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Improving Genetic Analysis of Corymbia 
citriodora subsp. variegata with Single- and 
Multiple-Trait Spatial-Competition Models
Mariano Agustín Hernández, Juan Adolfo López, and Eduardo Pablo Cappa  

Environmental heterogeneity and/or genetic and environmental competition were quantified on two growth traits, diameter at breast height and total height, and wood den-
sity in a progeny trial of Corymbia citriodora subsp. variegata. Three single-trait mixed models with random spatial and/or competition effects were compared to a standard 
analysis by analyzing fit, dispersion parameters, accuracy of breeding values, genetic gains, and ranking of trees. In addition, a multiple-trait spatial-competition model was 
fitted to estimate correlations among direct and indirect additive genetic effects, and to explore relations between traits. Single-trait analyses with spatial and/or competition 
effects outperformed the standard model. However, the performance of these models depended on the sensitivity of each trait to detect each effect. Direct–indirect genetic 
correlations from the multiple-trait spatial-competition model showed inverse and strong relations among growth traits and wood density, suggesting that growth traits can 
be affected by competition and environmental heterogeneity, but also wood density might be influenced by these effects. The approach proposed was useful to improve the 
genetic analysis of the species as well as to gain an understanding of the genetic relations between traits under the influence of environmental heterogeneity and competition.
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The genus Corymbia has traditionally been planted as wind-
break and shade tree in some rural areas in northeastern 
Argentina. It is widespread in the province of Corrientes, 

where frosts are milder than in the surrounding departments 
(Golfari 1985). Despite the fact that the genus is not currently 
planted for timber in Argentina, it is gaining popularity because 
of its particular features, such as high growth, drought resistance, 
and excellent solid wood. Although some previous field trials have 
shown the potential of this genus in the country, it was only in 
2000 that the first species and provenance trials were introduced by 
Instituto Nacional de Tecnología Agropecuaria (INTA). The intro-
duction of Corymbia was aimed at developing a genetic source for 
two purposes: to produce high-quality timber from a fast-growing 
species and to replace the consumption of similar woods from nat-
ural forests in order to decrease the depletion of native hardwoods. 
The analysis of these first trials showed that Corymbia citriodora 

subsp. variegata (F.Muell.) A.R. Bean & M.W. McDonald (here-
after C.  citriodora) was the taxon with the highest growth in the 
area, surpassing other species of the genus (López et al. 2009).

INTA’s C. citriodora breeding program has used the well-known 
best linear unbiased prediction (BLUP) of breeding values for 
selecting trees by means of the single-trait mixed-model approach 
(Henderson 1984). However, this approach has not accounted for 
the effects of environmental heterogeneity and competition be-
tween individuals on tree selection. Since the inclusion of spatial 
and/or competition effects can improve estimation of variances, 
accuracies of breeding values (BVs), and gain responses (Dutkowski 
et  al. 2002, Resende et  al. 2005, Costa e Silva and Kerr 2013), 
their addition to data analysis should be considered in order to 
improve the accuracy of predictions. Variables included in INTA’s 
Corymbia breeding program (e.g., growth traits and wood density 
[WD]) might be predicted more accurately by adding the effect 
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of environmental heterogeneity, the effect of competition, or both 
effects together.

A wide variety of spatial analyses have been used to quantify 
environmental heterogeneity in forest genetic trials. Such variety 
includes the kriging method (Hamann et al. 2002), autoregressive 
residual structures (Dutkowski et al. 2006), and nearest neighbor 
(Gezan et  al. 2010), to name just a few. The use of the tensor 
product of cubic B-spline basis (Eilers and Marx 2003) has also 
been proposed to account for spatial patterns in the progeny test. 
B-splines are piecewise polynomial functions from segments of low 
degree polynomials, whose segment joints are called knots. These 
functions use a covariance structure of random knot effects to cap-
ture most of the variation without requiring a regular arrangement 
(Cappa and Cantet 2007).

In regard to competition, Muir (2005), Cappa and Cantet 
(2008), and Costa e Silva and Kerr (2013) applied a mixed linear 
model that included direct and indirect (i.e., competition) addi-
tive genetic effects. Whereas the former effects refer to the focal-
tree genotype, the latter are the effects of the surrounding tree 
genotype on the focal tree phenotype (Griffing 1967, Moore et al. 
1997). In addition, an environmental competition effect was also 
included in order to quantify the nongenetic competition exerted 
on the focal tree by its neighbors. Cappa and Cantet (2008) quan-
tify competition by using the “intensity of competition” elements 
(ICs), which are covariates with nonzero elements of the incidence 
matrix of competition effects. The ICs allow the model to account 
for different numbers of neighbors in rows, columns, and diagonal 
directions when mortality and borders are present.

Joint analyses of environmental heterogeneity and compe-
tition have been conducted in agronomic crops (Stringer et  al. 
2011, Hunt et al. 2013, Elias et al. 2018) and forest genetic trials 
(Magnussen 1994, Resende et al. 2005, Cappa et al. 2015) by using 
a univariate analysis without taking advantage of multitrait evalu-
ation. Costa e Silva et al. (2017) developed the first bivariate anal-
ysis of forest genetic trials with a spatial-competition model. They 
extended a previous single-trait model to a multitrait level in order 
to estimate trait–trait correlations between direct and indirect addi-
tive genetic effects. Because tree selection involves several correlated 
traits, accounting for covariances among traits for direct and indi-
rect genetic effects led to a better understanding of their relations 
and their genetic response. Nevertheless, the study was confined 
to the traits diameter at breast height (DBH) and disease severity 
index, without exploring relations between other traits or variables. 
Studies with different aims will require measurement of other traits. 
A multivariate approach that explores the relation between growth 
and wood properties under the influence of competition and en-
vironmental heterogeneity may increase our understanding of the 
interaction among trees within forest genetic trials. This approach 
may be especially useful for INTA’s C. citriodora breeding program, 
which is aimed at improving growth traits and WD (López et al. 
2009).

In light of these considerations, the aims of this study were (1) 
to identify and quantify the effects of environmental heteroge-
neity and competition on two growth traits (DBH and total height 
[TH]) and WD in a single progeny test of C. citriodora; (2) to com-
pare the fit and dispersion parameters of the following single-trait 
mixed models: a standard model with only block and additive ge-
netic effects (no competition and spatial effects), a spatial model 

with spatial effects of B-splines, a competition model that includes 
competition effects by using ICs, and a model that fits jointly com-
petition and spatial effects; (3) to compare the degree of improve-
ment that the inclusion of spatial and/or competition effects have 
on accuracy of predicted BVs, genetic gains, and ranking of trees; 
and (4) to extend the single-trait spatial-competition model to a 
multiple-trait level in order to estimate direct and indirect genetic 
correlations and explore relations between these traits under the in-
fluence of environmental heterogeneity and competition.

Materials and Methods
Trial Description, Genetic Material, and Quantitative Traits 
Evaluated

Growth and WD were measured on a single 6-year-old progeny 
trial largely composed of Corymbia citriodora subsp. variegata. This 
trial is located in the province of Corrientes, Argentina (latitude 
and longitude coordinates 28°26′34.6ʺS and 58°58′51.8ʺW) at 65 
m a.s.l., where climate is humid and mesothermal, and it can be 
described as belonging to the group C2 B′4 ra′ of Thornthwaite’s 
classification (Castro et al. 1991). According to records of a weather 
station located near the trial, the mean annual rainfall is 1,260 mm, 
whereas the mean annual temperature is 20.9° C, with an annual 
minimum and maximum of 15.7° C and 26.2° C, respectively. The 
length of the frost-free season has been recorded as 330 days per 
year, and records of wind speed have shown a mean of 5 km h–1. 
The site has a sandy loam paleudalf soil, which is deep and well 
drained, but poor in fertility, organic matter, cation-exchange ca-
pacity, and retention of humidity. The site was previously used as 
an orange farm before becoming a forest plantation.

The trial was designed as a randomized complete block with 
15 replications in single-tree plots, where every single tree was 
identified by its specific position on a grid composed of 39 rows 
and 21 columns. The spacing between trees was 4 m for rows and 
2.5 m for columns. Mechanical and chemical control of weeds was 
carried out periodically during the first 2 years after afforestation. 
Additionally, all trees were pruned to 2 m height at age 2. The sur-
vival rate was 67 percent at the time of assessment.

The genetic materials tested were obtained from open-pollinated 
seedlots of 50 families: 20 originated in Woondum (Queesland) col-
lected by CSIRO Australian Tree Seed Centre, and 30 derived from 
trees phenotypically selected for growth and form from three spe-
cies/provenance trials previously established in northeast Argentina 
in 2000. The number of families sampled (i.e., seedlots) from the 
Argentinian trials varied from one to seven in seven groups, corre-
sponding to seven Australian provenances selected in the three spe-
cies/provenance Argentinian trials. Therefore, eight genetic groups 

Management and Policy Implications

Including spatial and competition effects in genetic analyses of trees improves 
estimation of dispersion parameters, accuracy of breeding values, genetic 
gains, and ranking. This approach is useful to avoid bias on selection and 
enhance genetic parameters, but it might also enable the forester to increase 
productivity of woods by the planting of noncompetitive genotypes. In this 
scenario, trees with a high potential for growth might have a tendency to 
exert less competition, which would result in an increased yield per unit area.
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were formed according to provenances. A generalized linear mixed 
model with a logistic link function was used to analyze survival of 
families and genetic groups at the time of assessment. No statisti-
cally significant differences were found for either genetic groups or 
families

The properties evaluated on trees at 6 years of age included DBH 
(1.3 m), total tree height (TH), and basic WD. Units of measurement 
were centimeters (cm), meters (m), and kilogram per cubic meter (kg 
m–3) for DBH, TH, and basic WD, correspondingly. Growth traits 
DBH and TH were measured on the 503 trees of the trial. Basic WD 
was measured on 490 trees, excluding 13 small trees from the total in 
order not to damage them during the wood sample. Whereas DBH 
and TH were measured using a forest caliper and a hypsometer, re-
spectively, 5-mm-diameter cores were taken with a Pressler increment 
borer to evaluate basic WD from the North exposure of trees at 1.3 
m height. To obtain a single measurement of basic WD from pith to 
cambium for each tree, the maximum moisture content method was 
followed (Smith 1954). The overall means (and standard deviations) 
were 15.2 (±4.9) cm, 13.9 (±4.2) m, and 581 (±54) kg m–3 for DBH, 
TH, and WD, respectively.

Diagnosis of Environmental Variability and Competition Effects
To identify and quantify the effect of environmental heteroge-

neity and competition, a series of diagnostic analyses were carried 
out. For each trait, a basic single-trait individual-tree mixed model 
with fixed genetic group and random breeding values was fitted. By 
using this model, the following two analyses were made. First, since 
positive correlations may reflect tendencies associated with environ-
mental variability, and negative correlation structures are assigned 
to detect interplant competition (Magnussen 1994), residuals of 
the model were used to show these trends. Therefore, Pearson 
correlations (r) between residuals of each focal tree from the basic 
mixed model and phenotypic means of focal tree neighbors were 
calculated, as proposed by Durban et al. (2001). These correlations 
were computed for four different configurations of adjacent trees: 
the maximum eight first-order focal tree neighbors, the max-
imum two focal tree neighbors in a row direction, the maximum 
two focal tree neighbors in a column direction, and the maximum 
four focal tree neighbors in a diagonal direction. Second, an iso-
tropic empirical semivariogram of residuals from the basic mixed 
model mentioned above was plotted. The isotropic semivariogram 
represents the half-average variation in pairwise residual differences 
as a function of distance. Finally, additive genetic correlations be-
tween direct and indirect effects (rdc) from the single-trait compe-
tition model were examined to study competition effects at genetic 
level (see competition mixed model below, Equation 3). The ra-
tionale is based on the fact that a high and negative correlation be-
tween both types of genetic effects (higher than −.3) suggests strong 
genetic competition (Resende et al. 2005).

Statistical Analysis
Each trait was analyzed by using the following single-trait 

individual-tree mixed models:

Standard Mixed Model (TM)

y = Xβ + Zbb + Zaa + e� (1)

where the vector y contains the phenotype data; the vector β 
includes the fixed effects of genetic group to account for the means 
of different origins of parents; b is the vector of random block effects; 
a is the vector of random additive genetic effects with distribution 
a ∼ N(0,Aσ2

a ), where A  is the relation matrix from the pedigree 
information, and σ2

a  is the additive genetic variance; e  is the vector 
of random residual effects with distribution e ∼ N(0, Iσ2

e ), where 
I is the identity matrix, and σ2

e  is the residual variance; and X , Zb,  
and Za are incidence matrices that relate the phenotype y to the 
effects β, b, and a, respectively.

Spatial Mixed Model (SM)

y = Xβ+ Ss+ Zaa + e� (2)

where the elements X , β, Za, a , and e were as defined above. 
In Equation 2, the matrix S contains the two-dimensional B-splines 
basis evaluated in the corresponding row and column for each tree, 
whereas the vector of coefficients of the tensor product of B-spline 
basis s is normally distributed with mean zero and covariance matrix 
Uσ2

s , where U is a fixed spatial structure, and σ2
s  is the spatial vari-

ance parameter. A more detailed explanation of the two-dimensional 
surface and the covariance structure used in this work can be found in 
Cappa and Cantet (2007). To fine-tune the smoothness of the spatial 
surface, an increasing number of knots were tested individually for 
rows and columns. The optimal number of knots was defined by the 
lowest value of the Akaike information criterion (AIC, Akaike 1974).

Competition Mixed Model (CM)

y = Xβ+ Zbb + Zdd + Zcc+ Zpp+ e� (3)

where the elements X , β, Zb, b, and e  were as defined above. 
The study by Cappa and Cantet (2008) was closely followed to 
describe the competition mixed model. The vectors d and c  are 
the direct and indirect (i.e., competition) additive genetic effects 
(i.e., breeding values), respectively, which are distributed one to one 
as d ∼ N(0,Aσ2

d)and c ∼ N(0,Aσ2
c ), where σ2

d and σ2
c  are the 

variances of direct and indirect additive genetic effects, respectively. 
The A  matrix allows the link between direct and indirect genetic 
effects, since cov(d, c) = Aσdc, where σdc  is the covariance between 
direct and indirect breeding values. The vector p includes the en-
vironmental competition effects (or permanent environmental 
competition effects) distributed as p ∼ N(0, Iσ2

p), where I is the 
identity matrix, and σ2

p is the variance of environmental competi-
tion effects. Zd , Zc, Zp are incidence matrices that relate the phe-
notype y to the random effects d, c , and p, respectively. Every row 
of Zd  has all elements equal to zero except for 1 in the column 
belonging to d. Similarly, each row of matrices Zc and Zp has all 
elements equal to zero except in the positions of the np neighbors of 
the tree p, with values fpq (q = 1, ... np). These positive coefficients 
can be interpreted as the IC that each neighbor exerts over the 
phenotype of each tree. Assuming that the intensity of competi-
tion is related to the inverse of the distance between the tree p and 
the neighbor q, the IC for competitors that lie in the same row or 
column of the tree p ( fpRow -Col) and for competitors lying in the 
diagonal positions with respect to tree p ( fpDia) are

fpRow -Col =

 
2

2npRow -Col + npDia
; fpDia =

1√
2npRow -Col + npDia
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where npRow -Col are the respective numbers of competitors laying in 
rows or columns, and npDia are the respective numbers of competitors laying 
in diagonals. Further details can be found in Cappa and Cantet (2008).

Spatial-Competition Mixed Model (SCM)

y = Xβ+ Ss + Zdd + Zcc+ Zpp+ e� (4)

All vectors of fixed and random effects and matrices of 
Equation 4 were described above. The SCM was defined ac-
cording to Cappa et  al. (2015). Like the SM, the number of 
knots was also adjusted independently for rows and columns (see 
SM, Equation 2).

Finally, the single-trait SCM (Equation 4)  was extended to the 
following multiple-trait model in order to study genetic correlations 
between direct and indirect additive genetic effects for the analyzed 
traits.

Multiple-Trait Spatial-Competition Mixed Model (MSCM)


yDBH

yTH
yWD


 =



XDBH 0 0
0 XTH 0
0 0 XWD





βDBH
βTH
βWD




+



SDBH 0 0
0 STH 0
0 0 SWD





sDBH

sTH
sWD




+



ZdDBH

0 0
0 ZdTH

0
0 0 ZdWD





dDBH

dTH
dWD




+



ZcDBH

0 0
0 ZcTH 0
0 0 ZcWD





cDBH

cTH
cWD




+



Zp

DBH
0 0

0 Zp
TH

0
0 0 Zp

WD





pDBH

pTH
pWD




+



eDBH

eTH
eWD




� (5)

where yDBH, yTH, and yWD are the vectors of individual-
tree observation for the traits dbh, TH, and WD. The matrices  
XDBH ⊕ XTH ⊕ XWD, SDBH ⊕ STH ⊕ SWD, ZdDBH

⊕ ZdTH
⊕ ZdWD

,  
ZcDBH

⊕ ZcTH ⊕ ZcWD
, and Zp

DBH
⊕ Zp

TH
⊕ Zp

WD
 relate the ob-

servation to the means of the genetic groups in 
[
β′

DBH β′
TH β′

WD
]
, 

the vector of coefficients of the tensor products of B-spline 
basis in 

[
s′DBH s′TH s′WD

]
, the direct additive genetic effects 

in 
[
d′DBH d′TH d′WD

]
, the indirect additive genetic effects in [

c′DBH c′TH c′WD
]
, and the environmental competition effects in [

p′DBH p′TH p′WD
]
, for the traits dbh, TH, and WD. The vector [

e′DBH e′TH e′WD
]
 is the residual vector. The symbols ⊕ and ′ indicate 

the direct sum of matrices and the transpose operation, respectively. 
The covariance matrix of the stacked vector of individual additive 
genetic effects is as follows:

var




dDBH

dTH
dWD

cDBH

cTH
cWD



=




σ2
dDBH

σdDBHdTHσdDBHdWD

σ2
dTH σdTHdWD

σ2
dWD

σdDBHcDBH
σdDBHcTHσdDBHcWD

σdTHcDBH
σdTHcTH σdTHcWD

σdWDcDBH
σdWDcTH σdWDcWD

σ2
cDBH

σcDBHcTHσcDBHcWD

σ2
cTH σcTHcWD

σ2
cWD




⊗ A

where σ2
di

, σ2
ci for trait i, and A  were defined above for the com-

petition mixed model; σdidj is the covariance between direct additive 
genetic effects of traits i and j, σcicj is the covariance between the in-
direct additive genetic effects of traits i and j, σdicj is the covariance 
between the direct additive genetic effects of trait i and the indi-
rect additive genetic effects of trait j, and ⊗ denotes the Kronecker 
product. The covariance matrix for the vector of coefficients of the 
tensor products of B-spline basis is as follows:

var



sDBH

sTH
sWD


 =



σ2
sDBH

σsDBH _ THσsDBH _ WD

σ2
sTH σsTH _ WD

σ2
sWD




where σ2
si for the trait i was defined above, and σsi _ j is the co-

variance between coefficients of traits i and j. The environmental 
competition effects as symmetric covariance matrix are as follows:

var



pDBH

pTH
pWD


 =



σ2
pDBH

σpDBH _ THσpDBH _ WD

σ2
pTH σpTH _ WD

σ2
pWD




where σ2
pi

 for the trait i was defined above, and σpi _ j
 is the co-

variance between environmental competition effects of traits i and 
j. Finally, the covariance matrix for residual vector is as follows:

var



eDBH

eTH
eWD


 =



σ2
eDBH

σeDBH _ THσeDBH _ WD

σ2
eTH σeTH _ WD

σ2
eWD




where σ2
ei for the trait i was defined above, and σei _ j is the co-

variance between residuals of traits i and j.

Single-Trait Model Comparison
The AIC (Akaike 1974) was computed to compare the fit of 

each of the four single-trait models. The lower the AIC, the better 
the model, as this outcome indicates a better fit and a lower degree 
of model complexity. Variance components were compared for the 
four single-trait models. In addition, the narrow-sense individual 
heritability was estimated as h

2
= σ2

a/σ
2
PH for the three traits, 

where the numerator σ2
a  was the estimated additive genetic vari-

ance, and the denominator σ2
PH was the estimated phenotypic vari-

ance. The phenotypic variance was computed as σ2
PH = σ2

a + σ2
e  for 

the standard mixed model and the SM. Regarding the competition 
mixed model and the SCM, the phenotypic variance was computed 
as σ2

PH = σ2
d + σ2

c + σ2
p + σ2

e . The permanent environmental 
competition effect σ2

p was included in the phenotypic variance of 
the competition and the SCM according to previous studies (Chen 
et al. 2008, Sartori and Montavani 2013, Bennewitz et al. 2014). 
For the numerator of the heritability formula in the competition 
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mixed model and the SCM, the additive genetic variance σ2
a  was 

replaced with the estimated total additive genetic variance, which 
was equal to σ2

d + σ2
c  (Cappa and Cantet 2008, Cappa et al. 2017). 

This definition of heritability does not adhere to the standard quan-
titative genetics assumptions for the spatial and SCMs (Cullis et al. 
2006), and it should only be interpreted as a descriptive measure 
of precision (or ability) to detect additive genetic differences among 
the models.

To study changes in the ranking of offspring trees between 
models, the proportion of common individuals (PCI%) within the 
top 5 percent (i.e., 25 trees) was calculated. This variable expresses 
the ratio between the number of common individuals of two models 
and the total number of individuals selected by either model (Costa 
e Silva and Kerr 2013). A  further single-trait model comparison 
was provided by the average accuracy of prediction of BVs and the 
additive genetic gain for one generation of improvement. To obtain 
the former value, individual accuracies were calculated using the 
following equation:

r =

 
1− PEV

σ 2� (6)

where r  is the accuracy of prediction for each tree, PEV  is the 
prediction error variance of BVs, and σ 2 is the additive genetic var-
iance (i.e., σ̂2

a  or σ̂2
d depending on the model). The additive genetic 

gain (G%) was computed as a percentage of the ratio between the 
response to selection (∆G) and the phenotypic mean of each trait, 
using the following expression (Resende 2002):

∆G = i r σ̂� (7)
where∆G  is the additive genetic response to selection, i is the 

selection intensity value of 5 percent of the population, r is the av-
erage accuracy of prediction for the population, and σ is the additive 
genetic standard deviation (i.e., σ a or σ d depending on the model).

Estimating Genetic Correlations
For the analysis from the multiple-trait SCM, the direct–direct 

genetic correlation between traits i and j was calculated as: σ a, where 
rdidj = σ̂didj/

√
σ̂2
di
σ̂2
dj  is the estimated covariance between the di-

rect additive genetic effects of traits i and j, and σ̂2
di

 and σ̂2
dj

 are the 
estimated variances of direct additive genetic effects for traits i and j, 
respectively. The indirect–indirect genetic correlation between traits 
i and j was computed as: rcicj = σ̂cicj/

»
σ̂2
ci σ̂

2
cj , where σ̂cij is the 

estimated covariance of indirect additive genetic effects for traits i and 
j, and σ̂2

ci and σ̂2
cj are the estimated variances of indirect additive 

genetic effects for traits i and j, respectively. The genetic correlation 
between direct and indirect additive genetic effects was estimated as: 
rdici = σ̂dici/

»
σ̂2
di
σ̂2
ci  and rdicj = σ̂dicj/

»
σ̂2
di
σ̂2
cj  for the same trait 

i and different traits i and j, respectively, where σ̂dici is the estimated 
covariance between direct and indirect additive genetic effects for 
trait i, σ̂dicj is the estimated covariance between the direct additive 
genetic effects of trait i and the indirect additive genetic effects of trait 
j, and σ̂2

di
, σ̂2

ci, and σ̂2
cj were defined above.

Restricted maximum likelihood (Patterson and Thompson 
1971) was used to estimate the variance components of random 

effects in the single- and multiple-trait mixed models described 
above. The statistical analyses were performed with the software 
R version 3.3.3 (R core team 2017) and the R-package breedR 
(Muñoz and Sanchez 2015) using the function remlf90, which 
is based on the programs REMLF90 and AIREMLF90 of the 
BLUPF90 library (Misztal 1999). Whereas REML90 uses the 
expectation maximization algorithm for estimating variance 
components, AIREMLF90 is based on the average information 
approach. The former is slower but is more robust to any initial 
value than the latter. The R codes used in this research are available 
as Supplementary Material (see R code S1).

Results
Identification and Quantification of Environmental Heterogeneity 
and Competition

Table 1 (see also Supplementary Figure S1) lists the Pearson 
correlations between residuals of the basic single-trait mixed 
model and phenotypic means of focal tree neighbors, as well as 
the correlations between direct and indirect additive genetic effects 
from the competition mixed model (Equation 3). To begin with, 
DBH had relatively small and negative coefficients of correlation 
between residuals and phenotypic means, ranging from –.02 to 
–.13. In addition, the genetic correlation between direct and indi-
rect additive genetic effects was high (rdc = –.90). These results are 
consistent with the isotropic empirical semivariogram of residuals 
from the basic model (Figure 1a), with no general trend but a 
decreasing variation at very short range (i.e., a sudden initial drop), 
a typical pattern of competition.

As regards TH, small positive coefficients of correlation between 
residuals and phenotypic means were found, ranging from .02 to 
.13. The genetic correlation between direct and indirect additive 
genetic effects was negative and moderate (rdc = –.39). The residual 
semivariogram showed a tendency toward increasing variation at 
very short range with an increment of distance with no general 
trend (Figure 1b).

Finally, the correlations between residuals and phenotypic 
means were around zero for WD (–.01 to .05). The genetic corre-
lation between direct and indirect additive genetic effects from the 
competition mixed model was positive for this trait (rdc =.47). As 
regards the residual semivariogram of WD, the degree of spatial de-
pendence remained constant, showing no general trend (Figure 1c).

Table 1. Pearson correlation coefficients (r) between residual and 
phenotypic mean of the m (maximum 8)  first-order neighboring 
trees (All), and the first-order neighboring trees for the three spa-
tial directions: row (Row), column (Col), and diagonal (Dia); and 
correlations between direct and competition additive genetic effects 
from the competition model (rdc), for DBH, TH, and WD.

DBH 
(cm)

TH (m) WD (kg m–3)

rAll –.11 .13 .03
rRow –.10 .02 .01
rCol –.13 .10 –.01
rDia –.02 .13 .05
rdc –.90 –.39 .47

Note: DBH, diameter at breast height; TH, total height; WD, wood density.
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Assessment of Statistical Single-Trait Models
Table 2 lists the AIC and estimated dispersion parameters for 

each trait and all the single-trait models fitted. The performance 
of the analytical models differed for the different traits, as shown 
by the values of AIC. In addition, the standard mixed model 
yielded the highest residual variance for all analyzed characters. 
As regards the trait diameter, the SM was slightly better than the 
standard mixed model, because of the addition of a random ef-
fect of B-splines with a grid of 9 × 8 knots (change in AIC of 
0.24). The inclusion of random effects of genetic and environ-
mental competition decreased the AIC even further for the com-
petition mixed model in comparison with the standard mixed 
model (change in AIC of 4.09). However, the best performance 
was found by simultaneously fitting spatial effects (with a grid 
of 9 × 10 knots) and competition effects (SCM, change in AIC 
of 4.97). The σ2

d  from the SCM was higher than σ2
a  from the 

standard mixed model (75.03 percent), whereas σ 2
e  from the 

SCM was lower than the corresponding value from the standard 

mixed model (43.46 percent). Non-negligible indirect additive 
genetic variances were accounted for in the competition mixed 
model and the SCM. Heritability values ranged from 0.35 to 0.64 
for different models of diameter.

Regarding TH, comparisons to the standard mixed model show 
that the SCM had a good performance (change in AIC of 19.53), but 
the fit of the SM was even better, having the lowest AIC with a grid 
of 10 × 8 knots (change in AIC of 21.56). However, the SCM had a 
higher reduction in σ2

e  (35.23 percent) than the SM (4.79 percent). 
Variances of focal tree genotype were similar between the standard 
mixed model (σ2

a = 5.40) and the SM (σ2
a = 5.51); however, they 

were higher in the SCM (σ2
d = 7.65). Values of heritability varied 

from 0.33 to 0.56.
The SM with a grid of 10 × 8 knots was the best model for 

WD. The competition mixed model and the SCM showed a 
worse fit (i.e., higher AIC) than the standard mixed model. 
Estimates of σ2

e  followed the same trend detected on TH, 
showing that the SCM had a higher reduction in the residual 
variance (6.54 percent) than the SM in comparison with the 
standard mixed model. Values of heritability remained constant 
for the different statistical models.

Table 2. Statistics and parameters of the compared models.

Model DBH (cm) TH (m) WD (kg m–3)

TM AIC 3,461.54 3,288.98 5,652.62
σ2
a 8.41 5.40 1,757

σ2
b

0.01 1.18 9.01

σ2
e 15.83 11.07 929.70

h
2 0.35 0.33 0.65

SM AIC 3,461.30 3,267.42 5,649.14
σ2
a 8.49 5.51 1,730

σ2
s 0.14 2.75 115.50

σ2
e 15.73 10.54 919.70

h
2 0.35 0.34 0.65

CM AIC 3,457.45 3,290.22 5,656.81
σ2
d

14.60 6.89 1,754

σ2
c 1.33 2.17 40.42

σ2
p 0.22 0.20 52.56

σ2
b

0.15 1.12 0.77

σ2
e 9.08 7.56 855

h
2 0.63 0.54 0.66

SCM AIC 3,456.57 3,269.45 5,654.62
σ2
d

14.72 7.65 1,720

σ2
c 1.37 1.49 35.44

σ2
p 0.21 0.14 35.93

σ2
s 0.31 2.88 97.53

σ2
e 8.95 7.17 868.90

h
2 0.64 0.56 0.66

Note: The lowest AIC values are shown in bold. AIC, Akaike information cri-
terion; CM, competition mixed model; σ2

a , Estimates of additive genetic vari-
ance; σ2

c , additive indirect genetic variance of competition; σ2
d, additive direct 

genetic variance σ2
p, variance of environmental competition effects; σ2

b , variance 
of block effects; σ2

s , variance of knots; σ2
e , residual variance; DBH, diameter at 

breast height; h
2
, narrow-sense individual heritability; SCM, spatial-competition 

mixed model; SM, spatial mixed model; TH, total height; TM, standard mixed 
model;WD, wood density.

Figure 1. Isotropic empirical semivariograms for the analyzed 
traits: (a) diameter at breast height (DBH, cm), (b) total height (TH, 
m), and (c) wood density (WD, kg m–3).
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Impact of Environmental Heterogeneity and/or Competition on 
Selection

The performances of the standard mixed model and the best single-
trait model (i.e., those with the smallest AIC) are shown for each trait in 
Table 3 by means of average accuracy of prediction (r) for parents and 
offspring, genetic gains (G%), and proportion of common individuals 
within the top 5 percent offspring tree (PCI%). As regards DBH, the 
SCM showed a high improvement in average accuracy of prediction 
for both parents (17.74 percent) and offspring (28.00 percent), when 
both models were compared using a ratio whose numerator and de-
nominator were the differential of values for both models and the value 
from the standard mixed model, respectively. In the same way, genetic 
gains increased 67.76 percent. The inclusion of spatial and competi-
tion effects shifted 32 percent of the top trees between one model and 
another, which meant that 68 percent of them were shared for both 
models. With regard to TH, the average accuracy of prediction yielded 
small or no changes for parents (nil) and offspring (2 percent) when 
the SM and the standard mixed model were compared. Genetic gains 
increased by 2.95 percent, and the ranking of top trees varied 20 percent 
from one model to another. On the other hand, although the SM was 
shown to be a better model than the standard mixed model for WD, 
there was no improvement in average accuracy of prediction and genetic 
gains, but the proportion of common individuals varied 12 percent.

Correlations between Direct and Indirect Additive Genetic Effects
Values of direct–direct additive genetic correlations (rdidj) varied 

from positive and high to negative and low for the analyzed traits 
(Table 4). Indirect–indirect genetic correlations (rcicj) were positive 
and high for all pairs of traits. Direct–indirect genetic correlations 
(rdici) for the same trait were negative and high for DBH (–.86), nega-
tive and moderate for TH (–.52), and positive and low for WD (.27). 
Direct–indirect genetic correlations were high and negative when the 
diameter and height of a tree exerted competition on the diameter 
of its neighbors (rdDBHcDBH

 = –.86 and rdTHcDBH
 = –.90), whereas me-

dium negative values were registered when the diameter and height 
of a tree exerted competition on the height of the surrounding trees 
(rdTHcTH = –.52 and rdDBHcTH = –.53). As regards WD, high and nega-
tive values of direct-indirect genetic correlations (rdDBHcWD

 = –.83 and 
rdTHcWD

 = –.81) showed that there was a strong and inverse relation 
between the values of the growth traits of a tree (both diameter and 
height) and the WD of its neighbors. On the other hand, negative and 
low values of direct-indirect genetic correlations (rdWDcDBH

 = –.20 and 
rdWDcTH = –.06) showed no effect of WD on the growth of neighbors.

Discussion
Sensitivity of Traits Determines the Choice of Statistical Model

Small negative coefficients of correlation from Table 1 suggest 
that the trait diameter was more sensitive in detecting competition 
than environmental heterogeneity at the residual level. Column 
directions presented higher negative correlation than rows, and 
these had subsequently higher negative correlations than diagonals, 
showing a relation between the magnitude of the correlation and 
the distance between adjacent trees: the lower the distance, the 
higher the correlation. Therefore, competition at the residual 
level was stronger where the distance between trees was smaller. 
Similarly, genetic correlations of diameter confirmed the presence 
of strong competition at the genetic level. On the other hand, pos-
itive correlations at the residual level from Table 1 showed that TH 
was more sensitive in detecting environmental heterogeneity than 
competition. Because genetic correlation of TH was lower than the 
genetic correlation of diameter, TH was weaker in detecting com-
petition than diameter at the genetic level. Regarding WD, their 
values of correlations showed no prevailing spatial or competition 
effects at the residual level, whereas its genetic correlation showed a 
lack of competition effects.

According to the results of correlations and variograms, different 
traits responded differently to environmental heterogeneity and 
competition. The different behavior that growth traits presented 
might be explained in terms of stand development. Because of the 
fact that TH is less affected by stand density and stocking than di-
ameter, this trait is more reliable for detecting spatial variability, 
which explains why it has often been used to measure site quality 
and, to a lesser extent, detect microsite features (McNab 1989, 
Kershaw et al. 2016). On the other hand, the higher sensitivity of 
diameter to detecting competition could be explained by the fact 
that competition depends not only on the distance between trees but 
also their size. Because secondary cambium continues to grow after 
the primary growth stops or decreases its activity, the trait diam-
eter becomes more important than TH for measuring tree volume 
(Gadow and Hui 1999). Therefore, diameter is more sensitive in 
detecting competition than height because it reflects a better stand 
density and size of a tree. The results from this research confirm 
previous studies in forest trees. For instance, Hannrup et al. (1998) 
showed that diameter is more sensitive in detecting competition 
than TH and WD. As pointed out by Ye and Jayawickrama (2008), 
height is less affected by stand density and tree-to-tree competition 
than diameter. Stoehr et  al. (2010) assessed the effects of spacing 
and competition on three genetic classes from six coastal Douglas-
fir trials at ages 3 to 12 in British Columbia. They concluded that 
whereas diameter and volume were fairly sensitive to spacing and 

Table 3. Average accuracy of prediction of breeding values for 
parent and offspring (Accuracy), G%, and PCI% from the TM, SM, 
and SCM for DBH (cm), TH (m), and wood density (WD, kg m–3).

Trait Model Accuracy G% PCI%

Parents Offspring

DBH TM 0.62 0.50 19.85 68
SCM 0.73 0.64 33.30

TH TM 0.62 0.49 16.96 80
SM 0.62 0.50 17.46

WD TM 0.72 0.64 9.51 88
SM 0.72 0.64 9.42

Note: DBH, diameter at breast height; G%, genetic response to selection; PCI%, 
top 5 percent offspring trees; SCM, spatial-competition mixed model; SM, spatial 
mixed model; TH, total height; TM, standard mixed model; WD, wood density.

Table 4. Genetic correlations between the traits DBH (cm), TH (m), 
and WD (kg m–3) for additive d and c effects obtained from the 
multiple-trait spatial-competition mixed model.

dTH dWD cDBH cTH cWD

dDBH .98 –.10 –.86 –.53 –.83
dTH – .08 –.90 –.52 –.81
dWD – – –.20 –.06 .27
cdbh – – – .78 .74
cTH – – – – .52

Note: c, competition; d, direct; DBH, diameter at breast height; TH, total height; 
WD, wood density.
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competition, TH was not so sensitive to them. In a study of three 
trials of Douglas-fir aged 35 years, Cappa et al. (2016) found that 
diameter was more sensitive in identifying competition than height, 
whereas height was more sensitive in detecting environmental het-
erogeneity than diameter. As reported in the present study, they 
also noted that the lower the distance between the trees, the higher 
the competition. Regarding diameter, the same study revealed that 
the correlation between the phenotypic mean of neighboring trees 
and residuals of a model without spatial and competition effects 
was –.36 (higher than that reported in the present study), whereas 
correlations between direct and indirect genetic effects yielded a 
maximum value of –.84 (slightly lower than those reported in the 
present study), showing a strong effect of competition for this trait at 
residual and genetic levels. It is expected that as the C. citriodora trial 
grows and gets older, competition will increase, resulting in higher 
negative correlation values than those shown in the present research.

The results showed that single-trait mixed models with spatial 
and/or competition effects outperformed the standard single-trait 
model for the three studied traits. The present study also revealed 
that the performance of the models varied for the different traits 
(Table 2). As shown by DBH, the SCM had the best fit when the 
analyzed trait was more sensitive in detecting competition than 
environmental heterogeneity. As regards TH, given the relatively 
slight competition effect at the genetic level (Table 1, rdc = –.39), the 
AIC penalized the additional number of parameters of the SCM. 
Thus, the SM was a more parsimonious model for this trait, and so 
the SM was the best model when the analyzed trait was more sen-
sitive in detecting environmental heterogeneity than competition 
and when the trait did not show sensitivity in detecting either of 
these effects, as shown by TH and WD, respectively. These results 
highlight that identifying the ability of a trait to detect environ-
mental heterogeneity and/or competition is an important step for 
choosing the most suitable statistical model.

Improvements for Adding Environmental Heterogeneity and 
Competition

The fit of a smoothed surface reduced the residual variance for 
the three studied traits (σ2

e , Table 2). Despite the fact that this re-
duction was small, a correct assessment of environmental heteroge-
neity was achieved by the addition of the more complex structure 
of B-splines. The reason for this relies on the fact that randomized 
complete blocks attempt to separate the site’s heterogeneity into ho-
mogeneous blocks. This notion is idealistic, since two most-distant 
measurements taken within the same block should in theory share 
the same variance, whereas two close measurements of the neigh-
boring trees on the border of two blocks are assumed to vary by 
a different magnitude. Spatial analysis overcomes this issue, ac-
counting for a continuously environmental variation. The fit of 
the standard mixed model was expectedly abrupt, as block effects 
are parameters for a categorical variable. On the other hand, the 
estimated surfaces with spatial and SCMs showed a correct adjust-
ment of continuous spatial variability (see Supplementary Figure 
S2). This confirms that there was environmental heterogeneity, 
which was not adequately accounted for by variances of blocks.

The fit of genetic and environment competition effects induced 
increases in the additive genetic variance and decreases in the re-
sidual variance, according to the sensitivity of each trait in detecting 
competition. Thus, diameter was the trait with the most significant 

changes in values of variance, following by TH. Since WD showed 
a lack of competition effects, values of additive genetic variance and 
residual variance did not change significantly with the addition of 
competition effects. As a result, values of heritability of the compe-
tition model and the spatial-competition model increased signifi-
cantly for diameter and height, whereas they remained stable for 
WD. On the other hand, heritability values of WD were high for 
all models, according to registers for this trait in literature (Zobel 
and Jett 2012). Since heritability values were obtained from a small 
population in a single site only, upward bias in additive genetic 
variance is expected, as the environmental (genotype-by-site) com-
ponent of variation cannot be quantified. The Argentinian breeding 
program of C. citriodora might take advantage of the effect of com-
petition. Competition exerted by fast-growing trees increases the 
number of suppressed individuals in the plantation (Cannell 1983). 
A breeding strategy based on selecting noncompetitive genotypes of 
C. citriodora might reduce the number of suppressed individuals in 
forests, increasing yields per unit area of future commercial planta-
tions in Argentina.

In the present study, modeling environmental heterogeneity 
and competition enabled the analysis to increase accuracies of 
prediction (both parents and offspring) as well as additive ge-
netic variances, resulting in higher genetic gains (Table 3). Some 
comparisons can be made with former studies; however, research 
about the joint effect of environmental heterogeneity and com-
petition on tree selection is still scarce. Previous studies showed 
greater improvements than the present research when spatial effects 
were added to genetic analysis. In studies of DBH in Eucalyptus 
globulus, accuracies of breeding values were improved by 66 per-
cent and 60 percent for parents and offspring, respectively, when 
B-splines were used in the analysis of a trial with strong spatial 
trends (Cappa and Cantet 2007). The current research does not 
show such pronounced spatial tendencies, which resulted in lower 
accuracies of breeding values when a spatial structure was added. 
Also, by including a spatial structure in the analysis of height in 
Pinus sylvestris trials, Cappa et  al. (2011) enhanced the accuracy 
of breeding values by up to 46.03 percent and 44.68 percent for 
parents and offspring, respectively. Unlike the present work, this 
previous study was designed as a simple completely random ex-
periment with parcels of 50 plants, thus enabling this analysis to 
obtain greater improvements than the current study when a spatial 
structure was added. Dutkowski et al. (2006) used spatial effects 
to estimate accuracies of breeding values, showing improvements 
up to 0.2 for WD for some trials, whereas other trials did not show 
enhancement, such as the present research. The same study found 
that the maximum genetic gains were around 20 percent for di-
ameter. The present work shows higher genetic gains for this trait. 
This could be explained by the fact that the genetic gains were 
increased by the addition of competition effects.

Genetic Correlations
Direct–direct genetic correlations have been recorded for growth 

traits and WD in previous research on the genus Corymbia. The high 
and positive genetic correlations between diameter and height found 
in this research (rdDBHdTH = .98) confirmed previous studies in which 
values varied from .84 to 1 (Sato et al. 2010, Lan et al. 2011, Hung 
et  al. 2016). Correlations around zero between growth traits and 
WD agreed with the finding that diffuse-porous hardwoods have 
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little or no relation between growth rate and WD (Zobel and Jett 
2012). Despite this, a previous study by Brawner et al. (2012) found 
moderate and positive correlations for volume and WD at the family 
level in Corymbia sp. (rdidj = .39 to .42); however, they also set up 
correlations around zero at provenance level (rdidj = –.10 to .09).

Regarding correlations of indirect–indirect genetic effects, 
good relations were found between traits, as their values were 
positive and moderate to high (rcWDcWD = .52, rcDBHcWD  = .74 and 
rcDBHcTH  = .78), showing that direct and positive associations 
among traits of the maximum eight first-order focal tree 
neighbors are the general tendency when they compete with a 
focal tree. However, as this is the first study to use a multivariate 
approach to study the effect of environmental heterogeneity and 
competition on growth traits and WD, a comparison with other 
studies is not feasible.

As regards correlations of direct–indirect genetic effects, they 
were consistent with direct–indirect genetic correlations of the 
same diameter, height, and WD traits obtained from the single-
trait competition model (–.90, –.39, and .47, respectively; Table 
1). Both growth traits diameter and height of a focal tree had a 
strong effect on neighbors’ diameter, as correlation values were high 
and negative (rdDBHcDBH

 = –.86 and rdTHcDBH
 = –.90), showing that 

genetic competition affected diametrical growth of trees. The di-
ameter and height of a focal tree also affected the height of the 
eight surrounding competitors, but to a lesser extent, as shown by 
the lower correlation values (rdTHcTH = –.52 and rdDBHcTH = –.53). 
This is because, as stated above, TH is less affected by stand den-
sity and stocking than diameter. Regarding direct–indirect ge-
netic correlations between growth traits and WD, the results show 
that there is an inverse relation between the diameter and height 
of a focal tree and the WD of neighbors (rdDBHcWD

  =  –.83 and 
rdTHcWD

 = –.81), suggesting that the growth traits of a tree can affect 
the WD of its neighbors. These outcomes are logical and feasible, 
since the growth of a tree can affect the growth of its neighbors, 
as shown by direct–indirect genetic correlations between growth 
traits. Because anything that changes the growth pattern of trees 
may cause wood variation (Zobel 1992), it is reasonable that the 
WD of a tree might be affected by changes in growth patterns orig-
inally driven by the growth of surrounding trees. According to the 
results, the sign and magnitude of these correlations suggest that 
the greater the growth of a tree, the lower the WD of its neighbors 
(or vice versa). Similar outcomes were found for the related genus 
Eucalyptus when grown at different spacings (i.e., different levels of 
competition). According to previous research (DeBell et al. 2001, 
Malan 2005, Rocha et al. 2016), trees grown at a wider spacing (i.e., 
lower competition level) had a higher and more uniform WD than 
trees at a closer spacing (i.e., higher competition level); however, 
the subject is still not clear, since other studies have not found any 
relation between WD and spacing (Miranda et al. 2003). Therefore, 
it can be hypothesized that specific factors in the growing envi-
ronment associated with competition (e.g., sunlight, nutrients, or 
individual growth area) have an effect on physiological responses of 
C. citriodora that might affect WD, decreasing its values as growth 
of neighbors increases. On the other hand, the inverse relation is 
not possible: the WD of a tree cannot affect the growth traits and 
wood properties of its neighbors. This was confirmed by direct–in-
direct genetic correlations, which were low with no clear tendency 
(rdWDcWD

 = .27, rdWDcTH = –.06, and rdWDcDBH
 = –.20).

Conclusions
A summary of the findings on the C. citriodora breeding pro-

gram to be drawn from the current study is as follows:

	1.	 It has been shown that the effects of environmental hetero-
geneity and competition were present in a single 6-year-old 
progeny test of C. citriodora.

	2.	 Whereas DBH was more sensitive in detecting competition 
than environmental heterogeneity, TH was more sensitive in 
detecting environmental heterogeneity than competition; WD 
did not show any sensitivity in identifying these effects.

	3.	 Single-trait models with competition effects had a better fit, 
higher additive variances, and lower residual variances than 
the other single-trait models when the analyzed trait had a 
strong sensitivity to competition. On the other hand, the spa-
tial model showed a better fit and lower residual variances than 
other models when the analyzed trait had a strong sensitivity 
in identifying environmental heterogeneity.

	4.	 Modeling spatial and/or competition effects yielded more accurate 
BVs, greater genetic gain, and some changes in the ranking of trees.

	5.	 Direct–indirect genetic correlations showed inverse and strong 
relations among growth traits and WD, suggesting that growth 
traits can be affected by competition and environmental heter-
ogeneity, and WD might also be influenced by these effects.

	6.	 Spatial and/or competition effects should be included in order 
to improve the genetic evaluation and quantitative genetic 
analyses of C. citriodora.

Supplementary Materials
Supplementary data are available at Forest Science online.
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