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Abstract

We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the

normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano,

Time–frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E

57 (1998) 932–940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Bas-ar, Wavelet

entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65–75] and a

second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71–78]. In order to understand their advantages and

disadvantages, exact results obtained for fractional Gaussian noise (�1oao 1) and fractional Brownian motion

(1oao 3) are assessed. We find out that the NTWS family performs better as a characterization method for these

stochastic processes.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Wavelet analysis; Wavelet entropy; Fractional Brownian motion; Fractional Gaussian noise; a-parameter
1. Introduction

The advantages of projecting an arbitrary continuous stochastic process in a discrete wavelet space are
widely known. The wavelet time–frequency representation does not make any assumptions about signal
stationarity and is capable of detecting dynamic changes due to its localization properties. Unlike the
harmonic base functions of the Fourier analysis, which are precisely localized in frequency but infinitely
extend in time, wavelets are well localized in both time and frequency. Moreover, the computational time is
significantly shorter since the algorithm involves the use of fast wavelet transform in a multi-resolution
framework. Finally, contaminating noise contributions can be easily eliminated when they are concentrated in
e front matter r 2007 Elsevier B.V. All rights reserved.
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some frequency bands [1,2]. These important reasons justify the introduction, within this special space, of
entropy-based algorithms in order to quantify the degree of order or disorder associated with a multi-
frequency signal response. With the entropy estimated via the wavelet transform, the time evolution of
frequency patterns can be followed with an optimal time–frequency resolution. Several recent papers have
confirmed the effectiveness, relevance and suitability of the wavelet entropy as a quantifier of experimental and
synthetic signals. These include applications to the characterization of brain electrical signals (EEG and EP/
ERP) and neuronal activity [3–14]), solar physics [15,16], erythrocytes deformation [17], laser propagation
throughout turbulent media and other lasers applications [18–20], pseudo-random number generators [21], the
quantum-classical limit [22], and fractional Brownian motion [23].

In this paper we focus on two definitions for this quantifier: the normalized total wavelet entropy (NTWS)
family introduced by one of us (O.A. Rosso) [3,4], and another definition given recently by Tavares and
Lucena [24]. We compare their performances while characterizing two important stochastic processes: the
fractional Brownian motion (fBm) and the fractional Gaussian noise (fGn). They have been employed as
stochastic models in different and heterogeneous scientific fields, like atmospheric turbulence [18,19],
econophysics [25] and coastal dispersion [26]. We will show that the NTWS family gives a better
characterization for both of them.

2. Wavelet quantifiers

2.1. Wavelet energies

The wavelet analysis is one of the most useful tools when dealing with data samples. Any signal can be
decomposed by using a wavelet dyadic discrete family f2j=2cð2j t� kÞg, with j; k 2 Z (the set of integers)—an
orthonormal basis for L2ðRÞ consisting of finite-energy signals—of translations and scaling functions based on
a function c: the mother wavelet [1,2]. In the following, given a stochastic process sðtÞ its associated signal is
assumed to be given by the sampled values S ¼ fsðnÞ; n ¼ 1; . . . ;Mg. Its wavelet expansion has associated
wavelet coefficients given by

CjðkÞ ¼ hS; 2
j=2cð2j t� kÞi, (1)

with j ¼ �N; . . . ;�1, and N ¼ log2 M. The number of coefficients at each resolution level is Nj ¼ 2jM. Note
that this correlation gives information on the signal at scale 2�j and time 2�jk. The set of wavelet coefficients
at level j, fCjðkÞgk, is also a stochastic process where k represents the discrete time variable. It provides a direct
estimation of local energies at different scales. Inspired by the Fourier analysis we define the energy at
resolution level j by

Ej ¼
X

k

E CjðkÞ
�� ��2, (2)

where E stands for the average using some, at first, unknown probability distribution. In the case the set
fCjðkÞgk is proved to be a stationary process the previous equation reads

Ej ¼ NjE CjðkÞ
�� ��2. (3)

Observe that the energy Ej is only a function of the resolution level. Also, under the same assumptions, the
temporal average energy at level j is given by

eEj ¼
1

Nj

X
k

E CjðkÞ
�� ��2 ¼ E CjðkÞ

�� ��2, (4)

where we have used Eq. (3) to arrive to the last step in this equation. Since we are using dyadic discrete
wavelets the number of coefficients decreases over the low frequency bands (at resolution level j the number is
halved with respect to the previous one j þ 1); thus, the latter energy definition reinforces the contribution of
these low frequency bands.



ARTICLE IN PRESS
L. Zunino et al. / Physica A 379 (2007) 503–512 505
Summing over all the available wavelets levels j we obtain the corresponding total energies: Etotal ¼P�1
j¼�N Ej and eEtotal ¼

P�1
j¼�N

eEj. Finally, we define the relative wavelet energy

pj ¼
Ej

Etot
, (5)

and the relative temporal average wavelet energy

epj ¼
eEjeEtot

. (6)

Clearly,
P�1

j¼�N pj ¼
P�1

j¼�N epj ¼ 1; both define probability distributions: fpjg and fepjg. They can also be
considered as scale energy densities because supply information about the relative energy associated to each
frequency band. So, they enable us to learn about their corresponding degree of importance.
2.2. NTWS family

The Shannon entropy [27] provides a measure of the information of any distribution. Consequently, we
have previously defined the family of NTWS as [3,4]

SWðNÞ ¼ �
X�1

j¼�N

pj � log2 pj=Smax, (7)

and

eSWðNÞ ¼ �
X�1

j¼�N

epj � log2 epj=Smax, (8)

with Smax ¼ log2 N. It has been adopted the base-2 logarithm for the entropy definition to take advantage of
the dyadic nature of the wavelet expansion; thus, simplifying the entropy formulae that will be used in this
work. To estimate these quantifiers two different strategies have been adopted: the average and mean
NTWS—further details about these two approaches can be found in Ref. [4]. We remark that in this paper
exact analytical results are compared, and therefore, the estimation problem is not taken into account.
2.3. Tavares–Lucena wavelet entropy

Alternatively, Tavares and Lucena [2], following the basis entropy cost concept, have recently [24] defined
another probability distribution:

pjk ¼ E CjðkÞ
�� ��2=EðTLÞtot and pf ¼ E hS;fi

�� ��2=EðTLÞtot , (9)

where f is the scaling function having the properties of a smoothing kernel (see Ref. [24] for details), and

E
ðTLÞ
tot ¼

P
j;k E CjðkÞ
�� ��2 þ E hS;fi

�� ��2. Therefore, they propose the following entropy:

S
(TL)
W ðNÞ ¼ �

Xj¼0
j¼�Nþ1

X2�j�1

k¼0

pjk log2 pjk þ pf log2 pf

 !,
SðTLÞmax , (10)

with SðTLÞmax ¼ log2ð2
N � 1Þ. As a matter of comparison we have normalized this expression and it will be

referred as Tavares–Lucena Wavelet Entropy (TLWS).
It should be noted that in Eqs. (7), (8), and (10) the maximum resolution level N is an experimental

parameter. It appears explicitly as a direct consequence of sampling. Tavares and Lucena underlined this fact
because it is not mentioned in previous approaches.
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3. Theoretical results and comparison

The aim of this paper is to study the performance of the wavelet entropy definitions previously given. So we
analyze two well known stochastic processes, namely, the fBm and the fGn [28,29]. The energy per resolution
level j and sampled time k has been already evaluated for the fBm [23,30,31]. But it can be extended to fGn—
see the Appendix. The final form reads

E Ca
j ðkÞ

��� ���2 ¼ 2c2H2�ja
Z 1
0

n�a CðnÞ
�� ��2 dn, (11)

where �1oao3—by continuity we have added a ¼ 1 but it does not belong to any existent process. It should
be noted that the latter is independent of k. In the following we will use this power-law behavior with different
ranges for a, for the two stochastic processes under analysis, gathering both into a unified framework.
According to its values, the coefficient a must be attached to one of the two mentioned processes.

In order to calculate the NTWS family, the relative wavelet energy for a finite data sample is obtained from
Eqs. (5) and (11)

pj ¼ 2�ðjþ1Þða�1Þ
1� 2a�1

1� 2Nða�1Þ . (12)

Similarly, the relative temporal average wavelet energy—see Eqs. (6) and (11)—gives

epj ¼ 2�ðjþ1Þa
1� 2a

1� 2Na . (13)

Consequently, the normalized total wavelet entropies can be easily obtained from Eqs. (7) and (8)

SWðN; aÞ ¼
ða� 1Þ

log2 N

1

1� 2�ða�1Þ
�

N

1� 2�Nða�1Þ

� �
�

1

log2 N
log2

1� 2ða�1Þ

1� 2Nða�1Þ

� �
(14)

and

eSWðN; aÞ ¼
a

log2 N

1

1� 2�a
�

N

1� 2�Na

� �
�

1

log2 N
log2

1� 2a

1� 2Na

� �
. (15)

For the Tavares and Lucena’s approach similar steps should be followed. From the power-law behavior
mentioned before a straightforward calculation yields

pjk ¼ 2�ja 1� 2aþ1

1� 2Nðaþ1Þ . (16)

Therefore, the TLWS is obtained replacing the above into Eq. (10),

S
ðTLÞ
W ðN; aÞ ¼

a
log2ð2

N � 1Þ

1

1� 2�ðaþ1Þ
�

N

1� 2�Nðaþ1Þ

� �
�

1

log2ð2
N � 1Þ

log2
1� 2ðaþ1Þ

1� 2Nðaþ1Þ

� �
. ð17Þ

The NTWS family and the TLWS, as a function of a and N, are depicted in Figs. 1–3. One point to emphasize
from these graphs when a40 is that the NTWS’s range of variation increases smoothly with N, improving
detection; on the opposite, the TLWS’s range decreases when N increases. All entropies equally improve with
N on the �1oao0 branch. Moreover, for any N the NTWS family covers almost all the available range
between 0 and 1, while the TLWS roughly covers a 25% of this range.

It is of common understanding that high entropy values are associated to a signal generated by a totally
disordered random process, and low values to an ordered or partially ordered process. If the process is noisy,
its signal wavelet decomposition is expected to have significant contributions to the total wavelet energy
coming from all frequency bands. Moreover, one could expect that all the contributions being of the same
order. Consequently, its relative energies will be almost equal at all resolution levels and acquire the entropy
maximum value. While a nearly ordered process will have a relative energy contribution concentrated around
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Fig. 1. NTWS entropy SW as a function of a and N.
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Fig. 2. NTWS entropy eSW as a function of a and N.
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some level j, thus its entropy will take a low value. The only entropy in concordance with this intuitive vision iseSW, depicted in Fig. 2.
In Fig. 4 we compare the two entropy formulations as functions of the a-parameter when N ¼ 12. It is clear

that the eSW and S
ðTLÞ
W entropies attain their maxima at a ¼ 0 (white noise), and the SW entropy reaches it when

a! 1. There are two different regions to examine:
�
 fBm, 1oao3: All the three quantifiers have their maximum at a! 1, and monotonically decrease to find
their minimum in a near regular process, a! 3. The range of variation of the TLWS is DS

ðTLÞ
W ¼ 0:038, and
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the range of variation of the NTWS family is DeSW ¼ 0:384 and DSW ¼ 0:698. Clearly, due to the small
range of variation, the TLWS is unfit to differentiate between the short- and long-memory fBm family
members, 1oao2 and 2oao3, respectively. The NTWS family seems to be the best tool for this
differentiation, and the SW has the best performance in this interval.

�
 fGn, �1oao1: The TLWS seems inadequate to describe this range—note that S

ðTLÞ
W ð12;�1ÞoS

ðTLÞ
W ð12; 3Þ.

The SW is best suited to describe these noises, since it is monotonically decreasing and presents a range of
variation DSW ¼ 0:698. While the eSW confuses between noises coming from short- or long-memory
processes, �1oao0 and 0oao1, respectively. It has its maximum at a ¼ 0 (white noise).
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4. Conclusions
We have introduced exact theoretical expressions for the wavelet entropies associated to fGn, �1oao1. In
particular, the range �1oao0, to our knowledge, has never been studied.

We have shown that, at least to characterize fBm’s and fGn’s processes, the NTWS family seems to be
a better quantifier than TLWS. The eSW fulfills all the requirements for a correct description of the overall
a-range: has its maximum at the white noise, differentiates between noises and processes, and has the
maximum range of variation, DeSW ¼ 0:827. Nevertheless, the SW is best suited to discern between different
fBm processes. Finally, in the a40 case, an inverse dependence on N is observed: the NTWS family increases
its performance as N increases and the TLWS improves its performance as N decreases. Although the NTWS
family always improves with N for any a value.

The procedure outlined in Section 2.1 can be followed to build new probability distributions associated to
the wavelet resolution levels. For example, if instead of the number of coefficients per resolution level, Nj, as
weight factor in Eq. (4), we use a power of it, N

b
j , then the a-parameter where the NTWS attains its maximum

changes according to this weight. So, the probability distribution could be modified depending of the
requirements of the physical problem under study. In particular, the eSW agrees with the popular conception of
maximum entropy for the white noise (a ¼ 0).

It should be stressed that it is not the intention of this paper to compare the behavior of the aforementioned
quantifiers with other techniques for the study of complex signals [32–34]. That task will be the challenge of
future works.
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Appendix

Given any Wiener space, generalized random variables X ðoÞ, with o one element of the statistic ensemble,
can be defined through the formal sum, called chaos expansion, [35]

X ðoÞ ¼
X
g

cgHgðoÞ with c2g ¼ E½XHg�=g!. (18)

Here g! ¼ g1!g2! � � � gn! is the factorial of the finite non-negative integer multi-index g, while HgðoÞ ¼Qn
i¼1 Hgi

ðhxi;oiÞ represents the stochastic component of the process, and it is build up through the Itô
integrals hxi;oi of Hermite functions:

xnðxÞ ¼
e�x2=2Hn�1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�1ðn� 1Þ!p1=2

p ; n ¼ 1; 2; . . . , (19)

with Hn the Hermite polynomials. This is an orthogonal basis, and thus fulfillsX1
n¼1

xnðxÞxnðx
0Þ ¼ dðx� x0Þ. (20)

In particular, Gaussian processes, with zero mean, attain the simplest chaos expansion, i.e.,

X ðoÞ ¼
X1
n¼1

cn H�n ðoÞ, (21)
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where �n ¼ ð0; 0; . . . ; 0; 1; 0; . . .Þ with 1 on the nth entry, and 0 otherwise, soH�n ðoÞ ¼ hxn;oi. Furthermore, the
covariance of two Gaussian processes, X ðoÞ ¼

P1
n¼1 cn H�n ðoÞ and Y ðoÞ ¼

P1
n¼1 dn H�n

ðoÞ, has a simple
expression through the expansion of their coefficients [35, p. 43]:

EXY ¼
X1
n¼1

cndn. (22)

There is a particular Wiener space for fractional Brownian processes where a stochastic calculus can be
developed for the complete range of the Hurst parameter. Elliott and van der Hoek [36] were the first to
introduce it, and we will use it through this appendix. Processes within this Wiener space are built around the
self-adjoint operator MH defined as

dMHfðnÞ ¼ cH nj j1=2�HbfðnÞ, (23)

where the hat b stands for the Fourier transform, c2H ¼ Gð2H þ 1Þ sinðpHÞ, and f is any function such thatdMHf 2 L2ðRÞ. In particular, the chaos expansion for fBm results

BH ðt;oÞ ¼
X1
n¼1

ðMH1½0;t�; xnÞH�n
ðoÞ, (24)

see Ref. [36] for further details. Since o is fixed, whenever its presence is unnecessary it will be omitted. Since
the operator MH is self-adjoint,

ðMH1½0;t�; xnÞ ¼ ð1½0;t�;MHxnÞ ¼

Z t

0

dsMHxnðsÞ.

Henceforth, the fractional white noise has the expansion

d

dt
BH ðtÞ ¼

X1
n¼1

MHxnðtÞH�n
ðoÞ ¼W H ðtÞ. (25)

Following the methodology employed in Pérez et al. [23] to find the chaos expansion of the wavelet
coefficients for the fBm, let us take as the signal the noise sðtÞ ¼W H ðt;oÞ. Then, given the orthonormal
wavelet basis f2j=2cð2j � �kÞgj;k2Z ¼ fcj;kgj;k2Z, we obtain the wavelet coefficient expansion:

CW H

j ðkÞ ¼ ðW
H ;cj;kÞ ¼

X1
n¼1

ðMHxn;cj;kÞH�n
ðoÞ. (26)

Each one of these coefficients is also a Gaussian process [35]. Since we are interested in evaluating their
covariance, because of Eq. (22), we just need to work with the individual coefficients

dH
n ðj; kÞ ¼ ðMHxn;cj;kÞ ¼ cH

Z
R

nj j1=2�H bx�nðnÞ bcj;kðnÞdn. (27)

Since, the Fourier transforms of the Hermite functions and the wavelet are bx�nðnÞ ¼ in�1xnðnÞ andbcj;kðnÞ ¼ 2�j expð�i2�jknÞbcð2�jnÞ, respectively. The evaluation of the coefficients dH
n ðj; kÞ is straightforward

from their definition:

dH
n ðj; kÞ ¼ cH in�1 2�ðH�1=2Þj

Z
R

nj j1=2�HCðnÞ2j=2xnð2
jnÞe�ikn dn, (28)

where CðnÞ ¼ bcðnÞ.
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Under the same procedure used in Ref. [23] the second moment of any wavelet coefficient can be calculated
using Eq. (22), as follows:

E CW H

j ðkÞ
��� ���2 ¼ X1

n¼1

dH
n ðj; kÞ

� dH
n ðj; k

0
Þ

¼ c2H2�jð2H�1Þ

Z
R2

nj j�ðH�1=2Þ n0
�� ���ðH�1=2ÞCðnÞC�ðn0Þe�ikðn�n0Þ2j

X1
n¼1

xnð2
jnÞxnð2

jn0Þdn dn0

¼ 2Gð2H þ 1Þ sinðpHÞ2�jð2H�1Þ

Z 1
0

n�ð2H�1Þ CðnÞ
�� ��2 dn, ð29Þ

for the last step we used
P1

n¼1 xnð2
jnÞxnð2

jn0Þ ¼ 2�jdðn� n0Þ, from property (20), and the parity of C—also, it
should decay fast enough for the integral to converge.

In the case of the fractional Gaussian noises a ¼ 2H � 1, as opposite to the fractional Brownian motion
where a ¼ 2H þ 1. For the latter we have previously reported [23] that

E CBH

j ðkÞ
��� ���2 ¼ 2Gð2H þ 1Þ sinðpHÞ2�jð2Hþ1Þ

Z 1
0

n�ð2Hþ1Þ CðnÞ
�� ��2 dn, (30)

for any mother wavelet satisfying
R
R
c ¼ 0. Therefore, these two expressions, Eqs. (29) and (30), can be

combined in one written in terms of the power a:

E Ca
j ðkÞ

��� ���2 ¼ 2 c2H 2�ja
Z 1
0

n�a CðnÞ
�� ��2 dn, (31)

where �1oao1 or 1oao3, and cH is calculated from the value of a.
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[21] C.M. González, H.A. Larrondo, O.A. Rosso, Statistical complexity measure of pseudorandom bit generators, Physica A 354 (2005)

281–300.

[22] A.M. Kowalski, M.T. Martı́n, A. Plastino, A.N. Proto, O.A. Rosso, Wavelet statistical complexity analysis of the classical limit,

Phys. Lett. A 311 (2003) 180–191.
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