Available online at www.sciencedirect.com

ScienceDirect PHYS":A i

ELSEVIER Physica A 379 (2007) 503512

www.elsevier.com/locate/physa

Wavelet entropy of stochastic processes

L. Zunino®®>>*, D.G. Pérez®, M. Garavaglia®, O.A. Rosso®

#Centro de Investigaciones Opticas (CIOp), CC. 124 Correo Central, 1900 La Plata, Argentina
®Departamento de Ciencias Bdsicas, Facultad de Ingenieria, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina
“Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina
dnstituto de Fisica, Pontificia Universidad Catdlica de Valparaiso (PUCV), 23-40025 Valparaiso, Chile
®Facultad de Ciencias Exactas y Naturales, Instituto de Cdlculo, Universidad de Buenos Aires (UBA), Pabellon II, Ciudad Universitaria,
1428 Ciudad de Buenos Aires, Argentina

Received 10 January 2006; received in revised form 30 October 2006
Available online 28 February 2007

Abstract

We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the
normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano,
Time—frequency analysis of electroencephalogram series, I11. Wavelet packets and information cost function, Phys. Rev. E
57 (1998) 932-940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schiirmann, E. Basar, Wavelet
entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75] and a
second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71-78]. In order to understand their advantages and
disadvantages, exact results obtained for fractional Gaussian noise (—1<a< 1) and fractional Brownian motion
(1<a< 3) are assessed. We find out that the NTWS family performs better as a characterization method for these
stochastic processes.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The advantages of projecting an arbitrary continuous stochastic process in a discrete wavelet space are
widely known. The wavelet time—frequency representation does not make any assumptions about signal
stationarity and is capable of detecting dynamic changes due to its localization properties. Unlike the
harmonic base functions of the Fourier analysis, which are precisely localized in frequency but infinitely
extend in time, wavelets are well localized in both time and frequency. Moreover, the computational time is
significantly shorter since the algorithm involves the use of fast wavelet transform in a multi-resolution
framework. Finally, contaminating noise contributions can be easily eliminated when they are concentrated in
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some frequency bands [1,2]. These important reasons justify the introduction, within this special space, of
entropy-based algorithms in order to quantify the degree of order or disorder associated with a multi-
frequency signal response. With the entropy estimated via the wavelet transform, the time evolution of
frequency patterns can be followed with an optimal time—frequency resolution. Several recent papers have
confirmed the effectiveness, relevance and suitability of the wavelet entropy as a quantifier of experimental and
synthetic signals. These include applications to the characterization of brain electrical signals (EEG and EP/
ERP) and neuronal activity [3—14]), solar physics [15,16], erythrocytes deformation [17], laser propagation
throughout turbulent media and other lasers applications [18-20], pseudo-random number generators [21], the
quantum-classical limit [22], and fractional Brownian motion [23].

In this paper we focus on two definitions for this quantifier: the normalized total wavelet entropy (NTWS)
family introduced by one of us (O.A. Rosso) [3,4], and another definition given recently by Tavares and
Lucena [24]. We compare their performances while characterizing two important stochastic processes: the
fractional Brownian motion (fBm) and the fractional Gaussian noise (fGn). They have been employed as
stochastic models in different and heterogeneous scientific fields, like atmospheric turbulence [18,19],
econophysics [25] and coastal dispersion [26]. We will show that the NTWS family gives a better
characterization for both of them.

2. Wavelet quantifiers
2.1. Wavelet energies

The wavelet analysis is one of the most useful tools when dealing with data samples. Any signal can be
decomposed by using a wavelet dyadic discrete family {2/ 2y(2t — k)}, with j, k € Z (the set of integers)—an
orthonormal basis for L*(R) consisting of finite-energy signals—of translations and scaling functions based on
a function y: the mother wavelet [1,2]. In the following, given a stochastic process s(¢) its associated signal is
assumed to be given by the sampled values & = {s(n),n = 1,..., M}. Its wavelet expansion has associated
wavelet coefficients given by

Citk) = (L, 2Pyt — k), (1)

withj = —N,...,—1, and N = log, M. The number of coefficients at each resolution level is N; = 2 M. Note
that this correlation gives information on the signal at scale 2 and time 27k. The set of wavelet coefficients
at level j, {C;(k)}, is also a stochastic process where k represents the discrete time variable. It provides a direct
estimation of local energies at different scales. Inspired by the Fourier analysis we define the energy at
resolution level j by

5, =Y E|Ci(k)

k

2
s

2)

where E stands for the average using some, at first, unknown probability distribution. In the case the set
{Cj(k)}, is proved to be a stationary process the previous equation reads

2

& = N/-E|Cj(k)| . 3)
Observe that the energy & is only a function of the resolution level. Also, under the same assumptions, the
temporal average energy at level j is given by

1
&= |G|’ = E|Citk)
Nj T

2
s

(4)

where we have used Eq. (3) to arrive to the last step in this equation. Since we are using dyadic discrete
wavelets the number of coefficients decreases over the low frequency bands (at resolution level j the number is
halved with respect to the previous one j + 1); thus, the latter energy definition reinforces the contribution of
these low frequency bands.
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Summing over all the available wavelets levels j we obtain the corresponding total energies: &'oral =
Zj_:l_ y & and Eioral = Zj_:l_ n €. Finally, we define the relative wavelet energy

8
= 5
pj gtol ( )
and the relative temporal average wavelet energy
&
j==". (6)
é)tol

Clearly, Z/;l_ij = Z:_Nﬁj = 1; both define probability distributions: {p;} and {p;}. They can also be
considered as scale energy densities because supply information about the relative energy associated to each
frequency band. So, they enable us to learn about their corresponding degree of importance.

2.2. NTWS family

The Shannon entropy [27] provides a measure of the information of any distribution. Consequently, we
have previously defined the family of NTWS as [3,4]

—1
SW(N) = - Z pPj- lngpj/SmaXa (7)
=N
and
- —1
SW(N) = - Z ﬁj ’ 10g2ﬁ//SmaXa (8)
Jj=—N

with Smax = log, V. It has been adopted the base-2 logarithm for the entropy definition to take advantage of
the dyadic nature of the wavelet expansion; thus, simplifying the entropy formulae that will be used in this
work. To estimate these quantifiers two different strategies have been adopted: the average and mean
NTWS—further details about these two approaches can be found in Ref. [4]. We remark that in this paper
exact analytical results are compared, and therefore, the estimation problem is not taken into account.

2.3. Tavares—Lucena wavelet entropy

Alternatively, Tavares and Lucena [2], following the basis entropy cost concept, have recently [24] defined
another probability distribution:

P = E|Ci(0)|* /600 and  p, = E[(7, )|} /600, ©)

where ¢ is the scaling function having the properties of a smoothing kernel (see Ref. [24] for details), and
o@g}) = Zj,k [E|Cj(k)|2 + [E|(,V, o)) |2. Therefore, they propose the following entropy:

(TL) j=0 271
Sw (N)=— Z ijk10g2pjk +P¢10gzp¢>/5g;h)> (10)

j=—N+1 k=0

with Sf;%() = log,(2Y — 1). As a matter of comparison we have normalized this expression and it will be
referred as Tavares—Lucena Wavelet Entropy (TLWS).

It should be noted that in Egs. (7), (8), and (10) the maximum resolution level N is an experimental
parameter. It appears explicitly as a direct consequence of sampling. Tavares and Lucena underlined this fact

because it is not mentioned in previous approaches.
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3. Theoretical results and comparison

The aim of this paper is to study the performance of the wavelet entropy definitions previously given. So we
analyze two well known stochastic processes, namely, the fBm and the fGn [28,29]. The energy per resolution
level j and sampled time k has been already evaluated for the fBm [23,30,31]. But it can be extended to fGn—
see the Appendix. The final form reads

ﬂc«mf—z&zﬂf/wwﬂwuﬁdv (11)
JO) =22 | ’

where —1 <o < 3—Dby continuity we have added o = 1 but it does not belong to any existent process. It should
be noted that the latter is independent of k. In the following we will use this power-law behavior with different
ranges for o, for the two stochastic processes under analysis, gathering both into a unified framework.
According to its values, the coefficient o« must be attached to one of the two mentioned processes.

In order to calculate the NTWS family, the relative wavelet energy for a finite data sample is obtained from
Eqgs. (5) and (11)

Gne-n 1 =27
— »—(+Dla—
p=2 T2 (12
Similarly, the relative temporal average wavelet energy—see Eqs. (6) and (11)—gives
» 1-2*
ﬂ—20+aijﬁ' (13)
Consequently, the normalized total wavelet entropies can be easily obtained from Egs. (7) and (8)
(x—1) 1 N 1 1 —20=D
Sw(N,a) = — - 1 14
w(N, @) loga N |1 —2-@D 1 _ 2N ~log, N 082 | TN D) (14)
and
~ o 1 N 1 1-2%
Sw(N, o) = - — 1 . 15
wiN,@) logzﬁJ[l——2_“ 1-2Nd} log, N ng{l——ZN“} (1)

For the Tavares and Lucena’s approach similar steps should be followed. From the power-law behavior
mentioned before a straightforward calculation yields

_ oy 122 (16)
Pjke = | — oNG+D

Therefore, the TLWS is obtained replacing the above into Eq. (10),

(TL) _ x ! — N
SwrNa) =N T L—z(“” 1—2“““’}

1 — o)
]. (17)

1
- lo
10g2(2N -1 5] |:1 _ NG+

The NTWS family and the TLWS, as a function of o and N, are depicted in Figs. 1-3. One point to emphasize
from these graphs when o>0 is that the NTWS’s range of variation increases smoothly with N, improving
detection; on the opposite, the TLWS’s range decreases when N increases. All entropies equally improve with
N on the —1<a<0 branch. Moreover, for any N the NTWS family covers almost all the available range
between 0 and 1, while the TLWS roughly covers a 25% of this range.

It is of common understanding that high entropy values are associated to a signal generated by a totally
disordered random process, and low values to an ordered or partially ordered process. If the process is noisy,
its signal wavelet decomposition is expected to have significant contributions to the total wavelet energy
coming from all frequency bands. Moreover, one could expect that all the contributions being of the same
order. Consequently, its relative energies will be almost equal at all resolution levels and acquire the entropy
maximum value. While a nearly ordered process will have a relative energy contribution concentrated around
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Fig. 1. NTWS entropy Sw as a function of o and N.
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Fig. 2. NTWS entropy Sw as a function of o and N.

some level j, thus its entropy will take a low value. The only entropy in concordance with this intuitive vision is
Sw, depicted in Fig. 2.

In Fig. 4 we compare the two entropy formulations as functions of the a-parameter when N = 12. It is clear
that the Sy and Sg]“) entropies attain their maxima at o = 0 (white noise), and the Sw entropy reaches it when
o — 1. There are two different regions to examine:

e fBm, 1 <o <3: All the three quantifiers have their maximum at o — 1, and monotonically decrease to find
their minimum in a near regular process, « — 3. The range of variation of the TLWS is ASQL) =0.038, and
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Fig. 4. NTWS and TLWS as functions of o with N = 12.

the range of variation of the NTWS family is A§w = 0.384 and ASw = 0.698. Clearly, due to the small
range of variation, the TLWS is unfit to differentiate between the short- and long-memory fBm family
members, 1<u<2 and 2<a<3, respectively. The NTWS family seems to be the best tool for this
differentiation, and the Sw has the best performance in this interval.

e fGn, —1 <a<1: The TLWS seems inadequate to describe this range—note that SgL)(IZ, —1)<Sg]‘)(12, 3).
The Sw is best suited to describe these noises, since it is monotonically decreasing and presents a range of
variation ASw = 0.698. While the Sw confuses between noises coming from short- or long-memory
processes, —1 <a<0 and 0<a< 1, respectively. It has its maximum at ¢ = 0 (white noise).
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4. Conclusions

We have introduced exact theoretical expressions for the wavelet entropies associated to fGn, —1 <a<1. In
particular, the range —1 <a <0, to our knowledge, has never been studied.

We have shown that, at least to characterize fBm’s and fGn’s processes, the NTWS family seems to be
a better quantifier than TLWS. The Sy fulfills all the requirements for a correct description of the overall
o-range: has its maximum at the white noise, differentiates between noises and processes, and has the
maximum range of variation, ASw = 0.827. Nevertheless, the Sw is best suited to discern between different
fBm processes. Finally, in the o> 0 case, an inverse dependence on N is observed: the NTWS family increases
its performance as N increases and the TLWS improves its performance as N decreases. Although the NTWS
family always improves with N for any « value.

The procedure outlined in Section 2.1 can be followed to build new probability distributions associated to
the wavelet resolution levels. For example, if 1nstead of the number of coefficients per resolution level, N, as
weight factor in Eq. (4), we use a power of it, N , then the a-parameter where the NTWS attains its maximum
changes according to this weight. So, the probablhty distribution could be modified depending of the
requirements of the physical problem under study. In particular, the Sw agrees with the popular conception of
maximum entropy for the white noise (¢ = 0).

It should be stressed that it is not the intention of this paper to compare the behavior of the aforementioned
quantifiers with other techniques for the study of complex signals [32-34]. That task will be the challenge of
future works.
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Appendix

Given any Wiener space, generalized random variables X (w), with w one element of the statistic ensemble,
can be defined through the formal sum, called chaos expansion, [35]

X(w)=> e M () with & = E[XA,]/7. (18)
Here y!'=y!y,!---9,! is the factorial of the finite non-negative integer multi-index 7y, while 2 (w) =

[T, H, (&, w)) represents the stochastic component of the process, and it is build up through the It6
1ntegrals (&;, ) of Hermite functions:

e_xz/anfl(x)
V2 = a2

with H, the Hermite polynomials. This is an orthogonal basis, and thus fulfills

én(x) =

n=12,..., (19)

oo
D& (0)E(X) = 8(x — X). (20)
n=1

In particular, Gaussian processes, with zero mean, attain the simplest chaos expansion, i.e.,

X)) =Y 6 (@), e
n=1
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where ¢, = (0,0,...,0,1,0,...) with 1 on the nth entry, and 0 otherwise, so J#,, (w) = (&,, w). Furthermore, the

covariance of two Gaussian processes, X(w) = > 2, ¢, #,(w) and Y(w) =", d, #,,(»), has a simple
expression through the expansion of their coefficients [35, p. 43]:

EXY = Z nd,. (22)
n=1

There is a particular Wiener space for fractional Brownian processes where a stochastic calculus can be
developed for the complete range of the Hurst parameter. Elliott and van der Hoek [36] were the first to
introduce it, and we will use it through this appendix. Processes within this Wiener space are built around the
self-adjoint operator My defined as

Mudp() = culv|'* ), (23)

where the hat ~ stands for the Fourier transform, ¢4, = I'(2H + 1)sin(nH), and ¢ is any function such that
M Hd) € L*(R). In particular, the chaos expansion for fBm results

B (t,0) =Y (Muln, &) # o, (o), (24)

see Ref. [36] for further details. Since w is fixed, whenever its presence is unnecessary it will be omitted. Since
the operator My is self-adjoint,

(M yT,9.0) = (Mo,9. M é,) = /0 dsM &, (s).

Henceforth, the fractional white noise has the expansion
d o
—Bf(n=> M A = wH(). 2
4 %0 = 2 Mu&y A () = WO (25)

Following the methodology employed in Pérez et al. [23] to find the chaos expansion of the wavelet
coefficients for the fBm, let us take as the signal the noise s(1) = WH(t, ). Then, given the orthonormal
wavelet basis {2//2y(2 - —K)}jkez = W, x}jkez, We obtain the wavelet coefficient expansion:

Py = (W) = Z(MHén, Vi) A o, (). (26)

n=1

Each one of these coefficients is also a Gaussian process [35]. Since we are interested in evaluating their
covariance, because of Eq. (22), we just need to work with the individual coefficients

&G k) = (M, Wj4) = CH/R|V|1/2 HE WP dv. 27)

Since, the Fourier transforms of the Hermite functions and the wavelet are é(v)—1” 1e,(v) and
tp]k(v) =27 exp(—i2"~ ’kv)xﬁ(2 7v), respectively. The evaluation of the coefficients dH (j, k) is straightforward
from their definition:

d (G, k) = cyit™' 2~ H-12) / |2 ()22 ¢ (Pv)e R dy, (28)
R

where P(v) = y(v).
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Under the same procedure used in Ref. [23] the second moment of any wavelet coefficient can be calculated
using Eq. (22), as follows:

£l wof = D odi )

— c%{z—j(ZH—l) /7 |v|7(H71/2)|v/|—(H—I/Z),{,(V),P*(v/)efik(va’)z,‘ Z in(zjv)fn(zjv/) dvdy
R

n=1

o0
2I(2H + 1) sin(nH)2 7= / v D ()| d, (29)
0

for the last step we used > - | ELVE(V) =2775(v — V), from property (20), and the parity of Y—also, it
should decay fast enough for the integral to converge.

In the case of the fractional Gaussian noises « = 2H — 1, as opposite to the fractional Brownian motion
where o = 2H + 1. For the latter we have previously reported [23] that

H 2 : °
[E‘C]B (k)‘ — 2T2H + 1)sin(nH)27/CH+D /0 yCHED () dv, (30)

for any mother wavelet satisfying [,y = 0. Therefore, these two expressions, Eqs. (29) and (30), can be
combined in one written in terms of the power o:

[E‘C;‘(k)’z =2c5 27 /OOO v P dv, @31

where —1<a<1 or 1 <a<3, and cy is calculated from the value of o.

References

[1] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[2] S. Mallat, A Wavelet Tour of Signal Processing, second ed., Academic Press, New York, 1999.
[3] S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time—frequency analysis of electroencephalogram series, I1I. Wavelet
packets and information cost function, Phys. Rev. E 57 (1998) 932-940.
[4] O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schiirmann, E. Basar, Wavelet entropy: a new tool for analysis of
short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65-75.
[5] O.A. Rosso, M.L. Mairal, Characterization of time dynamical evolution of electroencephalographic epileptic records, Physica A 312
(3-4) (2002) 469-504.
[6] O.A. Rosso, M.T. Martin, A. Plastino, Brain electrical activity analysis using wavelet based informational tools, Physica A 313 (2002)
587-608.
[71 H. Hasegawa, Stochastic resonance of ensemble neurons for transient spike trains: wavelet analysis, Phys. Rev. E 66 (2) (2002)
021902.
[8] O.A. Rosso, S. Blanco, A. Rabinowicz, Wavelet analysis of generalized tonic-clonic epileptic seizures, Signal Process. 86 (2003)
1275-1289.
[9] H.A. Al-Nashash, J.S. Paul, W.C. Ziai, D.F. Hanley, N.V. Thakor, Wavelet entropy for subband segmentation of EEG during injury
and recovery, Ann. Biomed. Eng. 31 (2003) 653-658.
[10] O.A. Rosso, W. Hyslop, R. Gerlach, R.L.L. Smith, J.A.P. Rostas, M. Hunter, Quantitative EEG analysis of the maturational
changes associated with childhood absence epilepsy, Physica A 356 (1) (2005) 184-189.
[11] H.A. Al-Nashash, N.V. Thakor, Monitoring of global cerebral ischemia using wavelet entropy rate of change, IEEE Trans. Biomed.
Eng. 52 (12) (2005) 2119-2122.
[12] H.C. Shin, S. Tong, S. Yamashita, X. Jia, R.G. Geocadin, N.V. Thakor, Quantitative EEG and effect of hypothermia on brain
recovery after cardiac arrest, IEEE Trans. Biomed. Eng. 53 (6) (2006) 1016—1023.
[13] A.W.L. Chiu, S.S. Jahromi, H. Khosravani, P.L. Carlen, B.L. Bardakjian, The effects of high-frequency oscillations in hippocampal
electrical activities on the classification of epileptiform events using artificial neural networks, J. Neural Eng. 3 (1) (2006) 9-20.
[14] O.A. Rosso, M.T. Martin, A. Figliola, K. Keller, A. Plastino, EEG analysis using wavelet-based information tools, J. Neurosci.
Method 153 (2) (2006) 163-182.
[15] S. Sello, Wavelet entropy as a measure of solar cycle complexity, Astron. Astrophys. 363 (2000) 311-315.
[16] S. Sello, Wavelet entropy and the multi-peaked structure of solar cycle maximum, New Astron. 8 (2003) 105-117.
[17] A.M. Korol, R.J. Rasia, O.A. Rosso, Alterations of thalassemic erythrocytes detected by wavelet entropy, Physica A 375 (1) (2007)
257-264.



512 L. Zunino et al. | Physica A 379 (2007) 503-512

[18] L. Zunino, D.G. Pérez, M. Garavaglia, O.A. Rosso, Characterization of laser propagation through turbulent media by quantifiers
based on the wavelet transform, Fractals 12 (2) (2004) 223-233.

[19] L. Zunino, D.G. Pérez, M. Garavaglia, O.A. Rosso, Characterization of laser propagation through turbulent media by quantifiers
based on the wavelet transform: dynamic study, Physica A 364 (2006) 79-86.

[20] I. Passoni, A. Dai Pra, H. Rabal, M. Trivi, R. Arizaga, Dynamic speckle processing using wavelets based entropy, Opt. Commun. 246
(1-3) (2005) 219-228.

[21] C.M. Gonzalez, H.A. Larrondo, O.A. Rosso, Statistical complexity measure of pseudorandom bit generators, Physica A 354 (2005)
281-300.

[22] A.M. Kowalski, M.T. Martin, A. Plastino, A.N. Proto, O.A. Rosso, Wavelet statistical complexity analysis of the classical limit,
Phys. Lett. A 311 (2003) 180-191.

[23] D.G. Pérez, L. Zunino, M. Garavaglia, O.A. Rosso, Wavelet entropy and fractional Brownian motion time series, Physica A 365 (2)
(2006) 282-288.

[24] D.M. Tavares, L.S. Lucena, Entropy analysis of stochastic processes at finite resolution, Physica A 357 (1) (2005) 71-78.

[25] A. Carbone, G. Castelli, H.E. Stanley, Time-dependent Hurst exponent in financial time series, Physica A 344 (1-2) (2004) 267-271.

[26] P.S. Addison, A.S. Ndumu, Engineering applications of fractional Brownian motion: self-affine and self-similar random processes,
Fractals 7 (2) (1999) 151-157.

[27] C.E. Shannon, A mathematical theory of communications, Bell Syst. Technol. J. 27 (1948) 379-423 and 623-656.

[28] B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 4 (1968) 422-437.

[29] G. Samorodnitsky, M.S. Taqqu, Stable non-Gaussian random processes: stochastic models with infinite variance, Chapman & Hall/
CRC, London, UK, 1994.

[30] P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion, IEEE Trans. Inform. Theory IT-38 (2) (1992) 910-917.

[31] P. Abry, P. Flandrin, M.S. Taqqu, D. Veitch, Wavelets for the analysis, estimation, and synthesis of scaling data, in: K. Park,
W. Willinger (Eds.), Self-similar Network Traffic and Performance Evaluation, Wiley, New York, 2000.

[32] G. Boffetta, M. Cencini, M. Falcioni, A. Vulpiani, Predictability: a way to characterize complexity, Phys. Reports 356 (2002)
367-474.

[33] K. Urbanowicz, J.A. Holyst, Noise-level estimation of time series using coarse-grained entropy, Phys. Rev. E 67 (2003) 046218.

[34] M. Anghel, On the effective dimension and dynamic complexity of earthquake faults, Chaos, Solitons & Fractals 19 (2) (2004)
399-420.

[35] H. Holden, B. Qksendal, J. Ubge, T. Zhang, Stochastic Partial Differential Equations: a Modeling, White Noise Functional
Approach, Probability and Its Applications, Birkhduser, Boston, 1996.

[36] R.J. Elliott, J. van der Hoek, A general fractional white noise theory and applications to finance, Math. Finance 13 (2003) 301-330.



	Wavelet entropy of stochastic processes
	Introduction
	Wavelet quantifiers
	Wavelet energies
	NTWS family
	Tavares-Lucena wavelet entropy

	Theoretical results and comparison
	Conclusions
	Acknowledgments
	Appendix
	References


