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1Departamento de F́ısica, Comisión Nacional de Enerǵıa Atómica, Av. Libertador 8250, (1429) Buenos Aires, Argentina
2CONICET, Godoy Cruz 2290, Buenos Aires, Argentina
3IFLP

Received: date / Accepted: date

Abstract We study the behavior of two-flavor dense

quark matter under the influence of an external mag-

netic field ~B, in the framework of an extended, Nambu-

Jona-Lasinio model with non-local and separable inter-

actions. This non-locality is incorporated in the model

by using a Gaussian form factor. We find that within

this model there is a decrease of the critical chiral restora-

tion chemical potential for a rather wide range of in-

creasing magnetic fields.
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1 Introduction

The phase structure of strongly interacting matter un-

der the influence of an external and uniform magnetic

field ~B, plays an important role in many applications of

theoretical physics such as heavy ion collisions, cosmol-

ogy and compact star physics. For example, magnetars

are compact stars with a strong magnetic field at their

surface (expected to be up to B v 1015 G, [1]), and even

higher in their interior ([2,3]), where the density could

be several times the nuclear saturation density. Quark

matter at high densities is expected to be composed

of deconfined quarks phases ([4,5]). Then, the study

on how features of QCD phase diagram are modified

under influence of an external magnetic field became

extremely important.

The study of quark matter under extreme condi-

tions of temperature and/or densities involves QCD in

the low energy sector, where quantitative calculations

are extraordinarily difficult due to its strong coupling.

One way to overcome this problem is throughout lat-

tice QCD (lQCD) simulations; however, at finite den-

sity they present the harmful sign problem. Then, to
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circumvent this obstacle, the effective models enter into

scene as a powerful tool to describe the strong interact-

ing matter phase diagram at finite densities. It is cru-

cial that effective models show consistency with lQCD

simulations at vanishing baryonic chemical potential,

before performing extrapolations to higher densities.

One of the most widely used chiral quark model model

is the Nambu Jona-Lasinio one [6], [7]. In this effec-

tive non-renormalizable model, quarks interact in local

four point vertices; and a spontaneous chiral symme-

try breaking mechanism is included. One characteris-

tic of the NJL model is the lack of confinement, how-

ever it can be mimicked throughout the inclusion of the

Polyakov loop (PNJL).

In the last decades, some improvements were intro-

duced in the NJL model as covariant non local exten-

sions (nlNJL) [8], [9]. The non local interactions pro-

vides the effective model several advantages respect to

the local NJL. The inclusion of smooth non local form

factors prevents the ultraviolet divergences in momen-

tum space. Moreover, the nlNJL models provide a sat-

isfactory description of the hadron properties at zero

temperature and density. Furthermore, the non locality

leads to a momentum dependence in quark propaga-

tors, consistent with LQCD simulations. A recent de-

tailed review with the description and applications of

nlNJL models can be found in [10].

For magnetized quark matter, at zero temperature

and vanishing baryonic chemical potential, both, effec-

tive models and lQCD agree on the behavior on the

chiral condensate, that is an increasing function on the

external magnetic field (B). This effect is known as mag-

netic catalysis (MC) [11]. However, close to the critical

chiral restoration temperature (Tc), lQCD simulations

predict, for light quark condensates, that Tc decreases

with increasing B [12,13]. This effect, known as inverse
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magnetic catalysis (IMC), is not present in most basic

effective models, which close to Tc, predict MC instead.

Thus, in this region of the phase diagram, effective mod-

els should account for IMC mechanism.

In the present work we are interested in the behav-

ior of cold magnetized strongly interacting matter at

finite chemical potential, were diverse studies with effec-

tive models were reported in the literature [2,14–19]. In

that region, the features of the IMC are different from

the above discussed. Here, the critical chemical poten-

tial decreases with increasing values of the magnetic

fields as was described in Ref. [20]. Even when the NJL

model does not show the IMC close to Tc in agreement

with lattice simulations, it is observed in at vanishing

temperature and finite chemical potential, in the mean

field approximation [21–25]. The same effect is obtained

when considering quark-quark channels that give rise to

two flavour color superconducting quark matter (2SC)

[26–29]. As above mentioned, a step further towards a

more realistic description of strongly interacting mat-

ter in the non perturbative regime, is given by the non

local extensions of the NJL model (nlNJL). The nl-

NJL model, including a coupling to an external static

magnetic field, followed by properly implemented Ritus

eigenfuncion method, predicts MC for vanishing bary-

onic chemical potential and low T, and IMC close to Tc
[30], in agreement with lQCD simulations. Moreover,

beyond mean field level, the nlNJL model successfully

describes properties of neutral mesons under the influ-

ence of an external magnetic field, at both zero and

finite temperature [31], [32].

In the present work we study the behavior of cold

strongly interacting matter under a uniform, static mag-

netic field in the framework of nlNJL model at finite

density. Our aim is to extend the previous work [33]

to finite density regions and study the corresponding

phase diagram for a range of acceptable parameters.

The paper is organized as follows, in Sect. II we

describe the theoretical formalism of cold magnetized

quark matter within the nlNJL model at finite density.

In Sect III we show our results for the chiral limit case

and for finite current quark mass. In Sect. IV we present

our conclusions.

2 Theoretical formalism

We start by quoting the Euclidean action for the nonlo-

cal chiral quark model under consideration. In the case

of two light flavors one has

SE =

∫
d4x

[
ψ̄ (x) (−i∂ +mc)ψ (x)

− G

2
ja (x) ja (x)

]
, (1)

where ψ stands for the u, d quark field doublet and mc

is the current quark mass, which is assumed to be equal

for both quark flavors. The currents ja(x) are given by

ja (x) =

∫
d4z G(z) ψ̄

(
x+

z

2

)
Γa ψ

(
x− z

2

)
, (2)

where we have defined Γa = (1, iγ5~τ), and G(z) is a

nonlocal form factor that characterizes the effective in-

teraction.

As we are interested in describing the behaviour of

cold and dense magnetized quark matter, we include in

the effective action a coupling to an external electro-

magnetic gauge field Aµ. For a local theory, this can be

done by introducing a covariant derivative in the kinetic

term of the action in Eq. (1), i.e. by changing

∂µ → Dµ ≡ ∂µ − iQ̂Aµ (x) , (3)

where Q̂ = diag (qu, qd) is the electromagnetic quark

charge operator (qu = 2e/3, qd = −e/3). In the case of

the nonlocal model studied here, this replacement has

to be supplemented by a contribution arising from the

nonlocal currents in Eq. (2). One has [34–36]

ψ (x− z/2) → W (x, x− z/2) ψ (x− z/2) ,

ψ (x+ z/2)
† → ψ (x+ z/2)

† W (x+ z/2, x) , (4)

where the function W (s, t) is defined by

W (s, t) = P exp

[
−i
∫ t

s

drµ Q̂Aµ (r)

]
. (5)

Here P stands for path ordering, and r runs over an ar-

bitrary path connecting s with t. As it is usually done,

the latter is taken to be a straight line [37]. For sim-

plicity, we restrict to the particular case of a constant

and homogeneous magnetic field, which is chosen to be

orientated along the 3-axis. To perform the analytical

calculations we use the Landau gauge, in which one

has Aµ = B x1 δµ2. With this gauge choice the function

W(s, t) in Eq. (5) is given by

W(s, t) = exp

[
− i

2
Q̂B (s1 + t1) (t2 − s2)

]
. (6)

To proceed, we perform a standard bosonization of

the theory, introducing scalar and pseudoscalar fields

σ(x) and ~π(x), and integrating out the fermion fields.

Moreover, we consider the mean field approximation

(MFA), assuming that the field σ(x) has a nontrivial

translational invariant mean field value σ̄, while the

mean field values of pseudoscalar fields are zero. In the

presence of the external magnetic field, it is convenient

to write the effective action in a basis of Ritus func-

tions [cita]. Details of this procedure can be found e.g.

in Refs. [citas nuestras].
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Since we are interested in the study of dense quark

matter, we consider a system at nonzero quark chemical

potential µ (µ = µB/3, where µB is the baryon chemical

potential). Then, the grand canonical thermodynamic

potential can be obtained from the effective action, in-

cluding the chemical potential through the replacement

∂4 → ∂4− iµ in the kinetic term. In addition, to obtain

the appropriate conserved currents, this has to be sup-

plemented by a modification of the nonlocal currents in

Eq. (2) [33]. In practice, if the Fourier transform of the

nonlocal form factor G(z) is denoted by g(p), the latter

has to be modified by changing p4 → p4 + iµ. In this

way, the thermodynamic potential in the MFA is found

to be given by

ΩMFA
µ,B =

σ̄2

2G
−
∑
f=u,d

3Bf
2π

∫
d2p‖

(2π)2

×

[
ln
(
p2‖ +M

sf ,f
0,p‖

2 )
+

∞∑
k=1

ln∆f
k,p‖

]
, (7)

where

∆f
,p‖

=
(

2kBf + p2‖ +M+,f
k,p‖

M−,fk,p‖

)2
+ p2‖

(
M+,f
k,p‖
−M−,fk,p‖

)2
, (8)

with

Mλ,f
k,p‖

= (1− δkλ,−1)mc + σ̄ gλ,fk,p‖ (9)

and

gλ,fk,p‖ =
4π

|qfB|
(−1)

kλ

∫
d2p⊥

(2π)
2 g
(
p2⊥ + p2‖

)
× exp

(
−p2⊥/Bf

)
Lkλ

(
2p2⊥/Bf

)
. (10)

Here, we use the definitions p⊥ = (p1, p2), p‖ = (p3, p4+

iµ) and k± = k − 1/2 ± sf/2, where sf = sign (qfB).

In addition, we denoteBf = |qfB|, while Lm (x) are La-

guerre polynomials, with the usual convention L−1 (x) =

0. It can be seen that the functions M±,fk,p‖
play the role

of constituent quark masses in the presence of the ex-

ternal magnetic field. The index k is a quantum number

that labels the so-called Landau energy levels of quark

fields.

In general, the expression in Eq. (7) turns out to be

divergent. It can be regularized following the prescrip-

tion in Ref. [?], namely

ΩMFA,reg
µ,B = ΩMFA

µ,B −Ωfree
µ,B +Ωfree,reg

µ,B , (11)

where Ωfree
µ,B is a “free” piece obtained from ΩMFA

µ,B by

taking σ̄ = 0 (and keeping the chemical potential and

the interaction with the magnetic field). The regular-

ized form of this free piece is given by

Ωfree,reg
µ,B = − Nc

2π2

∑
f=u,d

[
B2
f tf

+
∑
k

θ (µ− Skf ) αk Bf vkf

]
, (12)

where

tf = ζ
′
(−1, xf ) +

x2f
4
− 1

2

(
x2f − xf

)
lnxf (13)

and

vkf = µ
√
µ2 − S2

kf − S
2
kf ln

µ+
√
µ2 − S2

kf

Skf

 . (14)

Here we denote xf = m2
c/(2Bf ), αk = 1 − δ0k/2 and

Skf =
(
m2
c + 2kBf

)1/2
. In addition, we use the nota-

tion ζ
′
(z, xf ) = dζ (z, xf ) /dz, ζ (z, xf ) being the Hur-

witz zeta function.

Given the regularized form of the mean field ther-

modynamic potential, the mean field value σ̄ can be

obtained by solving the gap equation

∂ΩMFA,reg
µ,B

∂σ̄
= 0 . (15)

In general, for each value of µ and B several solutions of

this equation may exist. The most stable solution will

be the one corresponding to the absolute minimum of

ΩMFA,reg
µ,B . Once σ̄ has been determined, the chiral quark

condensates 〈q̄q〉, with q = u, d, can be calculated from

〈q̄q〉 =
∂ΩMFA,reg

µ,B

∂mq
. (16)

3 Numerical results

To obtain the numerical predictions that follow from

the formalism described in the preceeding section, it is

necessary to specify the particular shape of the nonlocal

form factor. In the present work we use a Gaussian

function

g
(
p2
)

= exp
(
−p2/Λ2

)
, (17)

where Λ is a parameter that indicates the range of

the quark level interaction in momentum space. With

this particular choice of the form factor, the integral in

Eq. (10) can be performed analytically. One gets in this

way

gλ,fk,p‖ =

(
1−Bf/Λ2

)kλ
(1 +Bf/Λ2)

kλ+1
exp

(
−p2‖/Λ

2
)
. (18)
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Therefore, the model includes three free parameters,

viz. the effective momentum scale Λ, and the constants

mc (current quark mass) and G (coupling constant)

that appear in the effective action, Eq. (1). In this work

we consider two situations. The first one, discussed in

Sec. 3.1, corresponds to the chiral limit, in which we

fix mc = 0. Although not really physical, this situa-

tion allows for a more clear identification of the pos-

sible existing phases and it is, thus, quite useful from

a theoretical point of view. The second situation, ana-

lyzed in Sec. 3.2, corresponds to the more realistic case

in which a finite current quark mass is considered. The

way in which the model parameters are determined in

each case is discussed in the corresponding subsections.

3.1 Chiral limit

In the chiral limit the number of model parameters re-

duces to only two, viz. Λ and G. We consider a param-

etrization in which these are chosen so as to lead to

a typical value for the pion decay constant in the chi-

ral limit, fπ,ch = 90 MeV, and a given value of chiral

quark condensate at zero B and µ. To test the sensi-

tivity of our results to the model parameters we con-

sider the cases −〈q̄q〉1/3ch = 230 MeV and 260 MeV.

The corresponding parametrizations will be denoted as

P230ch and P260ch, respectively. For P230ch we find

Λ = 608.3 MeV and GΛ2 = 28.43, while for P260ch the

parameter values are found to be Λ = 914.6 MeV and

GΛ2 = 17.64.

Given a set of parameters one can numerically solve

the gap equation (15) for different values of the chemical

potential and the external magnetic field. As mentioned

above, for given values of µ and eB this equation has in

general more than one solution. In the chiral limit con-

sidered in this subsection the solution σ̄ = 0 is always

present, while for a fixed value of eB and low enough

values of µ a second solution with a nonvanishing value

σ̄ also exists. In particular, for µ = 0 the latter corre-

sponds to the absolute minimum of the thermodynamic

potential, implying that the system lies in a phase in

which chiral symmetry is spontaneously broken. Now,

if one keeps eB fixed and, starting from µ = 0, in-

creases the chemical potential, the value of the thermo-

dynamic potential corresonding to this solution remains

unchanged, while that corresponding to the trivial solu-

tion σ̄ = 0 is found to decrease, approaching the former.

At some critical chemical potential µc both values coin-

cide, and for µ > µc the trivial solution is the one that

corresponds to absolute minimum of ΩMFA,reg
µ,B . Thus, at

the critical value µ = µc, which is in general a function

of the magnetic field, the system undergoes a transition

to a phase in which chiral symmetry is restored.
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Fig. 1 Mean field value σ̄ as a function of µ for some se-
lected values of the eB, for parametrizations P230ch (left)
and P260ch (right).

The behavior of σ̄ as a function of µ for some se-

lected values of the magnetic field, and our two param-

etrizations, is shown in Fig. 1. The vertical lines corre-

spond to the critical chemical potentials µc, at which a

first order transition is clearly observed. It can be seen

that for both parametrizations the value of σ̄ at µ = 0

gets enhanced if eB is increased. This is a manifestation

of the well-known “magnetic catalysis” effect, which en-

tails a growth of the absolute value of the condensate

with eB in vacuum. In fact, as shown in Refs. [citas],

the rate of this increase is consistent with the results

obtained through lQCD simulations [12,13].

It can also be observed that the parametrization

choice has some impact on the values of µc as well as

on their dependence on the magnetic field. To analyze

this issue in more detail, in Fig. 2 we plot the value

of the critical chemical potential as a function of the

parametrization choice, for some selected values of the

magnetic field. The parametrization is characterized by

the value of −〈q̄q〉1/3ch in the horizontal axis, which cor-

responds to a given set of values of Λ and G (the re-

maining input quantity is, as stated, the value of the

pion decay constant, fπ,ch = 90 MeV). Comparing the

results obtained for eB = 0 and eB = 0.01 GeV2 (up-

per panels in Fig. 2) it is seen that although the full

line —that corresponds to the first order phase tran-

sition between the chiral symmetry broken phase and

the chiral symmetry restored phase— is almost identi-

cal in both cases, for eB = 0.01 the σ̄ = 0 region is

subdivided into many phases. Following the notation

in Ref. [14], we denote as phase B the chiral symme-

try broken phase and as Ak (k = 0, 1, 2, . . . ) the chiral

symmetry restored phases that show up for finite eB.

Each one of the latter corresponds to a different num-
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Fig. 2 Critical chemical potential as a function of the
parametrization choice, characterized by the value of the
quark chiral condensate at zero chemical potential and mag-
netic field. The graphs correspond to parametrization P230ch
and some representative values of eB. The dashed lines in-
dicate the chemical potentials corresponding to the vAdH
second order phase transitions.

ber of populated Landau levels, indicated by the index

k.

The passage from any of the Ak phases to the next

one is known as a van Alphen-de Haas (vAdH) tran-

sition. In the chiral limit discussed in this subsection

they are regulated by the Heaviside theta function that

appears in the last term of Eq. (12). Hence, the transi-

tion form the phase Ak−1 to the phase Ak happens at

a critical chemical potential given by

µvAdH
c,ch =

√
2kBf . (19)

Clearly, this relation is independent of the parametriza-

tion, which explains the fact that in Fig. 2 the dashed

lines associated to these transitions are parallel to the

horizontal axis. One should keep in mind that in the

present case (i.e. for mc = 0) there is no change in

the order parameter when one goes from one Ak phase

to the next one. In fact, one has σ̄ = 0 for all these

phases, and, consequently, all these transitions are of

second order. The effect of vAdH transitions on physi-

cal quantities can be seen, for example, in the quark

density ρq = −∂ΩMFA,reg
µ,B /∂µ. This is illustrated in
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2.0
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Fig. 3 Quark density as a function of the quark chemical po-
tential, for two representative values of eB and parametriza-
tions P230ch (left) and P260ch (right).

Fig. 3, where we show the behavior of ρq as a func-

tion of µ for two representative values of the magnetic

field and both parametrizations P230ch and P260ch. It

can be observed that when the system moves from a

given phase Ak to the next one the derivative of the

density shows a discontinuity at the transition point.

As it follows from Eq. (19), the number of vAdH

transitions in a certain range of chemical potentials de-

pends on the magnetic field strength. This is the rea-

son why in the panel corresponding to eB = 0.01 GeV2

one observes a quite large number of vAdH transitions,
while for eB = 0.1 GeV2 there are only two, and none

is found for eB = 1 GeV2.

Another interesting point to be observed in Fig. 2 is

that the dependence of the critical chemical potential

for the first order transition with the parametrization

(solid lines) is quite similar for eB = 0, 0.01 GeV2 and

0.1 GeV2. In all these cases the value of µc decreases as

the (absolute) value of the condensate that character-

izes the parametrization increases. However, for eB =

1 GeV2 the situation is different. For parametrizations

corresponding to −〈q̄q〉1/3ch & 220 MeV we find that µc
slightly increases with the absolute value of the con-

densate. Thus, one can expect that for large values of

eB the behaviour of µc would be more sensitive to the

chosen parametrization.

In addition, it is important to remark that for the

whole range of parametrizations considered in the pre-

sent nonlocal model one finds a direct transition from

the phase B to any of the phases Ak. This differs from

the situation observed for the case of the local NJL
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model, in which for some parametrizations one finds

intermediate massive phases Ck [22].

We finish this subsection by considering the phase

diagrams of magnetized cold quark matter in the eB−µ
plane for parametrizations P230ch and P260ch, shown

in Fig. 4. As stated, B denotes the spontaneous chiral
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Fig. 4 Phase diagrams in the eB−µ plane in the chiral limit
case, for parametrizations P230ch (up) and P260ch (down).
Solid and dashed lines correspond to first and second order
phase transitions, respectively.

symmetry broken phase, while Ak correspond to chi-

ral symmetry restored phases. The second order tran-

sitions between Ak phases are indicated by the dashed

lines. Each time one of these lines is crossed from right

to left, new Landau levels get populated. The cross-

ing from A0 to A1 corresponds to the population of

the d-quark state with k = 1, while for the u-quark

state only the lowest level k = 0 is allowed. Then, the

crossing from A1 to A2 implies the simultaneous popu-

lation of the u-quark state with k = 1 and the d-quark

state with k = 2, etc. The fact that the population of

the up quark state with a certain k coincides with the

one of the down quark state with 2k is simply due to

the fact that (in modulus) the electric charge of the

up quark is twice that of the down quark. Regarding

the behavior of the first order transition line (solid line

in the figure), we can observe three distinct regions.

For eB . 0.06 GeV2 the critical chemical potential µc
depends only weakly on eB, showing just a slight de-

crease as the magnetic field gets increased. Then, in

the region from eB ∼ 0.06 GeV2 to eB ∼ 0.2 GeV2, a

much pronounced decrease of µc is observed. The be-

havior found in these two regions is common to both

parameterizations in Fig. 4, and it has also been ob-

served in other models like the local NJL model [16,22]

and the Sakai-Sugimoto model [20]. This corresponds

to the so-called “inverse magnetic catalysis” effect that

occurs at finite chemical potential. Now, the situation

for magnetic fields larger than eB ∼ 0.2 GeV2 turns out

to depend on the chosen parametrization, as it has been

anticipated from the analysis of Fig. 2. In the case of

the parametrization P230ch it is observed that the de-

crease of µc continues with a rather steep slope, whereas

for P260ch it is found that the curve µc(eB) becomes

almost flat for eB & 0.2 GeV2. It should be noted that

for no reasonable parametrization of the nonlocal NJL

model we find a strong increase of µc with eB, as it

is observed in the local NJL model [22]. Actually, we

have checked that a qualitatively similar behavior as

that found in Fig. 4 is also obtained for other nonlocal

form factor shapes, such as Lorenztian-like functions.

3.2 Finite current quark mass

In the case of a finite current quark mass, the input pa-

rameters of the model are three, namely Λ, G and mc.

They can be set so as to reproduce the phenomeno-

logical values of the pion mass and decay constant,
mπ = 139 MeV and fπ = 92.4 MeV, and some ac-

ceptable input value of the quark condensate at zero

µ and B. As in the chital limit case, we consider the

values −〈q̄q〉1/3 = 230 MeV and 260 MeV. The cor-

responding parametrizations are denoted as P230 and

P260, respectively. For P230 one has Λ = 677.8 MeV,

GΛ2 = 23.65 and mc = 6.4 MeV, whereas for P260 one

has Λ = 903.4 MeV, GΛ2 = 17.53 and mc = 4.6 MeV.

As discussed in the previous subsection, once the

input parameters have been fixed one can numerically

solve the gap equation (15) for given values of the chem-

ical potential and the magnetic field strength. As in the

chiral limit case, taking a fixed value of eB, for µ = 0

the system always lies in a phase B in which chiral sym-

metry is spontaneously broken (the absolute minimum

of the thermodynamic potential occurs for a solution

with a relatively large value of σ̄). Then, if the chemical

potential is increased, at some critical value µ = µc the

system undergoes a transition to a phase Ak, in which

σ̄ jumps to a small value, indicating an approximate
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restoration of chiral symmetry. This is shown in Fig. 5,

where we quote the phase diagrams in the eB−µ plane

corresponding to parametrizations P230 and P260.
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Fig. 5 Phase diagrams for the case of finite current quark
masses. Upper and lower panels correspond to parametriza-
tions P230 and P260, respectively.

It can be seen that the phase structure is similar

to that found in the chiral limit case. Inverse magnetic

catalysis is found for finite µ, as the critical chemical po-

tential decreases for increasing external magnetic field.

In addition, it is found that the phase space region in

which chiral symmetry is approximately restored is sub-

divided into many phases Ak, k = 0, 1, 2, . . . , which

correspond to different population of the Landau lev-

els. However, notice that in this case the value of the

order parameter σ̄ in the Ak phases is nonvanishing,

therefore it can be used to signal not only the chiral

restoration transition but also the van Alphen-de Haas

transitions. This is illustrated in Fig. 6, where we show

the behavior of σ̄ as a function of eB for parametriza-

tion P230, taking three different fixed values of µ. In

the upper panel, first order chiral restoration transi-

tions are clearly seen for µ = 250 MeV (black) and

µ = 320 MeV (red), from phase B to phases A0 and

A1, respectively. For µ = 350 MeV the system lies in

0
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Fig. 6 σ̄ as a function of the magnetic field for three repre-
sentative values of the quark chemical potential. The results
correspond to parametrization P230.

the chiral restored region for all values of eB, there-

fore the value of σ̄ remains close to zero (blue). Now,

the vAdH transitions can be observed by looking at

the lower panel of Fig. 6, in which we plot the same

curves as in the upper panel using a different scale and

concentrating on the region of small σ̄. The curve cor-

responding to µ = 320 MeV (red) shows, beyond the

chiral restoration transition from the B phase to the A1

phase, a sharp peak denoting a vAdH transition from

the A1 phase to the A0 one. A closer look indicates

that there is a small discontinuity in the left hand side

of this peak, indicating that the vAdH transition is in

fact a first order one. Now, the curve corresponding to

µ = 350 MeV (blue) involves transitions between many

Ak states, as can be seen from the phase diagram in

Fig. 5. Each transition is characterized by the presence

of a peak in σ̄(eB), the height of these peaks becoming

smaller as the magnetic field gets decreased. As far as

numerical calculations can show, these vAdH transition
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are of first order, therefore they are represented by solid

lines in Fig. 5. As discussed for the chiral limit case, the

vAdH transitions correspond alternatively to the pop-

ulation of either a new level for the d-quark state or a

new level for both the u and d-quark states. Therefore,

they can be grouped into pairs, leading to the pattern

observed in the lower panel of Fig. 6. It is worth notic-

ing that the location of the vAdH transition curves in

the eB−µ phase diagram shows just a slight shift with

respect to those found in the chiral limit case, given by

Eq. (19).

4 Conclusions

In the present work we have studied the behavior of cold

and dense quark matter in the presence of an external

homogeneous magnetic field. We have considered a two-

flavor nonlocal NJL model, in which quark-antiquark

currents include a Gaussian form factor.

It is find that for low values of the quark chemical

potential µ the system lies in a phase B in which chiral

symmetry is sponteneously broken, while at some crit-

ical value µc there is a first order phase transition in

which this symmetry becomes approximately restored.

The restored phase can be subdivided into many phases

Ak, characterized by the number of populated Landau

levels for u and d-quark states.

In the chiral limit mc = 0 it is seen that the van

Alphen-de Haas transitions between Ak phases are of

second order, and their effect shows up e.g. in the be-

haviour of the quark density. On the contrary, for fi-

nite quark masses these transitions are found to be of

first order, though the corresponding jumps in the or-
der parameter σ̄ are rather tiny. Concerning the first

order chiral restoration transition line, it is found that

up to eB ∼ 0.2 GeV2 the critical chemical potential

µc decreases with the magnetic field, showing an in-

verse magnetic catalysis effect. For larger values of eB

the behaviour of µc becomes more or less flat, depend-

ing on the parametrization. In any case, for the consid-

ered parametrization range we do not find a significant

growth of the critical chemical potential for large mag-

netic fields, as occurs in the case of the local NJL model.
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