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Tense operators on De Morgan algebras
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Abstract
The purpose of this article is to investigate the variety of algebras, which we call tense De Morgan algebras, as a natural
generalization of tense algebras developed in Burges (1984, Handbook of Philosophical Logic, vol. II, pp. 89–139) (see also,
Kowalski (1998, Rep. Math. Logic, 32, 53–95)). It is worth mentioning that the latter is a proper subvariety of the first one,
as it is shown in a simple example. Our main interest is the representation theory for these classes of algebras.
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1 Introduction

Propositional logics usually do not incorporate the dimension of time; consequently, in order to obtain
a tense logic, we enrich a propositional logic by the addition of new unary operators (or connectives)
which are usually denoted by G,H ,F and P. We can define F and P by means of G and H as follows:
F(x)=¬G(¬x) and P(x)=¬H (¬x), where ¬x denotes negation of the proposition x.

Tense algebras are algebraic structures corresponding to the propositional tense logic (see [5, 21]).
An algebra 〈A,∨,∧,¬,G,H ,0,1〉 is a tense algebra if 〈A,∨,∧,¬,0,1〉 is a Boolean algebra and G,
H are unary operators on A which satisfy these axioms:

G(1)=1, H (1)=1,

G(x∧y)=G(x)∧G(y), H (x∧y)=H (x)∧H (y),

x≤GP(x), x≤HF(x),

where P(x)=¬H (¬x) and F(x)=¬G(¬x).
In the last few years tense operators have been considered by different authors for various classes

of algebras. Some contributions in this area have been the papers by Botur et al. [4], Chajda [6],
Chiriţă [7, 8], Diaconescu and Georgescu [10] and Figallo et al. [12–16].

In the present article we consider tense operators on De Morgan algebras. De Morgan algebras
are related to logic and have been studied by several authors (see [1, 3, 9, 20, 22]). In particular,
they are related with a four-valued logic developed by Belnap in [2].

The article is organized as follows. In Section 1 we summarize the main definitions and results
needed in this article. In Section 2 we define the variety of tense De Morgan algebras and introduce
some examples. In Section 3 we study the representation of tense De Morgan algebras. In Section 4
we describe a topological duality for tense De Morgan algebras. Finally, in Section 5, we characterize
the congruences of these algebras in terms of the mentioned duality and certain closed subsets of
the space associated with them.
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2 Preliminaries

Given a relational structure 〈X ,≤〉 where X �=∅ and ≤ is a reflexive and transitive binary relation
on X (i.e. a quasi-order set), we will denote by (Y ] ([Y )) the set {x∈X :∃y∈Y x≤y} ([Y )={x∈X :
∃y∈Y y≤x}), for any Y ⊆X .

A set Y ⊆X is increasing if Y =[Y ), and it is decreasing if Y = (Y ]. The distributive lattice of all
increasing subsets of 〈X ,≤〉 will be denoted by Pi(X ) and the power set of X by P(X ). If Y is a
subset of X , then Y c will denote the set-theoretical complement of Y , i.e. Y c =X \Y . Let R and Q
be binary relations defined on a set X . The composition of R with Q is denoted by R◦Q. Let X ,Y
be sets. Given a relation R⊆X ×Y , for each Z ⊆X , R(Z) we will denote the image of Z by R. If
Z ={x}, we will write R(x) instead of R({x}). Moreover, for each V ⊆Y , R−1(V ) we will denote the
inverse image of V by R, i.e. R−1(V )={x∈X :R(x)∩V �=∅}. If V ={y}, we will write R−1(y) instead
of R−1({y}).

An algebra 〈A,∨,∧,∼,0,1〉 is a De Morgan algebra if 〈A,∨,∧,0,1〉 is a bounded distributive
lattice and ∼ is a unary operation on A satisfying the following identities:

1. ∼ (x∨y)=∼x∧∼y;
2. ∼∼x=x; and
3. ∼0=1.

In what follows a De Morgan algebra 〈A,∨,∧,∼,0,1〉 will be denoted briefly by (A,∼).
A De Morgan frame (see [11]) is a structure 〈X ,≤,g〉, where 〈X ,≤〉 is a quasi-order and g :X →X

is a function such that g(g(x))=x, and if x≤y, then g(y)≤g(x), for all x,y∈X . Let A be a De Morgan
algebra and let X (A) be the set of all prime filters of A. It is known that 〈X (A),⊆,gA〉 is a De Morgan
frame, where gA :X (A)→X (A) is the involution defined by

gA(S)={x∈A :∼x /∈S}, for all S ∈X (A). (1)

Moreover, if 〈X ,≤,g〉 is a De Morgan frame, then 〈Pi(X ),∪,∩,∼g,∅,X 〉 is a De Morgan algebra,
where ∼g :Pi(X )→Pi(X ) is defined by

∼g U =X \g(U ), for all U ∈Pi(X ). (2)

Even though the theory of Priestley spaces and its relation to bounded distributive lattices are
well known (see [17–19]), we will recall some definitions and results with the purpose of fixing the
notations used in this article.

Let us recall that a Priestley space (or P-space) is a compact totally disconnected ordered topo-
logical space. If X is a P-space and D(X ) is the family of increasing, closed and open subsets of a
P-space X , then 〈D(X ),∩,∪,∅,X 〉 is a bounded distributive lattice.

On the other hand, let A be a bounded distributive lattice and X (A) the set of all prime filters
of A. Then X (A), ordered by set inclusion and with the topology which has as a sub-basis the
sets σA(a)={S ∈X (A) :a∈S} and X (A)\σA(a), for each a∈A, is a P-space. In addition the mapping
σA :A→D(X (A)) is a lattice isomorphism. Besides, if X is a P-space, the mapping εX :X →X (D(X ))
defined by εX (x)={U ∈D(X ) :x∈U }, is a homeomorphism and an order isomorphism.

If we denote by L the category of bounded distributive lattices and their corresponding homomor-
phisms and by P the category of P-spaces and the continuous increasing mappings (or P-functions),
then there exists a duality between both categories by defining the contravariant functors � :P →L
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and � :L→P as follows:

(P1) For each P-space X , �(X )=D(X ), and for every P-function f :X1 →X2, �(f )(U )= f −1(U )
for all U ∈D(X2).

(P2) For each bounded distributive lattice A, �(A)=X (A), and for every bounded lattice homomor-
phism h :A1 →A2, �(h)(S)=h−1(S) for all S ∈X (A2).

On the other hand, Priestley proved that, if A is a bounded distributive lattice and Y is a closed
subset of X (A), then

(P3) �(Y )={(a,b)∈A×A :σA(a)∩Y =σA(b)∩Y } is a congruence on A and the correspondence
Y �→�(Y ) is an anti-isomorphism from the lattice of all closed sets of X (A) onto the lattice of
all congruences on A.

In 1977, Cornish and Fowler [9] extended the Priestley duality to De Morgan algebras considering
De Morgan spaces (or mP-spaces) as pairs (X ,g), where X is a P-space and g is an involutive
homeomorphism of X and an anti-isomorphism. They also defined the mP-functions from an mP-
space (X1,g1) into another, (X2,g2), as continuous and increasing functions (P-functions) f from X1

into X2, which satisfy the additional condition f ◦g1 =g2 ◦f .
In addition, these authors introduced the notion of an involutive set in an mP-space (X ,g) as a

subset Y of X such that Y =g(Y ) and characterized the congruences of a De Morgan algebra (A,∼)
by means of the family CI (X (A)) of involutive closed subsets of X (A). To achieve this result, they
proved that the function �I from CI (X (A)) onto the family ConM (A) of congruences on A defined
as in (P3) is a lattice anti-isomorphism.

3 Tense De Morgan algebras

Let (A,∼) be a De Morgan algebra and G,H :A→A two unary operators. We define the operators
F and P by F(x)=∼G(∼x) and P(x)=∼H (∼x), for any x∈A.

DEFINITION 3.1
An algebra (A,∼,G,H ) is a tense De Morgan algebra if (A,∼) is a De Morgan algebra and G and
H are two unary operations on A such that:

(T1) G(1)=1 and H (1)=1;
(T2) G(x∧y)=G(x)∧G(y) and H (x∧y)=H (x)∧H (y);
(T3) x≤GP(x) and x≤HF(x); and
(T4) G(x∨y)≤G(x)∨F(y) and H (x∨y)≤H (x)∨P(y).

We will denote these algebras by (A,∼,G,H ) or simply by A if no confusion may arise.

EXAMPLE 3.2
It is easy to see that every tense algebra is also a tense De Morgan algebra.

EXAMPLE 3.3
There are two extreme examples of tense operators on a De Morgan algebra (A,∼). Define G=H ,
such that G(1)=1 and G(x)=0 for x �=1. We can check that (A,∼,G,H ) is a tense De Morgan
algebra. Another example of tense operators are identical mappings, i.e. G(x)=x=H (x) for all
x∈A.

We will indicate an example of tense De Morgan algebra which is not a tense algebra.
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EXAMPLE 3.4
Let us consider the De Morgan algebra ({0,a,b,c,d,1},∼), which is described as follows:

•
•

•
•

•
•

...........
...........
...........
...........
...........
...........
...........
....

.............................................................................................................................................................................
...........
...........
...........
...........
...........
...........
............
...........
...........
...........
...........
...........
...........
.......

...........
...........

...........
...........

...........
...........

...........
....

.................................................................................

a

c

b

d

0

1

x ∼ x
0 1
a d
b c
c b
d a
1 0

Define operators G, H by the table

x G(x) H(x)
0 a 0
a a 0
b a b
c c b
d a 1
1 1 1

Then, ({0,a,b,c,d,1},∼,G,H ) is a tense De Morgan algebra.

PROPOSITION 3.5
The following properties hold in any tense De Morgan algebra (A,∼,G,H ) :
(T5) x≤y implies G(x)≤G(y) and H (x)≤H (y);
(T6) x≤y implies P(x)≤P(y) and F(x)≤F(y);
(T7) F(0)=0 and P(0)=0;
(T8) F(x∨y)=F(x)∨F(y) and P(x∨y)=P(x)∨P(y);
(T9) FH (x)≤x and PG(x)≤x; and

(T10) G(x)∧F(y)≤F(x∧y) and H (x)∧P(y)≤P(x∧y).

PROOF. It is routine.

4 Representation by sets

In this section we will show a representation theorem for tense De Morgan algebras in terms of tense
De Morgan algebras of sets, using the well-known representation theorem for De Morgan algebras.

Let X be a set, R be a binary relation on X and R−1 the converse of R. We define four operators
on P(X ) as follows:

GR(U )={x∈X :R(x)⊆U }, HR−1 (U )={x∈X :R−1(x)⊆U }.
FR(U )={x∈X :R(x)∩U �=∅}, PR−1 (U )={x∈X :R−1(x)∩U �=∅}.
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In general, the De Morgan algebra (Pi(X ),∼g) is not closed under the operators introduced above.
In the next result we will give conditions on the relation R and its converse for that Pi(X ) be closed
under these operations.

PROPOSITION 4.1
Let 〈X ,≤〉 be a poset, R a binary relation on X , and R−1 the converse of R. Then

(i) (≤◦R)⊆ (R◦≤) if and only if GR(U )∈Pi(X ), for all U ∈Pi(X ).
(ii) (≤◦R−1)⊆ (R−1◦≤) if and only if HR−1 (U )∈Pi(X ), for all U ∈Pi(X ).
(iii) (≤−1 ◦R)⊆ (R◦≤−1) if and only if FR(U )∈Pi(X ), for all U ∈Pi(X ).
(iv) (≤−1 ◦R−1)⊆ (R−1◦≤−1) if and only if PR−1 (U )∈Pi(X ), for all U ∈Pi(X ).

PROOF. We will only prove (i). Let us show that, if U ∈Pi(X ), then GR(U )∈Pi(X ). Let x≤y and
R(x)⊆U . Let z∈X , such that (y,z)∈R. Then, there exists w∈X such that (x,w)∈R and w≤z.
As R(x)⊆U , w∈U ; since U is increasing, z∈U . Conversely, suppose that GR(U )∈Pi(X ), for all
U ∈Pi(X ). Let x,y,z∈X such that x≤y and (y,z)∈R. Let us consider the increasing set [R(x)). As
R(x)⊆[R(x)), we have that x∈GR([R(x))). Then, y∈GR([R(x))). Thus, z∈[R(x)), i.e. there exists
w∈X such that (x,w)∈R and w≤z, i.e. (x,z)∈ (R◦≤).

DEFINITION 4.2
A structure F =〈X ,≤,g,R,R−1〉 is a tense De Morgan frame if 〈X ,≤,g〉 is a De Morgan frame, R
is a binary relation on X , and R−1 is the converse of R such that:

(F1) (≤◦R)⊆ (R◦≤);
(F2) (≤◦R−1)⊆ (R−1◦≤); and
(F3) (x,y)∈R implies (g(x),g(y))∈R.

REMARK 4.3
In every tense De Morgan frame F =〈X ,≤,g,R,R−1〉 the following conditions are satisfied:

(F4) (≤−1 ◦R)⊆ (R◦≤−1); and
(F5) (≤−1 ◦R−1)⊆ (R−1◦≤−1).

PROPOSITION 4.4
Let F =〈X ,≤,g,R,R−1〉 be a tense De Morgan frame. Then,

(i) for all U ∈Pi(X ), FR(U )=∼g GR(∼g U ); and
(ii) for all U ∈Pi(X ), PR−1 (U )=∼g HR−1 (∼g U ).

PROOF. We will prove only (i). Let x∈FR(U ) and suppose that x /∈∼g GR(∼g U ), i.e. R(g(x))⊆∼g

U . Then, there is z∈U such that (x,z)∈R. By (F3) we have that (g(x),g(z))∈R. Then, we can
deduce that g(z)∈∼g U , which is a contradiction. Therefore, x∈∼g GR(∼g U ). Conversely, suppose
that x∈∼g GR(∼g U ). Thus, g(x) /∈GR(∼g U ), i.e. R(g(x)) �⊆∼g U . From the last assertion, there is
z∈R(g(x)) such that g(z)∈U . Thus, by (F3), we deduce that g(z)∈R(x)∩U . Therefore, x∈FR(U ).

PROPOSITION 4.5
If F =〈X ,≤,g,R,R−1〉 is a tense De Morgan frame, then A(F)= (Pi(X ),∼g,GR,HR−1 ) is a tense De
Morgan algebra.

PROOF. Taking into account Proposition 4.1, Remark 4.3 and Proposition 4.4, we only have to
prove (T4). Indeed: let x∈GR(U ∪V ) and suppose that x /∈GR(U ). Then, there exists y∈X such that
(x,y)∈R and y /∈U . Since, y∈U ∪V , we have that y∈V . Therefore, x∈FR(V ). In a similar way we
can prove HR−1 (U ∪V )⊆HR−1 (U )∪PR−1 (V ).
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DEFINITION 4.6
Let (A,∼,G,H ) be a tense De Morgan algebra. We will define two binary relations RA

G and RA
H on

X (A) as follows:

(S,T )∈RA
G if and only if G−1(S)⊆T ⊆F−1(S),

(S,T )∈RA
H if and only if H−1(S)⊆T ⊆P−1(S).

The following Proposition is fundamental for the proof to Proposition 4.9.

PROPOSITION 4.7
Let (A,∼,G,H ) be a tense De Morgan algebra. Then the following conditions are equivalents:

(i) (S,T )∈RA
G; and

(ii) (T ,S)∈RA
H .

PROOF. (i)⇒ (ii). Let S,T be two prime filters of A such that G−1(S)⊆T ⊆F−1(S) and let us suppose
that H (x)∈T . Thus, FH (x)∈S. From the preceding assertion and (T9), we have that x∈S. Then,
H−1(T )⊆S. On the other hand, suppose that z∈S. By (T3), GP(z)∈S and, since G−1(S)⊆T , we
have that P(z)∈T . Therefore, S ⊆P−1(T ). The converse implication is similar.

REMARK 4.8
From Proposition 4.7 we have that RA

H is the converse of RA
G .

PROPOSITION 4.9
Let (A,∼,G,H ) be a tense De Morgan algebra. Then, F(A)=〈X (A),⊆,gA,RA

G,RA
H 〉 is a tense De

Morgan frame.

PROOF. Taking into account Remark 4.8, we only have to prove (F1), (F2) and (F3).
(F1): Let S,T ,D be three prime filters of A such that S ⊆D and G−1(D)⊆T ⊆F−1(D). Let us consider
the ideal

(T c ∪F−1(S)c]

and prove that

G−1(S)∩(T c ∪F−1(S)c]=∅. (3)

Suppose that (3) is not fulfilled. Then there exist elements x∈G−1(S), y∈T c and z /∈F−1(S) such
that x≤y∨z. So, by (T5) and (T4), we have that G(x)≤G(y∨z)≤G(y)∨F(z). Since G(x)∈S and
F(z) /∈S, we deduce that G(y)∈S, which is impossible. Then by the Birkhoff–Stone theorem there
is a prime filter Z such that

G−1(S)⊆Z and (T c ∪F−1(S)c)∩Z =∅

Therefore, G−1(S)⊆Z ⊆F−1(S) and Z ⊆T ., i.e. (S,T )∈ (RA
G◦⊆).

(F2): It is proved in a similar way to (F1).

(F3): Let S,T be two prime filters such that G−1(S)⊆T ⊆F−1(S). Suppose that x∈G−1(gA(S)). So,
∼G(x)=F(∼x) /∈S, and since T ⊆F−1(S), we have that ∼x /∈T , i.e. x∈gA(T ). On the other hand,
suppose that z∈gA(T ) and F(z) /∈gA(S). So, ∼F(z)=G(∼z)∈S, and since G−1(S)⊆T , we have that
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∼z∈T , i.e. z /∈gA(T ), which is a contradiction. Thus, F(z)∈gA(S). Therefore, G−1(gA(S))⊆gA(T )⊆
F−1(gA(S)).

´ The following result is necessary for the proof to Theorem 4.11.

LEMMA 4.10
Let (A,∼,G,H ) be a tense De Morgan algebra and let S ∈X (A) and a∈A. Then,

(i) G(a) /∈S if and only if there exists T ∈X (A) such that (S,T )∈RA
G and a /∈T ; and

(ii) H (a) /∈S if and only if there exists Z ∈X (A) such that (S,Z)∈RA
H and a /∈Z .

PROOF. Suppose that G(a) /∈S. Let us consider the ideal ({a}∪F−1(S)c], and we will prove that

G−1(S)∩({a}∪F−1(S)c]=∅. (4)

Suppose the opposite. Then there exist elements b∈G−1(S) and c∈F−1(S)c such that b≤a∨c.
From (T5) and (T4) we have that

G(b)≤G(a∨c)≤G(a)∨F(c).

From this assertion we deduce that F(c)∈S, which is a contradiction. Thus (4) is verified.
Therefore from the Birkhoff–Stone theorem there is a prime filter T such that

G−1(S)⊆T and ({a}∪F−1(S)c)∩T =∅.

Then, (S,T )∈RA
G and a /∈T . The other implication is easy. In a similar way we can prove (ii).

Let (A,∼,G,H ) be a tense De Morgan algebra and let us consider its associated frame F(A)=
〈X (A),⊆,gA,RA

G,RA
H 〉. The structure

A(F(A))= (Pi(X (A)),∼gA ,GRA
G
,HRA

H
)

is a tense De Morgan algebra.
Let A be a De Morgan algebra. For each a∈A consider the set

σA(a)={S ∈X (A) :a∈S}
and the family of sets

β(A)={σA(a) :a∈A}.
It is known that the structure

(β(A),∼gA )

is a De Morgan subalgebra of the De Morgan algebra

Pi(X (A))= (Pi(X (A)),∼gA ).

The assignment σA :A→Pi(X (A)) is an injective homomorphism of De Morgan algebras whose
range is the set β(A). Moreover, this result can be extended to tense De Morgan algebras as follows.
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THEOREM 4.11
For every tense De Morgan algebra (A,∼,G,H ) the algebra

β(A)= (β(A),∼gA ,GRA
G
,HRA

H
)

is a subalgebra of A(F(A)) isomorphic to A by means of the assignment σA :A→β(A).

PROOF. It is easy to check that β(A) is a subalgebra of A(F(A)) and that the mapping σA is injective.
We will prove that σA is a homomorphism of tense De Morgan algebras. We need only to see that
σA(G(a))=GRA

G
(σA(a)) and σA(H (a))=HRA

H
(σA(a)). Now we will prove the inclusion GRA

G
(σA(a))⊆

σA(G(a)). Let us take a prime filter S such that G(a) /∈S. From Lemma 4.10, there exists T ∈
X (A) such that (S,T )∈RA

G and a /∈T . Then, we have that RA
G(S) �⊆σA(a). Thus S /∈GRA

G
(σA(a)). The

inclusion σA(G(a))⊆GRA
G
(σA(a)) is immediate. The equality σA(H (a))=HRA

H
(σA(a)) follows by a

similar argument using (ii) of Lemma 4.10.

5 Duality for tense De Morgan algebras

In this section, we will indicate a duality for tense De Morgan algebras taking into account the
results established by Cornish and Fowler in [9].

DEFINITION 5.1
A tense De Morgan space (or tmP-space) is a system (X ,g,R,R−1) where (X ,g) is an mP-space, R
is a binary relation on X and R−1 the converse of R such that:

(S1) For each U ∈D(X ) it holds that GR(U ), HR−1 (U )∈D(X ), where GR(U ), HR−1 (U ) are defined
as in Section 3.

(S2) (x,y)∈R implies (g(x),g(y))∈R.
(S3) For each x∈X , R(x) is a closed set.
(S4) For each x∈X , R(x)= (R(x)]∩[R(x)).

DEFINITION 5.2
A tmP-function from a tmP-space (X1,g1,R1,R

−1
1 ) into another one, (X2,g2,R2,R

−1
2 ), is a mP-function

f :X1 →X2 which satisfies the following conditions:

(r1) (x,y)∈R1 implies (f (x),f (y))∈R2 for x,y∈X1;
(r2) if (f (x),y)∈R2, then there is an element z∈X such that (x,z)∈R1 and f (z)≤y; and
(r3) if (y,f (x))∈R2, then there is an element z∈X1 such that (z,x)∈R1 and f (z)≤y.

Next we will show that the category tmPS of tmP-spaces and tmP-functions is dually equivalent
to the category TDMA of tense De Morgan algebras and tense De Morgan homomorphisms.

LEMMA 5.3
Let (X ,g,R,R−1) be a tmP-space. Then, (D(X ),∼g,GR,HR−1 ) is a tense De Morgan algebra, where
for all U ∈D(X ), ∼g U is the set defined in (2).

PROOF. The definition of GR and HR−1 are consequences of (S1). Conditions (T3) and (T4) give us
the equation (S2). Finally, (T1) and (T2) are consequences of the definitions of GR and HR−1 .

LEMMA 5.4
Let f : (X1,g1,R1,R

−1
1 )→ (X2,g2,R2,R

−1
2 ) be a morphism of tmP-spaces. Then �(f ) :D(X2)→D(X1)

defined as in (P1) is a tense De Morgan morphism.
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PROOF. We only prove that f −1(GR2 (U ))=GR1 (f
−1(U )). The inclusion f −1(GR2 (U ))⊆GR1 (f

−1(U ))
follows by (r1). Let x∈GR1 (f

−1(U )) and let y∈X2 such that (f (x),y)∈R2. By (r2), there exists
z∈X1 such that (x,z)∈R1 and f (z)≤y. Since z∈R1(x)⊆ f −1(U ), y∈U . Thus f (x)∈GR2 (U ), and
consequently GR1 (f

−1(U ))⊆ f −1(GR2 (U )).

The previous two lemmas show that � is a contravariant functor from TDMA to tmPS.
Let RD(X ) be the relation defined in X (D(X )) by means of the operator GR, i.e.

(εX (x),εX (y))∈RD(X ) ⇔G−1
R (εX (x))⊆εX (y)⊆F−1

R (εX (x)).

PROPOSITION 5.5
Let (X ,g,R,R−1) be a tmP-space. Then the following conditions are equivalent:

(i) for all x∈X , R(x) is closed and R(x)= (R(x)]∩[R(x)).
(ii) for all x∈X , R(x) is compact and R(x)= (R(x)]∩[R(x)).
(iii) for every x,y∈X , if (εX (x),εX (y))∈RD(X ) then (x,y)∈R.

PROOF. (i)⇒ (ii) It is immediate. (ii)⇒ (iii). Suppose that (εX (x),εX (y))∈RD(X ) and y /∈R(x)= (R(x)]∩
[R(x)). If y /∈[R(x)), then for all z∈R(x), z �≤y. As X is a Priestley space, for each z∈R(x) there exists
Uz ∈D(X ) such that z∈Uz and y /∈Uz. Then, R(x)⊆ ⋃

x∈R(x)
Uz and y /∈ ⋃

z∈R(x)
Uz. Since R(x) is compact,

R(x)⊆U for some U ∈D(X ) such that y /∈U . But as (εX (x),εX (y))∈RD(X ) and x∈GR(U ), then y∈U ,
which is impossible. If y /∈ (R(x)], by a similar argument, we obtain also a contradiction. (iii)⇒ (i). We
prove that (R(x)]∩[R(x))⊆R(x); the other inclusion always holds. Suppose that y∈ (R(x)]∩[R(x)).
Then there exists z1,z2 ∈X such that

z1 ≤y≤z2 and z1,z2 ∈R(x).

By assumption, (εX (x),εX (z1))∈RD(X ), (εX (x),εX (z2))∈RD(X ) and also εX (z1)⊆εX (y)⊆εX (z2). It is
easy to check that (εX (x),εX (y))∈RD(X ). It follows from the assumption (iii) that (x,y)∈R. Therefore
y∈R(x). We now prove that R(x) is closed. Suppose that y∈Cl(R(x)) and y /∈R(x), where Cl(R(x))
denote the closure of the set R(x). By the asumption (iii), we have that (εX (x),εX (y)) /∈RD(X ). So,
there exists U ∈D(X ) such that GR(U )∈εX (x) and U /∈εX (y), or there exists V ∈D(X ) such that
V ∈εX (y) and FR(V ) /∈εX (x). In the first case R(x)⊆U and y∈U c. It follows that R(x)∩U c =∅ and
y∈U c, which is impossible, because y∈Cl(R(x)). In the other case, y∈V and R(x)∩V =∅, which
is a contradiction. Therefore, R(x) is a closed subset of X .

LEMMA 5.6
Let (A,∼,G,H ) be a tense De Morgan algebra. Then (X (A),⊆,gA,RA

G,RA
H ) is a tmP-space, where

gA, RA
G and RA

H are defined as in (1) and Definition 4.6, respectively.

PROOF. We will only prove (S3). Let us check that RA
G(S) is closed for S ∈X (A). Suppose that

T /∈RA
G(S). Then by definition of the relation RA

G , there exists x∈G−1(S) such that x /∈T or there exists
y∈T such that y /∈F−1(S). In the first case RA

G(S)⊆σA(x) and in the second case RA
G(S)⊆X (A)\σA(y).

LEMMA 5.7
Let h :A1 →A2 be a tense De Morgan morphism. Then, �(h) :X (A2)→X (A1) defined as in (P2) is
a morphism of tmP-spaces.
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PROOF. We will prove (r1) and (r2); (r3) can be proved in a similar way to (r2). Let S,T ∈X (A2).
Let us prove that if (S,T )∈RA2

G , then (h−1(S),h−1(T ))∈RA1
G . Suppose that a∈G−1(h−1(S)). Then we

have that h(G(a))=G(h(a))∈S, from which it follows that h(a)∈T , i.e. a∈h−1(T ). In a similar way
we can prove h−1(T )⊆F−1(h−1(S)). Now suppose that (h−1(S),T )∈RA1

G . Let us prove that there
exists Z ∈X (A2) such that (S,Z)∈RA2

G and h−1(Z)⊆T . First we will prove the existence of the filter
Z . The proof will be consists of two parts:

1. We will prove the existence of a prime filter D⊆A2, such that G−1(S)⊆D and h−1(D)⊆T .
2. We will prove the existence of a prime filter Z ⊆A2, such that G−1(S)⊆Z ⊆F−1(S) and Z ⊆D.

From 1 and 2, the existence of the prime filter Z follows, which fulfills the condition will be
established.

By hypothesis we have that G−1(h−1(S))⊆T ⊆F−1(h−1(S)). Now let us prove that

G−1(S)∩(h(T c)]=∅. (5)

Suppose that (5) not satisfied. Consequently there exist elements a∈G−1(S), b∈T c, such that
a≤h(b). Then, G(a)≤G(h(a))∈S. From this it follows that, b∈G−1(h−1(S))⊆T , which is a con-
tradiction. Then (5) holds. By the Birkhoff–Stone theorem, there is a prime filter D, such that

G−1(S)⊆D and h−1(D)⊆T .

Now we will prove the second part. For this purpose let us first prove that

G−1(S)∩(Dc ∪F−1(S)c]=∅. (6)

Suppose the opposite. Then, there exist elements a∈G−1(S), b∈Dc and c∈F−1(S)c such that

a≤b∨c.

Then, we have

G(a)≤G(b∨c)≤G(b)∨F(c)∈S.

Since b /∈D and G−1(S)⊆D, G(b) /∈S. Therefore, F(c)∈S, which is a contradiction. Then, (6)
holds. By applying the Birkhoff–Stone theorem, we can make sure that there is a prime filter Z such
that

G−1(S)⊆Z ⊆F−1(S) and Z ⊆D.

As h−1(Z)⊆h−1(D)⊆T , we have proved the existence of the prime filter Z .

The two previous lemmas show that � is a contravariant functor from tmPS to TDMA.
Now, we will see that these categories are dually equivalent to each other.

PROPOSITION 5.8
Let (X ,g,R,R−1) be a tmP-space; then, εX :X →X (D(X )) is an isomorphism of tmP-spaces.

PROOF. It follows from the results established in [9] and Proposition 5.5.
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PROPOSITION 5.9
Let (A,∼,G,H ) be a tense De Morgan algebra; then, σA :A→D(X (A)) is a tense De Morgan iso-
morphism.

PROOF. It follows from the results established in [9] and Lemma 4.10.

The following theorem follows from Propositions 5.8 and 5.9.

THEOREM 5.10
Functors εX and σA establish a dual equivalence between the categories TDMA and tmPS.

6 Application of the duality

In this section we will use the duality described in Section 4 to characterize the congruence lattice
Con(A) of a tense De Morgan algebra A.

DEFINITION 6.1
Let (X ,g,R,R−1) be a tmP-space. An involutive closed subset Y of X is a tmP-subset of X if it
satisfies the following conditions for u,v∈X :

(ts1) if (v,u)∈R and u∈Y , then there exists, w∈Y such that (w,u)∈R and w≤v.
(ts2) if (u,v)∈R and u∈Y , then there exists, z∈Y such that (u,z)∈R and z≤v.

LEMMA 6.2
Let (A,∼,G,H ) be a tense De Morgan algebra and Y , a tmP-subset of X (A). Then �(Y ) is a tense
De Morgan congruence, where �(Y ) is defined as in (P3).

PROOF. We will only prove that �(Y ) preserves G and H . Let (a,b)∈�(Y ) and suppose that S ∈
GRA

G
(σA(a))∩Y . Hence, (RA

G)−1(S)⊆σA(a) and S ∈Y . Suppose that T ∈ (RA
G)−1(S). Consequently,

from (ts1) there is W ∈Y , such that W ⊆T and W ∈ (RA
G)−1(S). This last assertion allows us to

infer that W ∈σA(a), from which we conclude W ∈σA(b)∩Y . Therefore, since W ⊆T , we have that
T ∈σA(b); hence, S ∈GRA

G
(σA(b))∩Y . Then, GRA

G
(σA(a))∩Y ⊆GRA

G
(σA(b))∩Y . The other inclusion is

proved in a similar way. Analogously, �(Y ) preserves H .

LEMMA 6.3
Let (A,∼,G,H ) be a tense De Morgan algebra and θ ∈Con(A). If q :A→A/θ is the natural epimor-
phism, then Y ={�(q)(S) :S ∈X (A/θ )} is a tmP-subset, where � is defined as in (P2).

PROOF. Since ConM (A) is a sublattice of Con(A) we have that Y ={�(q)(S) :S ∈X (A/θ )} is an
involutive closed subset of X (A) and θ =�(Y ) (see [9]). Besides, from Lemma 5.7 we have that
�(q) is a tmP-function. In addition, Y is a tmP-subset of X (A). Indeed, let (V ,U )∈RA

G and U ∈Y .
From the last assertion, there is S ∈X (A/θ ) such that �(q)(S)=U . Then, (V ,�(q)(S))∈RA

G . As a
consequence, we have from (r2) that there is T ∈X (A/θ ) such that (T ,S)∈RA/θ

G and �(q)(T )⊆V .
Therefore, we have from (r1) that �(q)(T )⊆ (RA

G)
−1

(U ). (ts2) can be proved in a similar way.

From Lemmas 6.2 and 6.3, we obtain Theorem 6.4.

THEOREM 6.4
Let (A,∼,G,H ) be a tense De Morgan algebra and (X (A),gA,RA

G,RA
H ), the associated tmP-space of

A. Then, there is an anti-isomorphisms between Con(A) and the lattice of all tmP-subset of X (A).
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