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Simple Summary: Small cell lung cancer (SCLC) continues to carry a poor prognosis with a five-year
survival rate of 3.5% and a 10-year survival rate of 1.8%. The pathogenesis remains unclear, and
there are no known predictive or diagnostic biomarkers. The current SCLC classification as a single
entity hinders effective targeted therapies against this heterogeneous neoplasm. Despite dedicated
decades of research and clinical trials, there has been no change in the SCLC treatment paradigm.
This review summarizes the body of literature available on SCLC’s genomic landscape to describe
SCLC’s molecular/genetic aspects, regardless of therapeutic strategy.

Abstract: Small cell lung cancer (SCLC) is a highly proliferative lung cancer that is not amenable to
surgery in most cases due to the high metastatic potential. Precision medicine has not yet improved
patients’ survival due to the lack of actionable mutations. Intra- and intertumoral heterogeneity
allow the neoplasms to adapt to various microenvironments and treatments. Further studying this
heterogeneous cancer might yield the discovery of actionable mutations. First-line SCLC treatment
has added immunotherapy to its armamentarium. There has been renewed interest in SCLC, and
numerous clinical trials are underway with novel therapeutic approaches. Understanding the
molecular and genetic landscape of this heterogeneous and lethal disease will pave the way for novel
drug development.

Keywords: small cell lung cancer; gene pathway; pathobiology; targeted therapy

1. Small Cell Lung Cancer (SCLC) General Considerations

SCLC is a highly proliferative lung cancer that is not amenable to surgery in most
cases due to the high metastatic potential. It is considered a high-grade neuroendocrine
carcinoma with characterizing molecular alterations [1]. SCLC’s estimated five-year sur-
vival rate is 3.5%, and the 10-year survival rate is 1.8% [2]. Smoking history is present
in 95% of the cases, and therefore carcinogenesis is linked to tobacco and its substrates,
possibly through a DNA damage mechanism; however, the exact mechanism is unknown.
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The genes that affect oncogenes or tumor suppressor genes are usually acquired, not inher-
ited. Tumor protein p53 (TP53) and retinoblastoma 1 (RB1) are the most common tumor
suppressor genes (98% and 91%, respectively) [3]. These tumors are highly proliferative, as
demonstrated by Ki67 immunohistochemistry [1,4–7]. SCLC is the deadliest lung cancer
subtype and is uniformly fatal [8]. Lack of early detection and poor response to standard
treatment are the main contributing factors to a poor outcome. SCLC usually responds
to frontline therapy (60%–80% response rates); however, within 6–12 months, it becomes
refractory to salvage treatments. Therefore, an understanding of resistance mechanisms
is urgently needed. There has been renewed interest in SCLC, and numerous clinical
trials are underway with novel therapeutic approaches. Understanding the molecular and
genetic landscape of this heterogeneous and lethal disease will pave the way for novel
drug development.

2. Molecular Pathways Involved in SCLC Development and Progression

Three pivotal comprehensive genomic analyses of SCLC shed light on SCLC develop-
ment’s principle molecular pathways [9–11]. The limitation of these analyses is the small
number of samples, most likely due to the lack of clinical specimens, as this disease is
not usually treated with surgery. Therefore, experimental models and/or cell lines are
fundamental for genomic analysis and sensitivity to treatments. Although TP53 and RB1
are the most common mutations found in SCLC, these alterations cannot yet be targeted
pharmacologically. Peifer et al. sequenced 29 SCLC exomes, two tumor genomes, and 15
tumor transcriptomes. They observed a high mutation rate of 7.4 ± 1 protein-changing
mutations per million base pairs; loss of TP53 and RB1; mutations and amplifications of
MYCL1, MYCN, and MYC; mutations in the histone-modifying genes CREBBP, EP300,
and MLL; mutations in PTEN, SLIT2, and EPHA7; focal amplification in FGFR1 tyrosine
kinase gene [9]. George et al. conducted whole-genome sequencing of 110 first frozen
tumor samples from patients with limited and extensive-stage small cell lung cancer and
their matched normal DNA [11]. They observed an elevated mutation rate of 8.62 non-
synonymous mutations per million base pairs (Mb). C: G->A: T transversions were seen in
28% of all mutations and were linked to heavy smoking. The signaling pathways affected
in SCLC and frequently aberrant genes in SCLC are shown in Figure 1.
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SCLC neoplastic cells represent a broad molecular landscape. Thus, our current anal-
ysis techniques will detect the most frequent aberration within a given tumor sample.
Intra- and intertumoral heterogeneity allow the neoplasms to adapt to various microen-
vironments and treatments. Further studying this heterogeneous cancer might yield
the discovery of actionable mutations. Rubin et al. conducted a genetic study using
RNA expression in mouse-derived SCLC cell lines and proposed a new classification.
This classification identifies four main subdivisions based on the level of expression of
ASCL1 (achaete-scute homolog 1), classified as SCLC-A; NEUROD1 (neurogenic differ-
entiation factor one), classified as SCLC-N; POU2F3 (pou class 2 homeobox 3), classi-
fied as SCLC-P; YAP1 (yes-associated protein 1), classified as SCLC-Y. The expression
of these four distinct genes has been established in both human (n = 81) and cell line
tumor models (n = 54) [12]. The question is whether these molecular subtypes have
different biologies and outcomes. Baine et al. studied protein expression by immuno-
histochemistry of these four molecular subtypes in a cohort of SCLC clinical specimens
(n = 174). They also performed standard diagnostic stains, including neuroendocrine stains
(SYP (synaptophysin), CgA (chromogranin A), CD56 (neural cell adhesion molecule 1),
INSM1 (insulinoma-associated protein 1), TTF-1 (thyroid transcription factor 1), and DLL3
(delta-like ligand 3)) [13]. Based on the above results, the tumors were grouped into the
following: ASCL1-dominant; NEUROD1-dominant; ASCL1/NEUROD1 double-negative
with POU2F3 expression (POU2F3); ASCL1/NEUROD1 double-negative not otherwise
specified (NOS) [13]. POU2F3 expression and the co-expression ASCL1/NEUROD1 were
mutually exclusive. YAP1 was expressed in various subtypes and correlated with disease
stage and survival. The authors suggested that YAP1 could be related to a transition
phenotype between NSCLC and SCLC [13] and could induce multidrug resistance both
in vivo and in vitro [14]. The SLCL-Y subtype seems to represent a well-differentiated
tumor, with a marked inflamed microenvironment, rendering it perhaps more sensitive to
immune checkpoint inhibitors [15]. DLL3 is absent in ASCL1/NEUROD1-negative tumors.
This finding could be accounted for by the different techniques used across studies, protein
vs. RNA analysis. These findings highlight the heterogeneity of SCLC. Identification of
unique subtypes will allow the deployment of target treatments that will ultimately im-
prove patient outcomes. Next, we review the genes and genomics/proteomic modifications
related to the development, plasticity, and progression of SCLC, which could be identified
as possible biomarkers for targeted therapy of this deadly disease.

2.1. Cell Cycle Regulation
2.1.1. TP53/RB1 (98%/91%)

Biallelic loss of TP53 and RB1 has been found in 100% and 93% of cases, respectively,
in extensive genomic studies. Other simultaneously occurring molecular alterations have
been seen, such as mutations, translocations, loss of heterozygosity. However, biallelic
loss of TP53 and RB1 remains an essential hallmark of SCLC carcinogenesis [11]. TP53
mutations are missense mutations that are involved the DNA-binding domain. RB1 is
affected by translocations and results in mutations in the exon–intron junctions, which
leads to splicing events and subsequently damages proteins, as confirmed by transcriptome
sequencing. TP53 is located in 17p13.1 and has 12 exons. TP53 encodes a tumor suppressor
protein and can bind DNA and activate transcription. It plays a vital role in cell cycle arrest,
apoptosis, and DNA repair. It is subject to alternative promoters, which results in multiple
transcription variations. Many human cancers carry this mutated gene (Gene ID: 5925,
updated on 7 February 2021) [16]. The mutations of TP53 are numerous, but the clinically
relevant substitutions in SCLC include Y220C, R248W, R249M, M237I, and R273L. RB1 acts
as a transcriptional corepressor, is located in 13q14.2, has 28 exons, negatively regulates the
cell cycle, and stabilizes the chromatin structure. When activated, it binds to the transcrip-
tion factor E2F1 (Gene ID: 5925, updated on 7 February 2021) [16,17]. Inactivation of RB1
can occur through different mechanisms: Point mutations, deletion, exon inversions, splice
site mutations, and loss of mRNA expression [18]. Although neuroendocrine differentiation
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is a hallmark of SCLC, specific subtypes lack neuroendocrine differentiation. This might
be relevant, as this subtype could be susceptible to CDK4/6 inhibitors and resistant to
DLL3-targeted agents [18]. Neither TP53 nor RB1 are therapeutically targetable.

2.1.2. TP73 (13%)

TP73 (tumor protein p73) is located in 1p36.32 and has 16 exons. This gene encodes a
member of the p53 family of transcription factors involved in cellular responses to stress
and development. Many transcript variants resulting from alternative splicing and/or use
of alternate promoters have been found for this gene. Still, the biological validity and the
full-length nature of some variants have not been determined (Gene ID: 7161, updated
on 22 March 2021) [16]. TP73 is frequently altered in the SCLC genome (13%) [3,11,19].
The TP73 alterations include gene rearrangements that result in NH-terminal truncation
(p73∆ex2 and p73∆ex2/3) or COOH-terminal deletion (p73∆ex10).

2.2. Receptor Kinase/PI3K Signaling
2.2.1. PI3K3CA (15%)

The PI3K/AKT/mTOR pathway regulates cell cycle, proliferation, and survival. When
activated, PIK3CA protein phosphorylates AKT, which leads to mTOR activation down-
stream and other factors such as CREB and PtdIns3P. In several solid tumors, the upregula-
tion of the PI3K/AKT/mTOR pathway promotes carcinogenesis. Shibata et al. performed
an extensive mutation screening of the PIK3CA gene and only found 3/13 (23%) mu-
tations in SCLC cell lines and 2/15 (13%) mutations in samples of primary SCLC [20].
PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) is located
in 3q26.32 and has 23 exons. Phosphatidylinositol 3-kinase is composed of an 85 kDa
regulatory subunit and a 110 kDa catalytic subunit. This gene has been found to be onco-
genic and a pseudogene of this gene has been defined on chromosome 22 (Gene ID: 5291,
updated on 22 March 2021) [16]. Missense mutations of PIK3CA mostly gain function and
are located in the helical domain at G542, E545, and Q546 and the kinase domain H1047
in 80% of the cases. The most common mutation in PIK3CA is H1047R, which results in
enzymatic over-activation. To evaluate the H1048 cell line (H1047R mutant) contribution
of PI3K/AKT/mTOR signaling to SCLC cell proliferation, Umemura et al. used RNA
interference to down-regulate the expression of PIK3CA, and a significant decrease in pro-
liferation was observed [21]. PI3K inhibitors have been extensively used in clinical trials,
but only a few have gained Food and Drug Administration (FDA) approval, mainly due to
dose-limiting toxicities. Feng et al. recently published the effect of a Chinese medicinal
formula, Baizhu Additive Powder (SLBZ-AP), on the pain control and survival of mice
with metastatic lung cancer to the bone. It is postulated that SLBZ-AP partially exerts its
effects through the PI3K/AKT/mTOR pathway [22].

2.2.2. PTEN (9%)

PTEN (phosphatase and tensin homolog) is located in 10q23.31 and has 10 exons. It
serves as a tumor suppressor gene and regulates the AKT/PKB pathway. Multiple trans-
lation initiation codons allow transcription by alternative splicing of numerous variants
that encode different isoforms (Gene ID: 5728, updated on 7 February 2021) [16]. PTEN
mutations are ubiquitous across a broad range of cancers and in 4%–9% of SCLC [3,23]. The
function of PTEN in SCLC is not known. A revealing study was conducted by inactivating
PTEN on an RB1/TP53-deleted mouse model that simulated human SCLC in a metastatic
pattern and neuroendocrine features [24]. On the one hand, when a single PTEN allele
was inactivated, SCLC progression occurred rapidly, indicating PTEN’s tumor-suppressing
function in SCLC. On the other hand, homozygous PTEN inactivation synergized with
RB1, and TP53 loss promoted transformation from adenocarcinoma to neuroendocrine
carcinoma [25].
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2.2.3. FGFR1 (8%)

The fibroblast growth factor receptor (FGFR) binds to the fibroblast growth factor
(FGF) family. FGFR1 (fibroblast growth factor receptor 1) is located in 8p11.23. It has
24 exons that encode an FGFR family member, where the amino acid sequence is highly
conserved between members. Throughout evolution, they differ from one another in
their ligand affinities and tissue distribution. FGFR has an extracellular ligand domain,
a transmembrane domain, and an intracellular domain. The extracellular domain is
composed of three immunoglobulin-like domains. The intracellular domain contains
tyrosine kinase activity, setting in motion a cascade of downstream signals, ultimately
influencing mitogenesis and differentiation [13]. Alternatively, spliced variants have been
described; however, not all variants have been fully characterized (Gene ID: 2260, updated
on 22 March 2021) [16]. It had been reported that a high copy number of the FGFR1
gene might be a possible therapeutic target [5,26]. Paracrine FGF signaling is described
in SCLC and has a negative prognostic impact. Paracrine production of FGFs results
in neo-angiogenesis in cancer cells through FGFR1 and FGFR2 [27]. However, aberrant
FGFR signaling might only occur in the earlier stages of the disease. Biomarkers that
assess FGFR inhibition response are missing and candidates are FGFR1 gene amplification,
overexpression, or mRNA quantification [5]. To date, very few reports have been published
on FGFR inhibitors in SCLC harboring FGFR signaling pathway aberrations [28].

2.2.4. RET

RET (rearranged during transfection) is a proto-oncogene located in 10q11.21, has
20 exons, and encodes transmembrane tyrosine kinase protein receptor. When activated,
it leads to the downstream activation of numerous pathways: RAS-MAPK, PI3K-AKT,
and STAT3. The activation of this proto-oncogene can occur through both activating point
mutations and cytogenetic rearrangement [29]. Chromosomal rearrangements involving
RET have several fusion partner genes, for example: KIF5B, CCDC6, CUX1 (Gene ID: 5979,
updated on 7 February 2021) [16]. The prevalence of RET alterations in SCLC is unknown.
The low prevalence of lack of surgical SCLC specimens renders the tasks of studying RET in
SCLC difficult. Neither Peifer et al. nor Rudin et al. identified RET in SCLC as a statistically
significantly mutated gene [9,10]. Dabir and colleagues performed Sanger sequencing on
an SCLC metastasis and found an M918T mutation [30]. A skin biopsy from the same
patient did not contain this mutation, establishing its somatic nature. The specimen also
stained for RET by immunohistochemistry. Currently, basket trials for cancers with RET
mutations are not enrolling SCLC patients.

2.3. Transcriptional Regulation
2.3.1. Hedgehog Signaling Pathway (80%)

The Hedgehog (HH) pathway plays conserved roles in regulating a diverse spectrum
of developmental processes: Cellular proliferation and differentiation [31,32]. The pathway
is composed of three proteins: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert
Hedgehog (DHH). The pathway is associated with carcinogenesis; however, it has not been
studied in depth in SCLC. HH appears to regulate stem cells that maintain and regenerate
within adult tissues. Park et al. used a TP53/RB1 knockout mouse model and observed HH
to be upregulated in SCLC independently of the pulmonary microenvironment. Activated
Smoothened (sMO), a transmembrane protein part of HH, triggered clonality in human
SCLC cell lines and appeared to initiate carcinogenesis in an SCLC mouse model. Deletion
of sMO had the opposite effect [33]. HH signaling is important for the in vivo growth of
SCLC, but the establishment of cell lines from SCLC tumors may lead to the loss of key
HH pathway members’ expression [34]. This pathway is related to carcinogenesis, and
therefore the discovery and synthesis of HH-specific signaling antagonists warrant further
investigation [31]. On this basis, HH inhibition is a promising therapeutic target.
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2.3.2. MYC (20%)

MYC is a family of regulator genes and proto-oncogenes that encode for transcription
factors, with three related human genes: c-myc (MYC), l-myc (MYCL), and n-myc (MYCN).
MYC was the first gene to be discovered in this family. MYC (MYC proto-oncogene) is
located in 8q24.21 and has three exons that encode a nuclear phosphoprotein. MYC is
critical to cell cycle progression and apoptosis. MYC amplification is present in various
human tumors, with 20% of SCLC (Gene ID: 4609, updated on 7 February 2021) [16]. MYCL
(MYCL proto-oncogene) is located in 1p34.2 and has two exons (Gene ID: 4610, updated on
2 March 2021) [16]. MYCN (MYCN proto-oncogene) is located in 2p24.3 and has three exons
that encode a protein with a basic helix–loop–helix (bHLH) domain. Multiple alternatively
spliced transcript variants encoding different isoforms have been found for this gene (Gene
ID: 4613, updated on 2 March 2021) [16]. SCLC is treated as a homogeneous disease without
further molecular sub-classification. These tumors often acquire an MYC amplification (in
one of the subtypes: MYCL1 [9%], MYC [6%], or MYCN [4%]), dramatically accelerating
tumorigenesis and metastatic potential [9,11]. MYC-amplified SCLC responds to frontline
chemotherapy to only develop refractoriness and disease progression to subsequent lines
of therapy. MYC’s effect on this subtype of SCLC’s natural history has not been confirmed
in vivo yet [35]. Mollaoglu et al. studied an SCLC model with loss of TP53/RB1 and
elevated MYC expression [36]. This model was similar to the human one, as evidenced
by elevated NEUROD1 and low neuroendocrine markers such as ASCL1. Animal models
of SCLC with high levels of MYC are sensitive to aurora kinase inhibitors. Chalishazar
et al. described that tumors with MYC overexpression are vulnerable to arginine deletion.
Arginine deiminase (ADE-PEG 20) has been shown to have antineoplastic effects in mice
with MYC-associated cancers [37]. Based on Rudin et al.’s molecular classification of SCLC,
Ireland et al. used single-cell transcriptome analyses in both mouse and human models
and observed that MYC plays a critical role in evolving the different SCLC molecular
subtypes [12,38]. On the one hand, MYC triggers the transition of ASCL1+ to NEUROD1+
to YAP1+ subtype in neuroendocrine cells. On the other hand, MYC promotes POU2F3+
tumors from different cell types. Given SCLC’s intratumoral heterogeneity, it is assumed
that this evolution happens in vivo as well. It is worth noting that MYC requires activation
of the NOTCH pathway to induce carcinogenesis. Patel et al. recently reported that MYC
and MYCL1 regulate the plasticity between these histological subtypes and molecular
subtypes, then the role of the MYC family in SCLC tumorigenesis could be redefined to
develop effective therapies [39].

2.3.3. KMT2D (13%)

KMT2D (lysine methyltransferase 2D) is located in 12q13.12, has 56 exons, and is also
known as MLL2 or MLL4. The protein methylates the Lys-4 position of histone H3. The
encoded protein is part of a large protein complex called ASCOM, a transcriptional regula-
tor of the beta-globin and estrogen receptor genes (Gene ID: 8085, updated on 16 March
2021) [16,23]. Most striking is the high frequency of truncating KMT2D mutations, which
have been found in 17% of SCLC cell lines and 8% of SCLC tumors. Although truncating
KMT2D mutations are occasionally homozygous, most are hemizygous, suggesting that
decreased gene dosage may contribute to SCLC [40]. It is not clear whether KMT2D-mutant
SCLC will benefit from therapeutic inhibition of the H3K4 demethylase lysine demethylase
1A (LSD1). Future work will need to determine which SCLC subsets are likely to benefit
from current approaches to target chromatin dynamic states [41].

2.4. Notch Signaling/Neuroendocrine Differentiation
NOTCH (25%)

NOTCH receptor protein is a heterodimer transmembrane receptor that is proteolyt-
ically cleaved from a precursor protein (NOTCH1, NOTCH2, NOTCH3, or NOTCH4),
and their fragment migrates to the nucleus. The ligand can be from within the same cell
(cis-interaction) or from a different cell (trans-interaction) [42]. This fragmented protein
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in the nucleus is converted into a transcription regulatory protein inducing critical genes’
expression [43]. NOTCH mutation in SCLC is more commonly seen in the primary tumor
rather than in the metastatic site. NOTCH1 (NOTCH receptor 1) is located in 9q34.3 and has
34 exons that encode a member of this type I transmembrane protein family. This receptor
is critical for developing various cells and tissues (Gene ID: 4851, updated on 7 February
2021) [16]. In SCLC, NOTCH1 signaling is suppressed and plays a tumor-suppressive
role, is most widely mutated (25%), and the most mutations are missense mutations (82%).
Mutations are associated with significantly improved survival [44]. Overexpression in
NOTCH1 inhibits SCLC growth and neuroendocrine features [45]. NOTCH negatively reg-
ulates the transcription factor ASCL1. On the one hand, ASCL1 promotes neuroendocrine
transcription programs and is necessary for SCLC cells’ viability. On the other hand, when
ASCL1 is deleted in vivo, marked tumorigenesis inhibition is observed [46]. In general,
the ASCL1 transcription factor is not targetable. However, LSD1, a lysine-specific histone
demethylase 1, activates the NOCTH family upstream by suppressing ASCL1 expression.
SCLC highly expresses LSD1, which is attached to the NOTCH1 gene [47]. Delta-like
protein 3 (DLL3) is over-expressed in 80% of SCLC membrane cells and is specific to SCLC
compared to normal lung cells. It is expressed both in the cytoplasm and in the membrane
of SCLC cells [48]. Hence, DLL3 is a potential therapeutic target; clinical trials using a
DLL3-targeted antibody–drug conjugate failed to benefit from toxicity concerns leading to
discontinuation of the product. Other possible mechanisms to target DLL3 are illustrated
in Figure 2 and include BiTE molecules® (AMG757) and chimeric antigen receptor T cells
(AMG119). AMG757 is a half-life extended bispecific T cell engager antibody construct
that binds to DLL3 on cancer cells with one scFv domain and connects DLL3-positive
cells to CD3-positive T cells, which causes tumor lysis and proliferation of autologous T
cells (Phase 1 study NCT03319940) [49]. AMG119 is an autologous T cell that has been
genetically engineered ex vivo to express a chimeric antigen T cell receptor directed to-
ward DLL3 and results in tumor lysis and autologous proliferation T cells (Phase 1 study
NCT03392064) [49].

Although NOTCH3 expression in SCLC is lower than normal lung tissue [50], NOTCH3
remains understudied, and further research is needed to determine its effect on SCLC
biology.

2.5. Epigenetic and Proteomic Changes

How genetic and transcriptomic alterations affect the functional proteome in lung
neoplasms is not fully understood. Epigenetics refers to ways to alter a phenotype’s
expression that do not change the DNA sequence. It often occurs via methylation and
histone modification [51]. SLFN11 (Schlafen 11) epigenetic silencing, a putative DNA/RNA
helicase, by the EZH1/2 (Enhancer of the Zeste Homolog 1 or 2), has allowed us to gain
an understanding of the role of epigenetics in SCLC. SLFN11 seems to be a predictor of
response to DNA-interfering agents such as topoisomerase I and II inhibitors, platinum,
and PARP inhibitors [52]. For example, the clinical trial NCT03879798 was designed to
evaluate whether EZH1/2 inhibitors could overcome chemotherapy resistance by reversing
epigenetic silencing and restoring SLFN11 expression [7]. Other clinical trials have used
the bromodomain and extra-terminal motif protein (BET) inhibitor. These can modify
the expression of several genes involved in carcinogenesis, such as MYC, BCL2, CDK4,
and CDK6. The single-agent activity is limited but seems more promising in combination
with other agents (NCT02391480) [7]. Stewart and colleagues studied 108 SCLC patients
by mass spectrometry-based proteomics integrated with parallel analyses of DNA and
mRNA to define molecular subtypes and identify drivers. With genomic, transcriptomic,
and proteomic datasets, they identified three SCLC subtypes at the proteomic level. How-
ever, 87% of SCLC patients were associated with either immune infiltration (Inflamed) or
oxidation-reduction (Re-dox) subtype [53].
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2.6. Transcriptional Addictions

SCLC cells can manipulate and regulate gene expression to favor their growth and
survival. Pharmacologically modulating gene expression could be a promising therapeutic
approach. For example, on the one hand, THZ1 is a selective and potent covalent CDK7
inhibitor that suppresses SCLC growth. Christensen et al. demonstrated the efficacy of
THZ1 treatment on the expression of proto-oncogenes such as MYC and neuroendocrine
factors [54]. Meanwhile, on the other hand, lurbinectedin inhibits oncogenic genes’ active
transcription, mainly in the GC-rich regulatory domains, and received the Food and
Drug Administration’s (FDA) granted accelerated approval for extensive-stage SCLC after
platinum-based therapy [55]. At the time of this manuscript’s submission, there is one
ongoing clinical trial combining lurbinectedin with doxorubicin versus cyclophosphamide
doxorubicin and vincristine for second-line SCLC after platinum based-therapy (NCT:
02566993).

3. Future Perspectives

SCLC has benefited little from the progress that the oncology field has seen in the
last few decades. Diagnostically, a PET-radiotracer using 89Zr-SC16 is being developed.
This radiotracer is directed toward DLL3; SCLC tracer uptake is correlated with DLL3
expression [7].

Bioinformatics strategy and extensive human sample collection will allow the study
and discovery of potentially relevant molecular landscape and signaling pathways from a
genomic perspective. Other potential areas of interest are epigenetic alterations in other
genes (CREBBP, KMT2D/MLL2, and MLL3) and PIK3/mTOR pathway genes.

Although PARP1 is overexpressed in SCLC, PARP inhibitors show little efficacy in
SCLC with PIK3/mTOR pathway alterations. The same applies to BCL2. Although overex-
pressed as well in SCLC, BCL2 inhibitors show little benefit and significant hematological
toxicity. Other DNA damage response proteins are also overexpressed in SCLC, such as
ATR (ATR Serine/Threonine Kinase) [7].
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Liquid biopsy is also a promising diagnostic tool that allows minimally invasive tumor
genotyping and real-time monitoring [56]. Nong et al. performed deep-sequencing on
430 pretreatment SCLC biopsies and plasma samples from 22 SCLC patients at various
treatment stages. They noted that average variant allele frequency is more predictive of
survival than individual gene mutations, suggesting that clonal dynamics might be a vital
determinant in SCLC biology [57]. Almodovar et al. developed a circulating free DNA
(cfDNA) panel that detects 14 genes commonly mutated in SCLC [58]. They noted that
most patients (85%) had genetic changes with mutant allele frequency between ≤0.1%
and 84%, and TP53 and RB1 were most commonly mutated (70% and 52%, respectively).
Interestingly, cfDNA allowed for relapse detection before this became evident radiograph-
ically. Liquid biopsy, therefore, has the potential of non-invasively tracking the disease
status and response to treatment and provide valuable information before this becomes
clinically evident. Carter et al. demonstrated that the circulating tumor cells were reliable
in evaluating chemotherapy response and impacted progression-free survival [59].

4. Conclusions

Small cell lung cancer (SCLC) continues to carry a poor prognosis with a five-year
survival rate of 3.5% and a 10-year survival rate of 1.8% [2]. The pathogenesis remains
unclear, and there are no known predictive or diagnostic biomarkers. In this manuscript,
we provided an overview of published studies on SCLC’s genomic landscape. Since
there have been several comprehensive review articles published recently, this review
summarizes the body of literature available on SCLC’s genomic landscape to describe
SCLC’s molecular/genetic aspects, regardless of therapeutic strategy [3,4,10,60,61]. Further
studies are needed to identify better genes and signaling pathways essential to SCLC cell
survival and proliferation. Integration of preclinical and clinical data will be critical to
understanding this lethal disease better. Bioinformatics is an integral part of this effort as it
allows the analysis of SCLC “big data” in addition to next-generation sequencing, tumor
genotyping, liquid biopsy, and transcriptomics. Once all of these techniques and efforts are
assembled, it will be possible to develop novel therapeutic approaches to improve patient’s
survival with SCLC.
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