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We determine approximate next-to-next-to-leading order (NNLO) corrections to unpolarized and
polarized semi-inclusive deep-inelastic scattering. They are derived using the threshold resummation
formalism, which we fully develop to next-to-next-to-leading logarithmic accuracy, including the two-loop
hard factor. The approximate NNLO terms are obtained by expansion of the resummed expression. They
include all terms in Mellin space that are logarithmically enhanced at threshold, or that are constant. In
terms of the customary semi-inclusive deep-inelastic scattering variables x and z they include all double
distributions (that is, “plus” distributions and δ functions) in the partonic variables. We also investigate
corrections that are suppressed at threshold and we determine the dominant terms among these. Our
numerical estimates suggest much significance of the approximate NNLO terms, along with a reduction in
scale dependence.
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I. INTRODUCTION

Data taken in the semi-inclusive deep-inelastic scattering
(SIDIS) process lp → lhX offer powerful insights into
QCD and hadronic structure. Among their main uses
are extractions of fragmentation functions [1–5], (polar-
ized) parton distributions [6,7], or even combinations
thereof [8,9].
Today, modern “global” analyses of parton distributions

are customarily carried out at next-to-next-to-leading order
(NNLO) accuracy of QCD perturbation theory. Although
SIDIS might in principle offer important complementary
information on, for example, the flavor structure of the sea
quarks, the analyses usually do not include information
from SIDIS. One reason for this is the fact that the NNLO
partonic hard-scattering functions for SIDIS are not yet
available (a few first steps toward their calculation have
been taken in [10–12]), so that computations of the SIDIS
cross section are currently restricted to next-to-leading
order (NLO).
The electron ion collider (EIC) is now firmly on its path

toward construction [13]. The past few years have seen
tremendous progress on the development of the theoretical
framework for describing reactions relevant at the EIC.

Further improvements will likely occur in the near term.
Ideally, by the time the EIC will turn on, it would be hoped
that the precision of theoretical calculations should be on
par with what has by now been achieved for the LHC, with
NNLO corrections available for many observables, and
extractions of parton distributions and fragmentation
functions routinely at NNLO using numerically efficient
tools. As part of this, it is expected that also full
calculations of the NNLO corrections to SIDIS will
become available at some point. Until this is the case,
it is useful to provide accurate approximations of the
NNLO corrections for SIDIS. This is the main goal of this
paper. The results we obtain may be used to carry out
analyses of parton distributions and/or fragmentation
functions using SIDIS data at (approximate) NNLO
already now.
The strategy we will follow to derive approximate

NNLO corrections to SIDIS is to use QCD threshold
resummation. The partonic SIDIS process is characterized
by two “scaling” variables, x̂ ¼ −q2=2p · q≡Q2=2p · q
and ẑ ¼ p · pc=p · q, with q; p; pc the momenta of the
virtual photon, the incoming parton, and the fragmenting
parton, respectively. When x̂ and ẑ get close to 1, the
partonic hard-scattering functions develop large double-
logarithmic terms. These logarithms arise since large x̂; ẑ
corresponds to scattering near a phase space boundary,
where real-gluon emission is suppressed. At the kth order
of perturbation theory, the SIDIS quark hard-scattering

function contains terms of the form αksδð1 − x̂Þ
�
lnmð1−ẑÞ

1−ẑ

�
þ
,
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αksδð1 − ẑÞ
�
lnmð1−x̂Þ

1−x̂

�
þ
, with m ≤ 2k − 1, or “mixed” terms

αks
�
lnmð1−x̂Þ

1−x̂

�
þ

�
lnnð1−ẑÞ
1−ẑ

�
þ

with mþ n ≤ 2k − 2. Here the

subscript “þ” indicates the usual distribution. Threshold
resummation addresses these large logarithmic terms to all
orders in the strong coupling. The resummation for the case
of SIDIS was discussed in Refs. [14–17] to next-to-leading
logarithm (NLL), which amounts to the cases m ¼ 2k − 1;
2k − 2; 2k − 3 and mþ n ¼ 2k − 2; 2k − 3 above, respec-
tively. To NLO, this reproduces all double distributions, but
only the three leading towers of logarithms at NNLO and
beyond.
In the present paper we take a significant step further and

extend the work of [15,16] to next-to-next-to-leading
logarithm (NNLL). The close correspondence of SIDIS
with the Drell-Yan cross section is particularly useful in this
context [17], and so is the close correspondence between
the totally inclusive Drell-Yan cross section and the cross
section differential in rapidity [15,18,19]. We use results
available in the literature [20–23] to determine the two-loop
hard virtual contribution to the resummed expression for
SIDIS. The NNLL results may then be expanded to fixed
order, NNLO. The main important new result of our paper
is that we derive all double distributions in x̂ and ẑ in the
NNLO SIDIS quark coefficient function. We further
improve our results by deriving the dominant part of
NNLO contributions that are suppressed near threshold.
These terms are of the form lnmð1 − x̂Þ lnnð1 − ẑÞ, with
mþ n ¼ 3. We also show that the NNLO contributions
near threshold are the same for the spin-averaged and spin-
dependent cases. This is indeed expected for the terms with
þ -distributions, since these terms are associated with the
emission of soft gluons, which does not care about spin, but
it extends even to the threshold-suppressed contributions
that we derive.
Our results are readily suited for phenomenology for the

SIDIS cross section and spin asymmetry at (nearly) NNLO.
At the very least, they provide important benchmarks for
future full calculations of SIDIS at NNLO.
Our paper is organized as follows: Sec. II sets the stage

by addressing the perturbative SIDIS cross section. In
Sec. III we determine the threshold resummation for
SIDIS to NNLL. Special emphasis is put on the derivation
of the hard factor at two loops. Section IV addresses
the dominant threshold-suppressed contributions. Having
determined all ingredients, we finally present the NNLO
expansions in Sec. V. Section VI rounds off the paper by
presenting some basic phenomenological results at
approximate NNLO.

II. PERTURBATIVE SIDIS CROSS SECTION

We consider the SIDIS process lðkÞpðPÞ →
l0ðk0ÞhðPhÞX with the momentum transfer q ¼ k − k0. It
is described by the variables

Q2 ¼ −q2 ¼ −ðk − k0Þ2;

x ¼ Q2

2P · q
;

y ¼ P · q
P · k

;

z ¼ P · Ph

P · q
: ð1Þ

We have Q2 ¼ xys, with
ffiffiffi
s

p
the center-of-mass (c.m.)

energy for the incoming electron and proton. We may
write the spin-averaged SIDIS cross section as (see, for
example [15])

d3σh

dxdydz
¼ 4πα2

Q2

�
1þ ð1 − yÞ2

2y
F h

Tðx; z;Q2Þ

þ 1 − y
y

F h
Lðx; z; Q2Þ

�
; ð2Þ

where α is the fine structure constant and F h
T ≡ 2Fh

1 and
F h

L ≡ Fh
L=x are the transverse and longitudinal structure

functions. For collisions of longitudinally polarized
leptons and protons we obtain the helicity-dependent cross
section as

1

2

�
d3σhþþ
dxdydz

−
d3σhþ−

dxdydz

�
≡ d3Δσh

dxdydz

¼ 4πα2

Q2

1 − ð1 − yÞ2
2y

Gh
1ðx; z;Q2Þ;

ð3Þ

with Gh
1 ¼ 2gh1 in the more conventional notation of

Ref. [24]. The subscripts in the first expression denote
the helicities of the incoming lepton and proton.
Using factorization, the unpolarized structure functions

may be written as

F h
i ðx;z;Q2Þ¼

X
f;f0

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
Dh

f0

�
z
ẑ
;μF

�

×ωi
f0f

�
x̂; ẑ;αsðμRÞ;

μR
Q
;
μF
Q

�
f

�
x
x̂
;μF

�
; ð4Þ

for i ¼ T, L. Here fðξ; μFÞ is the distribution of parton
f ¼ q; q̄; g in the nucleon at momentum fraction ξ and
factorization scale μF, while Dh

f0 ðζ; μFÞ is the correspond-
ing fragmentation function for parton f0 going to the
observed hadron1 h. The functions ωi

f0f are the spin-
averaged hard-scattering coefficient functions. In the same
way, we have, in the spin-dependent case,

1We always use the same factorization scales in the initial and
the final state.
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Gh
1ðx; z; Q2Þ ¼

X
f;f0

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
Dh

f0

�
z
ẑ
; μF

�

× Δωf0f

�
x̂; ẑ; αsðμRÞ;

μR
Q

;
μF
Q

�
Δf
�
x
x̂
; μF

�
;

ð5Þ

with the proton’s spin-dependent parton distribution func-
tions Δf, and with spin-dependent hard-scattering func-
tions Δωf0f.
The ωi

f0f;Δωf0f can be computed in QCD perturbation
theory. Their expansions read

ωi
f0f ¼ ωi;ð0Þ

f0f þ αsðμRÞ
π

ωi;ð1Þ
f0f þ

�
αsðμRÞ

π

�
2

ωi;ð2Þ
f0f þOðα3sÞ;

ð6Þ
and

Δωf0f¼Δωð0Þ
f0fþ

αsðμRÞ
π

Δωð1Þ
f0fþ

�
αsðμRÞ

π

�
2

Δωð2Þ
f0fþOðα3sÞ:

ð7Þ
Here the strong coupling is evaluated at the renormalization
scale μR. To lowest order (LO), only the process γ�q → q
contributes, and we have

ωT;ð0Þ
qq ðx̂; ẑÞ ¼ Δωð0Þ

qq ðx̂; ẑÞ ¼ e2qδð1 − x̂Þδð1 − ẑÞ;
ωL;ð0Þ
qq ðx̂; ẑÞ ¼ 0; ð8Þ

with the quark’s fractional charge eq. Beyond LO, also
gluons in the initial or final state contribute. The first-order

coefficient functions ðΔÞωi;ð1Þ
f0f have been known for a long

time [24–29] (see also Ref. [15]).
In the following, it is convenient to take Mellin moments

of the SIDIS cross section, for which the convolutions in
Eqs. (4), (5) turn into ordinary products. We define

F̃ h
i ðN;M;Q2Þ≡

Z
1

0

dxxN−1
Z

1

0

dzzM−1F h
i ðx; z; Q2Þ; ð9Þ

and in the same way for Gh
1. One readily finds from (4)

F̃ h
i ðN;M;Q2Þ¼

X
f;f0

D̃h
f0 ðM;μFÞ

ω̃i
f0f

�
N;M;αsðμRÞ;

μR
Q
;
μF
Q

�
f̃ðN;μFÞ; ð10Þ

where

f̃ðN; μFÞ≡
Z

1

0

dxxN−1fðx; μFÞ;

D̃h
f0 ðM; μFÞ≡

Z
1

0

dzzM−1Dh
f0 ðz; μFÞ;

ω̃i
f0f

�
N;M; αsðμRÞ;

μR
Q

;
μF
Q

�
≡
Z

1

0

dx̂x̂N−1
Z

1

0

dẑẑM−1ωi
f0f

�
x̂; ẑ; αsðμRÞ;

μR
Q

;
μF
Q

�
: ð11Þ

We observe that the Mellin moments of the structure
functions are obtained from the moments of the parton
distribution functions and fragmentation functions, and the
double-Mellin moments of the partonic hard-scattering
functions. For the spin-dependent case we have in the
same way

G̃h
1ðN;M;Q2Þ ¼

X
f;f0

D̃h
f0 ðM; μFÞ

Δω̃f0f

�
N;M; αsðμRÞ;

μR
Q

;
μF
Q

�
Δf̃ðN; μFÞ;

ð12Þ

with the corresponding moments Δf̃ðN; μFÞ and
Δω̃f0fðN;M;…Þ of the polarized parton distributions
and hard-scattering functions, respectively.

For the perturbative expansions given in Eqs. (6), (7), we
have at lowest order according to (8)

ω̃T;ð0Þ
qq ðN;MÞ ¼ Δω̃ð0Þ

qq ðN;MÞ ¼ e2q;

ω̃L;ð0Þ
qq ðN;MÞ ¼ 0: ð13Þ

The corresponding moments of the NLO terms ωi;ð1Þ
f0f ;

Δωð1Þ
f0f may be found in Refs. [15,30]. In the following,

we address higher-order corrections to the hard-scattering
functions that arise at large values of x̂ and ẑ or, equiv-
alently, at large N and M.

III. THRESHOLD RESUMMATION

A. Structure of resummation for Drell-Yan and SIDIS

As has been discussed in [15,16] (and as is familiar from
numerous other situations in perturbative calculations of
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cross sections), in the “threshold limit” of large N and M
the perturbative QCD corrections for ω̃T

f0f and Δω̃f0f

develop large double-logarithmic corrections in lnðNÞ
and lnðMÞ. These corrections exponentiate and may thus
be controlled to all orders in the strong coupling, amount-
ing to a resummation of the logarithmic corrections. The
exponentiated result may be used to obtain approximate
fixed-order corrections to the SIDIS cross sections.
To achieve the resummation of the threshold logarithms

for SIDIS, we will use the methods developed in
Refs. [15,17,31,32]. Technically, the resummation for
SIDIS with its two Mellin variables N and M bears much
resemblance with that for the Drell-Yan or Higgs cross
sections at measured rapidity, which are also described by
two separate moments [14,18,19,33]. This is in contrast to
observables characterized by a single moment variable N,
such as the totally inclusive Drell-Yan cross section.
However, as was shown in Ref. [15] to NLL, there is a
simple correspondence between the threshold-resummed
expressions for the case with two Mellin moments, and
those with only a single moment. To state this correspon-
dence, let us consider the resummed qq̄ hard-scattering
function for the Drell-Yan process as an example. For the
totally inclusive cross section, we denote the function by
ω̃DY;incl
qq̄ ðNÞ, where N is the Mellin variable conjugate to

z≡Q2=ŝ, with Q the Drell-Yan pair mass and
ffiffiffî
s

p
the

partonic c.m. energy. For the rapidity-dependent cross
section, we have instead ω̃DY;rap

qq̄ ðN;MÞ, where N and M
are conjugate to

ffiffiffi
z

p
e�y, respectively, with y the lepton

pair’s rapidity. Near threshold one then has

ω̃DY;rap
qq̄ ðN;MÞ ¼ ω̃DY;incl

qq̄ ð
ffiffiffiffiffiffiffiffi
NM

p
Þ: ð14Þ

This correspondence is a consequence of kinematics in the
exponentiation of eikonal diagrams as discussed in
Refs. [15,17,34]. It applies to all color-singlet processes
and may therefore also be exploited for the SIDIS process.2

As a result, we may obtain resummed expressions for
SIDIS by considering those for the inclusive Drell-Yan
process, “rescaling” N to

ffiffiffiffiffiffiffiffi
NM

p
appropriately, and “cross-

ing” from timelike (Drell-Yan) kinematics to spacelike
(SIDIS) kinematics. This is the strategy we will pursue in
this paper.
There are various (of course, equivalent) ways of writing

the all-order expression for the resummed inclusive Drell-
Yan hard-scattering function near threshold. Here we will
follow the approaches developed in Refs. [31,32]. We have,
in the MS scheme,

ω̃DY;res
qq̄

�
N; αsðμRÞ;

μR
Q

;
μF
Q

�
¼ e2qHDY

qq̄

�
αsðμRÞ;

μR
Q

;
μF
Q

�
Δq

�
N; αsðμRÞ;

μR
Q

;
μF
Q

�

¼ e2qHDY
qq̄

�
αsðμRÞ;

μR
Q

;
μF
Q

�
Ĉqq

�
αsðμRÞ;

μR
Q

�
× exp

	Z
Q2

Q2=N̄2

dμ2

μ2

�
AqðαsðμÞÞ ln

�
μ2N̄2

Q2

�

−
1

2
D̂qðαsðμÞÞ

�
þ 2 ln N̄

Z
μ2F

Q2

dμ2

μ2
AqðαsðμÞÞ



; ð15Þ

where

N̄ ¼ NeγE ; ð16Þ

with the Euler constant γE. In Eq. (15) each of the functions
HDY

qq̄ ; Ĉqq; Aq; D̂q is a perturbative series in the strong
coupling with expansion coefficients that are collected in
Appendix A to the order required for resummation at
NNLL accuracy. The factor Δq in the first line contains all
soft-gluon radiation near threshold (both collinear and wide
angle), while the coefficient HDY

qq̄ collects hard virtual
corrections to the underlying LO process (here,
qq̄ → γ�), which are independent of the moment variable.
In the second line we have followed Refs. [31,32] to split
up the soft-gluon factor Δq into the term Ĉqq that is again
independent of N, and an exponential that contains all N
dependence. The latter is in fact entirely a function of lnðN̄Þ
and contains no further N-independent terms.

The NNLL resummation formula for the SIDIS trans-
verse structure function may now be written as follows:

ω̃T;res
qq

�
N;M;αsðμRÞ;

μR
Q

;
μF
Q

�

¼ e2qHSIDIS
qq

�
αsðμRÞ;

μR
Q

;
μF
Q

�

× Δq

� ffiffiffiffiffiffiffiffi
NM

p
; αsðμRÞ;

μR
Q

;
μF
Q

�
: ð17Þ

As anticipated, we have “rescaled” N to
ffiffiffiffiffiffiffiffi
NM

p
in the

moment-dependent part of the expression. The function Δq

2As discussed in Ref. [17], one may actually define a
simplified variant of SIDIS that is characterized by only a single
Mellin variable, conjugate to τSIDIS ¼ xz, with x, z defined in
Eq. (1).
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is otherwise identical to that for the Drell-Yan case in
Eq. (15), including the function Ĉqq. The hard coefficient
HSIDIS

qq is, however, different from HDY
qq̄ , owing to the

different kinematics of the two processes. It will be derived
in the next subsection. Inserting Δq from (15) into Eq. (17)
we obtain

ω̃T;res
qq

�
N;M; αsðμRÞ;

μR
Q

;
μF
Q

�
¼ e2qHSIDIS

qq

�
αsðμRÞ;

μR
Q

;
μF
Q

�
Ĉqq

�
αsðμRÞ;

μR
Q

�

× exp

	Z
Q2

Q2=ðN̄ M̄Þ

dμ2

μ2

�
AqðαsðμÞÞ ln

�
μ2N̄ M̄
Q2

�
−
1

2
D̂qðαsðμÞÞ

�

þ ln N̄
Z

μ2F

Q2

dμ2

μ2
AqðαsðμÞÞ þ ln M̄

Z
μ2F

Q2

dμ2

μ2
AqðαsðμÞÞ



; ð18Þ

where [see (16)] M̄ ¼ MeγE . We note that the same
resummation formula applies to the spin-dependent case:

Δω̃res
qq ¼ ω̃T;res

qq : ð19Þ

B. The hard factor HSIDIS
qq

As already mentioned, the factor HSIDIS
qq is derived from

the finite part of the virtual corrections to the LO process,
which for SIDIS is qγ� → q. Since we want to derive the
resummed formula to NNLL (and ultimately the near-
threshold NNLO corrections to SIDIS), we need HSIDIS

qq to

two loops. The relevant two-loop virtual corrections are
known in terms of the “quark form factor” computed to two
and even three loops in Refs. [22,23,35]. In case of the
spacelike kinematics (q2 < 0) relevant for SIDIS the
renormalized spacelike quark form factor is given to two
loops in dimensional regularization with d ¼ 4 − 2ϵ space-
time dimensions as [22,23]

Fqðq2Þ ¼ Fð0Þ
q þ αs

π
Fð1Þ
q þ

�
αs
π

�
2

Fð2Þ
q þOðα3sÞ; ð20Þ

where

Fð0Þ
q ¼ 1;

Fð1Þ
q ¼ CF

�
−

1

2ϵ2
−

3

4ϵ
þ π2

24
− 2þ

�
7ζð3Þ
6

þ π2

16
− 4

�
ϵþ

�
7ζð3Þ
4

þ 47π4

2880
þ π2

6
− 8

�
ϵ2 þOðϵ3Þ

�
;

Fð2Þ
q ¼ C2

F

�
1

8ϵ4
þ 3

8ϵ3
þ
�
41

32
−
π2

48

�
1

ϵ2
þ
�
221

64
−
4ζð3Þ
3

�
1

ϵ
−
29ζð3Þ

8
−
13π4

576
þ 17π2

192
þ 1151

128

�

þ CFCA

�
11

32ϵ3
þ
�
1

9
þ π2

96

�
1

ϵ2
þ
�
13ζð3Þ
16

−
11π2

192
−

961

1728

�
1

ϵ
þ 313ζð3Þ

144
þ 11π4

720
−
337π2

1728
−
51157

10368

�

þ CFNf

�
−

1

16ϵ3
−

1

36ϵ2
þ
�
65

864
þ π2

96

�
1

ϵ
þ ζð3Þ

72
þ 23π2

864
þ 4085

5184

�
þOðϵÞ; ð21Þ

with Nf the number of flavors and CF ¼ 4=3; CA ¼ 3. In
these expressions we have kept terms of order ϵ and ϵ2 in
the one-loop result since these turn out to make finite
contributions in the end.
As shown in Refs. [20,21], the hard coefficient may be

extracted from the form factor in the following way.
Applied to the case of SIDIS we have from [21]

HSIDIS
qq ðαsðQÞÞ ¼ j½1 − Ĩqðϵ; αsðQÞÞ�Fqj2; ð22Þ

where Ĩq is an operator that removes the poles of the form
factor and makes the necessary soft and collinear adjust-
ments needed to extract the hard coefficient. It is given in
[21] in terms of a convenient all-order form:

1 − Ĩqðϵ; αsÞ ¼ exp fRqðϵ; αsÞ − iΦqðϵ; αsÞg; ð23Þ

with functionsRq andΦq that each are perturbative series. The
phase Φq does not contribute in our case since we take
the absolute square in Eq. (22). The function Rq effects the
cancelation of infrared divergences from the quark form factor.
It can be expressed in terms of a soft and a collinear part:

Rqðϵ; αsÞ ¼ Rsoft
q ðϵ; αsÞ þ Rcoll

q ðϵ; αsÞ; ð24Þ

where for NNLL accuracy
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Rsoft
q ðϵ; αsÞ ¼ CF

�
αs
π
Rsoftð1Þ
q ðϵÞ þ

�
αs
π

�
2

Rsoftð2Þ
q ðϵÞ þOðα3sÞ

�
;

Rcoll
q ðϵ; αsÞ ¼

αs
π
Rcollð1Þ
q ðϵÞ þ

�
αs
π

�
2

Rcollð2Þ
q ðϵÞ þOðα3sÞ; ð25Þ

with

Rsoftð1Þ
q ðϵÞ ¼ 1

2ϵ2
−
π2

8
;

Rsoftð2Þ
q ðϵÞ ¼ −

3πb0
8ϵ3

þ 1

8ϵ2
Að2Þ
q

CF
−

1

16ϵ

�
CA

�
7ζð3Þ þ 11π2

36
−
202

27

�
þ Nf

�
28

27
−
π2

18

��

þ CA

�
−
187ζð3Þ
144

þ π4

288
−
469π2

1728
þ 607

648

�
þ Nf

�
17ζð3Þ
72

þ 35π2

864
−

41

324

�
;

Rcollð1Þ
q ðϵÞ ¼ 3

4ϵ
CF;

Rcollð2Þ
q ðϵÞ ¼ −

3πb0
8ϵ2

CF þ 1

8ϵ

�
C2
F

�
6ζð3Þ − π2

2
þ 3

8

�
þ CACF

�
−3ζð3Þ þ 11π2

18
þ 17

24

�
þCFNf

�
−

1

12
−
π2

9

��
: ð26Þ

The coefficient b0 can be found in Appendix A. Inserting all terms into Eq. (22) and expanding in αs, all poles in powers of
1=ϵ cancel, and we find for an arbitrary renormalization scale μR, but for μF ¼ Q:

HSIDIS
qq

�
αsðμRÞ;

μR
Q

; 1

�
¼ 1þ αsðμRÞ

π
HSIDIS;ð1Þ

qq þ
�
αsðμRÞ

π

�
2

HSIDIS;ð2Þ
qq þOðα3sÞ; ð27Þ

with

HSIDIS;ð1Þ
qq ¼ CF

�
−4 −

π2

6

�
;

HSIDIS;ð2Þ
qq ¼ CF

�
−4 −

π2

6

�
πb0 ln

μ2R
Q2

þ C2
F

�
−
15ζð3Þ

4
þ 61π2

48
þ 511

64
−
π4

60

�
þ CFCA

�
7ζð3Þ
4

þ 3π4

80
−
1535

192
−
403π2

432

�

þ CFNf

�
ζð3Þ
2

þ 29π2

216
þ 127

96

�
: ð28Þ

The factorization scale dependence of HSIDIS
qq is trivially

determined by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution kernels of the parton distributions
and fragmentation functions and will be addressed later.
With all ingredients to NNLL resummation at hand we

are now also in the position to expand the hard-scattering
function in (18) to NNLO [that is, Oðα2sÞ] accuracy. This
expansion will be carried out in Sec. V. Before turning to it,
we will discuss another class of corrections near threshold
that are suppressed with respect to the terms addressed by
resummation, but that can be significant as well in
phenomenological studies.

IV. SUBLEADING CONTRIBUTIONS NEAR
THRESHOLD

All contributions contained in Eq. (18) are leading near
threshold in the sense that they carry powers of lnðNÞ or

lnðMÞ, never accompanied by any suppression by 1=N or
1=M. Such terms are therefore often referred to as leading-
power (LP) contributions. For the NNLL resummed cross
section the LP terms contain the five “towers” αnsLm,
with m ∈ f2n;…; 2n − 4g, where Lm can be any product
of (in total) m logarithms in N or M. The LP terms
correspond to distributions (“þ” -distributions and δ
functions) in x̂; ẑ space. In the full cross section there
are, of course, also terms that are suppressed near thresh-
old. The most important among these are terms still
containing logarithms, but suppressed by a single
power in 1=N or 1=M. Such terms are known as next-
to-leading power (NLP) corrections. Their structure is
αnsLm=N or αnsLm=M, with m ∈ f2n − 1;…; 2n − 3g, cor-
responding to terms of the form αnslm in x̂; ẑ space, where
lm is a product of lnð1 − x̂Þ and lnð1 − ẑÞ with total
power m.
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The role of NLP terms in color-singlet hard-
scattering cross sections has been addressed early on in
Refs. [31,36–39]. In recent years, the understanding of such
corrections has further advanced, and numerous studies
have been carried out [40–63] that address the NLP
contributions from various angles, such as corrections to
the eikonal approximation, resummations of NLP terms to
leading logarithm and beyond, and generalized factoriza-
tion theorems at NLP. For especially simple processes such
as the fully inclusive Drell-Yan process, the results of these
studies are quite mature. For processes described by two
scaling variables (or, two Mellin moments), as relevant
for SIDIS, comparably fewer studies are available [58,63].
In the present study we will derive the dominant NLP

contributions at NNLL which, as described above, are of
the form αnsL2n−1=N or αnsL2n−1=M. In terms of the NNLO
expansion, these are the terms α2sL3=N or α2sL3=M,
where L ∈ fln3ðNÞ; ln2ðNÞ lnðMÞ; lnðNÞ ln2ðMÞ; ln3ðMÞg.
As discussed in [31,36,38], these dominant NLP terms

may be incorporated to all orders via a particular treatment
of the evolution of the parton distributions and fragmenta-
tion functions.3 To this end, we consider a specific SIDIS
quark channel in the spin-averaged case and include the
parton distribution and fragmentation function. From
Eqs. (10), (18) the corresponding resummed contribution
to the transverse SIDIS structure function in moment space
may be written as

q̃ðN; μFÞD̃h
qðM; μFÞω̃T;res

qq

�
N;M; αsðμRÞ;

μR
Q

;
μF
Q

�

¼ e2qHSIDIS
qq

�
αsðμRÞ;

μR
Q

;
μF
Q

�
exp

	
−2
Z

Q2

μ2F

dμ2

μ2
Pq;δðαsðμÞÞ



Ĉqq

�
αsðμRÞ;

μR
Q

�

× exp

	Z
Q2

Q2=ðN̄ M̄Þ

dμ2

μ2

�
AqðαsðμÞÞ ln

�
μ2

Q2

�
þ 2Pq;δðαsðμÞÞ −

1

2
D̂qðαsðμÞÞ

�


× exp

	Z
Q2=ðN̄ M̄Þ

μ2F

dμ2

μ2
½−AqðαsðμÞÞ ln N̄ þ Pq;δðαsðμÞÞ�



q̃ðN; μFÞ

× exp

	Z
Q2=ðN̄ M̄Þ

μ2F

dμ2

μ2
½−AqðαsðμÞÞ ln M̄ þ Pq;δðαsðμÞÞ�



D̃h

qðM; μFÞ; ð29Þ

where the function Pq;δ corresponds to the coefficient of
δð1 − xÞ in the quark DGLAP splitting function and is also
given in Appendix A.
We make the following observations concerning

Eq. (29). We obviously have simply added and subtracted
the terms involving Pq;δ in the exponent, so that they
cancel. However, each of the individual terms serves a
separate purpose. The Pq;δ term in the second line, when
combined with HSIDIS

qq ðαsðμRÞ; μR=Q; μF=QÞ, removes the
factorization scale dependence of the SIDIS hard function,
so that we end up with HSIDIS

qq ðαsðμRÞ; μR=Q; 1Þ, precisely
as given in Eq. (28). Thanks to factorization, this must hold

true to all orders of perturbation theory. The other two Pq;δ

terms in Eq. (29) combine with the terms Aq ln N̄ or Aq ln M̄
to reproduce the quark-to-quark splitting function in the
large-N or large-M limit, at leading power. As a result,
the last two exponential factors simply represent the
DGLAP evolutions of the quark parton distribution func-
tion and the fragmentation function, respectively, from
scale μF to scale Q=

ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
. At leading power, this

evolution is entirely diagonal, and evolution of parton
distributions (spacelike) and of fragmentation functions
(timelike) is identical. We can therefore carry out this
evolution and write Eq. (29) as

q̃ðN; μFÞD̃h
qðM; μFÞω̃T;res

qq

�
N;M; αsðμRÞ;

μR
Q

;
μF
Q

�

¼ e2qHSIDIS
qq

�
αsðμRÞ;

μR
Q

; 1

�
Ĉqq

�
αsðμRÞ;

μR
Q

�
q̃ðN;Q=

ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
ÞD̃h

qðM;Q=
ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
Þ

× exp
	Z

Q2

Q2=ðN̄ M̄Þ

dμ2

μ2

�
AqðαsðμÞÞ ln

�
μ2

Q2

�
þ 2Pq;δðαsðμÞÞ −

1

2
D̂qðαsðμÞÞ

�

: ð30Þ

3For an alternative, but equivalent, approach in x̂; ẑ space, see Ref. [54].
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Again, this is correct to all orders. The trick now to obtain
the dominant NLP corrections is to evolve the parton
distributions and fragmentation functions from scale
Q=

ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
back to scale μF, but now using the DGLAP

evolution including NLP corrections [31,36,38]. The latter
are readily obtained from the 1=N or 1=M terms in the
spacelike or timelike splitting functions, respectively. As it
turns out, for the dominant NLP terms, only the 1=N (or
1=M) terms in the leading-order splitting kernels need to
be taken into account. The related terms in the higher-order
splitting functions lead to contributions that have fewer
logarithms. Let us for the moment continue to consider
only diagonal evolution, corresponding to the SIDIS quark
channel. We write the standard LO quark-to-quark splitting
function at large values of the moment variable as

PN
qq ¼

αs
π

�
−Að1Þ

q ln N̄ þ Pð1Þ
q;δ þ

Qð1Þ
q

N

�
þOðα2sÞ;

¼ αs
π
CF

�
− ln N̄ þ 3

4
−

1

2N

�
þOðα2sÞ: ð31Þ

The term proportional toQð1Þ
q is the NLP correction. At this

order, the spacelike and timelike quark-to-quark splitting
functions are identical so that also their NLP corrections are
the same. The relation between q̃ðN;Q=

ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
Þ and

q̃ðN; μFÞ including the dominant NLP correction is now
given by

q̃

�
N;

Qffiffiffiffiffiffiffiffiffi
N̄ M̄

p
�

¼ exp

	Z
Q2=ðN̄ M̄Þ

μ2F

dμ2

μ2

�
−AqðαsðμÞÞ ln N̄

þ Pq;δðαsðμÞÞ þ
αsðμÞ
π

Qð1Þ
q

N

�

q̃ðN; μFÞ;

ð32Þ

and in the same way for the quark fragmentation functions.

As we discussed, only the LO term withQð1Þ
q is relevant for

the dominant NLP corrections. The terms with Aq and Pq;δ

remain, of course, the full all-order functions, needed to

second order (NLO) for our purpose of obtaining NNLL/
NNLO accuracy. We see from Eq. (32) that the dominant
NLP corrections in the quark channel are obtained by
multiplying the full resummed expression in Eq. (29) by
the two factors

exp

	
−
Z

Q2=ðN̄ M̄Þ

μ2F

dμ2

μ2
αsðμÞ
π

CF

2N




× exp

	
−
Z

Q2=ðN̄ M̄Þ

μ2F

dμ2

μ2
αsðμÞ
π

CF

2M



; ð33Þ

corresponding to the NLP terms related to diagonal evolution
of the parton distribution and the fragmentation function.
As is well known, once the NLP terms are included, the

evolution of parton distributions and fragmentation func-
tions also involves quark-gluon mixing and hence is no
longer diagonal, taking instead a matrix form. Transitions
among quarks of different flavor turn out to be suppressed
as 1=N2 or higher, at least through NLO in the evolution
kernels which is all we need here. Including the dominant
NLP corrections, the full evolution equations for the parton
distributions may be cast into the form

d
ln μ2

�
q̃ðN; μÞ
g̃ðN; μÞ

�
¼ PN

s ðαsðμÞÞ
�
q̃ðN; μÞ
g̃ðN; μÞ

�
ð34Þ

to all orders, where PN
s ðαsÞ denotes the NLO matrix of

spacelike splitting functions in moment space, which may
be found in [64]. A corresponding equation holds for the
fragmentation functions, with however the timelike split-
ting functions PM

t [64].
It is interesting to explore the implications of the singlet

mixing and to see what NLP effects it generates beyond the
quark-to-quark channel. We will do this as part of the
NNLO expansion to be discussed in the next section. For
this expansion we do not need to fully solve the evolution
equation (although this could be done using the techniques
of Ref. [27]). Instead, it suffices to just solve the equation to
second order in the strong coupling, which may be
achieved by iterating the kernel:

 
q̃ðN;Q=

ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
Þ

g̃ðN;Q=
ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
Þ

!
¼
�
1þ

Z Q2

N̄ M̄

μ2F

dq2

q2
PN

s ðαsðqÞÞ þ
Z Q2

N̄ M̄

μ2F

dq2

q2
PN

s ðαsðqÞÞ
Z q2

N̄ M̄

μ2F

dq̃2

q̃2
PN

s ðαsðq̃ÞÞ
��

q̃ðN; μFÞ
g̃ðN; μFÞ

�
; ð35Þ

and similarly for the fragmentation functions. This expression
may then straightforwardly be expanded further in αsðμRÞ. If
we keep just the diagonal (quark-to-quark) contributions and
their LPand lowest-orderNLP parts,we recover theNLOand
NNLO terms already contained in Eq. (32).
In the spin-dependent case the spacelike matrix in

Eq. (34) is to be replaced by the polarized one,

ΔPN
s ðαsÞ, given to NLO in [65–67]. The helicity evolution

kernels ΔPN
s ðαsÞ are identical to the unpolarized ones in

the large-N limit at LP. This equality extends even to the
first NLP (1=N) corrections, except for a difference ∝
lnðNÞ=N in the NLO gq splitting function [68]. This
difference, however, does not affect the dominant NLP
corrections for SIDIS at NNLO. We thus conclude that the
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approximate NNLO corrections to be presented next apply
to both the spin-averaged and the spin-dependent hard-
scattering functions.

V. EXPANSION TO NNLO

We are now ready to present the NNLO [Oðα2sÞ]
expansion for the SIDIS quark hard-scattering function
near threshold, which is the main result of this paper.
We insert the NLP evolved parton distributions and

fragmentation functions of Eq. (32) into Eq. (30) and
expand. To write our formulas compactly, we introduce

L≡ 1

2
ðlnðN̄Þ þ lnðM̄ÞÞ: ð36Þ

We then find for the transverse hard-scattering function in
the quark channel:

ω̃T
qq

�
N;M; αsðμRÞ;

μR
Q

;
μF
Q

�
¼ 1þ αsðμRÞ

π
ω̃T;ð1Þ
qq þ

�
αsðμ2RÞ

π

�
2

ω̃T;ð2Þ
qq þOðα3sÞ; ð37Þ

where

ω̃T;ð1Þ
qq

�
N;M;

μR
Q

;
μF
Q

�
¼ e2qCF

	
2L2 þ π2

6
− 4þ

�
−
3

2
þ 2L

�
ln
μ2F
Q2

þ L
�
1

N
þ 1

M

�

: ð38Þ

The last term is the NLP contribution. We have kept “mixed” NLP corrections of the form lnðN̄Þ=M and lnðM̄Þ=N.
Equation (38) reproduces the dominant part of the full NLO results given in [15,30], including the NLP terms. Its LP part is
consistent with the results based on NLL threshold resummation presented in [15].
For the approximate NNLO terms we find

1

e2q
ω̃T;ð2Þ
qq

�
N;M;

μR
Q

;
μF
Q

�
¼ 2C2

FL
4 þ 4CFL3

�
π

3
b0 þ CF ln

μ2F
Q2

�

þ CFL2

�
CF

�
−8þ π2

3
þ 2ln2

μ2F
Q2

− 3 ln
μ2F
Q2

�
þ
�
67

18
−
π2

6

�
CA −

5

9
Nf

�

þ CFL
��

101

27
−
7

2
ζð3Þ

�
CA −

14

27
Nf þ CF ln

μ2F
Q2

�
−8þ π2

3
− 3 ln

μ2F
Q2

�

þ
��

67

18
−
π2

6

�
CA −

5

9
Nf

�
ln
μ2F
Q2

− πb0ln2
μ2F
Q2

�

þ C2
F

�
511

64
−
π2

16
−
π4

60
−
15

4
ζð3Þ þ ln

μ2F
Q2

�
9

8
ln
μ2F
Q2

þ 93

16
− 3ζð3Þ

��

þ CFCA

�
−
1535

192
−
5π2

16
þ 7π4

720
þ 151

36
ζð3Þ

�
þ CFNf

�
127

96
þ π2

24
þ ζð3Þ

18

�

þ 3

4
CFπb0ln2

μ2F
Q2

−
CFπ

3b0
3

ln
μ2F
Q2

þ CF

�
−
17

48
CA þ 3

2
ζð3ÞCA þ Nf

24

�
ln
μ2F
Q2

þ πb0 ln
μ2R
Q2

1

e2q
ω̃T;ð1Þ
qq

�
N;M;

μR
Q

;
μF
Q

�
þ 2C2

FL
3

�
1

N
þ 1

M

�
: ð39Þ

Again, the last term is the dominant NLP correction. Here,
two of the three powers of L arise from the LP part in the
first line of Eq. (38), which then multiplies the NLO
expansion of the NLP factor given in Eq. (33).
The results for the spin-dependent quark hard-scattering

function near threshold are identical:

Δω̃ðkÞ
qq

�
N;M;

μR
Q

;
μF
Q

�
¼ ω̃T;ðkÞ

qq

�
N;M;

μR
Q

;
μF
Q

�
; ð40Þ

for k ¼ 0, 1, 2 and including NLP corrections. In fact, this
will arguably hold to all orders of perturbation theory.
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So far we have only addressed the q → q channel. As we
discussed in the previous section, the off-diagonal evolu-
tion of parton distributions and fragmentation functions to
NLP induces quark-gluon mixing. As a result, once we
insert the NLP singlet evolution in (35) into the cross
section (30), we also obtain terms with q̃ðN; μFÞD̃gðM; μFÞ
or g̃ðN; μFÞD̃qðM; μFÞ. Evidently, these approximate the
quark-to-gluon and gluon-to-quark channel contributions
to SIDIS. The terms are of course suppressed by 1=N or
1=M, but they also carry logarithmic enhancement. We
find, at NLO:

ω̃T;ð1Þ
gq

�
N;M;

μR
Q

;
μF
Q

�
¼ −e2qCF

L
M

;

ω̃T;ð1Þ
qg

�
N;M;

μR
Q

;
μF
Q

�
¼ −e2qTR

L
N
; ð41Þ

with TR ¼ 1=2. These expressions reproduce the corre-
sponding full NLO transverse hard-scattering functions of
Refs. [15,30] at large moment variable. Again the contri-
butions to the respective spin-dependent hard-scattering

functionsΔω̃ð1Þ
gq ;Δω̃ð1Þ

qg are identical to the ones given in (41).
Unfortunately, the evolutionmethod thatwehaveusedhere

to obtain the NLP corrections fails for the q → g and g → q
channels beyond NLO. We have found this by inspecting
related results for the Drell-Yan process at measured rapidity.
Here, evolution gives the approximate result

ω̃DY;ð2Þ
qg ðN;MÞjevol¼−

TRL
2M

ð4CFL2−ðCF−CAÞ lnN̄ lnM̄Þ;
ð42Þ

whereas the correct result is known to be [69–75]

ω̃DY;ð2Þ
qg ðN;MÞ ¼ −

TRL
2M

ð4CFL2 − ðCF − CAÞ ln N̄ ln M̄Þ

þ ðCF − CAÞ
ln3 M̄
48M

: ð43Þ

The difference of the two results is

ω̃DY;ð2Þ
qg ðN;MÞ − ω̃DY;ð2Þ

qg ðN;MÞjevol ¼ ðCF − CAÞ
ln3ðM̄Þ
48M

:

ð44Þ

Interestingly, it depends only on one of the two Mellin
variables. In the inclusive case, whereN ¼ M, this difference
may be understood from Ref. [48] where the all-order
resummation of the leading large-N contributions to the
quark-gluon contribution to inclusive Drell-Yan was derived.
In the light of this, it is clear that evolution cannot correctly
produce the leading NNLO terms for the SIDIS q → g and
g → q channels. When expanding our corresponding results,
we obtain

ω̃T;ð2Þ
gq ðN;MÞjevol ¼ −

CFL
2M

ð4CFL2 − ðCF − CAÞ lnðN̄Þ lnðM̄ÞÞ;

ω̃T;ð2Þ
qg ðN;MÞjevol ¼ −

TRL
2N

ð4CFL2 − ðCF − CAÞ lnðN̄Þ lnðM̄ÞÞ: ð45Þ

We note that the 1=N and 1=M terms in the NLO splitting
functions contribute here. As already stated, the results in
Eq. (45) are not expected to be complete, although it appears
likely that a term identical to the one given in Eq. (44) (or
with M → N) would need to be added. It would be highly
desirable to extend thework of [48] to the Drell-Yan process
at measured rapidity and to SIDIS. This is of course beyond
the scope of the present work. For now we therefore refrain
from encouraging use of Eq. (45) in any phenomenological
analysis. Our NNLO approximations given in this paper
therefore only apply to the quark channel.
Appendix B presents our NLO and NNLO near-thresh-

old results as functions of x̂ and ẑ. These are obtained by a
straightforward inverse transform of the above Mellin-
space results.

VI. PHENOMENOLOGICAL PREDICTIONS

We now turn to a few illustrative phenomenological
applications of our approximate NNLO results. Here we

only consider the unpolarized transverse structure function.
We reserve a more detailed numerical analysis to future
work [76], in which we will also investigate the phenom-
enology of NNLL resummation.
We first need togoback fromMellin space tox, z space.This

is achieved by an inverse double-Mellin transform. The
structure function F h

i ðx; z; Q2Þ can be recovered from its
moments F̃ h

i ðN;M;Q2Þ given inEq. (9) in the followingway:

F h
i ðx;z;Q2Þ¼

Z
CN

dN
2πi

x−N
Z
CM

dM
2πi

z−MF̃ h
i ðN;M;Q2Þ; ð46Þ

where CN and CM denote integration contours in the complex
plane, one for each Mellin inverse. They have to be chosen in
such a way that all singularities of the integrand in N lie
to the left ofCN , and likewise for the poles inM and the contour
CM. In the actual calculation, we obtained excellent
numerical convergence by setting N ¼ cN þ ζeiϕN and M ¼
cM þ ξeiϕM (with ζ; ξ ∈ ½0;∞� as contour parameters), where
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cN ¼ 1.8 and cM ¼ 3.3 and where we tilt each contour by an
angle ϕN ¼ ϕM ¼ 3π=4.
To be consistent with the NNLO approximation of the

hard-scattering functions that we make, we also need to use
NNLO parton distribution functions and fragmentation
functions. For the former, we choose the CT18 NNLO
set of Ref. [77], from which we also adopt the NNLO
strong coupling. NNLO analyses of fragmentation func-
tions are still scarce [2,78], partly because only the process
eþe− → hþ X is available at NNLO. For the present study
we use the set of Ref. [2]. In order to be able to examine the
sizes of the various corrections to the cross section, we stick
to the NNLO sets of parton distributions and fragmentation
functions also when computing LO or NLO results. Unless
stated otherwise, we choose the renormalization and
factorization scales as μR ¼ μF ¼ Q. Technically, in order
to obtain Mellin moments of the parton distributions and
fragmentation functions as needed for Eq. (10) in (46), we
perform fits of a functional form PðxÞ to them, so that the
Mellin moments of PðxÞ can be taken analytically. We have
checked that our fits are accurate to better than 1% over the
kinematic domain we are interested in.
We present results appropriate for the COMPASS experi-

ment at CERN with c.m. energy
ffiffiffi
s

p ¼ 17.3 GeV, and for
the EIC with

ffiffiffi
s

p ¼ 100 GeV. For both, we consider the
process lp → lπþX. We compute the contribution by the
transverse structure function to the SIDIS cross section,
using Eq. (2) and dropping the longitudinal part. We focus
on the z dependence of the cross section and integrate over
y ∈ ½0.1; 0.9� and x ∈ ½0.1; 0.8�. Note that we choose both x
and z to be rather large so that we are safely in the threshold
regime. Because of the relation Q2 ¼ xys, our choice of
kinematics implies Q2 > 3 GeV2 for COMPASS, and
Q2 > 100 GeV2 for the EIC. We furthermore require
W > 7 GeV, where W2 ¼ Q2ð1 − xÞ=xþm2

p.

We note in passing that SIDIS experiments typically
quote hadron multiplicities, which are ratios of the SIDIS
cross section over the fully inclusive DIS one, for given
kinematics. For the present paper we are interested in the
actual NNLO corrections to SIDIS, so we do not compute
multiplicities here. It would be straightforward to do this by
computing DIS to full NNLO.
We start by examining NLO, where the exact answer is

of course known. In the following we normalize all results
by the LO cross section. The left part of Fig. 1 presents
results for COMPASS kinematics. The black line shows
the ratio of the full transverse NLO cross section for the
q → q channel to the LO one. As one can see, the NLO
corrections show the expected strong increase toward
large values of z. The dashed blue line shows the LP
approximation to the NLO cross section, based on
Eq. (38) but without the NLP term in the second line.
The result shows overall good agreement with full NLO,
indicating the dominance of the threshold regime, but it
has a nearly constant difference to the exact result. The
agreement with full NLO becomes even much better when
the dominant NLP corrections in the second line of
Eq. (38) are included, as shown by the solid blue line.
Clearly the full NLO is excellently approximated by this
near-threshold result over the whole range in z, and
especially so toward large z.
It is interesting to compare the NLO approximations

based on the Mellin-space calculation (as shown so far) and
on Eq. (B3) in x̂; ẑ space. The two approximations differ by
terms that are even more suppressed than the NLP terms.
Nevertheless, their numerical difference is quite large, with
the Mellin result yielding a far better approximation to the
exact NLO result than the approximate x̂; ẑ space result. We
thus conclude that Mellin space appears better suited for
obtaining accurate approximations to the full result. Similar

FIG. 1. Left: ratios of NLO results for the unpolarized lp → lπþX transverse cross section in the q → q channel to the LO cross
section, for COMPASS kinematics with x ∈ ½0.1; 0.8�. The black solid line shows the exact NLO result from Ref. [30], the dashed blue
line the LP approximation in Mellin space, and the solid blue line the LPþ NLP approximation. The red dash-dotted line shows the
approximation obtained by Eq. (B3) in x̂; ẑ space. Right: same for EIC kinematics.
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conclusions were obtained for other processes, such as for
Higgs boson production [31].
The right part of Fig. 1 shows corresponding results for

the EIC. They have a very similar trend as our COMPASS
results, with a slightly reduced size of the corrections near
threshold. This is expected due to the larger Q2 relevant at
the EIC. Again, the NLO corrections are extremely well
reproduced by the approximate ones generated by Mellin-
space LPþ NLP resummation.
The findings in Fig. 1 provide confidence that our

Mellin-space NNLO expansions based on resummation
also provide an accurate approximation to the full NNLO
corrections for the q → q channel. Figure 2 presents our
NNLO results, again normalized to LO. Here we have
included the exact NLO part of the cross section, so that
the approximation only applies to the NNLO terms. The

dashed line shows the result based on the LP terms at
NNLO, while for the solid one we have included the
dominant NLP terms as well. We also display again the
curves for full NLO that were already shown in Fig. 1. One
can see that the NNLO corrections become sizable as
z → 1, where the threshold logarithms grow in size. As in
the NLO case, there is a rather significant positive con-
tribution to the cross section by the NLP terms, both for
COMPASS and the EIC.
Inclusion of the dominant NNLO terms is expected to

reduce the dependence of the cross section on the renorm-
alization and factorization scales. Figure 3 shows the
variation of the LO, full NLO and the (approximate)
NNLO cross sections with scale. Here we vary independ-
ently μF ¼ Q=2; Q; 2Q and μR ¼ Q=2; Q; 2Q. Among the
nine combinations this results in, we discard the two with

FIG. 2. Left: ratios of Mellin-space NNLO results for the unpolarized transverse cross section in the q → q channel to the LO cross
section, with NLP corrections (blue solid) and without NLPs (blue dashed), for lp → lπþX at COMPASS. For comparison we also
show the full NLO result again. Right: same for EIC kinematics.

FIG. 3. Left: scale dependence of the NLO and approximate NNLO cross sections for COMPASS kinematics. We have varied μF and
μR as described in the text. We have used Q2 > 5 GeV2 here. Right: same for EIC kinematics.
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very disparate values, that is, μF ¼ Q=2; μR ¼ 2Q
and μF ¼ 2Q; μR ¼ Q=2. We then take the envelope
of the remaining seven results. The figure shows the
resulting bands. We present them in terms of the ratio
ðdσðμF; μRÞ − dσðμF ¼ μR ¼ QÞÞ=dσðμF ¼ μR ¼ QÞ, so
that the cross section with μF ¼ μR ¼ Q always produces
the zero line in the plot. The result for COMPASS4 (left
figure) shows that around z ¼ 0.1 the NNLO scale uncer-
tainty is large, but does improve significantly toward higher
z where it becomes better than the NLO one. It does,
however, remain non-negligible even at large z. The main
patterns are reproduced also for EIC kinematics (right part
of the figure); however, here the scale uncertainty is overall
very small at NNLO, showing a band that is much narrower
than the NLO one at medium to large z. We note that we
have included the NLO contributions by the qg subpro-
cesses in the results shown in the figure, whose effects are
however relatively small.
We finally note that we do not consider the SIDIS spin

asymmetry here. Since the approximate NNLO corrections
are identical for the spin-averaged and spin-dependent cross
sections (even for the dominant NLP terms), the asymmetry
is expected to be affected very little by the corrections. This
was indeed already observed in the NLL study [16].

VII. CONCLUSIONS AND OUTLOOK

We have presented approximate next-to-next-to-leading
order corrections to semi-inclusive DIS, lp → lhX. These
corrections apply to the quark channel and are based on the
threshold resummation formalism. We have first deter-
mined all ingredients for threshold resummation for SIDIS
at next-to-next-to-leading logarithmic accuracy, extending
previous work by one logarithmic order. As SIDIS is
characterized by two “scaling” variables, x̂ ¼ Q2=2p · q
and ẑ ¼ p · pc=P · q, the moment-space resummation is
naturally formulated in terms of two Mellin moments N
and M. Although these are separate variables, the SIDIS
resummation formula may be obtained by that for the
inclusive Drell-Yan cross section by a simple rescaling
N →

ffiffiffiffiffiffiffiffi
NM

p
, up to differences associated with the fact that

the virtual photon in SIDIS is spacelike. These differences
are accounted for by the hard factor in the resummed SIDIS
cross section, which is related to the spacelike quark form
factor rather than the timelike one contributing to Drell-
Yan. We have subsequently expanded the resummed
expressions to Oðα2sÞ, to obtain the NNLO corrections.
To further improve the accuracy of the near-threshold

NNLL and NNLO approximation we have determined also
the dominant subleading terms which are suppressed by
1=N or 1=M near threshold, but still enhanced by loga-
rithms. These “next-to-leading power” terms may be

obtained by use of the DGLAP evolution of the parton
distribution functions between scales Q and Q=

ffiffiffiffiffiffiffiffiffi
N̄ M̄

p
. We

have found that the approximate NNLO corrections are
identical for the spin-averaged (transverse) cross section
and the longitudinally polarized one, even including the
NLP corrections. This has important ramifications for
phenomenology as it means that the SIDIS spin asymmetry
will be largely unaffected even by NNLO corrections.
We have presented a few basic phenomenological results

at approximate NNLO. These indicate a significant increase
of the cross section at large z, as well as a still sizable
contribution of the NLP corrections. Our results are readily
suited for initial studies of SIDIS atNNLO in “global” fitting
frameworks for fragmentation functions and/or parton dis-
tributions, especially polarized ones. Furthermore, the
corrections we have derived will provide important bench-
marks for future full NNLO calculations of SIDIS.
There are several avenues for future improvements on

our work. Extension to approximate N3LO near threshold
and to N3LL resummation would be quite straightforward
[76]. As already mentioned earlier, it will also be important
to address the quark-gluon channels to SIDIS and to
determine their dominant NLP corrections, following the
lines in Ref. [48]. In the same vein, the longitudinal SIDIS
structure function should be addressed at higher orders. For
inclusive DIS, FL receives corrections as large as
α2s ln2ð1 − xÞ at high x, which were derived and extended
to all orders in Ref. [45]. Although these are again NLP
corrections, it will be relevant to investigate the corre-
sponding logarithmic structure of FL in SIDIS. Finally, we
note that the corrections we have derived here are really
valid when both x and z are large. The recent study [63]
considers the Drell-Yan cross section at measured rapidity
and derives a factorization theorem that is valid when only
one of the two kinematic variables

ffiffiffi
z

p
e�y is large, while the

other can have an arbitrary value. Extension of such a
theorem to the SIDIS case when only x or z is large would
be quite valuable as it would extend the validity of the
threshold approximation for SIDIS.
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APPENDIX A: APPENDIX: COEFFICIENTS FOR
RESUMMATION TO NNLL

We use the following expansion of the running strong
coupling [31,79]

4For COMPASS, we now increase the lower cut on Q2 to
Q2 > 5 GeV2, so that we can reasonably use the scale μ ¼ Q=2.
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αsðμÞ ¼
αsðμRÞ

X

�
1 −

αsðμRÞ
X

b1
b0

lnX þ
�
αsðμRÞ

X

�
2
�
b21
b20

ðln2 X − lnX þ X − 1Þ − b2
b0

ðX − 1Þ
��

; ðA1Þ

where

X ≡ 1þ b0αsðμRÞ ln
μ2

μ2R
; ðA2Þ

and

b0 ¼
1

12π
ð11CA − 2NfÞ; b1 ¼

1

24π2
ð17C2

A − 5CANf − 3CFNfÞ;

b2 ¼
1

64π3

�
2857

54
C3
A −

1415

54
C2
ANf −

205

18
CACFNf þ C2

FNf þ
79

54
CAN2

f þ
11

9
CFN2

f

�
; ðA3Þ

with Nf as the number of flavors and

CF ¼ N2
c − 1

2Nc
¼ 4

3
; CA ¼ Nc ¼ 3: ðA4Þ

The various functions we use in the main text have the following perturbative expansions:

AqðαsÞ ¼
αs
π
Að1Þ
q þ

�
αs
π

�
2

Að2Þ
q þ

�
αs
π

�
3

Að3Þ
q þOðα4sÞ;

D̂qðαsÞ ¼
�
αs
π

�
2

D̂ð2Þ
q þOðα3sÞ;

Pq;δðαsÞ ¼
αs
π
Pð1Þ
q;δ þ

�
αs
π

�
2

Pð2Þ
q;δ þOðα3sÞ; ðA5Þ

where to NNLL we use the coefficients of Aq from [79–83]:

Að1Þ
q ¼CF; Að2Þ

q ¼1

2
CF

�
CA

�
67

18
−
π2

6

�
−
5

9
Nf

�
;

Að3Þ
q ¼1

4
CF

�
C2
A

�
245

24
−
67

9
ζð2Þþ11

6
ζð3Þþ11

5
ζð2Þ2

�
þCFNf

�
−
55

24
þ2ζð3Þ

�
þCANf

�
−
209

108
þ10

9
ζð2Þ−7

3
ζð3Þ

�
−

1

27
N2

f

�
:

ðA6Þ

Furthermore [31,32,79,84],

D̂ð2Þ
q ¼ CF

�
CA

�
−
101

27
þ 7

2
ζð3Þ

�
þ 14

27
Nf

�
; ðA7Þ

and [85]

Pð1Þ
q;δ ¼

3

4
CF;

Pð2Þ
q;δ ¼

1

4

�
C2
F

�
3

8
− 3ζð2Þ þ 6ζð3Þ

�
þ CFCA

�
17

24
þ 11

3
ζð2Þ − 3ζð3Þ

�
−
CFNf

2

�
1

6
þ 4

3
ζð2Þ

��
: ðA8Þ

Finally, the coefficient Ĉqq in Eq. (18) is expanded as
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Ĉqq

�
αsðμRÞ;

μR
Q

�
¼ 1þ αsðμRÞ

π
Ĉð1Þ

þ
�
αsðμRÞ

π

�
2

Ĉð2Þ þOðα3sÞ; ðA9Þ

with [31]

Ĉð1Þ ¼ π2

3
Að1Þ
q ; ðA10Þ

Ĉð2Þ ¼ π4

18
ðAð1Þ

q Þ2 þ Að1Þ
q πb0

�
π2

3
ln

μ2R
Q2

þ 8

3
ζð3Þ

�
þ π2

3
Að2Þ
q :

ðA11Þ

APPENDIX B: APPENDIX: NEAR-THRESHOLD
RESULTS IN x, z SPACE

Performing a double-inverse Mellin transform of the
results given in Eqs. (38) and (39) we obtain approximate
results for the quark-to-quark hard-scattering function
ωT
qqðx̂; ẑ; αsðμRÞ; μR=Q; μF=QÞ in Eq. (4), which is valid

near threshold. To obtain compact expressions, we intro-
duce the following abbreviations:

δx ≡ δð1 − x̂Þ; δz ≡ δð1 − ẑÞ;

Di
x ≡

�
lnið1 − x̂Þ
1 − x̂

�
þ
; Di

z ≡
�
lnið1 − ẑÞ
1 − ẑ

�
þ
;

li
x ≡ lnið1 − x̂Þ; li

z ≡ lnið1 − ẑÞ: ðB1Þ

We write

1

e2q
ωT
qq

�
x̂; ẑ; αs;

μR
Q

;
μF
Q

�
¼ δxδz þ

αs
π
CFΔ

ð1Þ
qq þ

�
αs
π

�
2

CF½CFΔ
ð2Þ;CF
qq þ CAΔ

ð2Þ;CA
qq þ NfΔ

ð2Þ;Nf
qq �

þ
�
αs
π

�
2

πb0CFΔ
ð1Þ
qq ln

μ2R
Q2

þOðα3sÞ: ðB2Þ

The NLO term reads

Δð1Þ
qq ¼ δxD1

z þ δzD1
x þD0

xD0
z − 4δxδz − δx

�
D0

z þ
3

4
δz

�
ln
μ2F
Q2

− δz

�
D0

x þ
3

4
δx

�
ln
μ2F
Q2

−D0
x −D0

z − δxl1
z − δzl1

x: ðB3Þ

Note that we have included the NLP contributions, which
are given in the second line. They show up as terms that
carry only a single distribution, in either x̂ or ẑ.
Since the NNLO C2

F contribution is quite lengthy, we
split it into its LP and NLP contributions and write it as

Δð2Þ;CF
qq ¼ Δð2Þ;CF

qq;LP þ Δð2Þ;CF
qq;NLP: ðB4Þ

We then have for the leading-power part:

Δð2Þ;CF
qq;LP ¼ 1

2
ðδxD3

z þ δzD3
xÞ þ

3

2
ðD0

xD2
z þD0

zD2
x þ 2D1

xD1
zÞ −

�
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3

�
ðD0

xD0
z þ δxD1

z þ δzD1
xÞ þ 2ζð3ÞðδxD0

z þ δzD0
xÞ

þ δxδz

�
511

64
−
15ζð3Þ

4
þ 29π2

48
−
7π4

360

�
þ
�
δxD1

z þ δzD1
x þD0

xD0
z þ

3

2
ðδxD0

z þ δzD0
xÞ þ δxδz

�
9

8
−
π2

6

��
ln2

μ2F
Q2

þ
�
−
3

2
ðδxD2

z þ δzD2
x þ 2D0

xD1
z þ 2D0

zD1
x þD0

xD0
z þ δxD1

z þ δzD1
xÞ

þ
�
4þ π2

3

�
ðδxD0

z þ δzD0
xÞ þ δxδz

�
−5ζð3Þ þ π2

4
þ 93

16

��
ln
μ2F
Q2

; ðB5Þ

while the dominant NLP terms are given by

Δð2Þ;CF
qq;NLP ¼ −

3

2
ðD2

x þD2
z þ 2D1

xl1
z þ 2D1

zl1
x þD0

xl2
z þD0

zl2
xÞ −

1

2
ðδxl3

z þ δzl3
xÞ: ðB6Þ

The CFCA and CFNf parts do not possess any dominant NLP contributions [see Eq. (39)]. They read:
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Δð2Þ;CA
qq ¼−

11

24
ðδxD2

z þ δzD2
x þ 2D0

xD1
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and

Δð2Þ;Nf
qq ¼ 1

12
ðδxD2

z þ δzD2
x þ 2D0

xD1
z þ 2D0

zD1
xÞ −

5
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ðD0

xD0
z þ δxD1

z þ δzD1
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ln2
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�
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��
ln
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: ðB8Þ

We stress that the results in Eqs. (B5), (B7), (B8) collect all double distributions in x̂ and ẑ that arise at NNLO. We also note
that the Mellin space and the x, z-space expressions near threshold are not strictly identical but differ by terms that are
suppressed near threshold. These terms are generically of the form lnmðN̄Þ=N2 or 1=N (without logarithms) in Mellin space
(and likewise with N replaced byM), and of the form ð1 − x̂Þ lnmð1 − x̂Þ or constant (and also with x̂ replaced by ẑ) in x, z
space.
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