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Abstract
Spontaneous noncollinear second harmonic generation in potassium
dihydrogen phosphate (KDP) crystals was studied theoretically and
experimentally as a function of the scattering centres on the surface of the
crystal. A model that explains the main features of the second harmonic
generated beam was developed in terms of the surface roughness defined by
the size of the dispersing grains. It predicts, for the first time, the intensity
distribution of the hollow cones obtained in noncollinear phase matching.
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1. Introduction

Optical second harmonic generation (SHG), the conversion of
radiation ω into radiation of frequency 2ω, can be produced
with high efficiency in certain birefringent crystals achieving
phase matching conditions. When the propagation of the
generated 2ω beam is collinear with the propagation of the
incident ω beam, the phenomenon is known as collinear phase
matching (CPM). This result is one special case of a most
general three-wave interaction in which energy and momentum
are conserved. SHG is also possible when two noncollinear
beams of frequency ω are combined to generate a beam of
frequency 2ω in a direction that in general is not collinear with
the incident beams. The phenomenon is known as noncollinear
phase-matching (NCPM). Normally it is achieved impinging
in the crystal with two external light beams inclined on one
another to produce a third beam of frequency 2ω. Under
particular conditions, if one intense incident beam interacts
in the crystal with its own elastic scattered light, that acts as a
second wave, the result is a hollow cone of second harmonic
light which has been named the spontaneous noncollinear
phase matching (SNCPM) effect [1–4].

SNCPM is a phenomenon which has been known for a
long time, it was observed for the first time by Giordmaine in
1961 [1] and basically described by Bates [2, 3] a few years
later. At that time, research was intended to explain the geo-
metrical shape of the second harmonic wave; nearly circular
hollow cones were observed and described theoretically. No

efforts to obtain the description and distribution of the inten-
sity along the circular cones were made. The influence of the
scattering centre was not studied either.

More recently NCPM was proposed to evaluate an opti-
cal multiwave-mixing process [4] as well as for the measure-
ment of crystal optical properties. This effect was employed as
a three-dimensional nondestructive method to investigate the
properties of the illuminated region of the crystal. It was also
applied to characterize the optical properties of lithium niobate
with and without dopants using the two external beam tech-
nique [5, 6] and the SNCPM [7, 8] method. The SNCPM was
also utilized to characterize the changes with temperature in the
refractive index of lithium niobate [2]. A geometrical model
was developed for the loci of SHG and multiwave-mixing inter-
actions including biaxic crystals; results were compared with
experimental data corresponding to NCPM effects in 1-(2-
thienyl)-3-(4-methyphenyl) propene and (2-furyl) methacrylic
anhydride [4]. Other recent work predict the transversal struc-
ture of the rings generated when a screen intercepts the hollow
cone, showing the typical sinc distribution of the scattering
pattern [8], but intensity along the ring was not studied. This
paper also shows how the diameter size of the fundamental
beam influences the SNCPM ring pattern, reporting that 15µm
diameter is a critical value for the ring formation.

Nevertheless, up to now there has been no tri-dimensional
model that can explain the intensity distribution in SNCPM as
a function of the nonhomogeneity centres that scatter the light.
These centres can be in the bulk or in the surface, for instance,
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Figure 1. Experimental set-up: P is a pyroelectric energy meter and
F is a filter to remove most of the fundamental beam at 532 or
1064 nm. The photograph corresponds to SNCPM from 1064 to 532
nm; the majority of the internal rings are the product of type-II
interactions while the outer rings correspond to type-I interactions
(o + o → e means the mixing of two ω ordinary waves to give an 2ω
extraordinary wave). Results for conversion from 532 to 266 nm are
shown in the following.

in the first work by Giordmaine [1], the cone emission was en-
hanced by using a lightly ground screen inserted in front of the
nonlinear crystal to increase the scattering of light. Natural sur-
face roughness appears as a consequence of the pulling process,
due to the attack of water on the surface of hydroscopic mate-
rials, or to intrinsic irregularities of the bulk. The granularity
of the surface can be controlled, to a relative extent, by pol-
ishing, but bulk heterogeneity is much more difficult to avoid.
Furthermore, as can be seen later, SNCPM can result in a very
simple method to control the quality of the nonlinear crystals.

In this work we measured experimentally SNCPM in
potassium dihydrogen phosphate (KDP) crystals with a certain
grade of roughness on the surface. Taking into account the
size of the dispersing particles of the surface, we develop a
model that characterizes and predicts the main properties of
the emitted hollow cone; its geometrical shape and size and its
two-dimensional distribution intensity are explained in terms
of the radiation scattered by the heterogeneity considered.

2. Experimental details

A KDP crystal (uniaxial, negative) of cubic shape and 1 cm side
was used for the experiments. The crystallographic axis (c) is
at 1.047 rad of one face. Experiments were performed with
the second harmonic output of a Q-switched Nd:YAG laser
(532 nm). At this wavelength the phase matching angle (θPM )
for type-I SHG is 1.344 rad. Due to the fact that the crystal was
unpolished for some time, the surface displayed some etching
due to water attack. The KDP was mounted in a micrometric
system that can rotate and allows one to measure the angle
θ formed between the incident beam and the crystallographic
axis with accuracy. The incident beam was limited by a 1 mm
diameter iris. At the output of the KDP, a 532 nm filter was
placed in order to damp the fundamental beam. The energy of
the generated double frequency (λ = 266 nm) was measured
with a pyroelectric detector at the output of the KDP crystal
very near to its rear face in order to collect all of the second
harmonic generated. The energy measurement was made as a
function of the angle θ . At a distance of 2 m from the crystal a
screen of white paper was placed oriented normal to the 532 nm
incident beam; photographs of the screen with the second

(a)

(b) (c)

Figure 2. SNCPM from 532 to 266 nm for different KDP crystal
orientation: (a) corresponds to a orientation angle (θ = 1.338 rad)
smaller than the CPM angle; (b) is near the CPM (θ = 1.341) and
(c) are taken at θ = 1.346 rad over the CPM angle.

harmonic pattern were taken for representative angles near the
CPM angle. The experimental set-up is shown in figure 1.

Some preliminary studies were made with the 1064 nm
output of the Nd:YAG laser and the KDP crystal oriented to
double it. For type-I CPM this corresponds to the crystal
oriented at 0.715 rad. Type-II phase matching, where the
mixing waves have orthogonal polarization, can be obtained at
θPM(II) = 1.030 rad. Under certain conditions SNCPM can be
observed simultaneously for both interactions. Furthermore,
for type-II NCPM two hollow cones of different size can be
produced, resulting in more complex patterns. In a general
case, NCPM can be reached for type-I and type-II interactions
and three rings are observed on the screen (see the photograph
presented in figure 1). This case will be reported in detail in
a future work while the remainder of this paper concentrates
on the interaction of waves with the same polarization. When
532 nm is doubled to 266 nm in KDP, phase matching for
type-II interactions is not possible in the collinear case nor in
the noncollinear case, either. Only one ring is observed on the
screen and results are easy to interpret.

3. Results

As the surface of the crystal presents certain roughness,
SNCPM are easily observed as a bluish ring of light on the
screen when the crystal is oriented near the CPM condition.
A brilliant point (BP) of 266 nm radiation is observed on
the screen almost coinciding with the position of the incident
532 nm beam. Although the shape of the rings are strongly
dependent of the orientation of the crystal around the phase
matching angle, the position of the BP on the screen is inde-
pendent of θ .

Changing the angle θ from a situation far from CPM, to
reach first θPM and then decreasing this angle, as it is shown in
figure 2, the following behaviour is observed. At a certain angle
θ near phase matching, a disc of diffused light appears, while
the BP lies outside of it. By increasing θ , the diffused light
evolves to form a defined ring (figure 2(a)) with nonuniform
intensity along it; the intensity has a minimum at distances far
from the BP and a maximum in the side closer to it. These
intensity differences are strongly dependent on the size of the
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Figure 3. Geometry used to describe SNCPM in the KDP; θ is the angle between the incidence beam and the crystallographic c axis.

dispersing particles at the surface of the crystal that generated
the phenomenon. Increasing θ again, the diameter of the ring
grows and the edge of the maximum intensity becomes closer
to the BP (figure 2(b)). At θPM (1.344 rad) this edge overlaps
the BP and the total intensity of the ring reaches a maximum.
As θ goes out from θPM , the BP falls from this rim, but is now
inside the ring, which continues growing in size and decreasing
in intensity (figure 2(c)). The thickness of the ring also changes
as a function of θ , being wider at the beginning, and thinner
at the end of the experiment. The total energy of the hollow
cone of the second harmonic wave was measured in terms of
the orientation angle θ using the pyroelectric meter.

4. The theoretical model for noncollinear
phase matching

To describe the propagation of electromagnetic waves in the
KDP crystal, we assume that the three waves can be considered
as plane waves. The amplitude of the incident ordinary beam is
denoted as E1; E2 is the amplitude of the ordinary part of the ra-
diation dispersed by the scattering centres; E3 is the amplitude
of the extraordinary generated beam; ω1 = ω2 = ω the funda-
mental frequency; ω3 = 2ω the generated frequency and ki the
wavevector associated with each amplitude Ei respectively.

Assuming for all the waves that the variation of
the amplitudes are very small over distances of the
order the wavelength (slowly varying limit approximation
∇2E � (k · r)E), the evolution of the waves inside the crystal
is similar to the standard ones used for collinear three-wave
mixing [9]. It can be obtained in a general vectorial form as

(u1 · ∇)E1 = −κ1

2
E1 +

iω

2 c nωo
d̃ : E3: E∗

2ei(�k·r),

(u2 · ∇)E2 = −κ2

2
E2 +

iω

2 c nωo
d̃ : E3: E∗

1ei(�k·r),

(u3 · ∇)E3 = −κ3

2
E3 +

iω

c n2ω
e

d̃ : E1: E2e−i(�k·r),

(1)

where ui are the unitary vectors in the ki direction, κi the linear
absorption coefficients, c the speed of light in a vacuum, nωo the
ordinary refractive index atω frequency, n2ω

e the extraordinary

refraction index at 2ω frequency, d̃ is the nonlinear tensor that
allows the combination of frequencies and ∆k = k3 −k2 −k1

is the momentum mismatch.
For the KDP, the linear absorption in equation (1) can

be neglected for both 532 and 266 nm. Assuming small
efficiency on frequency conversion, amplitudes E1 and E2

can be considered constant over the crystal and the system
can be solved analytically to obtain the intensity of the second
harmonic wave. This expression can be written as

I3 = 2
ω2

c2 (n2ω
e )2

(d̃ : E1 : E2)× (d̃ : E1 : E2)
∗

(u3)
2

×
(

sin(�k · r/2)

�k · r/2

)2

. (2)

If the sizes of the dispersing ‘particles’ of radius a are large
enough compared with the wavelength (2πa > λ) we can use
the expression given by the scalar theory of the diffraction for
the amplitude of the scattered wave in the roughness of the front
crystal surface. This result is a good approximation to the more
precise but mathematically cumbersome Mie theory [10]:

E2(�2) =
(

2πa
λ

)2

k · r

(1 + cos�2)

2

J1
(

2πa
λ

· sin�2
)

(
2πa
λ

· sin�2
) , (3)

where �2 is the angle between k1 and k2 that can be calculated
in terms of α2 and ϕ2 (defined in figure 3) by cos�2 =
cosϕ2 cosα2.

Now the tensorial products of equation (2) can be solved
and the complete expression corresponding to the second
harmonic wave intensity in terms of its position on the screen,
following the relation of the angles given in figure 3, can be
written as

I3 = 2
ω2

c2
(
n2ω
e (�3)

)2

(d36f (α2, ϕ2, θ))
2

(u3z)
2 E1 E∗

1

× (E2(�2))
2

(
sin(�k · r/2)

�k · r/2

)2

, (4)

where�3 is the angle between the crystallographic axis and the
k3 vector, and the geometrical relationships with the position
α3, ϕ3 on the screen and the momentum mismatch, are:
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(a)

(b)

(c)

Figure 4. Two-dimensional intensity distribution for different radii
of the dispersing particles 1 µm (a), 8 µm (b) and 30 µm (c).

f (α2, ϕ2, θ) = cosα2 sin(θ + ϕ2) sin θ√
1 − cos2 α2 cos2(θ + ϕ2)

,

sin α2 = sin(2α3) cos ϕ3,

sin ϕ2 = cos2 α3 sin(2 ϕ3)√
1 − sin2(2 α3) cos2 ϕ3

,

u3z = cos(α3) cos(ϕ3),

cos�3 = cos(ϕ3 ± θ) cosα3,

�k · r = ω

c
[2n2ω

e (�3) cos α3 cos ϕ3

−nωo (2 cos2 α3 cos2 ϕ3 − 1)− nωo ] z.

The intensity of the NCPM wave given by equation (4)
can be compared with the most-used expression for the

(a)

(b)

(c)

Figure 5. Two-dimensional intensity distribution for 12 µm radius
scattering particles in terms of the orientation angle θ .
(a) θ = 1.338 rad; (b) θ = 1.341 rad and (c) θ = 1.346 rad.

collinear case,

I3 = 2
ω2

c2
(
n2ω
e (θ)

)2

(d36 sin θ)2 E1 E∗
1

(u3)
2

(
sin(�k · r/2)
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,

(5)
where

�k · r = 2ω

c
(n2ω
e (θ)− nωo ) z.

The position corresponding to the maximum of the
intensity distribution corresponds in both cases to ∆k · r = 0,
and for the noncollinear case it can be written as,

α3 = ± arccos
[((

− A cosϕ3

+
√
A2 cos2 ϕ3 + 4B cos2(θ + ϕ3)

)
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Figure 6. Total intensity of the second harmonic wave in terms the
orientation angle. Hollow circles are experimental points measured
as explained in the text with the pyroelectric meter. Fittings (solid
curves) were calculated for the contributions of the collinear
(equation (5)) and noncollinear (equation (4)) phase matching for 8,
12 and 18 µm radius particles; good fitting for both the central part
and for the wings is obtained for the 12 µm particles.
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2
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,
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The position of the BP on the screen is given by ϕ3 = 0,
α3 = 0. The total second harmonic intensity can be evaluated
using equation (4) integrated over the ring.

5. Ring intensity distribution

From equation (4) we obtain the two-dimensional ring intensity
distribution on the screen, represented in figures 4 and 5. In
all cases we used d36 = d14 = 0.39 × 10−12 m V−1 [11] for
the KDP. Figure 4 shows the rings intensity distribution for
different values of the dispersing particles size, achieved for
the same angular position of figure 2(a). The structure depends
strongly on the dispersing particle size, showing that the ring
intensity is more uniform for small values of a. As a increases
the ring intensity structure becomes more complex, and new
contributions outside the ring appears. This fact can be seen
in the early results obtained by Giordmaine [1].

The results given in figure 5 correspond to dispersing par-
ticles of 12µm radius with different orientation angles; results
indicated as (a), (b) and (c) were obtained for the same θ angles
as the photographs (a), (b) and (c) in figure 2. We can observe
that the BP is outside of the ring in figures 4(a) and (b), while in
(c) the BP is inside the ring. This fact means that we reach and
overcome the PM angles. The ring maximum intensity is al-
ways over the side of the BP as can be seen in the photographs.
As the θ value increases, the ring thickness decreases, showing
well-defined rings for high θ values. The model reproduces
qualitatively the observed ring intensity behaviour.

6. The size of the scattering grains

To further characterize our crystal, the size of the scattering
grain obtained by SNCPM, we fitted the total intensity of
the ring measured in terms of the orientation angle θ . The
total intensity was calculated as the sum of the independent
contributions of the NCPM and CPM light intensity. Fittings
are shown in figure 6; total intensities (solid curves) were
calculated by adding the SNCPM for different particle sizes
and the CPM classical distribution of intensities for our
conditions. As the last contribution is only important near θPM
(1.344 rad), the SNCPM intensity was normalized to adjust the
experimental results at 1.350 rad, in one of the wings; the CPM
contribution was added to adjust the maximum at the centre of
the distribution. Good fitting for both the wings and the centre
of the experimental results was found for particles of 12 µm
radius. Larger radius values (18µm) give contributions too big
for the wings, and particles with smaller size (8 µm) produce
a thinner distribution.

7. Conclusions

The NCPM phenomenon in SHG was characterized as a func-
tion of the grain size of the scattering heterogeneities at the
surface or in the bulk of noncentrosymmetric crystals. Our
theoretical analysis developed here describes the main features
of the hollow cones of second harmonic frequency generated.
The model explains, for the first time, the intensity distribu-
tion along the rings observed in a plane perpendicular to the
incident beam.

NCPM was found to be strongly dependent on the size
of the heterogeneites. The study of the intensity distribution
along the rings and its total intensity relative to the CPM
intensity near the phase matching angle, can be used as a simple
method to determine the size of the scattering elements, inside
or dispersed at the surface, in nonlinear optics crystals. In this
way we propose a new real-time method for quality control of
the surface of birefringent crystals and we bring a complete
model to be used when NCPM is intended as a nondestructive
method to characterize the optical properties of the pure
crystals and also, to optimize some doping methods [2, 7, 8].

The presence of NCPM rings can be used also as a simple
visual way to achieve the CPM condition. The method to
achieve second harmonic maximum efficiencies is to change
the orientation angle in order to overlap the rim of maximum
intensity of the ring with the brilliant fixed point.
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