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Maximal Inequalities for a Best Approximation
Operator in Orlicz Spaces

Abstract. In this paper we study a maximal operatorMf related with the best ϕ ap-
proximation by constants for a function f ∈ Lϕ

′
loc

(ℝn), where we denote by ϕ′ for the
derivative function of the C1 convex function ϕ.We get a necessary and sufficient con-
dition which assure strong inequalities of the type

∫
ℝn θ(M|f |) dx ¬ K

∫
ℝn θ(|f |) dx,

where K is a constant independent of f. Some pointwise and mean convergence re-
sults are obtained. In the particular case ϕ(t) = tp+1 we obtain several equivalent
conditions on the functions θ that assures strong inequalities of this type.
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1. Introduction and Notations. Let Φ be the class of all nondecreasing
functions ϕ defined for all real number t ­ 0, with ϕ(0+) = 0, ϕ(t)→∞ as t→∞,
and ϕ(t) > 0 for t > 0. Observe that we do not assume continuity for the functions in
Φ. This class of functions is quite similar to that treated in [10] though they assume
that the functions ϕ are increasing. When the functions in Φ are also continuous
functions they are called Orlicz functions and they were considered by Musielak and
Orlicz in [18]. According to [2] we say that a function ϕ satisfies the ∆2 condition
if there exists k > 0 such that ϕ(2t) ¬ kϕ(t), for all t > 0, and in this case we write
ϕ ∈ ∆2.

Given a function ϕ ∈ Φ and a bounded measurable set Ω ⊂ ℝn we set Lϕ(Ω) for
the class of all Lebesgue measurable functions defined on Ω such that

∫
Ω ϕ(λ|f(x)|) dx

is finite for some λ > 0, where dx denotes the Lebesgue measure on ℝn. For
ϕ ∈ Φ ∩ ∆2, the set Lϕ(Ω) coincides with the class of all Lebesgue measurable
functions defined on ℝn such that

∫
Ω ϕ(|f(x)|) dx is finite.
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If the function ϕ ∈ Φ is a convex function which satisfies a ∆2 condition we
considered in [7] the multivalued operator µϕ(f)(Ω) of all the best approximation
by constants to the function f ∈ Lϕ(Ω). That is, a real number c is a best appro-
ximation of f if and only if

∫

Ω
ϕ(|f(x)− c|) dx ¬

∫

Ω
ϕ(|f(x)− r|) dx,

for every r ∈ ℝ. It is easy to see that µϕ(f)(Ω) is a non empty set and if ϕ is
a strictly convex function this set has only one element. For the particular case
Ω = Bε(x), where Bε(x) is a ball centered at x ∈ ℝn with radius ε, we set µε(f)(x)
for µϕ(f)(Ω).

Further, when ϕ is a C1 function, we consider the space Lϕ
′
(Ω), where ϕ′ is the

derivative of the function ϕ, and we extend this operator in a continuous way, to
functions f in Lϕ

′
(Ω). Note that in general Lϕ

′
(Ω) is a strictly bigger space than

Lϕ(Ω). We refer to [4] for an extension of this operator in a more general set up.
We will use the notation µ̃ϕ(f)(Ω) for the extended best approximation operator,
given in the next definition.

From now on, the C1 condition on the function ϕ will be assumed. We extended
in [7] the definition of the multivalued operator µϕ(f)(Ω) to functions f ∈ Lϕ′(Ω),
as follows.

Definition 1.1 Let ϕ be a convex fuction in Φ ∩∆2 and let f be in Lϕ
′
(Ω). We

say that a constant c is an extended best approximation of f on Ω if it is a solution
of the following inequalities

(a)
∫

{f>c}∩Ω
ϕ′(|f(y)− c|) dy ¬

∫

{f¬c}∩Ω
ϕ′(|f(y)− c|) dy.

(b)
∫

{f<c}∩Ω
ϕ′(|f(y)− c|) dy ¬

∫

{f­c}∩Ω
ϕ′(|f(y)− c|) dy.

We write µ̃ϕ(f)(Ω) for the set of all these constants c.

In [7] we have proved that µ̃ϕ(f)(Ω) 6= ∅. The inequalities (a) and (b) in De-
finition 1.1 characterizes the elements in µϕ(f)(Ω) if f ∈ Lϕ then µϕ(f)(Ω) =
µ̃ϕ(f)(Ω), for f ∈ Lϕ. The extension of the best approximation operator was stu-
died for the first time in [12] for ϕ(t) = tp, p > 1, for a rather general approximation
class of functions. In [6] we considered the extension of the best approximation ope-
rator for a general approximation class on Orlicz spaces Lϕ. Other results involving
the extension of operators, where the approximation class are the constant func-
tions, can be found in [15] and [16].

If Ω is the ball Bε(x) we write fε(x) for any c ∈ µ̃ϕ(f)(Ω), and the notation
µ̃ε(f)(x) will be used for the set of all these constants. We refer to [7] for some
equivalences of the Definition 1.1.

One of the main results of the paper are the inequalities given in Theorem 2.1. In
the special case that f is a non-negative function the first inequality of the theorem
says that ϕ′(fε(x)) is equivalent to consider the averages 1

|Bε|
∫
Bε(x) ϕ

′(f(y)) dy.
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If ϕ′(0) = 0, this type of equivalence and some version of the classical Lebesgue
Differentiation Theorem, will imply the following pointwise convergence result

(1) sup{|fε(x)− f(x)| : fε(x) ∈ µ̃ε(f)(x)} → 0, as ε→ 0.

The result stated above can be obtained even in the case ϕ′(0) > 0. This fact is not
a consequence of Theorem 2.1 and a proof will be given at the end of Section 2.

As we pointed out in [7], page 33, if ϕ′ is a strictly increasing function and
ϕ′(0) = 0 the set µ̃ε(f)(x) has a unique element fε(x) which is a continuous function
on x. With this additional hypothesis on ϕ′ we study the mean convergence

(2)
∫

ℝn
θ(|f(y)− fε(y)|) dy → 0, as ε→ 0,

for some θ ∈ Φ.
The only case where the mean convergence (2) can be easily obtained is when

Lϕ is the space L2. In this particular case the extended best approximation operator
fε(x) is given by the average 1

|Bε|
∫
Bε(x) f(y) dy, and using standard arguments we

have that (2) holds provided f ∈ Lθ(ℝn) and θ is a convex function in Φ ∩∆2. For
a general function ϕ to deal with the mean convergence problem (2) it is necessary
to introduce the following maximal operator

(3) Mf(x) = sup
ε>0
{|fε(x)| : fε(x) ∈ µ̃ε(f)(x)}.

This operator Mf depends on the function ϕ, therefore sometimes we will denote
it as Mϕf. The very well known Hardy Littlewood maximal operator is obtained
considering ϕ(t) = t2. In this case Mt2(|f |) will be denoted by M(f)(x) and

M(f)(x) = sup
ε>0

1
|Bε(x)|

∫

Bε(x)
|f(y)| dy,

where f ∈ L1
loc(ℝn).

We point out that the measurability of the operator Mϕf is unknown and
it can be proved only in some specific cases. For example, the Hardy Littlewood
maximal operator or ϕ(t) = tp, p > 1. This is also the situation if ϕ′ is a continuous
strictly increasing function and ϕ′(0) = 0, since in this case we have that fε(x) is a
continuous function on x.

We characterize, in Theorem 2.3, those functions θ such that

(4)
∫

ℝn
θ(M(|f |)) dx ¬ C

∫

ℝn
θ(|f |) dx,

for all f ∈ Lϕ
′

loc(ℝn). As an application of (4) and using (1) we can get the mean
convergence result (2). We also obtain, for some cases, the norm convergence, see
Theorem 2.6.

Also we can see, in the proof of Theorem 2.3, that the operatorsM(|f |) and the
Hardy-Littlewood M(f) are related by

(5)
1
2
ϕ′−1(

1
C
M(ϕ′(|f |))(x)) ¬M(|f |)(x) ¬ ϕ′−1(CM(ϕ′)(|f |)(x)),
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where we denote by ϕ′−1 the generalized inverse function of ϕ′ which is given by

ϕ′−1(t) = sup
ϕ′(s)¬t

s.

For the particular case ϕ(t) = tp+1, with p > 0 a direct calculations in (5) gives

1
K

(M(|f |p) 1p (x) ¬Mtp+1(|f |)(x) ¬ K(M(|f |p) 1p (x),

where the constant K is independent of f. Thus sufficient and necessary condition
in order to get strong inequalities for the operator

Mp(f)(x) =
(

sup
ε>0

1
|Bε(x)|

∫

Bε(x)
|f(y)|p dy

) 1
p

can be obtained applying Theorem 2.3. This result is given in Corollary 2.8.
Observe that the operator Mp is related with the p−averages of a function and

it is well known in the literature and often used in the case p ­ 1, see for example
[21] and more recently [3].

We need to introduce the following

Definition 1.2 A function ϕ ∈ Φ satisfies the ∇2 condition if there exists a
constant α > 1 such that

(6) ϕ(t) <
1

2α
ϕ(αt), t > 0.

In [11] and [20] the condition (6) on the function ϕ appears as follows

(7) ϕ(t) ¬ 1
2α
ϕ(αt),

for some α > 1 and for all t > 0. We will see later, Proposition 3.3, that for functions
ϕ ∈ Φ the conditions (7) and (6) are equivalent.

To obtain a strong inequality for the operator Mp we need, by Corollary 2.8,
that the function θ(t1/p) satisfies the ∇2 condition. The last section of this paper
is devoted to study the above condition and related ones. Also one of them is used
in the proof of Theorem 2.5.

2. Main Results. Now we state the first result of this paper.

Theorem 2.1 Let ϕ ∈ Φ ∩∆2 be a C1 convex function, f ∈ Lϕ
′

loc(ℝn) and select
fε(x) in µ̃ε(f)(x), where x ∈ ℝn and ε > 0. Then we have the following estimates.

(8)
1
C
ϕ′(|fε(x)|) ¬ 1

|Bε|

∫

Bε(x)
ϕ′(|f(y)|) dy ¬ Cϕ′(|f |ε(x)).

(9)
1
C
ϕ′(|fε(x)− f(x)|) ¬ 1

|Bε|

∫

Bε(x)
ϕ′(|f(y)− f(x)|)dy,

We have used |Bε| for the Lebesgue measure of the ball Bε.
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Proof We will prove the right hand side of (8). Without lost of generality we may
assume f ­ 0, then fε(x) ­ 0. In fact by a) of Definition 1.1 we have a contradiction
if we assume c < 0. Then we have

1
|Bε|

∫

Bε(x)
ϕ′(f(y)) dy =

1
|Bε|

∫

Bε(x)∩{fε(x)<f}
ϕ′
(
(f(y)− fε(x)) + fε(x)

)
dy+

1
|Bε|

∫

Bε(x)∩{fε(x)­f}
ϕ′(f(y)) dy.

Note that for ϕ ∈ Φ ∩∆2 we have

(10) ϕ′(a+ b) ¬ k2

2
(ϕ′(a) + ϕ′(b)), a, b > 0,

since ϕ(2x) ¬ kϕ(x) implies that ϕ′(2x) ¬ k2

2 ϕ
′(x).

Using (10), the above expression is bounded by

(11)

k2

2
1
|Bε|

∫

Bε(x)∩{fε(x)<f}
ϕ′
(
f(y)− fε(x)

)
dy +

k2

2
ϕ′(fε(x))+

1
|Bε|

∫

Bε(x)∩{fε(x)­f}
ϕ′(f(y)) dy.

Now by the part (a) of Definition 1.1 we have that (11) is bounded by

(12)

k2

2
1
|Bε|

∫

Bε(x)∩{fε(x)­f}
ϕ′
(
f(y)− fε(x)

)
dy +

k2

2
ϕ′(fε(x))+

1
|Bε|

∫

Bε(x)∩{fε(x)­f}
ϕ′(f(y)) dy,

and assuming K ­
√

2 we get that the equation (12) is bounded by

(13)

k2

2
1
|Bε|

∫

Bε(x)∩{fε(x)­f}

(
ϕ′(fε(x)− f(y)) + ϕ′(f(y))

)
dy+

k2

2
ϕ′(fε(x)).

Since in the above integral fε(x) − f(y) ­ 0 and f(y) ­ 0, we have ϕ′(fε(x) −
f(y)) + ϕ′(f(y)) ¬ 2ϕ′

(
(fε(x)− f(y)) + f(y)

)
. Then the equation (13) is bounded

by 3
2k

2ϕ′(fε(x)). Thus

1
|Bε|

∫

Bε(x)
ϕ′(f(y)) dy ¬ cϕ′(fε(x)),

with c = 3
2k

2.
The left hand side of inequality (8) was proved in [7]. For the sake of completeness

we include it here.
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We show first that given fε(x) ∈ µ̃ε(f)(x) there exists cε ∈ µ̃ε(|f |)(x) such that
|fε(x)| ¬ cε. Since |f | ­ f ­ −|f | and the fact that the extended best approximation
operator is a monotone operator , see Lemma 12 of [7], there exist aε ­ 0 and bε ­ 0
with −aε ∈ µ̃ε(−|f |)(x) and bε ∈ µ̃ε(|f |)(x) such that −aε ¬ fε(x) ¬ bε. But now
aε ∈ µ̃ε(|f |)(x), and cε = max(aε, bε) ∈ µ̃ε(|f |)(x), since this set is a closed interval.
Observe that we have proved above thatMf ¬M(|f |), see (3). Now we may assume
f ­ 0.

Now ϕ′(fε(x)) can be written as

1
|Bε|

∫

Bε

ϕ′(fε(x)) dy =
1
|Bε|

∫

Bε∩{fε(x)>f}
ϕ′((fε(x)− f(y)) + f(y)) dy+

1
|Bε|

∫

|Bε|∩{fε(x)¬f}
ϕ′(fε(x)) dy,

and using (10) the above expression can be estimated by

(14)

k2

2
1
|Bε|

∫

Bε∩{fε(x)>f}
ϕ′(fε(x)− f(y)) dy+

k2

2
1
|Bε|

∫

Bε∩{fε(x)>f}
ϕ′(f(y)) dy +

1
|Bε|

∫

Bε∩{fε(x)¬f}
ϕ′(fε(x)) dy.

Since b) of Definition 1.1 we have

1
|Bε|

∫

Bε∩{fε(x)>f}
ϕ′(fε(x)− f(y)) dy ¬

1
|Bε|

∫

Bε∩{fε(x)¬f}
ϕ′(f(y)− fε(x)) dy,

.

Then assuming k2

2 > 1 we can estimate (14) by

(15)

k2

2
1
|Bε|

∫

Bε∩{fε(x)¬f}
ϕ′(f(y)− fε(x)) + ϕ′(fε(x)) dy+

k2

2
1
|Bε|

∫

Bε∩{fε(x)>f}
ϕ′(f(y)) dy.

Thus (15) is bounded by

k2 1
|Bε|

∫

Bε∩{fε(x)¬f}
ϕ′(f(y)) dy +

k2

2
1
|Bε|

∫

Bε∩{fε(x)>f}
ϕ′(f(y)) dy,

which is bounded by

k2 1
|Bε|

∫

Bε

ϕ′(f(y)) dy.

To prove part (9), observe that if fε(x) ∈ µεϕ′(f), then fε(x) − f(x) ∈ µεϕ′(f −
f(x)). Thus applying part (8) to the function f − f(x), the proof is completed. ■
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The constant C in the above theorem is 3
2k

2 where k is the constant given for
the ∆2 condition of ϕ, thus this constant C is independent of the dimension n.

The left hand side of the inequality (8) and inequality (9) of the Theorem 2.1
were proved in [7], Theorem 3, where the unnecessary hypothesis ϕ′(0) = 0 was
asked but not used in the proof.

We will use the following result given in [10].

Theorem 2.2 A function ψ ∈ Φ satisfies the ∇2 condition if and only if

(16)
∫

ℝn
ψ(Mf(x)) dx ¬ C

∫

ℝn
ψ(C|f(x)|) dx, f ∈ L1

loc(ℝn),

with the constant C independent of f.

Although this result was set there for an increasing function ψ it also holds for a
nondecreasing function ψ.

We denote, according to [11], by ϕ′−1 for the generalized inverse function of the
monotone function ϕ′.

Now we give a necessary and sufficient condition in order to get a continuity
property for the maximal operator M|f |.

Theorem 2.3 Let ϕ ∈ Φ ∩ ∆2 be a C1 convex function and let ϕ′ be such that
Aϕ′(t) ¬ ϕ′(Kt), t ­ 0, for some constants K,A > 1. Now for a function θ ∈
Φ ∩ ∆2 we have that the function θ ◦ ϕ′−1 satisfies a ∇2 condition if and only if
there exists a constant C independent of f such that

(17)
∫

ℝn
θ((M|f |)(x)) dx ¬ C

∫

ℝn
θ(|f(x)|) dx, f ∈ Lϕ

′

loc(ℝ
n).

Proof First we compare the maximal operatorM(|f |) with the Hardy-Littlewood
Maximal Operator M(f) by proving

(18)
1
2
ϕ′−1(

1
C
M(ϕ′(|f |))(x)) ¬M(|f |)(x) ¬ ϕ′−1(CM(ϕ′)(|f |)(x)).

Since ϕ′−1 is the generalized inverse of ϕ′ we have x ¬ ϕ′−1(ϕ′)(x). Thus, by
Theorem 2.1, we have

(19) |f |ε(x) ¬ ϕ′−1(C 1
|Bε|

∫

Bε(x)
ϕ′(|f(y)|) dy

)
.

Then M(|f |)(x) ¬ ϕ′−1(CM(ϕ′)(|f |)(x)).
Now by Theorem 2.1 we also have

(20)
1
C
M(ϕ′(|f |))(x) ¬ ϕ′(M(|f |))(x).

Note that if we assume, for simplicity, K = 2 in the hypothesis of this theorem,
we have ϕ′(x) < Aϕ′(x) ¬ ϕ′(2x), and then clearly ε = ϕ′(x) − ϕ′(x2 ) > 0, for
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ε > 0. It is known that ϕ′−1(ϕ′(x) − ε) ¬ x, for every ε < ϕ′(x). Thus we have
ϕ′−1(ϕ′(x)) ¬ 2x. Now, using inequality (20) we have ϕ′−1( 1

CM(ϕ′(|f |))(x)) ¬
2M(|f |)(x).

Now we assume that the maximal function M(|f |) satisfies (17). Since θ ∈ ∆2

we also have

(21)
∫

ℝn
θ(2M|f |(x)) dx ¬ K1

∫

ℝn
θ(K1|f(x)|) dx, f ∈ Lϕ

′

loc(ℝ
n),

for some constant K1 independent of f. Now using (18) and the fact that ϕ′ is also
a ∆2 function we have

∫

ℝn
θ(ϕ′−1(

1
C
M(ϕ′(|f(x)|)))) dx ¬ K1

∫

ℝn
θ(ϕ′−1(ϕ′(K1|f(x)|))) dx ¬

K2

∫

ℝn
θ(ϕ′−1K2(ϕ′(|f(x)|))) dx, f ∈ Lϕ

′

loc(ℝ
n),

with K2 independent of f. Thus for ψ = θ ◦ ϕ′−1 we have

(22)
∫

ℝn
ψ(M(g)(x)) dx ¬ K3

∫

ℝn
ψ(K3g(x)) dx,

where g is obtained as 1
Cϕ
′(|f |) for any f ∈ Lϕ

′

loc(ℝn). In order to get (22) for all
g ∈ L1

loc(ℝn) set f = ϕ′−1(Cg) and use the fact that ϕ′(ϕ′−1(x)) = x. Now by
Theorem 2.2 we have that θ ◦ ϕ′−1 ∈ ∇2.

On the other hand if θ ◦ ϕ′−1 = ψ ∈ ∇2 by Theorem 2.2 we get
∫

ℝn
ψ(M(g)(x)) dx ¬ C

∫

ℝn
ψ(Cg(x)) dx.

Now by (18) we have thatM(|f |)(x) ¬ ϕ′−1(CM(ϕ′(|f(x)|))), and we may use the
same constant C in both inequalities. Thus

∫

ℝn
θ(M(|f |(x))) dx ¬

∫

ℝn
θ(ϕ′−1(CM(ϕ′(|f(x)|))) dx ¬

C

∫

ℝn
ψ(C2ϕ′(|f(x)|)) dx ¬ C1

∫

ℝn
ψ(C1ϕ

′(|f(x)|)) dx,

and using the hypothesis on ϕ′ we have C1ϕ
′(x) ¬ ϕ′(C2x), where C2 = 2l for l

such that Al > C1, we have

C1

∫

ℝn
ψ(C1ϕ

′(|f(x)|)) dx ¬ C2

∫

ℝn
ψ(ϕ′(C2|f(x)|)) dx.

Now recalling that ϕ′−1ϕ′(x) ¬ 2x, we have
∫

ℝn
θ(M(|f |(x))) dx ¬ C3

∫

ℝn
θ(|f(x)|) dx.
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The condition Aϕ′(t) ¬ ϕ′(Kt), t ­ 0, for some constants K,A > 1 implies
that ϕ′(0+) = 0 and ϕ′(x) → ∞ as x → ∞. Thus the generalized inverse function
ϕ′−1 is real valued and even more ϕ′−1 ∈ Φ.

Note that if ϕ′ is any function in Φ that satisfies tp ¬ ϕ′(t) ¬ ctp, then ϕ′(Kt) ­
Aϕ′(t), t ­ 0 for any K such that A = Kp

c > 1. Thus the above Theorem allow us
to consider ϕ′ ∈ Φ which is not an strictly increasing function. In this case the set
µ̃ε(f)(x) may have more than one element.

Remark 2.4 Observe that using Theorem 2.3 and (1) we have (2), that is
∫

ℝn
θ(|f(y)− fε(y)|) dy → 0, as ε→ 0,

for the function θ given in Theorem 2.3.

Theorem 2.5 Let ϕ ∈ Φ ∩ ∆2 be a C1 convex function and let ϕ′ be such that
Aϕ′(t) ¬ ϕ′(Kt), t ­ 0, for some constants K,A > 1. Then for all f ∈ Lϕ(ℝn) we
have

(23)
∫

ℝn
ϕ((Mϕ|f |)(x)) dx ¬ C

∫

ℝn
ϕ(|f(x)|) dx,

where the constant C is independent of f.

Proof By Theorem 2.3 we only need to show that η = ϕ ◦ ϕ′−1 is a ∇2 function
assuming that ϕ is a ∆2 function. Using b) of Proposition 3.3 we need to show that
there exist β > 1 and K > 1 such that

(24)
η(t1)

tβ1
¬ Kβ η(Kt2)

tβ2
, if 0 < t1 < t2.

We introduce the complementary function of ϕ setting

(25) ψ(x) =
∫ x

0
ϕ′−1(t) dt.

Then

(26) ψ(x) ¬ xϕ′−1(x) ¬ ψ(2x).

And also

(27) ϕ(x) ¬ xϕ′(x) ¬ ϕ(2x).

Setting x = ϕ′−1(y) in (27) and using that ϕ′(ϕ′−1(y)) = y we have

(28) ϕ(ϕ′−1(y)) ¬ yϕ′−1(y) ¬ ϕ(2(ϕ′−1(y))).

By (27) and (26) we have

(29) ϕ(ϕ′−1(y)) ¬ yϕ′−1(y) ¬ ψ(2y).
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Now by (28) and (26)

(30) ψ(y) ¬ yϕ′−1(y) ¬ ϕ(2(ϕ′−1(y))).

Now we will find the constants β and K in (24). By (29) we have

(31)
ϕ(ϕ′−1(t1))

tβ1
¬ ψ(2t1)

tβ1
.

Now we use b) of Proposition 3.3 for the function ψ which we know is a ∇2 function
since ϕ is a ∆2 function, see [20]. Thus there exist constants K and β such that

(32)
ψ(2t1)

tβ1
¬ (2K)β

ψ(Kt2)

tβ2
, 0 < t1 < t2.

By (30) we have

ψ(2t1)

tβ1
¬ (2K)β

ϕ(2(ϕ′−1(Kt2))

tβ2
¬ (K1)β

ϕ((ϕ′−1(Kt2))

tβ2
,

where the last inequality follows since ϕ is a ∆2 function. Finally, by (31) for a
suitable constant K2, we get

ϕ((ϕ′−1(t1))

tβ1
¬ Kβ

2
ϕ((ϕ′−1(K2t2))

tβ2
,

and the Theorem follows. ■

In [7] we have also obtained (23) with different conditions on the function ϕ. In
that paper the ∇2 condition was asked on ϕ and in the above Theorem we need
that Aϕ′(t) ¬ ϕ′(Kt), t ­ 0, for some constants K,A > 1. We do not know how
these two conditions are related.

According to [11], a convex function ϕ ∈ Φ is called an N-function if its right
derivative ϕ′ is also in Φ, and the function ϕ ∈ Φ is named a Young function if it is
a convex function.

If ϕ is a Young function and f ∈ Lϕ we denote by ‖f‖ϕ the Luxemburg norm
of f, which is defined by

‖f‖ϕ = inf{λ > 0 :
∫

ℝn
ϕ
( |f(x)|

λ

)
dx ¬ 1}.

The following result is a direct consequence of (1) and Theorem 2.5. We observe
that the hypothesis of Theorem 2.5 implies ϕ′(0) = 0, then we have (1) by (9) in
Theorem 2.1. The pointwise convergence of fε(x) to f(x) has been considered in
many situations since a long time ago, for example see [22] or [5]. On the other hand
the norm convergence is well known only for the case ϕ(t) = t2. For other powers
and even for more general functions ϕ the first result we know is settled in [7].
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Theorem 2.6 Let ϕ ∈ Φ ∩∆2 be a C1 strictly convex function and let ϕ′ be such
that Aϕ′(t) ¬ ϕ′(Kt), t ­ 0, for some constants K,A > 1. Let f ∈ Lϕ(ℝn) and
fε(x) the unique element of µε(f)(x), then ‖fε − f‖ϕ → 0 as ε→ 0.

We note that in the above theorem the convergence ‖fε− f‖ϕ → 0 as ε→ 0 can be
replaced by ‖fε − f‖θ → 0, where θ is a convex function satisfying the hypothesis
of Theorem 2.3.

In the next Remark we use T for a positive homogeneous operator defined on
Lθ(ℝn) and taking values on the space of measurable functions from ℝn into ℝ. An
example of operator T can be the operator Mp that appears in Corollary 2.8.

Remark 2.7 Let θ be a Young function such that

(33)
∫

ℝn
θ(|T (f)(x)|) dx ¬ K

∫

ℝn
θ(K|f(x)|) dx.

for every f ∈ Lθ and a constant K independent of f. Then there exists a constant
C such that for every f ∈ Lθ we have

(34) ‖T (f)‖θ ¬ C‖f‖θ.

More precisely C = max(1,K2).

Proof Assume K ­ 1 and use θ( 1
Kx) ¬ 1

K θ(x). Thus

∫

ℝn
θ(
|T (f)(x)|
K2‖f‖θ

) dx ¬ K
∫

ℝn
θ(
K|f(x)|
K2‖f‖θ

) dx = K

∫

ℝn
θ(
|f(x)|
K‖f‖θ

) dx

¬
∫

ℝn
θ(
|f(x)|
‖f‖θ

) dx ¬ 1.

Then C = K2. If K < 1 we use the same argument assuming (33) with K = 1.■

We observe that assuming inequality (16) for any function f ∈ Lψ(ℝn), where
ψ is a ∆2 Young function, we can use Remark 2.7 to obtain

(35) ‖Mf‖ψ ¬ C‖f‖ψ,

for f ∈ Lψ(ℝn), and where the constant C is independent of f. As a consequence
of the Lorentz-Shimogaki theorem see for example [1], the inequality (35) holds if
and only if the superior Boyd index αϕ < 1. A Gallardo’s result says that given an
N function ψ, equation (35) holds if and only if ψ ∈ ∇2, see [8]. Henceforth the ∇2

condition for an N function ψ is equivalent to αϕ < 1. For an explicit expression
of the Boyd index αϕ we refer to [1] and [13]. Both results are given for a convex
function ψ while Theorem 2.2 requires only a function ψ ∈ Φ. In this paper we deal
mostly with inequalities of the type (16).
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Corollary 2.8 Let θ be a function in Φ and p > 0. Then

(36)
∫

ℝn
θ(Mp(f)(x)) dx ¬ K

∫

ℝn
θ(K|f(x)|) dx

for all f ∈ Lploc(ℝn), if and only if θ(t1/p) ∈ ∇2.

Corollary 2.8 is an immediate consequence of Theorem 2.2 and gives an improved
version, in a particular case, of Theorem 2.2 in [3]. Here we consider the operator
Mp for p > 0 and we impose the conditions on θ not on θ′ as it was considered in
[3]. Also we will see, for a Young function θ, that inequality (36) implies

(37) ‖Mp(f)‖θ ¬ C‖f‖θ,

for every f ∈ Lθ and some constant C independent of f, see Remark 2.7
Similar equivalences to those of Corollary 2.8 for inequalities of the type

(38)
∫

|x|¬1
θ(Mp(f)(x)) dx ¬ K

(
1 +

∫

|x|¬1
θ(K|f(x)|) dx

)
,

are given in [3] and also in [9] (p = 1).
The fact θ(t1/p) ∈ ∇2, used in Corollary 2.8, is considered in detail in Section

3, where several equivalent conditions are given, see Lemma 3.7, 3.11 and 3.12.
Now we use the remaining of the section to prove the convergence result stated

in (1) for the case ϕ′(0) > 0. This result was proved in Theorem 9 of [7] where the
two last lines of the proof are not correct.

For a function f such that |{f 6= 0}| <∞ and
∫
{f 6=0} ϕ

′(|f |) dx <∞ we consider
the next operator.

Γf(x) = lim sup
ε→0

(sup{|fε(x)− f(x)| : fε(x) ∈ µ̃ε(f)(x)}).

Our purpose is to prove that Γf(x) = 0, almost every x ∈ ℝn. We observe that
given a step function s, then for almost everywhere x, there exists an ε(x) such that
for every ε, 0 < ε < ε(x), we have fε(x) = (f − s)ε(x) + s(x). Here we have used
that for a constant c it holds (f + c)ε(x) = fε(x) + c. Now we estimate Γf by

(39) |{Γf > t}|∗ ¬ |{M(f − s) > t/2}|∗ + |{|f − s| > t/2}|.

The following weak type inequality was obtained in Theorem 8 of [7],

(40) |{x ∈ ℝn :Mf(x) > t}|∗ ¬ C

ϕ′(0)

∫

{|f |>t}
ϕ′(|f(y)|) dy

where the constant C is independent of f and the ∗ means the outer Lebesgue
measure. Now using (40) and the Tchebyshev inequality in (39) we have

|{Γf > t}|∗ ¬ C

ϕ′(0)

∫

{|f−s|>t/2}
ϕ′(|f − s|) dy +

C

ϕ′(t/2)

∫

{|f−s|>t/2}
ϕ′(|f − s|) dy.
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That is we need to estimate
∫
{|f−s|>t/2} ϕ

′(|f − s|) dy. Thus we split the above
integral as follows.

∫

{|f−s|>t/2}
ϕ′(|f − g|) dy +

∫

{|f−s|>t/2}
ϕ′(|g − s|) dy = I + J.

Where g is a simple function such that |g| ¬ |f | and
∫

{|f−g|>t}∩O
ϕ′(|f |) dy < ε,

and O is an open set of finite measure such that {f 6= 0} ⊂ O.
Taking into account that ϕ′(|f − g|) ¬ ϕ′(2|f |) ¬ Cϕ′(|f |), for a fixed g we

estimate I by

(41) C

∫

{|f−g|>t/4}∩O
ϕ′(|f |) dy + C

∫

{|g−s|>t/4}∩O
ϕ′(|f |) dy.

Now, for the fixed simple function g =
∑l
i=1 λiχEi with Ei ⊂ O, we choose

s =
∑l
i=1 λiχIi , where Ii is a finite union of intervals contained in O, in such a way

that the measure of ∪li=1(Ei4Ii) is small enough. Thus the second integral in (41)
will be less than ε.

In order to estimate J we observe that

ϕ′(|g(x)− s(x)|) ¬ Cl(
l∑

i=1

ϕ′(|λi|) + ϕ′(0)),

where the constant Cl depends on the ∆2 condition of the function ϕ′. Then we
also must choose ∪li=1(Ei4Ii) such that

(42) | ∪li=1 (Ei4Ii)|(
l∑

i=1

ϕ′(|λi|) + ϕ′(0)) < ε.

In fact we split the integral J on the two following regions |s| ¬ |g| and |s| > |g|.
The first one is treated as the integral I and the second one is bounded by (42).

3. About the ∇2 condition.. For a function η ∈ Φ we will prove some
equivalences to the inequality (6), that is η ∈ ∇2, and observe that in the literature
the symbol ∇2 is only used for convex functions. The next lemma is quoted as 3.4.2
on page 19 of [19]. Besides it is known that for a N-function η the next inequality
(43) is equivalent to (7) which is used as a definition of the ∇2 condition, see [20].

Lemma 3.1 For an absolutely continuous function η : (0,∞) → (0,∞), the follo-
wing statements are equivalents:

a) There exists β > 1 such that

(43) t
η′(t)
η(t)

­ β,
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for almost every t > 0.
b) There exists β > 1 such that

(44)
η(t1)

tβ1
¬ η(t2)

tβ2
,

for every 0 < t1 < t2.

Proof Given l > 1 and assuming a) we have for t > 0,

log
η(lt)
η(t)

=
∫ lt

t

η′(s)
η(s)

ds ­
∫ lt

t

β

s
ds = β log l.

Thus we have
η(lt)
η(t)

­ lβ =
(lt)β

tβ
,

for every l > 1 and t > 0, and so we have b).
On the other hand, given 0 < t < s the statement b) implies

∫ s

t

η′(r)
η(r)

dr = log
η(s)
η(t)

­ log(
s

t
)β =

∫ s

t

β

r
dr.

Now using the Lebesgue differentiation theorem we obtain η′(t)
η(t) ­

β
t a.e. t. ■

The following result can be found in [10], page 7.

Lemma 3.2 Let η be a function in Φ and suppose that there exists α > 1 such that
2αη(t) < η(αt) for t > 0. Then there exists α1 ∈ (0, 1) such that

2α2ηα1(t) < ηα1(α2t),

for t > 0.

Now we can proof.

Proposition 3.3 For a function η ∈ Φ the following statements are equivalent
a)There exists α > 1 such that

η(t) <
1

2α
η(αt),

for all t > 0.
ã)There exists α̃ > 1 such that

η(t) ¬ 1
2α̃
η(α̃t),

for all t > 0.
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b)There exists β > 1 and K ­ 1 such that

η(t1)

tβ1
¬ Kβ η(Kt2)

tβ2
,

for 0 < t1 < t2.
c)There exists a positive constant C such that

∫ t

0

η(s)
s2 ds ¬ C η(Ct)

t
, 0 < t <∞.

Proof First we prove a) implies b). By Lemma 3.2 there exists a constant α2 ∈
(0, 1) such that

ηα2(t) <
1

2a1
ηα2(a1t),

where a1 = α2 and t > 0. Then applying Lemma 1.2.3 (p.7) of [10] ηα2 is a quasi
convex function and we get

(45)
ηα2(t1)
t1

¬ Kηα2(Kt2)
t2

,

if 0 < t1 < t2. See Lemma 1.1.1 in [10] where it is proved that condition (45) is
equivalent to the concept of quasi convex function given by these authors. Then we
have

η(t1)

t
1
α2
1

¬ K 1
α2
η(Kt2)

t
1
α2
2

,

and b) holds with β = 1
α2
.

Now we assume b) and we have for α > 1

η(Kαt)
η(t)

­ (αt)β

(Kt)β
=
( α
K

)β
­ 2Kα,

the last inequality holds if we select α such that α ­ 2
1

β−1K
β+1
β−1 . Thus we have ã)

with the constant α̃ = Kα.
We prove that ã) implies a). In fact, we have 2α̃η(α̃t) ¬ η(α̃2t) for t > 0. Then

α̃η(α̃t) < 2α̃η(α̃t) ¬ η(α̃2t), and t > 0. Therefore η(t) ¬ 1
2α̃η(α̃t) < 1

2α̃2 η(α̃2t), for
any t > 0, that is we have a) with constant α = α̃2. We have used that η(s) > 0 for
η ∈ Φ and s > 0. For a proof of a)⇔ c), see [10]. ■

Remark 3.4 If we assume that η is also a convex function the constant K in
Proposition 3.3 is equal to 1.

In fact when η is a convex function property ã) in Proposition 3.3 is equivalent
to property a) in Lemma 3.1, see page 23 in [20], which is equivalent to tβ2η(t1) ¬
tβ1η(t2), t1 < t2.
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Remark 3.5 If η is a differentiable function in Φ, then condition c) of Proposition
3.3 is equivalent to the following inequality

∫ t

0

η′(s)
s

ds ¬ C η(Ct)
t

,

for some constant C > 0. See [10], page 6.

We analyze in more details the condition θ(t
1
p ) ∈ ∇2, which appears in Corollary

2.8. For this purpose it will be useful to introduce the following definition.

Definition 3.6 For p > 0 we will say that a function η : (0,∞)→ (0,∞) satisfies
a ∇p+1 condition (η ∈ ∇p+1) if there exists β > 1 such that

(46) η(t) <
1

2βp
η(βt),

for all t > 0.

In the literature the ∇p+1 is only considered for p = 1, that is the classical ∇2

condition. Also note that η(t
1
p ) ∈ ∇2 if and only if η ∈ ∇p+1. The definition 3.6 is

meaningful for all p ∈ ℝ, though if η ∈ Φ always we have η ∈ ∇p+1, for p < 0. Also
it follows directly from the definitions that η(t)

tr ∈ ∇2 ⇔ η ∈ ∇r+2, r > −1 and
η(t)
tp−1 ∈ ∇2 ⇔ η ∈ ∇p+1, p > 0.

Lemma 3.7 Given η ∈ Φ and p > 0 the following statements are equivalent
a) The function η satisfies a ∇p+1 condition.
b) There exists C > 0 such that

(47)
∫ t

0

η(s)
sp+1 ds ¬

Cp

p

η(Ct)
tp

,

for t > 0.
c) There exists β > 1 and K > 0 such that

(48)
η(s)
sβp
¬ Kp η(Kt)

tβp
,

for s < t.
If η is a differentiable function and the constant K in the above statement is

one, then c) is equivalent to
d) There exists β > 1 such that

(49)
η′(t)t
η(t)

> βp.

Proof Since a) is equivalent to η(t
1
p ) ∈ ∇2, then use Proposition 3.3 to see that

a) is equivalent to b) and c). Then use Lemma 3.1 for the equivalence with d). ■
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Note that if we assume that η(t
1
p ) is a ∇2 convex function the statement c) holds

with K = 1, see Remark 3.4. Besides in this case the equivalence c) and d) appears
in Theorem 3.2 of [14].

For a pair of functions η and ψ in Φ we make some considerations about the ∇2

condition on η ◦ ψ.

Remark 3.8 If a function η ∈ Φ satisfies the ∇2 condition, then the function η ◦ψ
satisfies the ∇2 condition, for any convex function ψ in Φ.

Proof Using the ∇2 condition on the function η applied on ψ(t) we get

η(ψ(t)) <
1

2α
η(αψ(t))

and now by the convexity on ψ we obtain

η(ψ(t)) <
1

2α
η(ψ(αt)).

The next Remark follows using that ψ(at) ¬ aψ(t), for a concave function ψ ∈ Φ
and a > 1.

Remark 3.9 Consider a function η ∈ Φ and a concave function ψ ∈ Φ. If η ◦ ψ
satisfies the ∇2 condition, then η also satisfies the ∇2 condition.

Given a function η ∈ Φ such that η(t)
t →∞ for t→∞ we consider the comple-

mentary function η∗ ∈ Φ defined by

η∗(t) = sup
s­0

(ts− η(s)).

In some specific cases the function η∗ coincides with the complementary function
used in (25). The basic properties of η∗ can be found in [13].

Remark 3.10 Note that for functions η1, η2 ∈ Φ such that η1(t) ¬ η2(t) for every
t ­ 0, it follows straightforward that η∗2(t) ¬ η∗1(t) for every t ­ 0.

Now we get some properties on η∗ assuming the ∇p+1 condition on η. First we
need the following auxiliary known result.

Lemma 3.11 Given a function η ∈ Φ such that η(t)
t → ∞ for t → ∞, set η1(t) =

aη(bt), for any a, b > 0. Then

η∗1(t) = aη∗(
t

ab
).

Proof From the definition of η∗ we have

η∗1(t) = sup
s­0

(ts− η1(s)) =
1
b

sup
s­0

(tsb− abη(bs)) = aη∗(
t

ab
).
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Proposition 3.12 Let η be in Φ such that η(t)
t → ∞ for t → ∞ and η ∈ ∇p+1

with p > 0. Then

(50) η∗(2lp−1t) ¬ 2lpη∗(t),

for any t ­ 0 and for some l > 1.

Proof Since θ(t) = 1
2lp η(lt) is a function in Φ we obtain, by Lemma 3.11

θ∗(t) =
1

2lp
η∗(2lp−1t).

Now, using Remark 3.10 we get

1
2lp

η∗(2lp−1t) ¬ η∗(t),

for t ­ 0, which concludes the proof. ■

Similar arguments of Proposition 3.12 and the fact that η∗∗(t) = η(t), according to
Theorem 8.5, page 54 of [13], are used to prove the following.

Remark 3.13 Given a convex function η ∈ Φ such that (50) holds for its conjugate
function η∗, then η ∈ ∇p+1.

Observe that the inequality η(2lp−1t) ¬ 2lpη(t) appearing in Proposition 3.12 is
a sort of ∆p+1 condition for the function η, which is exactly the ∆2 condition for
p = 1. For p > 1 the condition is stronger than the ∆2 condition while for 0 < p < 1
the condition holds for any function η ∈ Φ.
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Avda. Ejército de los Andes 950. 5700 San Luis. Argentina
E-mail: sfavier@unsl.edu.ar

Felipe Zó
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