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Abstract  28 

Arsenic hyper-tolerant bacteria were isolated from arsenic-contaminated well water from the village of Los 29 

Pereyra in Tucumán province, Argentina. Microorganisms that biotransform arsenic are a major factor in 30 

arsenic mobilization in contaminated aquifers. Groundwater analyses showed a level of arsenic 31 

contamination (average concentration of 978 µg.L-1) that exceeds the safe drinking water limit of 10 µg.L-1 32 

recommended by the World Health Organization (WHO) and the Argentine Food Code (AFC). There was 33 

considerable spatial variability in the concentration of arsenic in each of the wells analyzed, as well as in the 34 

distribution of the major anions HCO3
- , SO4 

2- and Cl-. 35 

Eighteen bacterial strains were characterized. Six strains belonging to the Actinobacteria phylum, were able 36 

to grow in media with 20 mM As(III) or 200 mM As(V) and were also highly resistant to Cr, Cd and Cu. 37 

Their ability to biotransform arsenic was examined by speciation of the products using high performance 38 

liquid chromatography (HPLC) inductively coupled plasma mass spectrometry (ICP-MS). In addition, two 39 

strains, Brevibacterium sp. AE038-4 and Microbacterium sp. AE038-20, were capable of aerobic arsenate 40 

reduction, which suggests that these strains could increase the mobility of arsenic by formation of more 41 

mobile As(III).  42 

 43 

Keywords: Arsenic hyper-tolerant bacteria; domestic water wells; arsenic contamination; arsenic-reducing 44 

bacteria. 45 

 46 
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1. Introduction  53 

Arsenic, a toxic metalloid widespread in nature, causes serious health problems world-wide 54 

(Cervantes et al. 1994; Smedly and Kinniburgh 2002). Its presence in well water is a threat to public health 55 

(Jain and Ali 2000). Arsenic toxicity depends on both its chemical form and oxidation state. As(III) 56 

(arsenite) and As(V) (arsenate) are the most common oxidation states found in natural waters. Methylated 57 

arsenicals are also produced by microbes and are introduced anthropogenically (Cervantes 1994; Cullen and 58 

Reimer 1989). Countries with the highest arsenic concentrations in water are Mexico, Argentina, China, 59 

India and Bangladesh (Mandal and Suzuki 2002; Smedley and Kinniburgh 2002).  60 

In Argentina approximately 1,000,000 people are estimated to be affected by daily ingestion of 61 

arsenic-contaminated water (Galindo et al. 2005). The populace of Los Pereyra, a village located in the 62 

eastern region of Tucumán province, drink well water that is contaminated with arsenic. The arsenic 63 

concentration in these wells exceeds the limit of 10 µg.L
-1

 permitted by the World Health Organization for 64 

arsenic in drinking water (WHO 2003). In some cases the concentrations are as much as 200-fold higher than 65 

the WHO limit (Bundschuh et al. 2012).  66 

In arsenic-rich environments, arsenic-tolerant microorganisms are capable of diverse arsenic 67 

biotransformations that contribute to the arsenic biogeochemical cycle (Mukhopadhyay and Rosen 2002; 68 

Oremland and Stolz 2003; Zhu et al. 2014; Yang and Rosen 2016). In addition, there is a relationship 69 

between tolerance to arsenic and to heavy metals such as cadmium; thus, bacterial resistance to heavy metals 70 

may also affect the arsenic biogeocycle (Carrasco et al. 2005). 71 

The aim of this study was to characterize heterotrophic arsenic-resistant bacterial strains isolated 72 

from arsenic-contaminated well water from Tucumán, Argentina. The strains are hyper-tolerant to inorganic 73 

arsenic, as well as to other toxic metals. Two strains, Brevibacterium sp. AE038-4 and Microbacterium sp. 74 

AE038-20, reduce arsenate aerobically, suggesting they could affect environmental arsenic mobilization. 75 

 76 

2. Materials and Methods 77 

2.1. Chemicals, sampling and measurements 78 
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Arsenite (As[III]) was added as Na2AsO2, and arsenate (As[V]) as Na2HAsO4.7H2O (>99% purity). 79 

Reagents were purchased from Fluka Analytical (Sigma Aldrich Co., St. Louis, MO, US) and Anedra (Bs 80 

As, Argentina), respectively. All chemicals used in this study were analytical grade or better. 81 

Water from drinking water wells was acquired from Los Pereyra village, Tucuman province, 82 

Argentina (26º 57’ 4.5”, 64º 53’09.4”). 83 

Groundwater samples were collected from four selected domestic water wells belonging to four 84 

farming families. Water samples were taken from dug wells or open pits at shallow depths (3–6 m). For 85 

sampling, 2 L plastic bottles were rinsed with a 20% v/v HNO3 solution for 24 h, and then five times with 86 

distilled water (McCleskey et al. 2004). Approximately 2 L of water were filtered through several 87 

nitrocellulose membranes (0.22 µ pore size, 47 mm diameter) (Millipore, Billerica, MA, USA). Arsenic 88 

concentrations were determined by electrothermal atomic absorption spectrometry (ETAAS) (APHA, 1992) 89 

using a Perkin Elmer atomic absorption spectrometer AAnalyst 100 with graphite furnace HG 800 equipped 90 

with a deuterium lamp background corrector and autosampler AS70. A hollow cathode lamp was used as 91 

radiation source with lamp current of 18 mA and a 0.7 nm slit. Pyrolytically-coated graphite tubes with 92 

L`vov platforms and a hollow cathode lamp were employed. Arsenic was quantified by calibration against 93 

aqueous standards using peak area measurements determined at 193.759 nm. The calibration curve was 94 

linear to 150 µg.L-1 (r=0.9985). A mixed Pd and Mg (NO3)2 matrix modifier solution was used. Each sample 95 

was injected in 20 µL of 5% (v/v) nitric acid, Argon (high purity 99.9%) was used as purge gas (250 mL 96 

min
-1

). A Mettler Delta 320 pH meter was used to measure temperature and pH in situ. Salinity, conductivity, 97 

and total dissolved solids (TDS) were determined using a Tacussel CD 78 conductivity meter. Na+, K+, Ca++, 98 

Mg
++

, Cl
-
, HCO3

- 
and SO4

-
 were determined with standardized methods (Greenberg and Clesceri 1992). NO3

- 
99 

was determined with a Visocolor ECO Nitrate Test kit (Macherey-Nagel). 100 

 101 

2.2. Enrichment cultures and screening of arsenic-resistant bacteria 102 

After water filtration, membranes were cut aseptically and added to 125 mL bottles containing 30 mL 103 

of sterile LB25 medium at pH 7.0 (Maizel et al. 2016). Na2AsO2 [As(III)] at either 5 or 10 mM, or 104 

Na2HAsO4.7H2O [As(V)] at either 25 or 100 mM, was added as noted. The flasks were incubated at 30°C on a 105 
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rotatory shaker at 150 rpm for 48 h. After incubation, serial dilutions were prepared, and 0.1 mL portions were 106 

spread onto LB25 agar plates at pH 7.0 containing As(V) or As(III) at the same concentration used for 107 

enrichment cultures. The plates were incubated at 30°C for 48 h. Single colonies with visibly different 108 

morphology were picked from the plate and streaked onto fresh medium with the same arsenic species and 109 

concentrations. This procedure was repeated several times to ensure purity of the strains. The pH of the LB25 110 

medium was checked before plating. 111 

  112 

2.3.           DNA preparation, PCR amplification and phylogenetic analysis  113 

DNA was extracted from pure cultures using cetyl trimethylammonium bromide (CTAB) (Ellis et al. 114 

1999). The quality of the DNA was determined by gel electrophoresis with 0.8% agarose after staining with 115 

ethidium bromide. DNA purity was assessed from the A260/A280 and A260/A230 ratios (Johnson and Whitman 116 

1997). Universal primers 8f (5’-AGAGTTTGATCCTGGCTCAG-3’) and 1492r (5’-117 

GGTTACCTTGTTACGACTT-3’) (corresponding to position 8-27 and 1492-1509, respectively in the 16S 118 

rRNA sequence of Escherichia coli) were used to amplify the 16S rRNA by PCR, as previously described 119 

(Quillaguamán et al. 2004). Sequencing was performed directly on PCR amplicons using Macrogen 120 

sequencing service (Macrogen Inc., Korea). The sequences were analysed with Chromas software 121 

(Technelysium, Tewantin, Australia). The identity and similarity to the nearest neighbor of sequences were 122 

obtained by using the BLAST (Basic Local Alignment Search Tool) algorithm (Altschul et al. 1990) through 123 

alignments performed with BLASTn (http://www.ncbi.nlm.nih.gov/BLAST). 124 

A phylogenetic tree was constructed using MEGA 7 software based on 16S rRNA sequences 125 

obtained from each of the six bacterial isolates that had been selected for further characterization (Kumar et 126 

al. 2016). A bootstrap consensus tree was inferred from 1000 replicates to represent the evolutionary history 127 

of the taxa analyzed (Felsenstein 1985).  The evolutionary history was inferred using the Neighbor-Joining 128 

method (Saitou and Nei 1987). The evolutionary distances were computed using the Maximum Composite 129 

Likelihood method (Tamura et al. 2013). 130 

 131 

  132 
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2.4. Characterization of arsenic-resistant strains 133 

Tolerance of the bacterial isolates to arsenic was tested on LB25 agar plates at neutral pH containing 134 

5, 10, 15 or 20 mM) As(III) or 25, 50, 75, 100 or 200 mM As(V), as indicated. LB25 agar plates without arsenic 135 

were used as control. An inoculum of each strain (100 mL) was grown overnight on LB25 broth without 136 

arsenic at 30°C on a rotary shaker at 150 rpm. Five µl drops from this culture were deposited on the plates at 137 

several As(III) and As(V) concentrations until completely absorped. The plates were incubated 48 h at 30 °C.  138 

Shewanella sp. A33 (Saltikov et al. 2005) was included as a reference strain. The experiment was conducted in 139 

duplicate. Isolates able to grow at the highest concentrations of As(III) (20 mM) and As(V) (200 mM) were 140 

selected for further characterization.  141 

Arsenic-resistant isolates were further characterized for tolerance to inorganic arsenic in liquid 142 

medium, tolerance to heavy metals (Cr, Cu and Cd), antimicrobial activity, temperature or pH. Inocula were 143 

prepared as previously described. Bottles of 125 mL with 20 mL of LB25 were used for all experiments. 144 

Bottles were inoculated (10%) with the inoculum culture and incubated for 24 or 48 h at 30 °C and 150 rpm.  145 

Tolerance to heavy metals was assayed in LB25 agar plates at neutral pH. Isolates were streaked onto 146 

agar plates containing the indicated concentrations of heavy metals (Polti et al. 2007). Tolerance to the 147 

corresponding metal was determined semi-quantitatively by measuring length of growth along the streak. 148 

Each assay was performed in triplicate.  149 

The ability of each bacterium to produce antimicrobial activity was examined using a deferred 150 

antagonism method (Gratia and Fredericq 1946; Fredericq et al. 1947). The pH of the LB25 medium was 151 

confirmed in each case before plating.  152 

 153 

2.5. Arsenic biotransformation 154 

Two isolates with the highest resistance to As compounds were examined for their ability to transform 155 

either As(III) or As(V). Each strain was assayed in 15 mL Falcon tubes containing 2 mL of LB25 medium, 156 

amended with 1 µM of either arsenic species. Tubes without bacteria were included as abiotic control, to 157 

confirm species stability in the liquid medium, as described above. After incubation, aliquots of 0.5 mL were 158 

collected in triplicate from the stationary phase and were centrifuged at 13,000 rpm for 5 min at 4 °C. 159 
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Supernatants were filtered through ultracentrifugation membranes (Amicon®) for speciation by HPLC ICP-160 

MS, as described (Zhang et al. 2015). A C18 reverse phase column (Jupiter 300) was isocratically eluted with 161 

a mobile phase composed of 3 mM malonic acid, 5 mM tetrabutylammonium hydroxide and 5% of methanol 162 

(pH 5.6) at a flow rate of 1.0 mL.min
-1

. The retention times of 1 µM of each arsenical species [As(III), As(V), 163 

MAs(V) and DMAs(V)] were used as standards. 164 

3. Results 165 

3.1. Physicochemical characterization of water samples from Los Pereyra  166 

The physicochemical parameters of water samples were determined from four wells at Los Pereyra. 167 

The total arsenic content in the four samples ranged between 241 and 2098 (µg.L-1). The local groundwater 168 

showed slightly elevated pH, between 7.4 and 8.3, and high electric conductivity (EC) between 1570 and 169 

5020 µS.cm
-1

. Considerable variation was observed for the distribution of major anions: HCO3
-
 (740–1303 170 

mg.L-1), SO4
2- (73– 865 mg.L-1) and Cl- (21–588 mg.L-1). Nitrate concentrations were high in samples 036 171 

and 038. Total dissolved solids (TDSs) were between 958 and 4350 mg.L
-1 

(Table 1). The predominant 172 

cation in the waters was sodium, with values between 370 and 1140 mg.L
-1

. Bicarbonate was determined as 173 

the predominant anion, with values between 740 and 1303 mg.L-1. The levels of Na+, K+, Mg2+ and anions 174 

were considered normal according to the Argentine Food Code (CAA 2007). Values of total alkalinity 175 

ranged between 606 and 1069 mg CaCO3.L
-1.  176 

 177 

3.2. Identification of arsenic-resistant strains 178 

Heterotrophic bacterial strains were recovered in a complex LB enrichment culture supplemented with 179 

100 to 300 mM arsenate. Eighteen morphologically distinct colonies grew at these concentrations of arsenate 180 

in solid medium and were identified by amplification and sequencing of the 16S rRNA genes and comparison 181 

with the most closely related sequences in the GenBank database (Table 2). Seven of the eighteen strains 182 

belonged to the Actinobacteria phylogenetic group, which comprised the majority of the isolates. The 183 

gammaproteobacteria group was the second most predominant. Additionally, two representative members of 184 

alphaproteobacteria (Ochrobactrum sp. and Brevundimonas sp.) and one representative member of the 185 

betaproteobacteria (Alcaligenes faecalis strain SND_5) were found. 186 

 187 
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3.3. Characterization of arsenic-resistant strains and tolerance to arsenic compounds 188 

Eighteen heterotrophic bacterial strains obtained from the different LB enrichment cultures 189 

supplemented with arsenate were further characterized. Samples 036 and 038 showed intermediate 190 

concentrations of total arsenic, and sample 038 showed the highest conductivity and concentration of TDS. 191 

Isolates from samples 037 and 039 grew at concentrations lower than 100 mM As(V), thus were not 192 

characterized further. However, water samples were included in the physicochemical analysis.  Additionally, 193 

arsenic resistance assays were not performed at high nitrate concentration, and there was no clear relationship 194 

in resistance between the two oxyanions.  When resistance to arsenicals was assayed in solid LB25 medium, all 195 

isolates were able to grow at 200 mM As(V), however only six of them were able to grow at the highest 196 

As(III) concentration of 20 mM: AE038-4, AE038-5, AE038-9, AE038-12, AE038-16 and AE038-20. These 197 

six strains were characterized further. They were able to grow at temperatures 10 to 30°C, but not 55°C. They 198 

could grow  in media with initial pH values from 3 to 11 (Table 3). A flocculating phenotype in liquid medium 199 

was observed for the strains, suggesting biofilm formation. None showed antimicrobial activity against E. coli 200 

ATCC 35218 and S. aureus ATCC 29213. 201 

The six bacterial strains were resistant to high concentrations of arsenic in liquid medium. Five, 202 

AE038-4, AE038-5, AE038-9, AE038-12 and AE038-16 grew at 50 mM As(III), the highest concentration of 203 

arsenite tested, and at 200 mM As(V). Strain AE038-20 was resistant to 40 mM As(III) and 100 mM As(V) 204 

(Table 4). Additionally, most strains were highly tolerant to Cu(II), Cr(VI) and Cd(II),  while strain AE038-16 205 

was sensitive to the highest concentration of Cd(II) tested (1 mM) (Table 4). 206 

  207 

3.4. Phylogenetic analysis 208 

An evolutionary tree was constructed based on comparative sequence analysis of the 16S rRNA genes 209 

from the six resistant strains (Fig. 1). The tree shows a well-established relationship between the six strains, 210 

even though they belong to different genera (Brevibacterium and Microbacterium) according to their 16S 211 

rRNA sequences, while the B. epidermidis NBRC 14811 reference strain is not directly related to the other 212 

strains and is represented by a separate branch in the tree. The strain identified as B. epidermidis AE038-4 has 213 

a closer evolutionary relationship with B. linens AE038-12 than with B. epidermidis AE038-9, as would be 214 

expected since they were both identified as strains of the same species according to their 16S rRNA sequences. 215 
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Additionally, the isolate identified as M. oxydans AE038-20 does not appear to be related with M. oxydans 216 

DSM20578. This could be due to the use of 16S rRNA sequencing as the only method for identification, 217 

which is not always reliable (Janda and Abbott 2002). Finally, a close evolutionary relationship was observed 218 

between AE038-5 and AE038-16 (both identified as Brevibacterium linens strains).  219 

 220 

3.5. Biotransformation of arsenicals 221 

Brevibacterium sp. AE038-4, and Microbacterium sp. AE038-20 were examined for ability to transform 222 

inorganic arsenicals. Although Microbacterium sp. AE038-20 was not highly arsenic resistant (Table 4), it was 223 

included so that there would be two different genera in the analysis. Brevibacterium sp. AE038-4 was selected 224 

as a representative member of the other five Brevibacterium strains. Brevibacterium linens AE038-8 was 225 

included as a reference strain (Maizel et al. 2016).  226 

When grown in LB25 medium containing 1 µM As(V), Microbacterium sp. AE038-20 completely 227 

reduced As(V) to As(III), while Brevibacterium sp. AE038-4 only partially reduced As(V) (Fig. 2A). When 228 

grown in LB25 medium containing 1 µM As(III), none of the strains oxidized As(III) to As(V) (Fig. 2B). 229 

Additionally, no methylated arsenicals such as DMAs(V) or MAs(V) were produced, indicating that these 230 

strains do not methylate As(V) (Fig. 2).  The nucleotide sequences of the isolates Brevibacterium sp. AE038-4, 231 

and Microbacterium sp. AE038-20 identified in this study were deposited in the EMBL nucleotide sequence 232 

database (GenBank/EMBL/DDBJ) under accession numbers KX369589 and KX369591, respectively.  233 

 234 

4.        Discussion 235 

Los Pereyra comprises a population of 1,000 inhabitants, living mainly in small agricultural 236 

settlements. Agriculture production is generally dependent on artificial irrigation. Drinking water is in many 237 

cases drawn from shallow aquifers. The affected populations recognize the extent of As contamination and 238 

the health effects of prolonged ingestion of As. In the last decade, efforts have been made by the local 239 

government to mitigate the problem. For example, some of these domestic water wells had been closed by 240 

2012, when this study was conducted.  241 

Analysis of four water samples from Los Pereyra  revealed slightly alkaline pH values in all water 242 

samples (between 7.4 and 8.3), which were considered moderate compared with groundwater from Los 243 
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Pereyra (≥9.4) (Bundschuh et al. 2008). These alkaline pH values can dissolve volcanic glass and cause 244 

leaching of loess pyroclastic material, which might contribute to the high arsenic content in the water 245 

samples. In these ground waters, in which As(V) is predominant, most of the trace elements tend to be 246 

mobilized as complex anions or oxyanions and are controlled by reaction with carbonates (Litter 2009). The 247 

conductivity values (between 1570 and 5020 µS.cm-1) were considered high. The maximum value of 248 

conductivity allowed in drinking water is 1000 µS.cm-1, according to the Argentine Food Code (CAA 2007), 249 

so these waters are outside the limits established as fit for human consumption. 250 

All water samples were high in sodium bicarbonate. High values for total alkalinity (between 606 251 

and 1069 mg CaCO3.L
-1) are directly related to the presence of bicarbonates, which also coincides with the 252 

slightly alkaline pH values. In general, nitrate levels were higher than the maximum limits established for 253 

drinking water (40 mg.L-1) according to the Argentine Food Code (CAA 2007), which indicates the presence 254 

of faecal matter in the water provided by farm animals that had been observed in the area where the samples 255 

were collected. However, variations of these and other ions (K
+
, Na

+
, K

+
, Ca

++
, Mg

++
 and SO4

-
) were 256 

observed (between 4 and 750 mg.L-1).  The chemical composition of the groundwater from the area is the 257 

result of a long contact with fine sediments, a minor interaction with the atmosphere, and the probable 258 

mixing with deeper saline water in Tertiary rocks. Dissolution of minerals such as halite and sodium sulfate 259 

in the sediments produces the observed Cl–, K+ and Na+ content in the groundwater. Other reactions, such as 260 

cation exchange and weathering of aluminosilicates, also contribute to the Na
+
 and K

+ 
content. On the other 261 

hand, the presence of SO4
2– 

and Ca
2+ 

can be attributed to gypsum dissolution (Garcia et al 2001).  262 

Analysis of total arsenic revealed variable levels of As (between 333 and 2098 µg.L-1), in some cases 263 

exceeding by more than 200-fold the WHO recommended limit of 10 µg.L
-1

 established for arsenic in 264 

drinking water (WHO 1993) and the Argentine Food Code (CAA 2007). These values are in agreement with 265 

those obtained in previous studies carried out in the region, which have reported total As levels in water 266 

wells of around 2000 µg As.L
-1

. It is worth noting that arsenic is from natural origin (Bundschuh et al. 2012).   267 

Growth of eighteen morphologically different colonies was carried out on plates containing either 268 

As(III) (from 5 to 20 mM) or As(V) (from 25 to 200 mM). Even though all the strains were able to grow at 269 

the highest concentration of arsenate tested, only AE038-4, AE038-5, AE038-9, AE038-12, AE038-16 and 270 

AE038-20 grew at the maximum arsenite concentration of 20 mM. When growth of these six strains was 271 

Page 10 of 28
C

an
. J

. M
ic

ro
bi

ol
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
T

U
FT

S 
U

N
IV

 L
IB

R
A

R
Y

 o
n 

07
/2

3/
18

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



11 

 

assayed in liquid medium, each was able to grow at 50 mM As(III) except for AE038-20. Similar results had 272 

been reported by Liao et al. (2011), who studied growth of diverse bacterial strains belonging to genera such 273 

as Pseudomonas, Psychrobacter, Vibrio, Citrobacter, Enterobacter, among others, in presence and absence 274 

of 2 to 20 mM and 2 to 200 mM As(III) and As(V), respectively. The tolerance to arsenic shown by such 275 

strains was determined in solid medium. The minimal inhibitory concentration (MIC) is often higher in solid 276 

than in liquid medium, perhaps because of non-uniform distribution of arsenicals throughout the agar 277 

(Costerton et al. 1987). The strains reported in our study can be considered “hyper-tolerant” to arsenic 278 

compounds according to other definitions of hyper-tolerance or extreme-tolerance (Jackson et al. 2005; 279 

Drewniak et al. 2008; Bahar et al. 2012). 280 

When tolerance of the six strains to heavy metals was studied in LB25 liquid medium, most of the 281 

strains were tolerant to high levels of Cu(II), Cr(VI) and Cd(II). AE038-16 was sensitive to Cd(II) 1 mM. 282 

Other extremely arsenic-resistant bacterial strains are also tolerant to heavy metals such as Cd(II) (Dopson et 283 

al. 2003), although less than the strains in our study. Resistance to arsenic compounds and to heavy metals 284 

may be connected. A pre-treatment of the cells with arsenic has been shown to provide cross-resistance to 285 

metals such as cadmium (Carrasco et al., 2005). 286 

From comparative sequence analysis, Actinobacteria was the dominant phylogenetic group. Many 287 

Actinobacteria are able to grow at a wide range of pH. For example Brevibacterium strains are able to grow 288 

between 3.5 and 8.5 (Lukacs et al. 1995), and Microbacterium grows between 5 to 10 (Yu et al. 2013). 289 

Additionally, Brevibacterium strains are producers of a large variety of bacteriocins and other substances 290 

with antimicrobial activity, such as linecine A, which inhibits growth of other B. linens strains (Kato et al. 291 

1991), linocin M18 and linenscin OC2, which have antimicrobial activity against Arthrobacter, 292 

Corynebacterium, Micrococcus and Listeria (Valdes-Stauber and Scherer 1994; Maisnier-Patin and Richard 293 

1995), among other metabolites. In contrast, none of the strains described in our study produced 294 

antimicrobial activity when tested against the two reference strains, E. coli ATCC 35218 and S. aureus 295 

ATCC 29213. It is possible that metabolites with antimicrobial activity are produced by the strains in 296 

different conditions than the ones used in our study. For example, antiviral activity against herpes simplex 297 

virus type 1 (HSV-1) was observed in supernatants of B. linens AE038-8 cultures when the strain was grown 298 

in LB25 medium amended with 2 mM arsenite or 2 M NaCl (data not shown). 299 
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Bacillus, Microbacterium, Arthrobacter, Alcaligenes, Kocuria, Staphylococcus, Variovorax, 300 

Oceanimonas (Shivaji et al. 2005; Bachate et al. 2009), Aeromonas, Exiguobacterium, Acinetobacter 301 

(Anderson and Cook 2004), Acidovorax, Stenotrophomonas, Thiobacillus (Muller et al. 2003) and 302 

Herminiimonas (Andres and Bertin 2016) have been described as arsenic resistant. Moreover, Dey et al. 303 

(2016) reported two strains of Bacillus sp. which were resistant to 2.8 mM arsenite and 21.6 mM arsenate. 304 

While resistance at those concentrations was described as extremely high, they are much lower than those 305 

reported in this study. Actinobacteria have been reported among the most arsenic-resistant bacteria (Jackson 306 

et al. 2005; Drewniak et al. 2008). In the case of some Actinobacteria strains such as Salinispora tropica and 307 

Frankia alni, resistance to arsenic is related to novel proteins which result from recent evolutionary events, 308 

particularly from fusion between arsenite intake channels and the C-terminal domain of an ArsC arsenate 309 

reductase (Slyemi and Bonnefoy 2012). 310 

Strains of Microbacterium isolated from arsenic-rich soils have been reported to be highly resistant 311 

to As(III) and As(V). For example, strains of Microbacterium tolerate up to 30 mM As(III) (Bachate et al. 312 

2009). However, those strains were resistant to only 150 mM As(V), a lower level of tolerance than the 313 

observed in the present study. Microbacterium sp. A33 isolated from arsenic-rich soils tolerate up to 800 314 

mM As(V) and 28 mM As(III) (Achour et al. 2010). Similarly, a large number of strains belonging to the 315 

Microbacterium genus isolated from natural environments tolerate high levels of arsenic compounds (Macur 316 

et al. 2004; Abou-Shanab et al. 2007; Drewniak et al. 2008; Cai et al. 2009; Chen and Shao 2009). 317 

Nevertheless, such strains were isolated from environments such as rocks from gold mines and arsenic- rich 318 

soils and not well water. To our knowledge, arsenic-resistant Microbacterium strains isolated from natural 319 

water have not been reported, although a Microbacterium lacticum strain was isolated from water sewage 320 

(Mokashi and Paknikar, 2002). 321 

Furthermore, strains of Brevibacterium sp. are particularly arsenic-resistant (Ali et al. 2012). 322 

Additionally, other Gram-positive genera were reported as extremely tolerant to arsenic compounds. It is 323 

possible that the thicker cell wall of Gram positive bacteria provides a barrier to arsenic compounds (Dey et 324 

al. 2016). Twelve Bacillus sp. strains isolated from arsenic-rich soils from the West Bengal region (India) 325 

showed tolerance to concentrations of 40-167 mM As(V) and 16-47 mM As(III) (Majumder et al. 2013). 326 

Strains of Corynebacterium glutamicum are also highly tolerant to arsenic (Hendrick et al. 1984; Ordoñez et 327 
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al. 2005; Mateos et al. 2006). Members of the Proteobacteria were not significantly resistant (Jackson et al. 328 

2005). However, strains belonging to Proteobacteria were previously proposed as contributors to the arsenic 329 

biogeocycle in environmental soils (Macur et al. 2004). Betaproteobacteria have been reported as one of the 330 

main phylogenetic groups present in natural waters (Jackson et al. 2005). One representative of the 331 

Alcaligenes genus was detected between the arsenic-resistant bacteria obtained from Los Pereyra wells. 332 

Some Alcaligenes faecalis strains were tolerant toto 20 mM As(III) (Philips and Taylor 1976). 333 

When Brevibacterium sp. AE038-4 and Microbacterium sp. AE038-20 were grown in LB25 medium 334 

containing 1 µM As(V), Microbacterium sp. AE038-20 completely reduced arsenate, while Brevibacterium 335 

sp. AE038-4 only partially reduced arsenate. In contrast, none of the strains were able to oxidize arsenite, 336 

perhaps due to the absence of arsenite oxidase genes. Similar results were reported by Bachate et al. (2009) 337 

for twenty bacterial isolates obtained from agricultural soils. It is worth noting that the ability to reduce 338 

arsenate might vary between different bacterial strains, and the genera here described frequently exhibit low 339 

reductive capacity (Simeonova et al. 2004). In addition, the time required for complete reduction of As(V) 340 

also varies among different microorganisms. Some bacteria require more than 48 hours in order to 341 

completely reduce arsenate (Bachate et al. 2009). Future experiments will examine if the ability of 342 

Microbacterium sp. AE038-20 to completely reduce As(V) in 24 h could be attributed to the presence of 343 

multiple copies of the ars operon, as we previously observed with Brevibacterium linens AE038-8 (Maizel et 344 

al. 2016). Microbial arsenate reduction has been reported to contribute to arsenic contamination since As(III) 345 

is more mobile in water than As(V) (Mukherjee et al. 2008). Thus, the ability of Brevibacterium sp. AE038-4 346 

and Microbacterium sp. AE038-20 to reduce As(V) to the more toxic As(III) could contribute to the high 347 

arsenic content in waters from Los Pereyra. 348 

 349 

Conclusions  350 

We obtained a relatively limited diversity of genera and phylogenetic groups from wells in Los 351 

Pereyra. This is not particularly surprising considering the oligotrophic conditions and high concentration of 352 

As in the samples. Six members of the Brevibacterium and Microbacterium genera were able to grow in the 353 

presence of high concentration of As(III) and As(V) and could be considered “hyper-tolerant” to inorganic 354 
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arsenic. They were also able to grow at a wide range of temperatures and pH and were highly tolerant to 355 

heavy metals. Additionally, Brevibacterium sp. AE038-4 and Microbacterium sp. AE038-20 reduced As(V) 356 

to the more toxic species As(III). Oxidation of As(III) to As(V) was not observed at the same condition.  357 

Future studies will include detection of genes and enzyme activities of arsenic tolerance to evaluate their 358 

contribution to the arsenic biogeocycle in waters of Tucumán, Argentina. 359 

 360 
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Fig 1: Evolutionary relationships of arsenic-resistant bacterial strains. The evolutionary history was 559 

inferred using the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 560 

replicates was taken to represent the evolutionary history of the taxa analyzed. The evolutionary 561 

distances were computed using the Maximum Composite Likelihood method. B. epidermidis NBRC 562 

14811, B. linens DSM 20425 and M. oxydans DSM 20578 were included as reference strains. 563 

Evolutionary analyses were conducted in MEGA7 software. 564 

Fig 2: Reduction of As(V) to As(III) (A) and oxidation of As(III) to As(V) (B) in LB25 medium by 565 

selected bacterial strains. B. linens AE038-8 was included as reference strain. Standard solution was 566 

prepared with aqueous solutions of each arsenical at the final concentration of 1µM. Cps: counts per 567 
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second, corresponds to the number of arsenic atoms that are introduced to the ICP-MS nebulizer at the 568 

flow rate of 1.0 mL.min-1 used for this study. 569 

 570 
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Table 1: Physicochemical properties of water samples obtained from different domestic 

water wells at Los Pereyra village. 

Parameter Sample 

036 

Sample 

037 

Sample 

038 

Sample 

039 

Arsenic (µg.L
-1

) 333 241 1241 2098 

pH 

 

8,1 8,3 7,4 7,7 

Conductivity (µS.cm
-1

) 2290 1570 5020 4780 

TDS (mg.L
-1

) 1528 958 4350 3320 

Sodium (mg.L
-1

) 510 370 740 1140 

Potassium (mg.L
-1

) 13 8 95 21 

Calcium (mg.L
-1

) 19 8 250 35 

Magnesium (mg.L
-1

) 7 1 83 9 

Chloride (mg.L
-1

) 53 21 95 588 

Bicarbonate (mg.L
-1

)
 

740 910 820 1303 

Sulfate (mg.L
-1

) 73 59 865 565 

Nitrate (mg.L
-1

) 600 40 750 4 

Total alkalinity (mg CaCO3.L
-1

) 606 746 672 1069 

Total hardness (mg CaCO3.L
-1

) 74 25 1074 124 
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Table 2: Phylogenetic affiliation of the isolated strains according to 16S rRNA gene partial sequencing. 

Isolate Enrichment condition Closest relative (acc. num.)
a 

Identity Phylogenetic group 

  

AE038-1
 As(V) 300 mM Pseudomonas sp. FGI182 (CP007012) 99% Gammaproteobacteria 

AE038-3 As(V) 300 mM Pseudomonas sp. HN5 (KF135229) 93% Gammaproteobacteria 

AE038-4 As(V) 300 mM Brevibacterium epidermidis (KJ019204) 99% Actinobacteria 

AE038-5 As(V) 300 mM Brevibacterium linens (AY243345) 98% Actinobacteria 

AE038-8 As(V) 300 mM Brevibacterium linens  (KJ019204) 98% Actinobacteria 

AE038-9 As(V) 300 mM Brevibacterium epidermidis (GU576981) 97% Actinobacteria 

AE038-12 As(V) 300 mM Brevibacterium linens (KJ019204) 99% Actinobacteria 

AE038-16 As(V) 300 mM Brevibacterium linens (EU046495) 99% Actinobacteria 

AE038-17 As(V) 300 mM Not determined - - 

AE038-18 As(V) 300 mM Not determined - - 

P036-200/VB As(V) 200 mM Ochrobactrum anthropi strain S21808 

(KF956631) 

86% Alphaproteobacteria 

P036-200/VA As(V) 200 mM Not determined - - 

P038-200/VA As(V) 200 mM Alcaligenes faecalis strain SND_5 

(KJ555096) 

99% Betaproteobacteria 

P038-200/VC As(V) 200 mM Stenotrophomonas maltophilia strain 

faro4_39 (KF792180) 

100% Gammaproteobacteria 

P038-200/VB As(V) 200 mM Stenotrophomonas maltophilia strain 

faro4_39 (KF792180) 

100% Gammaproteobacteria 

P036-100/VA As(V) 100 mM Brevundimonas sp. SCU-B236 

(KJ000846) 

100% Alphaproteobacteria 

P036-100/VB As(V) 100 mM Stenotrophomonas maltophilia 

strainYNA104-1 (JN867123) 

100% Gammaproteobacteria 

AE038-20 (18) As(V) 300 mM Mycrobacterium oxydans (AB365061) 99% Actinobacteria 

 

a 
The nearest GenBank neighbors for nearly complete 16S rRNA sequences obtained from isolates and accession numbers. 

The sequences were aligned with related sequences retrieved from NCBI database. 
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Table 3: Characterization of arsenic-resistant bacterial isolates regarding their growth at different 

conditions (temperatures and pH) and ability to produce metabolites with antimicrobial activity. 

 
   Brevibacterium 

sp. AE038-4 

Brevibacterium 

sp. AE038-5 

Brevibacterium 

sp. AE038-9 

Brevibacterium 

sp. AE038-12 

Brevibacterium 

sp. AE038-16 

Microbacterium 

sp. AE38-20 

 
1 Temperature 

(°C) 

10 + + + + + + 

20 + + + + + + 

30 + + + + + + 

55 - - - - - - 

 
2 pH 

3 + + + + + + 

5 + + + + + + 

7 + + + + + + 

9 + + + + + + 

11 + + + + + + 

3 Production of 

antimicrobial 

metabolites 

E. coli 

ATCC 

35218 

- - - - - - 

S. aureus 
ATCC 

29213 

- - - - - - 

 

1
 Growth at each condition is reported as + (growth) and - (absence of growth) in LB25 at pH 7 

2
 Growth at each condition is reported as + (growth) and - (absence of growth). pH was adjusted accordingly 

using NaOH 1M and HCl 1M solutions 
3
 Antimicrobial activities were tested against control strains Escherichia coli ATCC 35218 and Staphylococcus 

aureus ATCC 29213.  
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Table 4: Characterization of bacterial strains regarding their tolerance to arsenicals in liquid medium 

and tolerance to heavy metals.  

   Brevibacterium 

sp. AE038-4 

Brevibacterium 

sp. AE038-5 

Brevibacterium 

sp. AE038-9 

Brevibacterium 

sp. AE038-12 

Brevibacterium 

sp. AE038-16 

Microbacterium 

sp. AE38-20 

1Tolerance 

to 

inorganic 

arsenic 

As(III) 

0 + + + + + + 
5 + + + + + + 
10 + + + + + + 
15 + + + + + + 
20 + + + + + + 
40 + + + + + + 
50 + + + + + - 

As(V) 

0 + + + + + + 
25 + + + + + + 
50 + + + + + + 
100 + + + + + + 
200 + + + + + - 
300 - - - - - - 

2Tolerance 

to heavy 

metals 

Cr(VI) 

1 mM +++ +++ +++ +++ +++ +++ 
2 mM +++ +++ +++ ++ +++ + 

Cu(II) 

2 mM +++ +++ +++ +++ +++ +++ 
4 mM ++ ++ +++ +++ +++ +++ 

Cd(II) 

0.5 mM ++ ++ ++ ++ ++ +++ 
1 mM ++ ++ ++ + - ++ 

 

 
1 
Growth of the strains at the different arsenic concentrations tested is reported as + (growth) or – (absence of growth). 

2
 Growth of the strains in the presence of heavy metals was semi-quantitatively determined as + (poor growth), ++ 

(normal growth), +++ (abundant growth) and – (absence of growth). 
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Evolutionary relationships of arsenic-resistant bacterial strains. The evolutionary history was inferred using 
the Neighbor-Joining method. The bootstrap consensus tree inferred from 1000 replicates was taken to 
represent the evolutionary history of the taxa analyzed. The evolutionary distances were computed using 

the Maximum Composite Likelihood method. B. epidermidis NBRC 14811, B. linens DSM 20425 and M. 
oxydans DSM 20578 were included as reference strains. Evolutionary analyses were conducted in MEGA7 

software.  
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Reduction of As(V) to As(III) (A) and oxidation of As(III) to As(V) (B) in LB25 medium by selected bacterial 

strains. B. linens AE038-8 was included as reference strain. Standard solution was prepared with aqueous 

solutions of each arsenical at the final concentration of 1µM. Cps: counts per second, corresponds to the 

number of arsenic atoms that are introduced to the ICP-MS nebulizer at the flow rate of 1.0 mL.min-1 used 

for this study.  
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