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Phosphate (P) is characterized by its low availability and restricted mobility in soils, and
also by a high redistribution capacity inside plants. In order to maintain P homeostasis
in nutrient restricted conditions, plants have developed mechanisms which enable P
acquisition from the soil solution, and an efficient reutilization of P already present in
plant cells. Nitric oxide (NO) is a bioactive molecule with a plethora of functions in plants.
Its endogenous synthesis depends on internal and environmental factors, and is closely
tied with nitrogen (N) metabolism. Furthermore, there is evidence demonstrating that
N supply affects P homeostasis and that P deficiency impacts on N assimilation. This
review will provide an overview on how NO levels in planta are affected by P deficiency,
the interrelationship with N metabolism, and a summary of the current understanding
about the influence of this reactive N species over the processes triggered by P
starvation, which could modify P use efficiency.
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INTRODUCTION

It is not uncommon for plant roots to be exposed to temporary changes in local P availability.
Considering the pivotal roles of this macronutrient in energy dynamics and metabolic regulation,
P fluxes coordinately adjust to balance growth and development at the level of the whole plant.
In the same way as it occurs with other mineral nutrients, both local signals acting on the cellular
level, and long-distance or systemic signaling pathways, communicating internal nutrient status
across different tissues and plant organs, must act coordinately to improve nutrient acquisition
and internal utilization (Giehl et al., 2009; Lin et al., 2014; Ham et al., 2018; Wang et al., 2018;
Ueda and Yanagisawa, 2019). The signaling compounds, such as NO and hormones, are involved
in regulatory pathways when availability of nutrients is scarce (Giehl et al., 2009; Lei et al., 2011).

Abbreviations: AM, arbuscular mycorrhizal; APases, acid phosphatases; ARC, amidoxime reducing component;
cPTIO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; DAF-FM DA, 4-amino-5-methylamino-2′,7′-
difluorofluorescein diacetate; GA, gibberellic acid; GSNO, S-nitrosoglutathione; IAA, indolacetic acid; N, nitrogen; NiNOR,
nitrite:nitric oxide reductase; NO, nitric oxide; NOFNiR, NO-forming nitrite reductase; NOS, nitric oxide synthase;
NR, nitrate reductase; P, phosphate; PAPs, purple acid phosphatases; Pi, inorganic phosphate; PTIO, 2-phenyl-4,4,5,5-
tetramethylimidazoline-1-oxyl-3-oxide; ROS, reactive oxygen species; SNAP, S-nitroso-N-acetyl-penicillamine; SNP, sodium
nitroprusside; WT, wild type; XOR, xanthine oxidoreductase.
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In the case of P starvation, other signaling compounds come
into play, including P itself, inositol polyphosphate, miRNAs,
photosynthates, and calcium (Ruffel, 2018). Recently, a red-
light signaling in the regulation of nutrient uptake and use was
suggested, as it was found that expression levels of P starvation-
responsive genes in Arabidopsis were modulated by PIF4/PIF5
and HY5 transcription factors, which activity is under the control
of phytochromes (Sakuraba et al., 2018).

Reactive oxygen species (ROS) and NO have been recognized
as early components in several mineral nutrient signaling events
(Baxter et al., 2014; Kolbert, 2016). Even though there is a specific
localization, timing and intensity of response depending on the
depleted nutrient, it has been proposed that ROS and NO may
be frequent elements in plant signal transduction cascades in
response to nutrient imbalance (Xu et al., 2010; Zhu et al., 2019).

Sensing, signaling and the elaboration of acclimation
responses will determine plant survival and performance in
conditions of spatial and temporal variability of soil nutrient
concentrations. To that end, in this review, we will discuss the
current state of knowledge regarding NO functions in plants
specifically under P restriction. We will focus on NO levels (and
sources) in plants suffering from P deficiency, and its influence
over the processes triggered by P starvation, which could modify
P acquisition and use efficiency.

PHOSPHATE IN SOIL AND PLANTS

Plants are often exposed to growth-limiting levels of P during
their life cycle. As this is also true in crops, in order to maintain
yields in low P soils, chemical P fertilizers obtained from mineral
deposits are applied in each crop cycle (Baker et al., 2015). Each
year around 148 million tonnes of phosphoric rock are mined,
and 90% of that is used for food production (Cordell et al., 2009).
A fraction of the applied fertilizer is lost to run-off, consequently
reaching seas and lakes and resulting in eutrophication processes
(Childers et al., 2011). Thus, current agriculture generates
massive P mobilization from mineral deposits to water bodies: a
one-way flux of a resource considered “non-renewable” (Cordell
et al., 2009; Elser and Bennett, 2011). Throughout the whole
process of P extraction and use, two main critical points can be
identified: depletion of P reserves from mines, affecting future
global food production’s sustainability, and eutrophication of
water reserves, recently reviewed by Schoumans et al. (2014).
It is clear that the understanding of diverse processes involved
in soil-plant P dynamics constitutes a key point, to face not
only an agronomic problem, but also worldwide environmental
and economic ones, with a direct impact on water-food-energy
security (Jarvie et al., 2015).

The fact that P in soil can be found in a variety of chemical
forms – as organic compounds, in the mineral pool as poorly
soluble salts, and adsorbed to particle surfaces – turns this
nutrient into one of the least available for plant nutrition in the
rhizosphere (Raghothama and Karthikeyan, 2005; McLaughlin
et al., 2011; Shen et al., 2011). P from organic sources needs
to be released through mineralization processes carried out by
soil microorganisms and enzymes present in root exudates.

Roots are able to uptake P from the soil solution in the form
of H2PO4

− and HPO4
2−, and whereas the dynamic balance

of available and non-available P is determined by diverse soil
and climate conditions (Marschner, 2011), it is also modified
by plant roots (Wang et al., 2015), microorganisms (Khan
et al., 2016), and other physiological traits (Pang et al., 2018).
Therefore in this complex matrix only a small portion of total
P in soil is available for plants (Pierre and Parker, 1927). As
a consequence only 10–20% of P-containing fertilizers applied
are available in the short term (reviewed by Chien et al., 2012).
Plants with limited P supply induce changes in pH, organic
acids (carboxylates) concentration, and activity of enzymes in the
rhizosphere (Hallama et al., 2019), improving P solubility and
availability (Figure 1).

Phosphorus is easily remobilized internally, and this is of
great agronomic importance. According to some authors, P use-
efficiency in crops is determined not only by uptake efficiency
but also other factors including utilization inside the plant, once
the P is taken up, and the production of economically relevant
plant tissues per unit of incorporated P (Schröder et al., 2011).
P remobilization increases under external P restriction or during
senescence. Remobilization occurs, in general, from leaves but
also from proteoid roots as is the case of the harsh hakea where
∼85% of P can be reallocated (Shane et al., 2014). Vacuoles are the

FIGURE 1 | Plant’s strategies to improve P availability and uptake from soil
solution in conditions of P scarcity. Acclimation responses tend to increase
soil exploration (through morphological changes in roots), P desorption,
dissolution, and interaction with microorganisms, as well as P internal
remobilization (reallocation and interaction between P pools). P from the soil
solution is taken up by the roots in the form of HPO4

2− and H2PO4
−. Figure

shows the dynamic equilibrium between available and not available P forms in
soil, influenced by root exudations.
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primary intracellular compartments for inorganic P (Pi) storage,
with active participation in remobilization (Yang et al., 2017). In
vacuoles at pH 5.0, monoanion H2PO4

− predominates as the
Pi species occurring in the efflux with a concentration in the
millimolar range (Pratt et al., 2009). Using in vivo 31P-NMR,
which allows for the discrimination between cytosolic-Pi and
organelles-Pi pools, it has been found that, following the onset
of P starvation, the Pi efflux from vacuoles is insufficient to
compensate for a rapid decrease in the cytosolic Pi concentration.
The sudden drop of cytosolic-Pi could be the first endogenous
consequence to P starvation, triggering a signal transduction
pathway which activates the P starvation rescue metabolism
(Pratt et al., 2009). In addition to vacuole stock, when plants
are exposed to P restriction, cell walls, membranes, RNA, and
available organic compounds containing P, become important
sources for the delivery of P to the actively growing tissues.

To better understand P fluxes in order to improve P use-
efficiency by plants, a holistic interpretation of agroecosystems
needs to be developed. This would identify the impacts
of anthropic intervention through fertilization and diverse
agricultural practices, soil P dynamics in connection with
climate and microbiota, and plant physiological traits which
modulate P acquisition and resulting internal reutilization
(Macintosh et al., 2019).

Investigation of plant traits associated with agricultural P
management is on the rise. New approaches are emerging such
as the global-scale ecosystem services connected to soil fertility
management (Macintosh et al., 2019) which is intended to
overcome traditional agricultural perspectives, mainly focused on
crop yield and short-term economic profits. In close connection
with a global focus, P dynamic should also be studied at
plant cellular and physiological levels. In this context, NO has
influence on mechanisms which could increase soil exploration
(Wu et al., 2014) and P availability (Ramos-Artuso et al.,
2018), as well as mechanisms which could improve internal
reutilization (Zhu et al., 2017). Thus, NO could be a key
component in agro-ecosystem P flux interpretation, through
modulation of P dynamics on plant physiological and plant-soil
relationship levels.

NITRIC OXIDE IN SOIL AND PLANTS

Nitric Oxide Synthesis in Plant Cells
Nitric Oxide can be endogenously produced by plant cells, but
it can also be incorporated from the environment where it is
generated as a result of activity of soil microorganisms. NO
is a direct intermediate of nitrification (biological oxidation
of ammonium, NH4

+, to nitrate, NO3
−) and denitrification

processes (reduction of NO3
−, to nitrogen gas, N2) carried out

by microorganisms (Payne, 1976; Skiba et al., 1993; Feelisch
and Martin, 1995). Soils are an important source of NO, and
environmental conditions such as the presence of inorganic
fertilizers can affect NO emissions. In this context, questions
arise as to whether increased NO fluxes derived from N
fertilization may affect growth and development, influence plant
nutrition, and also affect a range of other plant responses

(Lamattina et al., 2003). On the other hand, associative or
symbiotic relationships between roots and microorganisms may
contribute to NO production, and could also influence NO
synthesis on each other (Molina-Favero et al., 2007).

Regarding NO synthesis, in mammals, nitric oxide synthase
(NOS) enzymes use L-arginine, O2, and NADPH, to produce NO
(Stuehr, 1999). In plants, different enzymatic and non-enzymatic
sources can contribute to the generation of NO (Moreau et al.,
2010; Fröhlich and Durner, 2011; Gupta et al., 2011; Mur et al.,
2013; Astier et al., 2017), which have been classified as either
oxidative or reductive pathways depending on the substrate
involved (Gupta et al., 2011). NO production associated with
NR, plasma membrane-associated nitrite:NO reductase (NiNOR)
and other molibdo-enzymes (such as xanthine oxidoreductase,
XOR), in addition to mitochondrial and chloroplastic electron
transport chains, are all reductive pathways and depend on NO2

−

as a primary substrate. Meanwhile, NO production from arginine,
polyamines or hydroxylamine, belongs to the oxidative pathways.

Progress has recently been made concerning the two main
sources of NO, arginine-dependent (known as NOS-like activity)
and NR in plant tissues. Jeandroz et al. (2016) searched
for the presence of transcripts encoding NOS proteins in
over 1000 species of land plants and did not find typical
NOS sequences. In photosynthetic organisms, only a few
algae species contained NOS orthologs (Jeandroz et al., 2016;
Santolini et al., 2017), such as the green alga Ostreococcus
tauri (Foresi et al., 2010). However, the presence of proteins
structurally unrelated to known NOS, or the cooperation between
proteins or peptides, which combined can form a complex
with similar NOS activity, cannot be discarded in higher plants
(Fröhlich and Durner, 2011; Corpas and Barroso, 2017). In
this scenario, NO production from NR seems to gain more
relevance, considering the importance of NO3

− reduction
and assimilation in plants. According to Chamizo-Ampudia
et al. (2016), in Chlamydomonas reinhardtii, NR can supply
electrons from NAD(P)H, through its diaphorase/dehydrogenase
activity, to the molybdoenzyme NOFNiR (NO-forming nitrite
reductase, also known as Amidoxime Reducing Component,
ARC), which is in fact responsible for NO synthesis from
NO2

−, even in the presence of NO3
−, condition under which

NR is unable to do that. In addition, NR participates in the
control of NO levels in cell by supplying electrons to the
truncated hemoglobin THB1, which has dioxygenase activity
(it can dioxygenate NO to produce NO3

−). THB1 would then
act by removing the very reactive NO and simultaneously
inhibiting NR by uncoupling the electron transfer from
NAD(P)H to NO3

− (redirecting the electrons from FAD to
THB1). THB1 then plays a dual role in NO detoxification
and in the modulation of NR activity (Sanz-Luque et al.,
2015). Further research on the conditions that regulate NO
or NO2

− production (such as the factors which favor the
activity of NOFNiR and hemoglobins over NR) is required
(Chamizo-Ampudia et al., 2017).

Over the last few years, research in the field of NO
generation in plants has advanced. However, knowledge of
the regulation of the multiple proposed pathways, especially
under stress conditions, and in particular under mineral nutrient
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deprivation, is still limited. Different sources may come together,
depending on stress conditions, substrate availability, species,
and plant’s organs. Knowledge of the sources (and fates) of
NO which operate under nutrient deficiency, in addition to the
understanding of the specific roles of this molecule, are key
tools to unraveling the mechanisms which trigger acclimation
responses, where the modulation of endogenous levels of this
molecule could be involved.

Nitric Oxide Targets in Plants
Nitric oxide may exert its biological functions through protein
modifications, such as tyrosine nitration or S-nitrosation
(also termed as S-nitrosylation), or through interaction with
metalloproteins (metal-nitrosylation) (Figure 2), besides
performing a broad spectrum of biochemical events through
the interaction with hormones, and ROS among others
(Gupta et al., 2020).

Although in animals the NO/cGMP-signaling (cyclic
guanosine monophosphate) pathway has a main role in
transmitting NO signal, plants have developed specific NO
signaling different from other eukariotic lineages. According to
recent studies, typical NO/cGMP signaling module is absent from
representative plant species, while S-nitrosation has emerged as
major NO-dependent signaling mechanisms in plants (Astier
et al., 2019). Proteins and low-molecular-weight thiols can
undergo S-nitrosation, where NO binds the thiol group of
cysteinyl residues. S-nitrosation is a reversible post-translational
modification by which NO can modulate protein activity.

S-nitrosoglutathione (GSNO) is the most abundant low-
molecular-weight nitrosothiol and, in turn, it is considered

to be a form of NO storage and long-distance transport
(reviewed in Begara-Morales et al., 2019). NADPH-
dependent thioredoxin reductase (NTR)/thioredoxin
(Trx) system and GSNO reductase (GSNOR) control
the extent of S-nitrosation through the regulation of
GSNO levels and catalyzing denitrosation reactions
(Begara-Morales and Loake, 2016).

Tyrosine nitration is mediated by reactive nitrogen species,
such as ONOO− and nitrogen dioxide (NO2), formed as
secondary products of NO metabolism in the presence of
oxidants, such as superoxide radicals (O2

−), hydrogen peroxide
(H2O2), and transition metal centers (Radi, 2004). In a
relevant position, Tyr nitration can alter protein function
and conformation, impose steric restrictions, and also inhibit
Tyr phosphorylation. The result may be a loss-of-function
(if a large fraction of protein is nitrated in specific critical
tyrosines) or a gain-of-function (a small fraction of nitrated
protein can elicit a substantive biological signal) (Radi,
2004). Evidence shows that protein Tyr nitration is an
important NO-dependent signaling mechanism in plants,
as well as nitration of fatty acids and ribonucleic acids
(Arasimowicz-Jelonek and Floryszak-Wieczorek, 2019).

It is necessary to understand NO effects in the context of
a complex network of molecules (Kolbert et al., 2019). The
interaction of NO with other small signaling molecules, such as
ROS and hydrogen sulfide (H2S), contributes to the regulation
of growth, development, and of biotic and abiotic stresses
responses (Singh et al., 2019; Figure 2). So far, there is insufficient
knowledge of the specific crosstalk involving RNS, ROS and H2S
under P-scarcity.

FIGURE 2 | NO reactions and targets in plants. NO may exert its biological functions through interaction with ROS, the gasotransmitter H2S, proteins, and lipids
leading to a broad range of biochemical events affecting signaling pathways and processes related to growth, development and acclimation to stress conditions.
GSNO, S-nitrosoglutathione; GSNOR, GSNO reductase; O2

−, superoxide anion; ONOO−, peroxynitrite; H2S, hydrogen sulfide; HSNO, thionitrous acid (the smallest
S-nitrosothiol); Protein-SNO, nitrosated protein.
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These mechanisms may account, in part, for the broad
spectrum of NO actions in plants exposed to P imbalances,
including posttranslational modification of proteins, enzymes,
transporters and transcription factors, which may participate, in
addition to hormones, in some of the physiological responses
summarized here.

The Levels of Nitric Oxide Are Influenced
by P Deficiency
Wang et al. (2010) described a relationship between NO
generation and P restriction in white lupin (Lupinus albus), where
P deficiency enhanced NO production in primary and lateral
root tips, with a bigger increase in juvenile and mature cluster
roots (bottlebrush like structures). In searching for NO sources,
root treatment with the mammalian NOS inhibitor (NG-nitro-
L-arginine) and the XOR inhibitor (allopurinol) was found to
reduce NO concentration in cluster roots, whereas with the NR
inhibitor (tungstate), no effect of treatment was observed. Thus
NOS-like activity and XOR may be two of the sources involved in
NO production under P deficiency in white lupin.

In Arabidopsis thaliana, however, the NR double mutant
(nia1,2) resulted in more sensitivity to P scarcity than WT
plants, which indicated an impairment of the mechanisms
involved in the acclimation to low P in these mutants. Moreover,
P deprivation led to an increased NO production in roots from
WT plants but not from nia1,2, which suggested a role for the
NR pathway in NO production under P restriction conditions
in Arabidopsis (Royo et al., 2015). In regards to soybean plants,
P deprivation led to higher levels of NO in the leaves and an
increase in NR activity as early as 24 h of P deprivation (Ramos-
Artuso et al., 2019). Interestingly, the levels of total N, NO3

−,
NO2

−, and the activities of other enzymes from N metabolism,
were not affected. NR activity and NO generation may play
a part in sensing P levels in cells triggering early metabolic
responses to deal with P scarcity, as was suggested by the changes
observed in the proteome in soybean leaves (Ramos-Artuso et al.,
2019). Moreover, P deficiency induced an increase in NO level
in rice roots (Zhu et al., 2016) where it was involved in cell-wall
P reutilization, upstream of ethylene (Zhu et al., 2017).

Overall, NO seems to have a role in conditions of P scarcity
in plants, not only in root response but also in shoot, where
early changes are triggered as a consequence of P decrease. The
two main ways of NO production in plants, NR and arginine-
dependent, seem to be involved in the regulation of NO levels
in the cell, but other potential sources (such as polyamines and
other ways of NO2

− reduction) cannot be ruled out, and may also
contribute to NO synthesis in conditions of P restriction. Future
research will clarify this variable scenario dependent on multiple
factors, including plant species, organ, source of N, and the level
of P in the cell.

Phosphorus Deficiency Affects N
Metabolism and Impacts on NO Levels:
Potential Regulatory Implications
It is known that P deprivation leads to alterations in
N assimilation (Rabe and Lovatt, 1986; Rufty et al., 1993), but

how these changes in N metabolism modify NO levels in cell
and affect signaling events, is still unknown. Recent studies of
P deficiency in plants have shown an increase in NO levels
and suggest this molecule takes part in some responses related
to acclimation conditions. Taking into account this scenario,
changes in NO levels may either result in or be the result of
alteration in N metabolism under conditions of P scarcity since
N assimilation and NO generation are strongly connected. As
mentioned before NO2

− and arginine, both derived from N
assimilation and metabolism, are substrates for NO synthesis,
and both the amount and the form of N supply (NO3

− or
NH4

+) could affect NO generation (Buet et al., 2019). Zhu et al.
(2016) observed an increased NO content in roots from two
rice cultivars under P-deficient conditions, where the feeding
with NH4

+ significantly increased the NO level as compared
with NO3

− treatment. The effect of NH4
+ over the NO levels

was also observed in Arabidopsis plants with Fe deficiency (Zhu
et al., 2019). In the case of soybean plants fed with NH4

+, N
assimilation occurs mainly in the roots, where the incorporation
into amino acids is faster and stronger than with NO3

− as N
source. This suggests a protective role, to avoid accumulation
of high levels of NH4

+, which can produce deleterious effects
on cellular functions (Oliveira et al., 2013). In P-deficient leaves,
it has been proposed that arginine biosynthesis may act as
a protective mechanism for NH4

+ detoxification (Rabe and
Lovatt, 1986; Rufty et al., 1993). This highlights the need for an
evaluation of arginine and polyamines levels in roots, as potential
sources of NO in conditions of P deficiency.

In soybean (Glycine max), long-term P deprivation (20 days)
led to several changes in N assimilation: rates of 15NO3

− uptake
and net translocation of 15N from roots to shoots decreased,
resulting in the alteration of NO3

− assimilation. Asparagine
accumulated to high levels in stems and roots, and arginine
accumulated to high levels in leaves was also observed (Rufty
et al., 1993). Arginine levels increased in leaves of rough lemon
(Citrus limon) and summer squash (Cucurbita pepo), when grown
under P deficient conditions (Rabe and Lovatt, 1986). Nitrite
levels increased in WT Arabidopsis roots after exposure of P
restriction for 14-days (Royo et al., 2015) but not in soybean
leaves after 24 h of P scarcity (Ramos-Artuso et al., 2019).
However, in both plant species, NO increased and NR activity
seemed to be involved in NO generation. If the amount of
substrates for NO synthesis is affected under P deficiency, its
availability may affect NO levels, but this factor is not the only
one point of control for NO generation.

During P deficiency, the alteration of nutrient transport
may be a non-specific result of changes in energy (low ATP),
rates of water flow (hydraulic conductance), and membrane
permeability; but other feedback control factors could affect
NO3

− uptake (Rufty et al., 1993). It is worth mentioning that
in C. reinhardtii, NO inhibited the high-affinity uptake of NH4

+

and NO3
−/NO2

−, as well as NR activity in a reversible form
which may include post-translational regulation (Sanz-Luque
et al., 2013). It has been extensively noted that NO affects NR
activity, but the effect depends on several factors, such as the
N source (e.g., NO3

− concentration in the growth medium)
and the level of NO or GSNO reached in each system (Buet
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TABLE 1 | Summary of NO effects on some physiological responses observed under P starvation and the potential components involved.

Plant species Treatment Physiological effect
observed

Major components involved References

Lupinus albus P-deficiency (0 P) + SNP
(50 µM)

Increased number of cluster
roots and first-order lateral
roots

Interaction with auxins (?) Wang et al., 2010

Increased concentration of
citrate in exudation from cluster
roots

Activation of plasma membrane
H+-ATPase (?) Citrate
metabolism (?)

P-deficiency (0 P) + cPTIO
(500 µM)

Decreased number of cluster
roots

Expression of genes that
regulate cell division and radial
root patterning

Meng et al., 2012

Arabidopsis thaliana P-deficiency (5 µM P) + SNP
(10–100 µM)

Primary root growth inhibition DELLA proteins stabilization in
root tip nuclei

Wu et al., 2014

Arabidopsis thaliana
(nia1,2)

P-deficiency (0 P) + GSNO
(200 µM)

Improved plant growth and
alternative respiration rate

Alternative oxidase pathway
(AOX)

Royo et al., 2015

Zea mays P-deficiency (0 P) + GSNO
(100 µM)

Increased Pi uptake from
diluted solutions

P transporters (?) Ramos-Artuso et al., 2018

Increased P release from
organic compounds

Activity of root APases

Increased external medium
acidification

H+-ATPase (?) Citrate
metabolism (?)

Oryza sativa P-deficiency (0 P) + SNP
(2.5 µM)

Increased P translocation from
roots to shoots

Expression of a phosphate
transporter gene (OsPT2)

Zhu et al., 2016, 2017

Increased soluble P Cell wall pectin content

SNP and GSNO are NO donors, cPTIO is an NO scavenger, nia1,2 is the nitrate reductase double mutant, (?) stands for proposed or potential components involved.
Physiological effect refers to that observed as compared to P-deficient treatment.

et al., 2019, and references therein). Frungillo et al. (2014)
has proposed that NO regulates NO3

− assimilation pathways
and also controls its bioavailability by modulating its own
consumption in A. thaliana. The authors observed that high
levels of NO and S-nitrosothiols induced a switch from high-
to low-affinity NO3

− transport reducing NO3
− uptake. The

authors also observed that genetically elevated levels of GSNO
inhibited the activity of NR while reduced levels promoted
its activity. Also the enzyme GSNO reductase (GSNOR1) was
inhibited by S-nitrosation. As this enzyme catalyses the NADH-
dependent reduction of GSNO (stable pool of NO) to oxidized
glutathione and NH4

+, its inhibition could prevent this GSNO
degradation and amplify S-nitrosothiols signals (Frungillo et al.,
2014). Further research would highlight whether this regulation
of N assimilation could also operate in conditions of P scarcity,
modulate NO levels and, in turn, P deficiency responses.

In P scarcity conditions, diverse factors such as changes in
the availability of substrates (as NO2

− or/and arginine) and
modulation in the activity of some enzymes, including NR, XOR
or NOS-like, can contribute to modify NO levels in planta.
Despite NO origin, it may regulate N assimilation and, as
a result, its own levels to participate in signaling events to
afford P deficiency.

PLANT’S ACCLIMATION TO
P RESTRICTION

Plants sense low P availability, leading to the activation of a
complex signaling network, which runs morphological, metabolic

and physiological modifications often with great variations
among species or even cultivars. In general, main modifications
allow plants to enhance soil exploration, and P availability in
the soil solution, as well as to maintain P homeostasis at the
whole-plant level.

In this section we will discuss the extent to which the
presence of NO could affect key plant acclimation responses to
P scarcity (Table 1).

Root Morphology
Cluster Roots
As a response to P starvation, root architecture sustains
modifications which shows a higher presence of roots in the
topsoil horizon- usually the P-enriched fraction- (Peret et al.,
2014; Del-Saz et al., 2018). These morphological responses
probably contribute to an efficient acquisition of this nutrient
(Aibara and Miwa, 2014).

One of the most remarkable adaptations for some species
consists in the development of proteoid or cluster roots
when they are growing in conditions of P scarcity. These
roots expose an enhanced surface area and strongly acidify
the rhizosphere. White lupin (Lupinus albus) is frequently
used as a model plant to study the formation and function
of cluster roots under P-deficient conditions (Cheng et al.,
2011). Shoot P concentration, sucrose and hormones
(cytokinins, ethylene, and auxins) have been identified as
participants in cluster root development (Cheng et al., 2011;
Meng et al., 2013; Müller et al., 2015). In addition, after 32 days
of P restriction, cluster roots showed a massive change in gene

Frontiers in Plant Science | www.frontiersin.org 6 April 2020 | Volume 11 | Article 413

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00413 April 10, 2020 Time: 17:59 # 7

Galatro et al. Nitric Oxide and Phosphate Restriction

transcription (Venuti et al., 2019). A relationship between NO
and morphological changes in roots has been described in
lupin plants under P restriction. Using the fluorescent probe
DAF-FM DA, NO was found to increase in the pericycle,
endodermis cells and rootlet primordia from plants exposed to
P restriction during 20 days. These results, and the timing of
NO accumulation, led the authors to suggest NO was involved
in the initiation, development and emergence of rootlets in the
P deficiency-induced cluster-root formation (Wang et al., 2010;
Meng et al., 2012). In addition, treatments with NO donors SNP
and GSNO induced changes in roots morphology (Wang et al.,
2010; Meng et al., 2012).

Primary and Lateral Roots
In species with non-proteoid roots, the reshaping of the root
system architecture under P-deficiency usually includes the
development of lateral roots and the inhibition of primary
root extension (Peret et al., 2014). A crosstalk between auxins
(known as root growth regulators) and NO has been described
for cucumber explants. In this system, NO accumulation was
detected after exposure to indolacetic acid (IAA, an auxin),
and treatment with NO donors SNP (10 µM) and S-nitroso-
N-acetyl-penicillamine (SNAP 10 µM) induced the production
of adventitious roots to the same extent as IAA (Pagnussat
et al., 2002). In tomato and maize plants, treatment with
auxins (1-naphthylacetic acid and IAA) or SNP (200 µM)
induced similar lateral root formation (Correa-Aragunde et al.,
2004; Zandonadi et al., 2010). Further research has led to
suggest that NO is required for cell cycle progression and
establishment of lateral root primordia in the pericycle as NO
modulates cell cycle regulatory genes (Correa-Aragunde et al.,
2006). However, the relationship between NO and auxins in
the context of root development under P deprivation still
needs addressing.

The effect of NO on primary roots was described for tomato
growing under sufficient nutrient conditions, where treatment
with SNP (200 µM) strongly reduced primary root length, whose
effect was reversed in the presence of NO scavenger cPTIO
(Correa-Aragunde et al., 2004). In Arabidopsis, the inhibitory
effect of exogenous NO treatment (SNP 10–100 µM) was
observed for both P-sufficient and P-deprived plants (Wu et al.,
2014). Even though the use of cPTIO confirmed a direct action of
NO, there remained doubt as only the Fe-containing NO donor
(SNP) was used as exogenous NO source (Wu et al., 2014). In
Arabidopsis, it was described that localized Fe accumulation in
the root tip – rather than the reduction in P concentration-
was responsible for the growth inhibition under P restriction
(Ward et al., 2008). Growth arrest requires accumulation of
transcription factor STOP1 in the nucleus. Under P-restriction,
it has been proposed that Fe stimulates the accumulation of
STOP1 in root nuclei which, in turn, activates the transcription
of malate transporter gene ALMT1 (Godon et al., 2019). The
use of other NO donors, and the measurement of NO levels
in each system, will confirm the effect of NO on primary root
morphology under P scarcity.

Other mechanisms involving GA and NO may play a part
in primary root inhibition under P restriction. Knowing that P

starvation decreases GA biosynthesis in Arabidopsis, and that the
addition of exogenous GA acts as a positive regulator for primary
root growth (Jiang et al., 2007; Wu et al., 2014), the interaction
between NO and GA on primary root growth has been analyzed
and showed that the treatments, both with NO donor SNP and
with NO scavenger cPTIO, modulated the effect of P restriction
on primary root growth. In assays using Arabidopsis mutants
in DELLA proteins (negative regulators of GA signaling), it
was found that exogenous NO (SNP 10 µM) stabilized these
proteins in root tip nuclei. Thus NO inhibition of primary root
growth involves, at least in part, the DELLA-degradation pathway
(Wu et al., 2014).

Root Hairs
Enhanced root hair development is a typical adaptive plant
response to P starvation, where increasing root surface area for
nutrient uptake is mediated by ethylene (Zhang et al., 2003; Song
et al., 2016). The description of NO participation as a regulator
of root hair development has long been documented. Lettuce
plants treated with SNP (10 µM) showed increased root hair
number and elongation, and Arabidopsis root hair development
was inhibited by cPTIO (0.5–1 mM). Moreover, NO has been
proposed as a mediator of auxin action in root hair growth
(Lombardo et al., 2006).

Other nutrient’s availability usually affects root hair
development, as is the case of Mg deficiency (Liu et al.,
2017). Arabidopsis plants exposed to Mg deficiency exhibited
increased levels of NO as well as ethylene, and, interestingly, both
species were reciprocally influenced and interactively regulated
root hair morphogenesis (Liu et al., 2017). Recently, a scheme
including auxins has been proposed for plants exposed to Mg
deficiency. In Arabidopsis plants subjected to Mg deficiency,
both ethylene and NO were required to regulate the rise of auxins
in roots (Liu et al., 2018). A positive feedback loop involving
auxins, ethylene and NO production under Mg deficiency was
found. However, there remains a lack of information regarding
the role of ethylene, NO and auxins interaction in root hair
development during P scarcity. A similar interaction between
NO and phytohormones occurring under P-restriction regulating
root hair growth could be anticipated.

P Transport
The upregulation of high-affinity P transporters is a common
phenomenon in response to P restriction in order to coordinate
nutrient acquisition and distribution (Nussaume et al., 2011). As
expected when compared with P-sufficient plants, there was a
significant increase in the uptake of Pi from a diluted solution in
maize plants exposed for 6 days to P-restriction, and the presence
of an NO donor (GSNO 100 µM) further increased the potential
capability of roots to incorporate P (Ramos-Artuso et al., 2018).
Regulatory pathways integrated by microRNA and ubiquitin/26S
proteasome degradation have been proposed for the selective
modulation of P transport activity in response to P levels (Lin
et al., 2014; Ye et al., 2018). The degradation of P transporters
in P-sufficient conditions occurs through ubiquitin-mediated
pathways which are reduced under P deficiency, activating Pi
uptake as well as root-to-shoot translocation (Wang et al., 2017;
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Yue et al., 2017). In this regard, NO has been reported to
be involved in ubiquitin-targeted protein degradation events in
plants and animals (Arnaud et al., 2006; Kapadia et al., 2009).
There is no knowledge directly related to how NO may affect
P transport in plants; however, the activity of P transporters
is regulated at both transcriptional and post-transcriptional
levels (Nussaume et al., 2011), remarkably these processes are
affected by NO under abiotic stress (Umbreen et al., 2018;
Kolbert et al., 2019).

As mentioned before, P is easily redistributed, especially
in plants under P-restriction. This includes the internal
redistribution of P pools, the release of P from vacuoles, cell
walls, and phospholipids in membranes, while at the whole
plant level, P is reallocated to the young actively growing tissues
(Veneklaas et al., 2012; Baker et al., 2015; Yang et al., 2017).
P-translocation and the interconversion of different pools are
related to the up-regulation of P transporters and enzymes
(RNAses and phosphatases, among others), which release Pi from
a broad range of P monoesters.

P starvation induced a specific group of cell-wall localized
and intracellular APases, the PAPs (Shane et al., 2014; Ramos-
Artuso et al., 2019), and in soybean the expression of a particular
PAP (PAP21) increased in roots and old leaves, playing an
important role in the utilization and recycling of P from
intracellular reserves under P-starving conditions (Li et al., 2016).
The same authors found that the overexpression of GmPAP21
enabled plants to achieve around 96% higher fresh weight under
P restriction as compared with WT plants, pointing out the role
of this enzyme in internal P use efficiency in plants. Results of
assays on maize plants (Zea mays) exposed to an NO donor
during P restriction suggested NO played a part in the enhanced
activity of root APases (Ramos-Artuso et al., 2018). Short term
P-deprivation experiments (48 h) showed that the increase in
gene expression and in activity of PAP1 in roots from Medicago
falcata were dependent on the presence of the ethylene hormone
(Li et al., 2011). Also in Arabidopsis, ethylene positively regulates
P starvation-induced gene expression and activity of APase
(Lei et al., 2011). In addition, during senescence of petunia
corolla, ethylene regulated P remobilization and the expression
of a P transporter gene (PhPT1) (Chapin and Jones, 2009). An
interplay between NO and ethylene occurs not only during plant
growth and development, but also when the plant is exposed to
abiotic stress (Kolbert et al., 2019), as it has been proposed for
rice, where P-restriction led to a quick enhanced NO production
followed by an ethylene peak (Zhu et al., 2017). As a result, pectin
content increased allowing reutilization of P from the cell wall,
and at the same time, the expression of a P transporter (OsPT2)
was up-regulated to facilitate the translocation of P from root to
shoot, improving growth under P restriction (Zhu et al., 2016,
2017). To our knowledge this is the only study over the effect of
NO (applied as SNP), showing that NO increases the expression
of a P transporter gene under P deficiency (Zhu et al., 2017).

Since P-restriction produces an increase in NO (Wang et al.,
2010; Ramos-Artuso et al., 2019) and in ethylene levels (Borch
et al., 1999; Zhu et al., 2016), both species could interact, and
contribute to optimizing P availability and translocation inside
plant, affecting P use efficiency.

Changes in the Rhizosphere
As a large proportion of P in soil is precipitated, chelated
with metals, or becomes a constituent of organic compounds,
the exudation of organic acids, protons and enzymes by roots
contributes to improving plant’s P availability (Gaume et al., 2001;
Shen et al., 2006; Pang et al., 2015). The “strategy” used varies
greatly depending on plant species, genotypes and soil conditions
(Hallama et al., 2019).

The induced secretion of ribonucleases, nucleases,
phosphodiesterases, and APases is involved in P release
from soil-localized organic substrates, such as nucleic acids and
their degradation products, making P available for root uptake
(Plaxton and Tran, 2011). Organic acids released from roots
in the form of anions also contribute to increase P availability
since they dissolve precipitates and chelate metal cations, and
also block binding sites on soil particles. Citrate, malate and
succinate from leaves can be transported via the phloem and
directed to roots for exudation (Alexova et al., 2017). Citrate is
the major organic acid released, and is one of the most effective
species for solubilization of sparingly soluble P forms in soils
(Igamberdiev and Eprintsev, 2016). NO was found to affect
organic acid metabolism in citrus plants (Citrus grandis), where
citrate content in roots increased after treatment with SNP (10
and 500 µM), due to an alteration in transport from leaves,
whereas malate content increased (after treatment with 500 µM
SNP), probably due to changes in the activity of the enzymes
responsible for its synthesis and degradation (Yang et al., 2012).
However, the dose of SNP used was toxic since plant growth
was inhibited. As it has been previously discussed, lupin plants
develop cluster roots under P-deficient conditions, characterized
by their capacity to exude huge amounts of organic acids with
citrate as the main component. Incubation of cluster roots from
P-deficient lupin plants in the presence of an NO donor (SNP
50 µM, during 24 h) stimulated even more citrate exudation
from the root, while the presence of cPTIO (an NO scavenger)
had an inhibitory effect (Wang et al., 2010). Considering the
side effects of SNP (León and Costa-Broseta, 2019), it would be
interesting to test the effect of NO on organic acids production
and exudation when using other NO donors in addition to
carefully designed experimental approaches (such as the use of
appropriate controls and scavengers).

Plant plasma membrane H+-ATPases transport protons out
of the cell, controlling cell’s membrane potential and enabling
the major transport processes in the plant, such as root nutrient
uptake (Duby and Boutry, 2009). Enhanced H+ release to the
rhizosphere occurs as a response to P-shortage and plays an
important role in the acclimation to P-deficiency (Shen et al.,
2006). Decrease in rhizosphere pH helps to dissolve P from Ca,
Al or Fe phosphates and to increase P availability in calcareous
soils (Hallama et al., 2019). It has been shown that the activity of
plasma membrane H+-ATPase increases in P-restricted proteoid
roots from lupin plants (Yan et al., 2002), and the enzyme
has been described as an important component in responses
to P restriction in soybean roots, where pharmacological and
genetic approaches showed a parallel between enzyme activity
and P uptake (Shen et al., 2006). Humic substances are naturally
present in soils and, in addition to affecting root morphology,
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they stimulate the activity of H+-ATPase (Canellas et al., 2002).
Interestingly, a link was found between NO and the humic-acid
stimulation of H+-ATPase. In maize roots, plasma membrane
H+-ATPase activity increased in the presence of NO donor
SNP (200 µM), and the stimulatory effects of humic acids were
inhibited by the addition of NO scavenger PTIO (Zandonadi
et al., 2010). Moreover, data supporting a role for NO in
the expression and activity of H+-ATPase were described in
other systems under study. Calluses from reed (Phragmites
communis Trin.) exhibited enhanced H+-ATPase activity 48 h
after incubation with SNP (200 µM), and a reduced activity
after treatment with PTIO (Zhao et al., 2004). None of the
previous studies regarding the influence of NO or humic acids on
the activity of H+-ATPase were performed under P restriction.
Recently, maize plants exposed 6 days to P deprivation, being
simultaneously in the presence of an NO donor (GSNO 100 µM),
were found to exhibit higher capacity of external medium
acidification as compared with P-deprived plants (Ramos-Artuso
et al., 2018). It is worth considering that NO can be generated
non-enzymatically in the apoplast, and its synthesis is favored
when pH is low (Stöhr and Ullrich, 2002; Bethke et al., 2004).
Thus, a mechanism in which NO induces external medium
acidification, which, in turn, enhances NO synthesis under
P-restricted conditions, may be suggested. Further experiments
are necessary to unravel the role of NO over H+-ATPase activity
in plants under P-restriction.

Apoplast acidification, through the activity of plasma
membrane H+-ATPase, is also influenced by auxins, and it is
involved not only in nutrient uptake, but also in cell growth
(Rayle and Cleland, 1992). Auxins also induce accumulation of
NO in roots, as has been evaluated in Arabidopsis, soybean,
tomato, and cucumber (Pagnussat et al., 2002; Correa-Aragunde
et al., 2004; Hu et al., 2005; Terrile et al., 2012). It is therefore
possible to speculate an interplay between NO and auxins in the
modulation of H+-ATPase activity under P scarcity.

Symbiotic Associations
The broad range of adaptive P stress responses includes the
establishment of symbiotic association with AM fungi (Mensah
et al., 2015), through which plants can enhance their capacity to
acquire P from soils by increasing root uptake volume, dissolving
insoluble P, mineralizing organic P, and avoiding P slow diffusion
from the soil solution to root surface (Zhang et al., 2014). AM
symbiosis has been associated with changes in the amount of
plant hormones in roots (cytokinins, auxins, ethylene, jasmonic
acid, abscisic acid and strigolactones), and NO has recently been
described as playing a role at the early stages of that interaction
(reviewed in Martínez-Medina et al., 2019b). Five days after
inoculation of Medicago truncatula with Glomus mosseae, the
expression of the NR gene was significantly upregulated in roots.
It was suggested that a diffusible fungal factor was perceived
by the host tissues, since the same result was obtained when
roots had been physically separated from G. mosseae hyphae by
a semipermeable barrier (Weidmann et al., 2004). In search for
a link between NR transcript accumulation and NO levels, roots
of M. truncatula were exposed to fungal exudates obtained from

germinating Gigaspora margarita, simulating the presymbiotic
phase of the interaction (Calcagno et al., 2012). During the first
minutes after exposure, increases in NO levels were found in
the epidermal and cortical tissues of roots evaluated using DAF-
2DA and confocal microscopy. Moreover, NR transcript level
increased after 10 min of treatment, and AM-dependent NO
accumulation was suppressed when NR activity was inhibited
with tungstate (Calcagno et al., 2012).

Increased levels of NO, associated with AM-plant interaction,
were also confirmed in: roots of Trifolium repens L. inoculated
with G. mosseae (Zhang et al., 2013); olive roots in association
with Rhizophagus irregularis (Espinosa et al., 2014); P. trifoliata
seedlings colonized by D. versiformis (Zou et al., 2017);
and tomato plants at the onset of the AM symbiosis with
R. irregularis (Martínez-Medina et al., 2019a). Based on these
results, Martínez-Medina et al. (2019b) has proposed a model
for the establishment of mycorrhizal symbiosis which, during the
pre-symbiotic stages, diffusible fungal signals are perceived by the
plant, triggering a burst of NO linked with the activation of the
symbiotic regulatory pathway. This partially suppresses the host
immune responses and prepares the plant for fungal colonization.
In later stages, the level of NO in root cells is controlled by the
action of phytoglobins (Martínez-Medina et al., 2019b). However,
experimental data regarding NO participation during mutualistic
interaction in P-restricted conditions are not available. NO’s role
in some key P-deficiency responses, on the one hand, and in the
interaction with AMF, on the other, opens up interesting queries
regarding whether integrated responses involving NO and soil
microorganisms may occur under P scarcity.

CONCLUDING REMARKS

To date there is little research on NO levels that have been
conducted in plants exposed to P scarcity. NO increased after
imposition of P-restriction treatments in lupin, Arabidopsis
and rice roots, as well as in soybean leaves. NO seems to be
implicated in acclimation responses to low P-availability, as it
was described for citrate exudation, transcription and activity of a
P transporter, P uptake from diluted solutions, external medium
acidification and phosphatase activity, as well as modulation
of some metabolic pathways. However, other functions of NO
(for example, increasing H+-ATPase activity, role in symbiotic
interaction, root hairs development, and lateral roots growth)
remain to be studied in plants exposed to low P conditions.

Considering that a large amount of research has been
developed using NO donors, caution should be taken regarding
some observed side effects. In this regard, the use of other NO
donors or scavengers in assays should be encouraged to strongly
support some of the results. In addition, measurement of NO
levels inside the plant as well as in different organs should be
promoted to obtain a more integrated view.

Different mechanisms could be involved in NO synthesis
during P scarcity but NR seems to have a critical role because of
the close relationship between N metabolism and NO generation.
Once NO concentration rises to a critical value, it may regulate
its own specific level to exert a particular function. An interesting
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interaction of NO with hormones, such as ethylene, GA, and
auxins during P deficiency may be proposed in some key
acclimation responses. Moreover, future research in this field may
confirm and show additional actors to this scenario. Overall, we
encourage research in NO participation during P deficiency in
order to find new tools to improve agricultural practices, avoiding
fertilizers misuse and consequently, environmental damage.
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