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Abstract

Elastic scattering angular distributions for the 9Be + 80Se system were measured at eleven energies 
from below to above the Coulomb barrier. The experimental elastic scattering cross sections were analyzed 
within the framework of the optical model to study the energy dependence of the potential. Two different 
potentials were used: an energy-dependent phenomenological Woods–Saxon potential and a double folding 
São Paulo potential. For these two potentials, the energy dependence of the real and imaginary strengths 
shows consistent with the presence of the breakup threshold anomaly. An alternative method is proposed 
for calculating the dispersion relation between the real and imaginary parts of the optical potential based 
on bivariate random sampling obtained from the covariance matrix of the adjusted experimental angular 
distributions.
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1. Introduction

In the past years, a great experimental and theoretical effort has been done to understand the 
mechanisms involved in the reactions induced by weakly bound nuclei at energies around the 
Coulomb barrier. In particular, the effects of the breakup channel on the elastic scattering and 
fusion have been studied extensively for both stable (9Be, 6Li, 7Li) and unstable (6He, 7Be, 8Li, 
8B, etc.) weakly bound projectiles [1]. It is well known that the optical potential parameters that 
describe the elastic scattering for the case of tightly bound nuclei projectiles shows a rapid varia-
tion as a function of the energy near the Coulomb barrier, a phenomenon referred to as threshold 
anomaly (TA) [2,3]. This manifests as a rapid decrease in the strength of the imaginary potential 
at energies below the Coulomb barrier, while the real potential increases and shows a bell-shaped 
maximum in this region. This anomaly is attributed to the coupling of nonelastic channels to 
the elastic channel that produces an attractive dynamic polarization potential. The decrease of 
the imaginary potential is associated with the closing of nonelastic peripheral channels at sub-
barrier energies due to Coulomb repulsion. The correlation between the real and the imaginary 
potentials is due to causality that imposes the condition that no scattered wave emerges before 
the incident wave reaches the target. The mathematical relation involving causality and the TA 
is the dispersion relation, which connects the real and imaginary potentials through a principal 
value integral [2,3]. As opposed to tightly bound nuclei, for which the TA has been conclusively 
demonstrated, studies involving weakly bound nuclei have produced some contradictory results 
[4–20]. It has been suggested [13,21] that the effect of coupling to the breakup channel may 
produce a repulsive polarization potential which affects the overall dynamic potential and could 
inhibit the manifestation of the usual TA. For systems in which one of the participants is a weakly 
bound nucleus, a new kind of anomaly has been proposed [7,14,22,23], justified via dispersion 
relations in [14] and named later as breakup threshold anomaly (BTA) [8,24]. The coupling of 
the breakup channel, even at energies below the Coulomb barrier, would be reflected as an in-
crease of the imaginary potential as a function of the decreasing energies. As a consequence of 
the dispersion relation, this implies a decrease in the real part of the optical potential.

A behavior compatible with the BTA has in fact been observed in the reactions induced by 
6Li on 58Ni [9], 80Se [10], 144Sm [11] and 208Pb [8], and also for 9Be + 64Zn [15]. On the other 
hand, reactions with 7Li projectiles on 59Co [12], 80Se [10], 138Ba [7], 144Sm [11] and 208Pb 
[13] show the presence of the usual TA. Finally, in several other reactions involving these stable 
weakly bound projectiles, no definite conclusions could be drawn regarding any of these two 
types of behavior. This includes the cases of 6Li on 27Al [4], 64Ni [5], 112Sn, 116Sn [6], 138Ba 
[7], 7Li + 28Si [14], and 9Be on 12C [20], 27Al [16], 120Sn [25] and 144Sm [17].

Among the main experimental limitations for establishing the character of the anomaly is 
the difficulty to obtain enough experimental data near and below the barrier. In this region, the 
elastic scattering is dominated by the Coulomb interaction, so high-precision cross-section mea-
surements are required in order to assess any deviation from the Rutherford angular distribution.

To establish robust conclusions regarding the threshold anomaly of the optical potential 
around the Coulomb barrier it is necessary to analyze the experimental data in the frame of 
different potential models. Among the most commonly used models are the phenomenological 
Woods–Saxon potential [11,26] and the microscopic, non-local, double-folding São Paulo [27]. 
The physical interpretation should be independent of this choice. Not less important, an unam-
biguous determination of the kind of anomaly requires a rigorous criterion for the assessment of 
the parameter uncertainties in terms of experimental ones [28].
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The purpose of the present work is to contribute to the understanding of the energy behavior
for systems involving weakly bound projectiles at near-barrier energies. With this aim, we have 
measured elastic-scattering angular distributions for the 9Be + 80Se system at eleven energies 
around the Coulomb barrier. The target was chosen for its intermediate mass, between those 
of 27Al and 120Sn, targets which were already studied with this projectile [16,25]. The results 
were analyzed with a phenomenological Woods–Saxon potential and a double-folding São Paulo 
potential. We also present a new method based on random sampling to determine if the real and 
imaginary potentials obtained follow a behavior compatible with the dispersion relation.

This article is organized as follows. In Sec. 2 the experimental setup is described as well as the 
obtained elastic-scattering angular distributions. In Sec. 3 the data are analyzed in the framework 
of the two potentials and their outcomes are compared. Summary and conclusion are given in 
section 4.

2. Experimental details

Experimental elastic scattering angular distributions were measured at eleven bombarding 
energies: 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, and 32.8 MeV in the laboratory frame. The 
nominal value of the Coulomb barrier is estimated in 20 MeV (18 MeV in c.m.) by empirical 
models [29]. Beams of 9Be were delivered by the 20UD tandem accelerator of the TANDAR 
Laboratory in Buenos Aires. The beam was defined by two rectangular collimators (3.5 mm 
× 4.5 mm) upstream the scattering chamber. Enriched (99.8%) 80Se targets, 110 µg/cm2 thick, 
evaporated onto 20 µg/cm2 thick carbon foils, were placed at the center of a 70-cm-diameter 
scattering chamber. The target was set at +40◦ (−40◦) with respect to the beam direction for 
the measurement at forward (backward) angles. In the data analysis, the beam energies were 
corrected for the energy lost (about 60 keV), assuming the scattering takes place in the middle of 
the target.

The detection system consisted of an array of eight surface-barrier silicon detectors with an 
angular separation of 5◦ between adjacent detectors. The detectors were mounted on a rotating 
support on the bottom of the scattering chamber. The angular distributions were taken in angu-
lar steps between 1◦ and 5◦, depending on the energy and angular range. A second set of two 
surface-barrier detectors with an angular separation of 8◦ was placed on a rotating support at the 
top of the chamber to detect reaction products at backward angles. Rectangular slits defined the 
angular acceptance of each detector, with solid angles ranging from 0.1 msr (most forward de-
tector) to 0.6 msr (most backward one). This allowed comparable counting rates in all detectors. 
The energy resolution (FWHM) ranged from 0.5 to 0.8%, which was appropriate to identify and 
separate the inelastic-excitation peak corresponding to the first excited state of the 80Se nucleus 
(2+, 0.667 MeV) from the elastic peak (see Fig. 1). As can be seen, there is no significant back-
ground affecting the elastic peak. The same negligible background is seen at other energies. This 
was also the case in previous work with 9Be [25], where it was shown that α particles arising 
from breakup have lower energies than the elastic peak.

Two monitor detectors were fixed at different hemispheres at 16◦ with respect to the beam 
direction. The angular acceptance of both detectors was 0.25◦ defined by circular collimators. To 
avoid any possible shadowing of a monitor due to the edge of the target ladder, measurements 
performed at forward (backward) scattering angles were normalized using the monitor at the 
same (opposite) hemisphere as the detector array. Assuming that the scattering at the monitor an-
gles is purely Rutherford for all studied energies, the elastic scattering differential cross sections 
is obtained as
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Fig. 1. Energy spectrum of the reaction products for the 9Be + 80Se system, obtained at Elab = 30 MeV, θlab = 55◦ . 
Elastic and inelastic peaks can be distinguished.
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(θmon) is the differential Rutherford cross section at the monitor angle, Ndet and 
Nmon are the number of events, J (θdet) and J (θmon) are the Jacobians and �mon/�det is the solid 
angle ratio between the monitor and the detector. These ratios were obtained from the scatter-
ing of 9Be and 16O on a 197Au target (250 µg/cm2) at energies well below the corresponding 
Coulomb barrier by means of Eq. (1).

A Faraday cup at the end of the beam line, far away from the target, was used to integrate 
the total charge delivered by the beam. This integrated current, together with geometrically de-
termined solid angles, the known target thickness, and the average charge state of the ion after 
going through the target, allowed an alternative method to corroborate the assumption of purely 
Rutherford scattering on the monitors at the highest energies.

In Fig. 2 the angular distributions for all measured energies of the elastic scattering cross 
sections, normalized to the Rutherford cross sections are displayed. The uncertainties were cal-
culated taking into account the statistical and systematic contributions. The statistical uncertainty 
considered the number of counts in the detector and in the monitor and was typically in the range 
of 0.2–2.0%, except for the higher energies and backward angles for which uncertainty values 
up to 10% were obtained. The uncertainties in the solid-angle ratios �mon/�det where included 
in error bars.

3. Data analyses and results

3.1. Optical model analysis

The experimental angular distributions were described in the framework of the optical model 
using a phenomenological potential given by

U(r) = −Vf (r, r0, a) − iWif
2(r, ri0, ai) − iWsig(r, rsi0, asi) (2)

where f is the Woods–Saxon factor for the real part

f (r, r0, a) = 1
r−R

(3)

1 + e a
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Fig. 2. Elastic scattering cross sections normalized to the Rutherford cross sections for the 9Be + 80Se system and optical 
model calculations. The full lines (red) correspond to Woods–Saxon energy-dependent with variable geometry. The 
dash–dot (blue) corresponds to a São Paulo potential (for energies below 22 MeV, both fits are almost indistinguishable). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

R = r0(A
1/3
p + A

1/3
t ), where r0 and a are the real reduced radius and diffuseness (geometric 

parameters), and Ap and At are the projectile and target mass number. The same expressions are 
obtained for the reduced radii of the imaginary potential. The first term of Eq. (2) represents the 
real nuclear potential V (r). The second term represents the volume contribution to the imaginary 
potential and is proportional to the square of the Woods–Saxon factor. It simulates the incoming 
wave boundary condition and accounts for fusion [30]. The third term corresponds to the sur-
face part of the imaginary potential which is proportional to the derivative of the Woods–Saxon 
shape

g(r, rsi0, asi) = −4asi df (r, rsi0, asi)/dr (4)

and takes into account the absorption due to peripheral reactions.
The phenomenological potential parameters were calculated under three different conditions: 

a) energy-independent (EI) potential, b) energy-dependent potential with fixed geometric param-
eters (EDFG), and c) an energy-dependent potential with variable geometric parameters (EDVG). 
The volume parameters of the imaginary potential Wi , ri0 and ai were kept fixed in all cases with 
values of Wi = 10 MeV, ri0 = 1.0 fm and ai = 0.15 fm. These geometrical values are lower than 
the real and surface imaginary components, as shown below for the geometrical parameters ob-
tained for the EI, EDFG and EDVG cases. Thus, the volume imaginary potential term does not 
contribute significantly in the outer nuclear region. For every potential condition, the adjusted 
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Table 1
Parameters of the energy independent potential (EI). The projectile energy, V , Wi and Wsi are in MeV, the reduced 
radii and diffuseness are in fm and the volume integrals per nucleon pair are in MeV fm3. The global estimator of the 
fit 

∑n
k=1 χ2

k
Nk/(

∑n
i=k Nk − p) is 2.817, where p = 6 is the number of parameters fit and the index k stands for each 

particular energy.

Ec.m. V r0 a Wi ri0 ai Wsi rsi0 asi [G(E)]V [G(E)]W χ2/ν

15.2 0.524
16.1 4.448
17.0 1.979
17.9 1.950
18.8 2.901
19.7 33.91 1.264 0.563 10.0 1.0 0.15 2.40 1.451 0.542 4.27 3.04 4.037
20.6 2.035
21.5 1.309
22.4 2.312
26.9 4.098
29.4 4.500

Table 2
Parameters of the energy dependent potential with fixed geometry (EDFG). The projectile energy, V , Wi and Wsi are in 
MeV, the reduced radii and diffuseness are in fm and the volume integrals per nucleon pair are in MeV fm3. The global 
estimator of the fit 

∑n
i=1 χ2

i
/(

∑n
i=1 Ni − p) is 1.984, where p = 2 is the number of parameters fit.

Ec.m. V r0 a Wi ri0 ai Wsi rsi0 asi [G(E)]V [G(E)]W χ2/ν

15.2 189.37 0.11 23.76 0.13 0.362
16.1 −99.94 8.23 −12.54 10.40 2.496
17.0 −17.10 4.74 −2.15 5.99 1.941
17.9 14.82 3.64 1.86 4.64 1.455
18.8 32.27 2.26 4.05 2.86 2.494
19.7 42.76 1.264 0.563 10.0 1.0 0.15 2.48 1.451 0.542 5.36 3.13 2.966
20.6 37.51 1.91 4.71 2.41 1.791
21.5 33.08 2.60 4.15 3.29 1.305
22.4 35.42 2.19 4.44 2.77 2.846
26.9 33.89 1.85 4.25 2.34 2.323
29.4 35.77 1.28 4.49 1.61 1.193

parameters were obtained from a m-grid search, where m stands for the number of parameters 
fit. The calculations based on the phenomenological potential were performed with the code 
PTOLEMY [31].

The energy-independent (EI) Woods–Saxon potential was used to perform a first and simul-
taneous fit to the data at all energies by adjusting the real and surface imaginary parameters (V , 
r0, a, Wsi , rsi0 and asi ). The obtained parameters and the resulting χ2/ν of the fits are presented 
in Table 1. Here, ν = N − p is the number of degrees of freedom, being N the number of data 
points per energy, and p the number of parameters fit (p = 6 in this case). The following step is 
to consider an energy-dependent potential with fixed geometry (EDFG). This was accomplished 
by fitting the real and surface imaginary depths (V and Wsi ) as a function of the energy, keeping 
fixed all geometrical parameters at the values obtained in the EI case. The values of the real and 
surface-imaginary depths are presented in Table 2, as well as the constant reduced radii and dif-
fuseness (that were kept constant). As can be seen in the χ2/ν values, the EDFG condition shows 
a significant improvement to the adjustment of the parameter data respect to the EI case. The last 
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Table 3
Parameters potential of the energy dependent with variable geometry (EDVG). The projectile energy, V , Wi and Wsi

are in MeV, the reduced radii and diffuseness are in fm and the volume integrals per nucleon pair are in MeV fm3. The 
global estimator of the fit 

∑n
i=1 χ2

i
/(

∑n
i=1 Ni − p) is 1.532, where p = 6 is the number of parameters fit.

Ec.m. V r0 a Wi ri0 ai Wsi rsi0 asi [G(E)]V [G(E)]W χ2/ν

15.2 29.71 1.299 0.786 1 × 10−03 1.514 0.423 8.15 2 × 10−03 0.418
16.1 −8.55 1.350 0.970 4.92 1.382 0.705 −3.55 5.37 1.837
17.0 9.24 1.280 0.418 3.51 1.350 0.701 0.77 3.49 1.866
17.9 13.84 1.293 0.482 2.77 1.499 0.511 1.78 3.70 1.519
18.8 16.01 1.212 0.696 1.55 1.452 0.629 1.92 2.07 2.419
19.7 12.40 1.248 0.792 10.0 1.0 0.15 2.41 1.429 0.578 2.45 2.93 2.463
20.6 20.23 1.300 0.552 1.79 1.544 0.398 3.16 2.12 1.058
21.5 19.53 1.237 0.578 2.36 1.521 0.471 2.00 3.70 1.175
22.4 35.09 1.264 0.538 1.70 1.529 0.407 4.05 2.08 1.457
26.9 36.31 1.238 0.601 1.87 1.455 0.511 4.04 2.34 2.178
29.4 40.05 1.220 0.608 1.34 1.449 0.547 3.86 1.69 1.014

phenomenological case was constructed taking the EDFG results as a reference and allowing 
the geometrical values to slightly change around those values. In this way, an energy-dependent 
variable geometry (EDVG) potential was obtained. As can be seen in Table 3, a better adjustment 
has been obtained with this configuration for all energies with overall small parameter variations, 
except for the lower energies, where there is an increase of the real diffuseness. The uncertain-
ties, corresponding to a confidence level of 68%, in the parameters for the EI, EDFG and EDVG 
potentials were obtained by varying the parameters until the total χ2 is increased by �χ2χ2

0 /ν. 
Here χ2

0 is the minimum value of χ2 and the factor �χ2 is equal to 2.3 and 7.04 for two and six 
parameters, respectively [28,32].

The following step consisted in the evaluation of the energy dependence of the real and imag-
inary parts of the optical potential. Since the potential shape changes with different energies, it 
is useful to study their behavior at the sensitivity radius RS [30]; this corresponds to the radius 
where the elastic scattering is most sensitive to the values of the potential depths V and W . At 
each energy, the value of RS was determined by selecting a set of slightly modified diffuseness 
parameters a (taken in steps of 0.05 fm around the best value) and adjusting the reduced radius 
and potential depth to fit the data with χ2/ν similar to the optimal value. Finally, the sensitive 
radius was obtained from the intersection of these potentials. The same procedure was performed 
to obtain the imaginary sensitive radius, varying the surface diffuseness asi . Even though one can 
expect a single crossing point for all potentials, that is not always the case. Therefore, the value 
of RS for each energy was obtained by minimizing the estimator of the variance of the sample, 
defined by

s2(r) = 1

n − 1

n∑
i=1

(Vi(r) − Vmin(r))
2 (5)

as a function of the radius. The index i stands for each particular potential, which corresponds 
to a given value of diffuseness. The same procedure was done for the imaginary potential. Fig. 3
shows the crossing points of the real and imaginary potentials for the different adjustments with 
similar χ2/ν, corresponding to the fit of the Ec.m. = 26.9 MeV with the EDVG potential.

It was observed that for all energies, the real sensitivity radius fluctuated considerably in the 
region 8.6 fm ≤ r ≤ 9.1 fm and the imaginary in 9.6 fm ≤ r ≤ 10.5 fm. Therefore, a unique value 
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Fig. 3. Sensitivity radius of the real and imaginary parts of the Woods–Saxon EDVG at Ec.m. = 26.9 MeV estimated by 
the crossing point of different fits with similar χ2/ν value. The real and imaginary diffuseness, a and asi were varied in 
steps of 0.05 fm.

could not be established. To overcome the problem, the method proposed by Brandan et al. [33]
was applied where the potential is replaced by the volume integral per nucleon pair weighted 
by a Gaussian function φ(r), centered on an average value of RS with a width σ . The two 
volume integrals are [G(E)]V and [G(E)]W , where W is the sum of the volume and the surface 
components of the imaginary potential. The volume integral for the real potential is given by the 
expression

[G(E)]V = 1

Ap × At

∫
V (r,E)φ(r)4πr2dr (6)

where Ap and At are the projectile and target mass numbers respectively. An important property 
is that the dispersion relation still holds for the volume integrals, as it was shown by Mahaux et 
al. [34,35] and has an expression in the form of

[G(E)]V = P

π

∫ [G(E’)]W
E′ − E

dE′ (7)

where P denotes principal value. To calculate the parameters of the Gaussian distribution φ(r), 
a normal distribution has been assumed for the sensitivity radius. The average radius was cal-
culated without taking into account the lower energies 15.2 and 16.1 MeV, where they deviate 
considerably from the average value. The obtained value for the EDVG potential is RS = 9.59. 
The standard deviation value was set to 0.5 fm. This choice was made to include the most sig-
nificant contributions from the region where the potentials have been evaluated. The results of 
these integrals are shown in Fig. 4.

The volume integral for the real part of the energy-dependent potential shows a decrease for 
energies below the Coulomb barrier. In the same region, the imaginary part increases in strength. 
For the lowest studied energy (Ec.m. = 15.2 MeV) this behavior is inverted and the imaginary 
integral vanishes, reflecting the definitive closure of all inelastic reaction channels. On the other 
hand, the elastic scattering cross section corresponds to almost pure Rutherford at this energy 
and, consequently, increases the difficulty of determining the values of the potentials at a given 
uncertainty level.
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Fig. 4. Volume integrals per nucleon [G(E)] Eq. (7) around the sensitivity radius calculated for the real (squares) and 
imaginary (circles) parts of the Woods–Saxon potentials. The figures (a) and (b) corresponds to the EDFG and EDVG 
potentials respectively. Uncertainty bars do not include the systematic components from RS and σ . Calculations with 
slightly different values for RS (up to 5%) and up to a factor of two for σ were performed with no significant difference 
in the energy behavior of the integrals.

The elastic scattering cross sections were also analyzed using the São Paulo potential. This 
global parameter-free optical potential [36–38] was chosen because it has been successfully used 
to describe a large variety of systems in a wide energy range. The normalized expression for the 
São Paulo potential used in the present analysis can be obtained from the following expression 
[8,24]

VSP(R,E) = [NR(E) + iNI (E)]VLE(R,E), (8)

where VLE(R, E) is the local equivalent potential. The explicit energy dependence of VLE(R, E)

results from the local equivalence of the otherwise nonlocal interaction [39], it is not dispersive 
and incorporates the double folding potential. The coefficients NR(E) and NI (E) are energy-
dependent factors that take into account the effects of the dynamic polarization potentials (DPP) 
arising from direct channel couplings. An important property is that the DPPs are dispersive, 
with the real and imaginary parts being connected through a dispersion relation [8].
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Table 4
Normalization factors for the real and imaginary parts of the São Paulo potential. The projectile energy is in MeV and the 
volume integrals per nucleon pair are in MeV fm3. The integrals were evaluated at the sensitivity radius RS . The global 
estimator of the fit 

∑n
i=1 χ2

i
/(

∑n
i=1 Ni − p) is 1.939, where p = 2 is the number of parameters being fit.

Ec.m. NR NI [G(E)]V [G(E)]W χ2/ν

15.2 3.70 0.38 12.91 1.31 0.369
16.1 −7.42 6.10 −25.95 21.36 1.507
17.0 0.11 2.12 0.40 7.45 1.927
17.9 0.32 2.17 1.10 7.55 1.528
18.8 1.08 1.10 3.79 3.87 2.599
19.7 1.22 1.30 4.32 4.58 3.208
20.6 1.04 1.17 3.67 4.14 1.659
21.5 1.07 1.37 3.79 4.85 1.413
22.4 0.97 1.13 3.43 3.99 2.123
26.9 1.07 1.08 3.877 3.81 2.675
29.4 1.10 0.86 3.91 3.05 1.019

Fig. 5. Volume integrals per nucleon [G(E)] Eq. (7) around the sensitivity radius calculated for the real (squares) and 
imaginary (circles) parts of the São Paulo potential. Calculations with slightly different values for RS (up to 5%) and up 
to a factor of two for σ were performed with no significant difference in the energy behavior of the integrals.

The depths of the real and imaginary parts of this potential for the 9Be + 80Se system were 
around 410 MeV, larger than the shallow depths of the Woods–Saxon potential in this work, typ-
ically around the tens of MeVs. The resulting fits of the normalization factors and the volume 
integrals per nucleon for the real and imaginary parts of the São Paulo potential are presented in 
Table 4 and Fig. 5. It can be seen that their energy dependence, like the ones obtained in Fig. 4
for the Woods–Saxon potential, follow the same shape. The real part decreases in magnitude as 
the energy falls, even at energies below the Coulomb barrier while the imaginary part increases 
in the same region. In Fig. 6 a direct comparison between models is performed for the Woods–
Saxon EDVG and the São Paulo potentials by means of their respective volume integrals per 
nucleon.

It is seen in this figure that the shape in energy is the same for both potentials, with a definite 
decrease of the real part for energies in the vicinity of the Coulomb barrier and an increase of the 
imaginary part in the same region. This effect could be result of an increment of absorption, as 
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Fig. 6. Volume integrals per nucleon [G(E)] Eq. (7) around the sensitivity radius for the real (full symbols) and imaginary 
(open symbols) parts of the EDVG Woods–Saxon and São Paulo potential.

the energy diminishes, produced by a strong coupling to non-elastic channels that remains open 
even at sub-coulombian energies. According to Ref. [8,24], this energy behavior is consistent 
with the breakup threshold anomaly, which is a result of the coupling of the breakup of the 
weakly bound projectile 9Be to the elastic channel. It also can be seen that the absolute values of 
the volume integrals for the real part is about the same for both potentials and for the imaginary 
parts are similar, within the error bars. This fact is of course what one expects, but it is still 
remarkable to find such an agreement between very different potentials. Of course the “shape” 
of the volume integrals as a function of the energy is a rather fuzzy concept, often subject to 
individual interpretation. In order to overcome that problem, we have devised a new method 
proposed in the following section.

3.2. Dispersion relation through bivariate random sampling

As it was said before, the real and imaginary parts of the volume integrals of the nuclear 
potential (or equivalently the potentials) are connected through a dispersion relation given by 
Eq. (7). To calculate this integral, a linear parametrization model was proposed by Satchler [3]
which is represented by a series of linear segments. Through these segments, a global shape of the 
imaginary potential could be modeled. In this work, instead, to fully account for experimental 
uncertainties we implemented a procedure in which, for each energy, the segment vertices are 
obtained from random sampling, centered in the adjusted values, following a bivariate normal 
distribution determined by the covariance matrix [40]

f (xR, xI ) = 1√
(2π)2det(V)

e− 1
2 (x−x0)

TV−1(x−x0) (9)

where x0 = {xR0, xI0} are the fitted values, V is the covariance matrix defined in Eq. (10) and ρ
the correlation factor,

V =
[

σ 2
xR0

ρσxR0
σxI0

ρσxR0
σxI0

σ 2
xI0

]
(10)
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Fig. 7. Random points with a bivariate normal distribution around the experimental volume integrals per nucleon [G(E)]
were determined for Ec.m. = 26.9 MeV. About 68% of the total obtained points lie within the χ2 = χ2

0 + 2.3χ2
0 /ν

ellipse.

Fig. 8. (a) Imaginary (open circles) and (b) real (solid squares) volume integral per nucleon as a function of the center-
of-mass energy for the São Paulo potential. The gray lines in the bottom panel represent the schematic segments lines 
created from random points following bivariate normal distributions centered at the fitted values (500 lines were drawn). 
The corresponding upper gray lines are the results of Eq. (7). The red lines represent ±1σ confidence bands.

In Fig. 7 an example for Ec.m. = 26.9 MeV is presented for 1000 random points obtained 
from Eqs. (9) and (10) centered at the volume integrals per nucleon calculated for the São Paulo 
potential. Each imaginary value from one energy ellipse is then randomly linked to the next 
one generating a line segment. To avoid nonphysical fluctuations as a function of the energy, 
the imaginary values at the center were averaged with their closest neighbors with a weight 
factor. Each of these segments yields a contribution to the real volume integral following the 
method proposed by Satchler [3]. The graphs are shown in Fig. 8 together with the adjusted 
values of the volume integrals. It is noteworthy that the best fit for the energy of 16.1 MeV is 
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obtained for a negative value, both for the real depth V of the Woods–Saxon potential and for 
the real normalization factor NR for São Paulo potential. The strong coupling of the breakup 
channel to the elastic channel could manifest itself in an increment of absorption as the energy 
diminishes. This implies, by means of the dispersion relation, the appearance of a repulsive 
polarization real potential that, in cases, could produce a strong diminishing of the total real 
potential. However, a negative value of the real part of the potential, such as this case, does not 
necessarily imply a qualitatively different behavior of the scattering wave function. It is rather 
just an artifact produced by the restriction of geometrical parameters to fixed values (even for 
the Wood–Saxon EDVG case, in which the variations are quite constrained) for all bombarding 
energies, over and below the Coulomb barrier.

As it can be seen in Fig. 8, the adjusted real volume integrals per nucleon, except for the point 
at 16.1 MeV, lie within the ±1σ confidence bands of the random points at each energy in the 
range from 15 to 33 MeV. Based on this criterion, it is concluded that the overall behavior of the 
real and imaginary integrals per nucleon (or equivalently, the potentials) follows the dispersion 
relation of Eq. (7) consistently with the calculated parameter uncertainties. The decrease of the 
real potential at energies below 17.9 MeV and the consequent increase of the imaginary potential, 
unambiguously indicate a behavior consistent with the breakup threshold anomaly.

4. Summary and conclusions

Elastic scattering angular distributions for the 9Be + 80Se system were measured at eleven 
energies around the Coulomb barrier. The experimental data were analyzed on the framework 
of the optical model using two different potentials: a phenomenological Woods–Saxon potential 
and the double folding São Paulo potential. For these two potentials, the imaginary potential 
peaked at a bombarding energy close to the Coulomb barrier, whereas the real part presented a 
minimum. Through a robust treatment of experimental uncertainties, we show that this behavior 
is clearly consistent with the breakup threshold anomaly proposed for weakly bound projectiles. 
This effect is the result of the strong coupling of the breakup channel to the elastic one that 
produces a dynamic polarization potential that remains important even at energies below the 
Coulomb barrier. The dispersion relation for the real and imaginary parts of the optical potential 
was calculated with a new method based on bivariate random sampling. This method allows us 
to conclude that the energy behavior of the real and imaginary potentials is also compatible with 
the dispersion relation.
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