estimation of
parameters (calibration) and scene positions.

This paper faces the problem of calibration and prediction with a Bayesian approach with a single static OC
already installed in an urban setting and develops a calibration method for localization in the ground plane. The
calibration is simple and only requires an operator to manually match some fiducial points in both a satellite
image and the OC image. Bayesian marginalizations integrals are simplified by assuming the projection function
can be approximated by a first order Taylor series which result in fast calculations. This makes the method
suitable for real time localisation with uncertainty.

This work is organized as follows: In section 2 the workflow of the proposed method is described, the
geometric model of image formation (projection) that maps world coordinates to image coordinates, and the
inverse (back-projection) in which world coordinates from image coordinates can be obtained. In section 3 the
Bayesian approach is described in detail, along with its implementation in Python scripts to be applied to real
data. In section 4 the linear approximation and the prediction algorithm are shown to be valid estimations
through Monte Carlo simulations under realistic conditions of application, later applying this method in real
data for the geolocation of vehicle trajectories.

2. Materials and methods

2.1. Workflow of the proposed method

The model of image formation depends on both the OC’s intrinsic parameters (such as focal length, radial
distortion and CCD optical center, symbolised as I') and extrinsic parameters describing the relative pose of the
camera to the world (position and orientation, symbolised as ©) [14, 15]. A back-projection function F mapping
coordinates X; to world plane coordinates X;, using the camera’s parameters I' and © can be calculated

(figure 1(a)).

The calibration’s first step (figure 1(b)) is performed in the laboratory by detecting multiple corners of a
chessboard with known position in the world plane (X,,). This process generates an extensive set of training data
called D, from which an estimate the intrinsic parameters and their uncertainties (denoted as the mean fi-, and
the variance Cr). After this, it is assumed that the OC is installed in the field observing the region of interest
(figure 1(c)). In this setup, a reduced set of world points X, and their correspondence in the image are observed
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Figure 1. Proposed method for geolocation with uncertainties from images obtained with an omnidirectional camera. (a) The back-
projection mapping X,, = F(Xj, I', ©) calculates the position on the world plane X, given the position in the image Xj, the intrinsic
parameters I" and extrinsic parameters ©. (b) Intrinsic calibration. N images of a known chessboard are acquired and the corners in
each image are automatically detected. This process generates the dataset D, that allows to calculate the mean and variance of the
intrinsic parameters, i, Cr through maximum likelihood estimation. (c) Extrinsic calibration. On the left is showed an image of the
plane of interest acquired with the OC. On the right, a satellite image of the same area. A few points that can be detected in both images
(red dots) are identified. With this dataset, denoted D,, (and additional a priori information about the OC’s pose, provided by the
camera installer) the extrinsic parameters associated with the position and orientation of the camera fig, Co are estimated by
Maximum a Posteriori estimation. (d) Geolocation of objects. An object of interest is detected in the OC image (X;’, with C
uncertainty). This information is combined with the estimates of the calibration parameters to predict the object position in the world
reference frame and the associated uncertainty, fi,,, C..

(denoted as the calibration dataset D,) which allow to estimate mean and variance of pose (fi,, C@). Those
calculations associated with the estimation of model parameters {I", ©} are performed offline. After this process
the objective is to project the coordinates of a new detection in the image (X;’) to the world plane (fi,,) and their
uncertainties (C,), which is intended to be computed online, see figure 1(d). Formally, the estimation of the
probability density function(PDF) p(X,,|X;’, C}, Dj, D) (the probability of position in the map X,, given the
measurement in the image X;’, C{and the calibration data) is performed. The linear propagation of
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Figure 2. (a) Fisheye camera VIVOTEK FE8172 used in this work. (b) Intrinsic model for the fisheye camera. (c) Image obtained with
the OC camera of a grid-like set of calibration points. Notice the strong distortions in the image [ 1]. The red box indicates the region
observed by the OC camera in ‘Wide” mode (instead of full fisheye mode). (d) Relationship between 74 distance versus 6 incidence
angle for three intrinsic models [10, 11]: equiangular, equisolid and stereographic, the latter showing the best fit.

uncertainties approach is taken, since it is computationally inexpensive and also accurate, as further
demonstrated.

2.2.Camera

In this work a fisheye IP camera VIVOTEK FE8172 (figure 2(a)) is used. It has a field of view (FOV) of

360° x 183° allowing for the observation of a full hemisphere, this camera is compact and easily connected over
Ethernet port. A simplified intrinsic model for this OC is shown in figure 2(b). It is observed that an incident ray
from the point P with an angle 6 with respect to the optical axis, is refracted in the projection center of the camera
forming an exit angle different from the one of entrance, and projecting into the image plane (corresponding to
the CCD sensor) at a distance ry from the projection center. The model of fisheye cameras is specified by defining
arelationship between r4 and 6, this being in general strongly non linear. This differs from the model of central
perspective projection cameras, for which input and output angles are the same (pin-hole model). In a previous
work [1], a calibration of the VIVOTEK FE8172 camera was performed showing that the stereographic model is
agood characterisation of lens’ distortion (figure 2(d)). It is given by the relation ry = k tan(6/2), where k is the
central distance. At full resolution, 1920 x 1920, radial distortion parameter obtained was k = 952.16 px.

In order to improve system’s performance in terms of framerate, the resolution is set to 1600 x 900 and set
the camera to ‘wide’ mode obtaining a FOV of 183° horizontally and about 120° vertically. This doesn’t hinder
performance because the FOV of full fisheye mode covers an area so extense that a large part of the image
corresponds to uninteresting regions while full resolution mode reduces camera’s framerate with little visual
information added with respect to 1600 x 900.

2.3. Stereographic projection model

A projection model describes the path of a light ray that originates from a 3D world position (see figure 3) as it
passes through the camera lens and hits the CCD chip incrementing image pixel’s intensity measure(figure 3).
This process is broken down in two steps [1, 15, 16]. First, the 3D position of the light source X, is rotated and
translated to the camera’s frame of reference yielding X.. Information about distance to the camera is
eliminated, only direction of arrival of light’s ray with respect to the camera matters, yielding X}, a 2D vector.
Second, it goes through a function that models lens distortion and projection to the CCD chip, yielding X;.
Given that third dimension is lost, it is not possible in general to back-project X, from Xj, but with the
hypothesis that the light source is at ground level plane the back-projection function can be solved.
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Figure 3. Image formation model when the OC camera observes the X,, point on the world plane (z,, = 0). The incident ray forms an
angle § with the optical axis of the camera (which corresponds the axis z of the camera’s frame of reference). This ray is refracted
according to the stereographic model (see figure 2(b)) which projects on the CCD sensor.

There are several proposed models of optical distortion [10, 17], in [1] it is shown that the stereographic
model is a good description for the OC used (figure 2(d)) and is easy to fit having only one parameter describing
distortion. Although there are more general distortion models, they have more parameters than needed for this
case [18]. In the rest of this section the projection and back-projection function is formulated following
OpenCV’s projection model.

The first step is to transform the world position to the frame of reference of the camera. The world
coordinates of an object X, = [x, J,, zy] , expressed in the reference frame of the world, are rotated and
translated to the frame of reference of the camera, in symbols

Xc Xw tx
Ye| =R 1y )| Y | + | B | (1)
Zc Zw t,

The rotation matrix R is calculated from three parameters that express the orientation, following OpenCV’s
convention 1y, 1,, 1, are the components of the Rodrigues vector [19, 20]. These six parameters that describe the
rotation and translation are the extrinsic parameters, the concatenation of the Rodrigues vector and translation
vector: © = [ry, 1y, 1, ty, 1y, t,]. Information about distance to the camera is eliminated by projecting to the
image plane placed at z. = 1. The now bidimensional coordinates X}, = [xy, yh]T are

=[]-[5-

Optical distortion is applied to Xj,. The stereographic model only deals with radial distortion, assuming
cylindrical symmetry. The radius in the image plane (defined as follows in equation (3)) is used to calculate the
polar angle between light ray and the optical axis (equation (4)). The stereographic model applies a nonlinear
distortion on it (equation (5)), here it introduces the only non-linear parameter k that scales to pixels units. In

symbols all this steps are:
=%+ ¥ 3)

0 = arctan(ry,), 4
rg = ktan(6/2), (5)
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X=x, + [E’C] )
T v

Conventionally the origin of pixel coordinates is located at the top left corner of the image, thus the
coordinates are appropriately displaced by [c,, ¢, | to obtain X; = [u, v]'. The parameters that depend solely on
the camera and describe the optical distortion are intrinsic parameters I' = [cy, ¢, kT.

OpenCV’s formulation of the projection model is followed, except for the specific form of the radial
distortion function. This makes it fairly easy to later extend the procedure here explained to OpenCV’s
distortion models.

2.4. Stereographic back-projection

Since the goal is to predict the real world position of objects, the model of image formation from the previous
section must be inverted. To map image positions into world positions the model of image formation is followed
reversing every step so that a position in the image X; can be transformed to a position in the physical world Xj,.
The back-projection is referred as the function F that maps [u, v] to [x,, y, I usingthe intrinsic parameters
[co ¢y k] and extrinsic parameters [r,, Tys Tos b By t,I,in other words F(X;, ©, I') — X,,. The calculations
are shown in algorithm 1.

Algorithm 1. Back-projection function

1: function F [u, v], [cxs ¢} K], [1s 7y T2 Lo By £]

Intrinsic correction:
2: rq \/(u — )+ (v — ¢)?
3: 0 «— 2arctan(ry / k)
4: m < tan6
5: Xph < X4 1h/ 1a
6: Yo < Jath /1
Extrinsic projection:
7: R « Rodrigues(ry, 1, 1) > Rodrigues rotation formula
8:
9: [ty 1o 3] <= R [ty 1y, 1] > Rotate translation vector
10:
11: ze « t3 / (Ri3 xpn + Roz yy, + Rs3) > Solve collinearity equations

12: Xy — 2 (Riyxn + Ry yy, + Rs) — 4
13: Yig — 2c Rz Xy + Ry ypy + R3p) — 1
14: return x,, y,

15: end function

First, in line 2 the image position is displaced to be expressed in reference to the optical center [cy, ¢,['. The
radius with respect to the optical center in pixels is used to calculate the angle of arrival of the light ray using
parameter kin line 3. The tangent of this angle is the radius in homogeneous coordinates (see line 4), which by
simple proportionality serves to calculate X}, as shown inline 5.

[%h, yh]T isa 2D vector on the plane z. = 1in the frame of reference of the camera. To project to the world
frame of reference a 3D position needs to be calculated. The missing 3rd dimensional information (distance of
the object to the camera) is made up as in [7] with a reasonable hypothesis in the context of traffic monitoring:
the object of interest is on the ground. Thus far [xy,, y, I is known and solving for [x.,, 3, I gives [xy, I, the
parametrization of the pose (R;; is the element i, j of the rotation matrix R) and the hypothesis z,, = 0. Working
with equations (1) and (2) yields the well known collinearity equations. The solution is shown in lines 9
through 13.

2.5.Previous work on intrinsic calibration and python libraries
The most widely used camera calibration procedure is based in Zhang [21], Bouguet [22] for its ease of use. The
calibration procedure usually is: print a chessboard-like pattern and attach it to a planar surface. Take about 10
images of the pattern in different positions with respect to the camera. Detect chessboard corner points in the
image automatically. Feed the detected corner points and its corresponding planar coordinates to the algorithm,
itwill return the distortion parameters of the camera and the rotation-translation of the chessboard in each
image.

OpenCV [16] is an open source computer vision library that has been largely adopted as the primary
development tool by the community of researchers and developers in computer vision [23]. It includes solutions
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for camera calibration [21, 22] and camera pose estimation [24] for a variety of optical distortion models
including OCs. Among the solutions it provides, it estimates distortion parameters, extrinsic parameters and
perspective transformation. As it will be explained in section 5 this paper’s contribution can be added to
OpenCV toyield a more complete treatment of uncertainties.

3. Bayesian approach to calibration

In this section an approach to camera calibration from a Bayesian perspective is proposed. The starting point is
the general expression of the predictive distribution. From there, the two step calibration process is deduced:
intrinsic and extrinsic calibration; in both cases the posterior probability of the parameters given the calibration
data is estimated. With the estimated posteriors on the parameters, the predictive distribution is aproximated as
alinear propagation of uncertainty.

The predictive distribution of the world position of an object is conditioned on a measurement on the image
and on previous data, p(X,,|X;’, C}, Dj, D,) [25, 26] (see figure 1(d)). Following the standard procedures of
camera calibration, previous data is separated in two, intrinsic calibration data, D;, and extrinsic calibration
data, D,. The new measurement corresponds to the detection of an object in the image, X;’. This detection
process gives a position in the image but also must report some quantification of the uncertainty of detection. It
will be denoted by a covariance matrix Cj that is considered to come directly from the detection algorithm.

It follows that the predictive PDF can be expanded as

PIXY, L DL Do) = [ p(uli, T, ©) p(XiXY, C
P(F|D1) P(®|D2, Dl) d.XI dr d@. (7)

There are four terms in the integrand:

+ The first term is the Dirac delta function on the back-projection, p(Xy|X;, I', ©) = 6[Xy, — F(X, T, ©)].

+ Thesecond term describes the PDF of the random varible that represents the position in the image, assumed
normal given a noisy measurement parameterised by X;’, C{.Insymbols p(X|X;’, C)) = N(Xi|X{/, C).

+ The third term p(I'|D;) is the posterior probability of the intrinsic parameters given the intrinsic calibration
data. It will be addressed in section 3.1. The result is the estimation of the mean and variance of said PDF,
assumed normal; thatis, p(I'|Dy) = M{T|fip, Cp).

+ Thefourth term p(O|D,, D) is the posterior probability of the pose of the camera given the extrinsic
calibration data, and the intrinsic calibration as well. This is because the extrinsic calibration requires the
results of the intrisic calibration as will be explained in section 3.2. Again, the estimated posterior is a normal
distribution p(©|D,, D)) = M©Oljig, Co).

Replacing with the normal PDFs that will be estimated in the following pages yields

POGIX', € D1 D) = [ 61X, — FOX, T, ©)] NI/, C
NT|fip> Cr) MOljig, Co) dX; dI' dO. ©)

Figure 4 shows a graphical representation of the calculation of the predictive distribution for the hypothetical
case in which variables Xj, X,, were one-dimensional.

Itis important to note that, even though all the PDFs in the integrand were approximated to normal
distributions, the integral is still hard to evaluate due to the non-linearity of 7. The integral could be solved
using expensive computational strategies, but as explained above the goal is to perform this calculation online.
Linearising F around X, fip, fig reduces the calculation to a simple linear combination of mutually
independent normal random vectors [27],

p(lexl/: Cf; D1> DZ) = N(XWLa’w’ CW) (9)
where fi, = FXi'> fips flo)» (10)
and C, =J,CJT + WG + 5 Cokg . an

In words, the approximately normal PDF of the predicted position in the world has a mean that is a direct
evaluation of the back-projection function on the means of the detected image position and the parameters; and
a covariance that combines the uncertainty on the detection and parameters through the Jacobian J.
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Figure 4. Unidimensional diagram to illustrate how the PDF associated to the detected input p(Xj|X;’, C}) is combined with the PDF
of the calibration (posterior density of the parameters given the data, p(I", ©|D), D,)) in blue to yield the PDF in the output
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3.1. Intrinsic calibration
Let Dy = {(X},®, X;"@), C[™))} ;i be the data set for intrinsic calibration where each tuple i, j consist of world
coordinates X/ ) and is corresponding projection in the image X;'®/ (see figure 1(b)), index i € [1, N]
denoting the different imagesand j € [1, M]each corner in the chessboard calibration pattern. Detections
might not have the same accuracy so C{/ is included in the list of calibration data.

All the parameters for this datasetare Q = {I", {©®};}, where {©?}, is thelist of extrinsic parameters of
every picture. The posterior density of the parameters given the data

PDIY) p()

QD) =
pQDy) »(Dy

12)

Since at this point there is no prior information on 2 the posterior can be equated to the likelihood, which in
turn is the product of the probability of each data tuple given the parameters. In symbols

pOADY o [] pOLL &), Xi/6D, CoD|T, ©), (13)
i,j

Every term in the productorial is the probability of measured data -’ conditioned on the parameters. Taking
p(XL0D, X'6D Cl@D|T, ©) and applying the definition of conditional probability to leave X;'®, C}®) on
the right side of the conditional quickly leads to

PEQUDY) o [ MXLED|ED, ¢80 (14)
ij

where ﬂx’j) = F(X/%), T, 0D), (15)

and €V = J% ClUMRET. (16)

Which looks like a simplified version of equation (9) because there is no PDF on I', ©®), but it arised under a
similar procedure. The probability of 2| D, in equation (13) can be evaluated numerically for some value of €2, it
requires the calibration data and to compute F and its derivative with respect to X as shown in equation (14).
Methods like Metropolis-Hastings [28] can estimate the mean and variance of 2| D;. But recall that out of

Q = {T, {6D}} the camera positions with respect to the calibration pattern are of no use later on, the objective
of the intrinsic calibration is I" only because the optical distortion is a constant intrinsic to the camera. The
estimation of { @} ; is ancillary. Marginalizing with respect to { @} ; is trivial under the reasonable assumption
that Q|D; is approximately normal and I" and {©®} ; are independent. Intrinsic calibration results in the
estimation of
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p(TID) = MT|fip, Cp). 17)

where fip, Cr are the components of the mean and variance of 2| D, (obtained by Metropolis-Hastings) that
correspondto I'.

3.2. Extrinsic calibration
After intrinsic calibration in controlled conditions, where the PDF of I was estimated, the camera is set up in
some urban location pointing to some zone of interest (figure 1(c)). Calibration data is now a set denoted as D,
of M points on the real world and its associated image coordinates {(X/,, X;"?, C{))} ;with j € [1, M]. The
extrinsic calibration is the procedure to estimate mean and variance of the camera pose O.

By the law of total probability and assuming independence between © and D; and between I' and D, the
posterior on O is

p(©O|D,, Dy) = fp(@ﬂ)z, D) pX|Dydl’ (18)
r

where p(I'|D)) = MT|fips o)) (equation (17)). By Bayes’ rule p(©|D,, I') «x p(D,|0, I p(O|I") butas © and
I' areindependent p(O|I') = p(O). The posterior distribution of © is

p(OID:, D o p(©) [ p(DAO, T) p(TIDY L. (19)
r
Notice that a non flat prior on the camera pose is allowed p(©), as this is a physical magnitude for which there
might be some information after installation, unlike the camera intrinsic parameters that depend on the model,
which might be quite obscure to elucidate.
Asin equation (14) thelikelihood p(D,|©, I') can be calculated as the product of the likelihood of each data
tuple resulting in

. ~ . A ( )
pOIDy Dy o pO]] MXPIAT, €,
j
where 2 = FG'D, ©, aip),
and €Y = JE ClOWET + JECET. (20)
Now the derivative of F respect to I is also required and computing J{: . Numerical methods, again, can
estimate the mean /i and variance Cr of ©|D;, D, from equation (20), such that

p(O|Dy, D)) = MOljip, Cp). 1)

3.3. Summing up calibration and prediction

In brief, the procedure is as follows. Taking images of a calibration pattern in the laboratory as in figure 1(b)
produces the intrinsic calibration data D; and the result of calibration is to parameterize the posterior PDF of the
intrinsic parameters p(I'|Dy) with a mean /i and variance Cr. This is done computing the posterior via
equation (14) (refer to section 4 for more details) and standard methods of numerical integration like
Metropolis-Hastings. When the camera is finally installed in its final position the extrinsic calibration points can
be extracted D, (figure 1(c)) that are used to estimate the mean and variance fi,, Co of the posterior PDF
p(©|D,, D,) (computed as shown in equation (20)). This completes the calibration. With a new detection of a
vehicle X;’, Cjthe predicted PDF in the world frame of reference is calculated with equation (9) as ilustrated in
figure 1(d). This prediction can be performed online since the computational cost is negligible.

4, Results

In this section it is shown that the linear approximation for uncertainty propagation delivers significant accuracy
when compared to a more proper but computationally intensive nonlinear Monte Carlo estimation. The two-
step calibration and prediction are applied to simulated data cases: first generate data of realistic chessboard
pictures for the intrinsic calibration and a total of six final camera installation positions and orientations for the
extrinsic calibration. Then use real chessboard data obtained in controlled conditions to estimate the intrinsic
parameters; the camera was installed at a testing site and calibration points were manually obtained from images
to estimate the extrinsic parameters. Finally, the uncertainty of the predicted world positions for a vehicle
detected within the video sequence is shown.

As a pattern for intrinsic calibration a 37 cm long chessboard with 9 x 6 interior corners was used. N = 33
pictures were taken and then applied OpenCV corner detector as shown in figure 5(a). These pictures were taken
to cover the field of view, as suggested by Fraser [ 18], the detected corners are shown in figure 5(b). OpenCV’s
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Figure 5. (a) Three out of the 33 images of the calibration pattern,a9 x 6 chessboard. (b) An overlap of all detected corners is shown.
(¢) The 3D coordinates of the corners in the world frame of reference. (d) The 33 poses of the camera that OpenCV calibrates along
with the intrinsic parameters of the camera (with a different model than the author’s).

calibrateCamera function takes the detected corners and their corresponding positions in 3D (figure 5(c)) and

returns 33 camera poses shown in figure 5(d). The detected chessboard corners and the estimated camera poses
are used either as initial conditions for the sampling algorithms or as ground truth to generate synthetic data, as
explained in the following subsections.

Both the acquisition of video /images and off-line data processing were carried out in a desktop computer
running under Linux operating system using Python [29] scripts with the aid of the libraries NumPy [30], SciPy
[31], Matplotlib [32], OpenCV [16] and the Spyder IDE [33]. As OpenCV implements the calibration algorithms
of Bouguet [22] it was adopted as starting point for calculations, and for general image manipulation. The library
PyMC3 [34] was used for Monte Carlo simulations.

4.1. Comparing linear approximation with Monte Carlo

In this section the first order approximation of the propagation function against a Monte Carlo (MC) evaluation
of the nonlinear mapping are compared. The heart of the stereographic model is a highly nonlinear radial
distortion function because it must conform to the severe optical distortion that characterizes the OC. And more
generally, any image formation model includes a perspective projection that is strongly nonlinear in the camera
pose so itis not at all evident that the linear approximation would hold in practice.

In a similar fashion as done by Criminisi et al [35] a population of tuples (X, I', ©) that follow normal
distributions are generated. Each variable then X; ~ N(p;, C), I' ~ NM(pup, Cr)and © ~ M(pg, Co). The
resulting set of points will be compared with the parameterized normal PDF obtained by linear propagation of
the normal distributions where the points were drawn from. If the linear approximation is valid then the mean
and covariance of the MC particles will be close to the propagated mean and covariance.

The data gathered for the intrinsic calibration is a useful source of realistic image coordinates. Instead of
arbitrarily defining a number of poses that imitate chessboard calibration data it was preferred to borrow some
camera poses associated to a real data set as it covers a reasonable range of positions. Taking the 33 OpenCV’s
estimated camera poses as the set of { @?} ;; along with the 3D world positions of the chessboard corners and
intrinsic values I that arise from author’s previous work with the camera and the understanding of the
stereographic model. Define I = [800, 465, 8007 . The center of optical distortion is at the center of the image
(hence c, and c, are taken from the image size) and the optical distortion parameter k is half the width of the
image because it is interpreted as the radius when the incoming light ray is perpendicular to the optical axis.

To generate the population of samples for MC the image corners are first fabricated. Using equations (1)—(6)
to project the 54 chessboard world coordinates X to image coordinates for each pose. Ending up with 33 sets
of 54 pixel coordinates ;L%"’j). The detected image coordinates are determined with 1 pixel standard deviation
(therefore C; = L). Itis considered reasonable (and this is later confirmed empirically) that the intrinsic and
extrinsic parameters have been determined to about three significant digits, that is the standard deviation is 10>
of the parameter value, hence defining Cr, Ce.
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Figure 6. (a)—(c) The comparison of MC and linear error propagation, on the inset on the right the 5000 dots are the MC population,
the black line is their covariance ellipse of 90% confidence to be compared with the covariance ellipse obtained via linear propagation
of uncertainty. On the left, the MC populations of the 54 calibration points. (a) Notice the curvature due to optical distortion. (b) The
optical distortion has been corrected. (c) The propagation to the world plane, the covariance ellipses of MC and the predicted ones are
virtually indistinguishable. (d) Normalizing so that the 54 x 33 MC covariances become the identity matrix puts all linearly predicted
covariances on equal footing for comparison. (e) Normalised covariance ellipses form a thin halo around the unit circle, showing that
for all cases the discrepancy between MC and linear propagation is very small.

Next step is to generate the set of Ny;c = 5000 Monte Carlo samples, drawing image detection positions,
intrinsic and extrinsic parameters according to the means and covariances just mentioned. The Ny, tuples are
then fed to the back-projection function. Not only the final outcome in world coordinates are examined but also
the intermediate coordinates Xj,, similar to a central perspective camera without distortion.

In figure 6(a) the image coordinates sampled from a Gaussian distribution, 5000 samples for each corner
detected, the zoomed inset on the right shows the comparison between the samples for a detected corner, the
covariance ellipses of 90% probability, both estimated from the Monte Carlo samples (in black) and theoretical
first order analysis (in red). In figure 6(b) the same samples were corrected for intrinsic distortion (lines 2—5 of
algorithm 1) and it can be seen that the ellipses have become elongated in the radial direction, also, the difference
between MC and the linear approximation has been accentuated due to the linearising error in the radial
direction. In figure 6(c) the perspective projection is performed (lines 11-13). The uncertainty in the six pose
parameters adds more uncertainty but the estimations of covariances from Monte Carlo and linear propagation
are indistinguishable.

Thereare 33 x 54 calibration points, each of them was used to produce a pair of prediction PDFs. One by
linearly propagating uncertainties and a second one by fitting a Gaussian distribution to the MC back-projected
samples. To visually assess the similarity between the two PDFs for all 1782 calibration points, the covariance
ellipse associated to the PDF obtained by first order propagation are transformed to a new base where its
corresponding numerical MC counterpart becomes the unitary normal distribution with zero mean. Ilustrated
in 6(d), then subtract the center of the ellipse from linear propagation and apply a change of base such that this
ellipse becomes a unitary circle. Plotting the transformed first order covariance ellipses in figure 6(e) in red lines
and as reference the MC covariance circle in red showing all the red ellipses superimposed result in a blue halo
around the reference circle.
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Table 1. Comparison of true intrinsic values and estimation
from samples drawn from the posterior probability distribution.
Each sample isa 201 dimensional vector, only the three
components of the intrinsic parameters are utilized.

True Value Samples Mean (fir.) Samples SD

Cx 800 800.001 0.05
¢y 452 451.999 0.06
k 800 799.999 0.13

4.2. Intrinsic calibration with synthetic data

To test the intrinsic calibration the posterior probability distribution of the three intrinsic parameters of the
camera is estimated. first and second moment. Figure 5 shows the 33 camera poses with respect to the
checkboard points and all corner detections in one single image.

The 3 intrinsic parameters and the 33 x 6 extrinsic parameters (6 per image) form a multivariate random
vector of 201 components. The probability of the vector is evaluated as shown in equation (13). There were
drawed 442 chains of 50 samples with Differential Evolution Metropolis (DEM) [34, 36]. The starting values for
the chains were defined ad hoc to minimize the burn-in period. The histograms of the samples from this section
and the ones to follow were unimodal and bell shaped.

R 0.00247 0.000 20 —0.00030
Cr =| 0.00020 0.00379 0.00123 (22)
—0.00030 0.00123 0.01793

Table 1 compares the true values of the parameters with the estimations from the samples, the disparity is in
the sixth significant digit, it is due to the statistical fluctuation of the artificially added detection noise (standard
deviation of 1 pixel). This shows that the expectation of the posterior probability is a good estimator of the true
parameter values. The variance of the samples comes from the width of the dispersion of said noise, the more
uncertain the detection in the image the less informative the posterior.

4.3. Intrinsic calibration with real data

To estimate the intrinsic parameters of the OC it is followed the same procedure as above with experimental
data, the detected corners in the 33 chessboard images (not the ones artificially generated assuming known
distortion parameters and camera poses).

Before sampling a standard non linear optimization function to get better seed values is used. The extrinsic
parameters given by OpenCV’s calibrateCamera and the intrinsic parameters used as ground truth in the
previous section result in a back-projection of the corners that show significant discrepancies to the true
chessboard positions. To provide DEM with better initial values for sampling, a standard non linear
optimization routine from Scipy [31] that brings the back-projections closer to their target is used. Minimizing
the error function associated with the posterior on the parameters (equation (13)). The back-projection with the
values from synthetic chessboard (the initial guess) are shown in the left panel of figure 7 and in the right panel
the back-projection with the optimized parameters. OpenCV estimates the parameters minimizing the
projection (in image) error, that’s why they are bad estimates for back-projection. The clear improvement in
fitting drastically cuts down the burn-in period when sampling.

Assuminga 1 pixel error in corner detection, the mean and variance of 500 chains of 2000 samples are

fip =[816.45, 472.64, 795.19],

. 0.628 —0.051 0.016
Cr=|[-0.051 0640 0.367| (23)
0.016 0.367 3.746

Notice that the variance is much greater than the one estimated for the simulated intrinsic calibration because it
now accounts for the error in the model.

4.4. Extrinsic calibration and predictions with synthetic data
Following section 4.2 where the calibration for a simulated camera was solved, placement of the same camera s
simulated in an urban environment to perform the extrinsic calibration and test the algorithm with plausible
ad hoc camera poses.

The main interest is to test the calibration in a set of realistic conditions in the context of monitoring of
vehicles and pedestrian in urban scenes. Camera height above ground {7.5 m, 15 m}; its optical axis forming
and angle with respect to vertical: {0°, 30°, 60°}; and 20 calibration points, in total encompassing 6 situations.
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Figure 7. Initial values of distortion parameters and the 33 poses are obtained by simple non linear optimization of the back-projection
error. Red dots are calibration pattern in the world frame of reference, in blue the back-projection of the detected chessboard corners.
On the right, after the non-linear optimization, the back-projection has improved significantly with respect to before the optimization

(left).

Points on the z = 0 plane are in region of 50 m radius such that are evenly distributed in the observed image, half
of them will be used to calibrate the pose of the camera and the other half for testing. That is, they are all
projected to image coordinates, ten world-image pairs will be used to estimate the pose. Then prediction of the
world coordinates of the ten unused image detections to be compared to their corresponding world coordinates
is performed.

With the calibration points and the estimation of intrinsic parameters previously obtained, the calibration
procedure to sample the six dimensional pose space is applied. In every case 30 chains of 1000 MC samples are
drawn. The means and variances of the six sets of samples are used to back-project the synthetic image detections
and their uncertainty to the corresponding georeferenced positions. Figure 8 shows the projected ellipses on the
world reference frame, the size of the ellipses and the error with respect to the true position has been magnified
by a factor of 10 to make the disparity visible in figure 8. The projected uncertainty is smaller for positions closer
to the camera and also the ellipses are less elongated because those regions hold a better view factor, as the
projected point gets further away from the camera the uncertainty grows, specially in the radial direction due to
the perspective effect. To visualize all the projections errors it is linearly transformed each projection error to the
space where the projected covariance becomes the identity matrix as in section 4.1. In figure 8(c) all the
calibration points have been transformed in this way, for reference the circle of 90% probability is drawn.

Table 2 reports the root mean squared deviation between the real world positions and the back-projections
of the calibration points and prediction test points. The prediction error on testing points is always greater than
the error on calibration points and both are in the order of 10~ 'm.

4.5. Extrinsic calibration and prediction with real data
Following section 4.3 calibration points are used to estimate the camera pose in a real world situation and
geolocate the trajectory of a vehicle.

The camera was placed 15.7 £ 0.2 m above the ground, this is the a priori information used for calibration.
Manually defining M = 19 calibration points that consist of corresponding pairs of image and latitude-
longitude coordinates. The terrain where the experiment took place is even and horizontal, so that the
assumption z,, = 0 holds. Also this facilitates the conversion of the world coordinates to and from different
representations (degrees of latitude-longitude, pixels inside a satellite image, meters) using a simple scaling
factor. The point on the floor directly below the a priori position of the camera was defined as the coordinate
origin (0 m, 0 m) of the ground plane. Detections in the image were assigned 1 pixel of standard deviation.
Figure 9 shows the image calibration points and its corresponding latitude-longitude points. The trajectory of a
car as it traverses the field of view of the camera is shown in figure 9(a) and this detections have 1 pixel of
standard deviation, they correspond to a feature of the car close to the ground.

Using the estimation of intrinsic parameters from section 4.3 and the a priori information, Differential
Evolution Metropolis returned 60 chains of 9500 samples of 6-D rotation-traslation vectors. The mean and
variance of the samples are
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Figure 8. (a) The synthetic calibration points and six cases of camera poses. (b) The back-projected points in the world plane, the
confidence ellipses (six per calibration point) have been magnified x 10 to make them visible, in red if the point was used for extrinsic
calibration and in blue if it was used for prediction. To compare all back-projections, in (c) each calibration point is transformed to the
space where the propagated confidence ellipse is the 90% confidence circle.

Table 2. For each combination of orientation angle and height there is a number
of visible calibration and prediction test points (It’s less than ten when the
fiduciary points fall out the field of view of the camera). The root mean squared
deviation is reported for both training and test points.

Only calibrating with 10 points

Train Test
ang{?]  hIm]  Nrwn N RMSD[m] RMSD[m]
0 7.5 10 10 0.076 0.136
0 15 10 10 0.083 0.103
30 7.5 8 8 0.096 0.078
30 15 10 10 0.070 0.113
60 7.5 7 6 0.126 0.131
60 15 8 8 0.057 0.119

flg =[2.7441, 1.1450, —0.1767, —3.2703, —2.2972, 17.6410],

4.1 0.1 1.0 —144 -569 52.2
0.1 27 —0.6 477 —1.0 26.3
~ _| 1.0 —-06 18 —425 -—-143 35 -5
Co=|_ 14.4 47.7 —425 15549 183.6 532.1 X107 (24)
-56.9 —1.0 —14.3 183.6 10279 —-921.9
522 263 —3.5 5321 —-921.9 1306.9

Where the rotation component of fi (first three elements) is in radians and the translation component is in
meters, the standard deviation of the former being ~0.3° and ~0.1 m of the latter. fir is the rotation-translation
parameters of the world reference frame from the point of view of the camera, the position of the camera in the
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(a) OC image. (b) Satellite image.

Figure 9. Extrinsic calibration with real data. Red dots are calibration points, in blue the trace of a car.

world reference frame is calculated by —R(%, 7y, ) - [f T, £, ] Ityields a height of 17.0 m with a std of
0.14 m, in the order of the actual height above ground.

The predicted car trace in world coordinates has an uncertainty that combines the estimated uncertainties of
the intrinsic parameters, extrinsic parameters and image detection. In figure 10 the blue ellipses are the 90%
probability regions, drawn every few back-projected detections of the car (red dots). The effect that the
perspective projection has on the propagation of uncertainty has two components, one being the distance to the
camera that magnifies the uncertainty, the reverse of an inverse-square law. In the inset of figure 10 it is
empirically shown that the area of the 90% confidence ellipse is proportional to the square of the distance to the
camera. The second component is the view factor of the back-projected point with respect to the camera that
stretches the ellipse in a direction radial to the closest point to the camera. In this case the optical distortion and
view factor tend to elongate the confidence ellipses in approximately the same direction, that is why the ellipses
are so stretched. The smallest area of the 90% probability region is 3.15 m?, when the car is closest to the camera,
and increases with the square of the distance as shown in the lower inset of figure 10.

5. Conclusion and discussion

Wide-field vision systems (based on synthetic compound eyes or omnidirectional cameras) are currently being
incorporated to engineering applications related to terrestrial and aerial mobile robotics. Despite the advantages
mentioned in section 1, OCs are not widely used in video surveillance applications in urban environments;
where the traditional solution is still the installation of many cameras (fixed or PTZ type) each with reduced
visual field.

The main limitation of using the OC’s in this type of applications is the strong distortions introduced in the
image. Beyond this limitation (resolved by correcting the distortions computationally [4, 14]) the use of fisheye
cameras has the advantage of observing a complete hemisphere of the scene at all times. This is very useful in
transport-related applications in which the movement of vehicles or pedestrians in wide regions must be
analyzed (for example in convoluted road intersections, see figure 10) [2]. In addition, the evaluation of geo
localization uncertainties are needed for estimation algorithms based on Bayesian filters (Kalman filter, particle
filter, etc) used for motion analysis and prediction, tracking and decision making on vehicular traffic violations.
For these reasons, this work studies the use of a monocular omnidirectional camera to geolocate objects solving
the calibration and prediction problems from a Bayesian perspective.

5.1. Bayesian approach to camera calibration

Camera calibration is a critical part of any photogrammetric system. The Bayesian approach is well suited to
formulate both calibration and prediction problem in explicit probabilistic terms, and to incorporate a priori
information about the camera and/or its installation pose.

Sundareswara and Schrater [12] demonstrated that the Bayesian prediction is less susceptible to statistical
fluctuations than maximum likelihood estimation. Their work follows similar ideas to the present one but with
critical differences. Sundareswara and Schrater [12] use a pin hole model (not dealing with severe distortions),
they calibrate in one step (instead of two) with several views of the object of interest (here a single monocular
view is assumed), estimating the posterior probability of the parameters and the reconstruction at the same time
(here intrinsic calibration must be done prior to the installation of the camera). The result of this is a population
of samples of the parameters that is later averaged, for marginalization, during 3D reconstruction (here

15



10P Publishing

Eng. Res. Express2(2020) 025041 STArroyoetal

150

100

Area of 90% probability [m?]

50

Squared Distance to Camera [m?]
15000

Figure 10. (Top) The detected car positions, they were back-projected to the world reference frame (main panel), the propagated
uncertainty is drawn in blue as 90% confidence covariance ellipses. The smallest ellipse has an area of 3.2 m? and happens when the
car is closest to the camera. The inset shows that the area of the ellipses are proportional to the square of the distance to the camera.

calibration means to estimate a mean and a covariance; prediction as linear propagation automatically
incorporates marginalization).

The methodology proposed in this work is designed for vehicle motion analysis applications in urban
environments and consists of two calibration steps and a computationally efficient method for position
prediction. The first step is very similar to standard camera calibration techniques and estimates the posterior
PDF of the optical distortion parameters within the laboratory.

The second step is specific to the proposed back-projection function and estimates the posterior of the
extrinsic parameters. In this case, the Bayesian approach allows for the introduction of a priori information
about the camera pose provided by the installer: in the case of very few calibration points the prior should
decrease the uncertainty of calibration, and also eliminate the ambiguity of multiple solutions that are typical of
symmetric calibration rigs [37].

The posterior distributions of the parameters given the data are estimated with Differential Evolution
Metropolis. The population of samples obtained showed that the distribution was uni-modal and bell shaped.
This observation opens the possibility to replace this method with a non linear optimization to get the most
probable value of the parameter and Laplace approximation to estimate the variance, which has a lower
computational cost [28].
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In the prediction step, propagation of uncertainty assumes first order approximation and it is shown that the
assumption holds even if the camera has a severe optical distortion by Monte Carlo simulations in figure 6. The
Jacobians for the propagation were calculated using the chain rule. Also the propagation of uncertainty can be
improved by accounting for higher moments of the PDF and higher orders of Taylor expansion if the higher
order derivatives of the back projection function were available. Mekid and Vaja [38] derive the expression of the
propagation of up to fourth moment (including skewness and kurtosis) through a Taylor series truncated at
third order for the case of 2D random vectors. This could be implemented as methods of automatic
differentiation became available for high level programming languages [39].

This work assumes perfect measurement of world coordinates X,, and that the fiducial points are perfectly
on the ground plane, meaning that z,, = 0 exactly. This are the only variables not treated as a random, they are
treated as exact measurements. But uncertainty on z,, could reasonably arise from two factors: the fiducial
points being selected on objects slightly out of the ground plane (on a road hump or bump or on the sidewalk)
and deviations of the observed surface from the assumed plane model. Errors in both variables will increase the
uncertainty of the estimated extrinsic parameters O; and following from equation (9) this will increase the
uncertainty in geolocation. Expanding the model to include uncertainty of X, and z,, would complete the
Bayesian formulation. This could done easily by the theorem of marginalisation of normal PDFs [28]. Also it is
important to note that the retro projection model can be expanded for models of the ground other than the
horizontal plane, including curved surfaces such as quadrics.

5.2.Results of the method in simulations and real data

The simulated calibrations showed that the intrinsic parameters were estimated with high accuracy and that the
extrinsic calibration predicts world positions that agree perfectly with the propagated confidence ellipse

(figure 8). The ellipses are smaller if projected closer to the camera and if the view factor is small they become
stretched in the radial direction, both effects tend to be more pronounced as the point projected on the
horizontal plane is further away from the camera.

Calibrating with real data, the intrinsic parameters are estimated with a standard deviation of around one
thousand of the estimated value (equation (23)). The increase with respect to the simulated case is because real
data does not perfectly follow the proposed model. The extrinsic calibration returns the camera pose with an
uncertainty of less than 1° for orientation and 10~!m for position (equation (24)). Predicting the world position
of a car is shown in figure 10 as 90% confidence ellipses the area of the ellipse is proportional to the squared
distance of the vehicle to the camera, which is the expected behavior of a perspective projection. Accuracy can be
improved with more accurate calibration points and possibly by expanding the model to describe the curvature
of the ground surface and optical distortion at finer level of detail.

5.3. Relationship between the proposed method and the OpenCV library

OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning
software library which includes a comprehensive set of both classic and state-of-the-art computer vision
algorithms [16] and is widely used by the artificial vision system developer community. For this reason, this work
follows OpenCV’s formulation for the calibration model except for the specific function that models radial
distortion. This leaves open the possibility to include later other distortion models. The adoption of the
stereographic model is an appropriate description of the optical distortion for the camera utilized in this work
[1]. The back-projection to world coordinates is solved analytically (algoritm 1) assuming that the object is on
the horizontal z,, = 0 plane.

OpenCV provides functionality that is similar to the solutions here proposed but with an incomplete
treatment of uncertainty. The function calibrateCamera estimates intrinsic parameters by minimizing the
projection error in a least squares estimator fashion [40] following Zhang [21], Bouguet [22]. It also computes
the Jacobian of the projected image coordinates with respect to the parameters but not with the purpose of
uncertainty propagation, it is used during the global optimization of camera calibration. It returns a vector of
standard deviations of the parameters by an inverse propagation of sorts: it multiplies the unbiased estimator of
the projected variance by the Moore-Penrose inverse of the Jacobian. There is no treatment of interacting terms
in the covariance, it assumes the parameters are uncorrelated. This work calibrations show (equations (23) and
24) covariance matrices with non negligible interaction terms clearly meaning that the presented approach can
contribute to improve OpenCV’s methods. Also calibrateCamera does not take into account the
uncertainty of the detected corners. The function solvePnP solves for the pose of an object given corresponding
3D-2D points and warpPerspective can map image coordinates to a world plane provided the right
transformation matrix; both without treatment of uncertainty.
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In sum, this work deals with a set of topics relevant to engineering applications of wide field vision systems.
The algorithm developed fulfills the function of predicting the position in a map with correct quantification of
position uncertainty, thus functioning as a position sensor.
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