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by Guillermo Cortiñas*
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Abstract. In Kapranov, M. Noncommutative geometry based on commutator ex-

pansions, J. reine angew. Math 505 (1998) 73-118, a theory of noncommutative
algebraic varieties was proposed. Here we prove a structure theorem for the noncom-

mutative coordinate rings of affine open subsets of such of those varieties which are

smooth (Theorem 3.4). The theorem describes the local ring of a point as a trun-
cation of a quantization of the enveloping Poisson algebra of a smooth commutative

local algebra. An explicit descripition of this quantization is given in Theorem 2.5.

A description of the A- module structure of the Poisson envelope of a smooth com-
mutative algebra A was given in loc. cit., Theorem 4.1.3. However the proof given

in loc. cit. has a gap. We fix this gap for A local (Theorem 1.4) and prove a weaker
global result (Theorem 1.6).
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0. Introduction

We consider associative, unital algebras over a fixed algebraically closed field k
of characteristic zero. If R is an algebra, then the commutator filtration of R is
defined as

(1) F0R = R, Fn+1R :=
n∑

p=1

FpRFn+1−pR+
n∑

p=0

< [FpR, Fn−pR] >

(One checks that this filtration is the same as that called NC-filtration in [2].) By
definition, FR is the smallest of all descending filtrations G with GpGq ⊂ Gp+q ,
[Gp,Gq] ⊂ Gp+q+1. An algebra R is nilcommutative of order d if Fd+1R = 0. Thus
the nilcommutative algebras of order 0 are just the commutative algebras. We
write NCd for the category of nilcommutative algebras of order d and algebra ho-
momorphisms and set NC = ∪∞d=0NCd. An algebra R is called d-formally smooth
if R ∈ NCd and if homNCd

(R, ) maps surjections with nilpotent kernel to surjec-
tions, and is d-smooth if it is d-formally smooth and if the commutative algebra

(*) Partially supported by grants BID802/OC-AR-PICT 2260 and UBACyT TW79. This

research was carried out while visiting the universities of Bielefeld and Münster with a Humboldt
fellowship.
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2 GUILLERMO CORTIÑAS

A = R/F1R is essentially of finite type. For example a 0-smooth algebra is the
same thing as a smooth commutative algebra. For the remainder of this section A
will be a fixed smooth commutative algebra. It was shown in [2],1.6.1 that there
exists a tower of surjective homomorphisms:

. . .։ Rd+1 ։ Rd ։ . . .։ R2 ։ R1 ։ R0 = A

such that Rd is d-smooth and Rd/FdR = Rd−1 (d ≥ 1). Moreover it is shown in
loc. cit. that such a tower is unique up to noncanonical isomorphism. Kapranov
further develops a theory of nilcommutative d-smooth algebraic varieties based on
this ‘affine’ construction. In this paper we focus on the affine part of Kapranov’s
work. We study the structure of the algebras Rd and of their associated graded
Poisson algebras GRd := ⊕d

n=0FnRd/Fn+1Rd. A characterization of GRd was given
in [2] 4.2.1. It was shown that there is an isomorphsim

(2) PA/P>dA→̃GRd

Here P : ((Comm)) −→ ((Poiss)) is left adjoint to the forgetful functor which as-
sociates to a Poisson algebra its underlying commutative algebra. The algebra
PA turns out to be graded, and P>dA = ⊕n>dPnA. The map (2) is canonical,
and comes from the adjointness property of P ; if R ∈ NCd is any algebra with
G0R = R/F1R = A, then the adjunction map PA −→ GR induced by A ∼= G0R
factors through PA/P>dA obtaining (2). Here we prove a converse of Kapranov’s
result. We show that if Rd ∈ NCd is any algebra with Rd/F1Rd = A and such
that the canonical map (2) is an isomorphism, then Rd is d-smooth (Theorem 3.4).
This means that to give a d-smooth algebra R with R/F1R = A is the same thing
as to give an associative multiplication

(3) φ =

d∑

r=0

φr : PA/P>dA⊗ P/P>dA −→ PA/P>dA

with φr homogeneous of degree r. For (A,M) local, we give (Theorem 2.5) a
canonical construction which produces an associative product

(4) BX(~) =

∞∑

p=0

BX
p ~p : PA⊗ PA[[~]] −→ PA[[~]]

for each regular system of parameters X = {x1, . . . , xn} ⊂ M, with BX
p homo-

geneous of degree p and a bidifferential operator of order ≤ p. It turns out that,
modulo P>dA, the evaluated series BX(1) is a finite sum, and gives a product φ sat-
isfying the requirements of (3). We use this product to give a local characterization
of Rd (Theorem 3.4). The construction of the product (4) uses a local isomorphism
of A-modules

(5) PA ∼= SALA
+Ω

1
A (n ≥ 0)

Between PA and the A-symmetric algebra of the Lie subalgebra

LA
+Ω

1
A = [LAΩ1

A, L
AΩ1

A]
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of the free A-Lie algebra LAΩ1
A generated by the module of Kähler differentials.

Theorem 4.1.3 of [2] states that there is a global isomorphism as that of (5); there
is however a gap in the proof. The gap is explained in section 1 below, where it
is also shown how it is fixed for A local (Theorem 1.4). I do not know whether
(5) still holds globally. A weaker version of (5) which holds globally is proved in
Theorem 1.6; it establishes that PA carries a filtration such that the associated
graded module is (globally) isomorphic to the right hand side of (5).

When I explained to Kapranov the gap in his proof of (5), and told him the gap
could be fixed locally, he suggested that a weaker version along the lines of that
presented here (Theorem 1.6) should hold globally. I am thankful to him for this
suggestion.

The remainder of this paper is organized as follows. In section 1 we recall
in some detail the construction of the Poisson algebra PA, –which we call the
Poisson envelope of A – explain the gap in Kapranov’s proof of (5), and prove
it in the local case (Theorem 1.4). The section ends with the weaker version of
(5) which holds globally (Theorem 1.6). Section 2 is devoted to the construction
of the product (4) (Theorem 2.5). The results of this section can be seen as the
generalization to general local smooth algebras of those obtained by Kapranov for
localizations of polynomial rings ([2]§3). Our approach is however different from
that of [2]. In loc. cit. the Feynmann-Maslov calculus was used to describe the
product of elements in the tensor algebra on a finite dimensional vectorspace V in
terms of a specific ordered basis. Instead we use the coordinate free approach of
[1], where explicit formulas for this product were obtained for not necessarily finite
dimensional vectorspaces V . The same formulas apply to the quantized product (4).
In section 3 we prove (Theorem 3.4) that, for BX as in (4), an algebra R ∈ NCd is
(i) d-smooth⇔ (ii) A := R/F1R is smooth commutative and (2) is an isomorphism
⇔(iii) R is locally isomorphic to (PA/P>dA,B

X(1)) for some regular system of
parameters X . Part (1)⇒(2) of this was proven by Kapranov in [2] 4.2.1; we give
a new proof.

1. The Poisson envelope of a commutative algebra

1.0. Two gradings in the symmetric algebra of a free Lie algebra. If V
is a vectorspace, we write TV for the tensor algebra and LV ⊂ TV for the Lie
subalgebra it generates. For V = ⊕x∈Xkx –the free vectorspace on a set X– LV is
the free Lie algebra on X . The symmetric algebra Sg of any Lie algebra g is viewed
as a Poisson algebra via the Poisson bracket {, } induced by the Lie bracket [, ] of
g. For example

PoissV := SLV

is a free Poisson algebra. Fix a vectorspace V and set L = LV . We have L =
⊕n≥0Ln, where

(6) L0 = V, Ln+1 = [L0, Ln] (n ≥ 0)

Note our grading is the usual one –as defined for example in [3] LA, Ch. IV –
shifted down one degree. Put

(7) |l|∗ = n if l ∈ Ln (n ≥ 0)
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This grading induces one in the symmetric algebra S = SL; we write Sn for its
homogeneous part of degree n. Note that Sn is not the same thing as the n-th
symmetric power Sn = SnL. The latter is the homogenous part of degree n with
respect to a different grading, namely that given by

(8) |l|∗ = 1 if l ∈ L

Put
L+ = ⊕n≥1Ln

We have S0L = SV and for n ≥ 1

SnL = SV ⊗ SnL+

SnL+ =
⊕

r≥1

⊕

0 < i1 < · · · < ir

p1i1 + · · ·+ prir = n

p1, . . . , pr > 0

Sp1Li1 ⊗ · · · ⊗ S
prLir(9)

1.1. Poisson ideals. A Poisson ideal in a Poisson algebra P is a subspace I ⊂ P
which is an ideal for both the associative and the Lie algebra structures. If Y ⊂ P is
a subset, then we put < Y > and << Y >> for the smallest ideal and the smallest
Poisson ideal containing Y . By definition < Y >⊂<< Y >>. In fact << Y >> is
generated as an ideal by the elements of Y and by those of the form

{a1, {a2, . . . , {an, y} . . .}} n ≥ 1, ai ∈ P, y ∈ Y, (1 ≤ i ≤ n)

Furthermore, one checks that if X ⊂ P generates P as a Poisson algebra then for

(10) gi(x1, . . . , xn; y) := {x1, {x2, . . . , {xi, {y, {xi+1, . . . , {xn−1, xn} . . .}}} . . .}}

we have

(11) << Y >>=< Y ∪
∞⋃

n=1

{gi(x1, . . . , xn; y) : 0 ≤ i ≤ n, xi ∈ X, y ∈ Y } >

1.2. Poisson envelope. Let A be a commutative algebra, SA the symmetric
algebra on its underlying vectorspace, SA ։ A the canonical projection, IA its
kernel. The Poisson envelope of A is

PA :=
SLA

<< IA >>

The inclusion A = SA/IA ⊂ PA has the following universal property. If P is a
Poisson algebra and f : A −→ P is a homomorphism of commutative algebras, then
there is a unique Poisson homomorphism PA −→ P which extends f . In other words
A 7→ PA is left adjoint to the forgetful functor ((Poiss)) −→ ((Comm)) from Poisson
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to commutative algebras. One checks that if A = SV/I is any presentation of A
as a quotient of a symmetric algebra, then SLV/ << I >> has the same universal
property as and is therefore isomorphic to PA. In particular

PSV = PoissV

It follows from (11) that if I ⊂ SV is as above then << I >>⊂ SLV is homoge-
neous for the grading (7), whence PA inherits a grading:

PA =
⊕

n≥0

PnA

For example

(12) PnSV = SnLV (n ≥ 0)

In particular

(13) P1SV = SV ⊗ L1V = SV ⊗ Λ2V = Ω2
SV

is the module of 2-differential forms. If follows from (13) and (11) that for every
commutative algebra A,

P1A =
S1(LA)

IAS1(LA)+ < {A, IA} >

=
Ω2

SA

IAΩ2
SA +Ω1

A ∧ dIA
= Ω2

A

Under this isomorphism,
{a, b} = da ∧ db ∈ P1A

For another interpretation of P1A consider the analogy LA of the functor L for
A-modules and A-Lie algebras. If M is an A-module, then LAM carries a grading
defined exactly as in (6). We have LA

0 M =M , LA
1 M = Λ2M , and in particular

(14) LA
1 Ω

1
A = Ω2

A = P1A

Theorem 4.1.3 of [2] says that a generalization of (14) holds for smooth algebras.
Namely it is asserted that for every n ≥ 0, PnA is isomorphic as an A-module to
the homogeneous part of degree n of the symmetric A-algebra on LAΩ1

A:

(15) PnA ∼= SA
n L

A
+Ω

1
A (n ≥ 0)

However the proof of this assertion in [2] has a gap, as the isomorphism given there
is not well-defined. Indeed the map in question sends the element

PnA ∋ b{a0, {a1, . . . , {an−1, an} . . .}} (ai ∈ A)

to the element
b[da0, [da1, . . . [dan−1, dan] . . . ]] ∈ S

A
n L

A
+Ω

1
A

However a calculation shows that this rule maps

0 = {a1, a3{a2, a4}}+ {a1, a2{a3, a4}} − {a1, {a2a3, a4}}

to the element
[da1, da3][da2, da4] + [da1, da2][da3, da4]

which is nonzero in general. I do not know whether the isomorphism (15) still
holds for every smooth algebra A. It certainly holds for symmetric algebras, as is
immediate from (12). We show in Theorem 1.4 below that it also holds for local
smooth algebras. For a weaker version of (15) which holds globally, see Theorem
1.6. The following lemma is well-known.
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Lemma 1.3. Let X be a set, V = ⊕x∈Xkx the free vectorspace on X. Then the
set

Y := X ∪

∞⋃

n=1

{[x1, [x2, [. . . , [xn, xn+1] . . . ]]] : xi ∈ X}

generates LV as a vectorspace. In particular there is a basis Z of LV such that
X ⊂ Z ⊂ Y .

Proof. Straightforward induction. �

Theorem 1.4. Let A be a local smooth algebra. Then A satisfies (15).

Proof. Let x1, . . . , xn ∈ A be a regular system of parameters and V = ⊕n
i=1kdxi ⊂

Ω1
A. We have

SALA
+Ω

1
A = A⊗ SL+V

Put L = LV ; then

(16) Ω1
A = A⊗ V, Ω1

SL+
= SL+ ⊗ L+, Ω1

A⊗SL+
= A⊗ SL+ ⊗ L

Consider the permutation isomorphism

τ : Ω1
A ⊗ SL+ = A⊗ V ⊗ SL+

∼= A⊗ SL+ ⊗ V

Under the identifications (16) the de Rham derivation dA⊗SL+
is identified with

D := τ ◦ (dA ⊗ idSL+
) + idA ⊗ dSL+

Put
φ = idA⊗SL+

⊗ [, ] : A⊗ SL+ ⊗ Λ2L −→ A⊗ SL+

One checks that
{p, q} := φ(Dp ∧Dq)

is a Poisson bracket. Note that for 1 ≤ i1, . . . , ir+1 ≤ n, we have

{xi1 , {xi2 , . . . , {xir , xir+1
} . . .}} = [dxi1 , [dxi2 , . . . , [dxir , dxir+1

] . . . ]]

It suffices to show that the Poisson algebra (A ⊗ SL+, {, }) together with the in-
clusion A = A ⊗ k = A ⊗ S0L+ ⊂ A ⊗ SL+ has the universal property of PA.
Let P be a Poisson algebra and f : A −→ P a homomorphism of commutative al-
gebras. Write pi = f(xi). By lemma 1.3, we may extend B0 = {dx1, . . . , dxn} to a
homogeneous basis B of L such that every element of B′ := B\B0 be of the form
[dxi1 , [dxi2, . . . , [dxir , dxir+1

]] . . . ] (r ≥ 1). View P as an A-module via f and con-

sider the A-module homomorphism θ : LA
+Ω

1
A = A⊗ L+ −→ P defined on elements

of B′ by

(17) θ[dxi1 , [dxi2 , . . . , [dxir , dxir+1
] . . . ]] = {pi1 , {pi2 , . . . , {pir , pir+1

} . . .}}

Note that, as defined,

(18) θ[l1, l2] = {θl1, θl2} (l1, l2 ∈ B
′)

Indeed by lemma 1.3, the two sides of this identity are defined by the same linear
combination of the elements of B′ and of their images. The prescription (17)
together with the prescription that θ extend f , determine a unique map θ : A ⊗
SL+ −→ P which satisfies (18) for l1, l2 ∈ B

′′ := {x1, . . . , xn} ∪ B
′. It follows that

θ is a Poisson homomorphism; uniqueness is clear. �
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1.5. A weaker version of property (15). Let V be a vectorspace. Combining
the two gradings (7), (8) we obtain a bigrading

(19) SLV =
⊕

p,q≥0

Sp
qLV

where
Sp
qLV := SpLV ∩ SqLV

Now let A be a commutative algebra, and consider the projection

(20) π : SLA։ PA

The map π is homogeneous for the ||∗-degree but not for the ||∗-degree. However
the ideal

Hn := π(
⊕

p≥n

SpLA) (n ≥ 0)

is homogeneous with respect to ||∗ and therefore the graded ring GPA = GHPA is
actually bigraded

GPA =
⊕

p,q≥0

Gp
qPA

On the other hand (19) carries over to the free Lie algebra of any A-bimodule. In
particular SALAΩ1

A is a bigraded algebra.

Theorem 1.6. Let A be a commutative algebra. Then for the bigraded structures
defined in 1.5, there is a natural surjective homomorphism of bigraded algebras

φ : SALAΩ1
A ։ GPA

If furthermore A is smooth, then φ is an isomorphism.

Proof. The map (20) is the quotient by << IA >>, whence it factors through a
map

π : A⊗ SL+A =
SLA

< IA >
։ PA

In particular π induces a homogeneous, surjective homomorphism of graded A-
modules

p : A⊗ L+A
π
−→ H1

։ G1
∗PA

Write ρ : A −→ SA for the canonical inclusion. The ideal IA is generated by the
elements

u(a, b) := ρ(ab)− ρaρb (a, b ∈ A)

Let hi(a1, . . . , an; b, c) be the homogeneous part of ||∗-degree one of the element
gi(ρa1, . . . , ρan;w(b, c)) of (10). By (11), the elements hi(a1, . . . , an; b, c), 1 ≤ i ≤ n,
ai, b, c ∈ A generate ker p as an A-module. A calculation shows that

hi(a1, . . . , an; b, c) =

1⊗ {ρa1, . . . , {ρai, {ρ(bc), {ρai+1, . . . , {ρan−1, ρan} . . .}}} . . .}−

ρb⊗ {ρa1, . . . , {ρai, {ρc, {ρai+1, . . . , {ρan−1, ρan} . . .}}} . . .}−

ρc⊗ {ρa1, . . . , {ρai, {ρb, {ρai+1, . . . , {ρan−1, ρan} . . .}}} . . .}
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It follows from this that

M := ker(A⊗ A։ Ω1
A)⊕ ker p

is the Lie ideal generated by ker(A⊗A։ Ω1
A) in the A-Lie algebra A⊗LA . Hence

(A⊗ LA)/M = LAΩ1
A, and

(21) LA
+Ω

1
A
∼= G1PA

The map φ of the theorem is that induced by (21); it is surjective because G1PA
generates GPA as an A-algebra. Assume now that A is smooth; we must prove
that φ is injective. This is a local question, so we may further assume that A is
local. Let x1, . . . , xn be a regular system of parameters. By the proof of 1.4 there
is an isomorphism ψ : PA→̃SALA

+Ω
1
A such that

(22) ψ{xi1 , {xi2 , . . . , {xir , xir+1
} . . . }} = [dxi1 , [dxi2 , . . . , [dxir , dxir+1

] . . . ]]

Furthermore the induced map Gψ : GPA −→ SALA
+Ω

1
A still verifies (22). Thus

Gψ ◦ φ is the identity map, because it is so on generators. In particular, φ is
injective. �

2. Local quantization of the Poisson envelope

2.0. PBW quantization. Let g be a Lie algebra, Sg and Ug the symmetric and
universal enveloping algebras, and consider the symmetrization map

(23) e : Sg −→ Ug e(g1 . . . gn) =
1

n!

∑

σ∈Sn

gσ(1) . . . gσ(n)

By the Poincaré-Birkhoff-Witt theorem, the associative product

B : Sg⊗ Sg −→ Sg, B(x⊗ y) = e−1(exey)

decomposes as a sum

(24) B =

∞∑

p=0

Bp where Bp(S
n
g) ⊂ Sn−p

g (n, p ≥ 0)

We have B0(x ⊗ y) = xy, B1(x ⊗ y) = 1
2
{x, y}. Explicit formulas for all the Bp

are given in [1]. It also proved in loc. cit. that for each p ≥ 0, Bp is a differential
operator of order ≤ p. We call the map

B(~) :=
∑

n≥0

Bn~
n : Sg⊗ Sg[[~]] −→ Sg[[~]]

the PBW quantization. The next lemma establishes the properties of the product
B with respect to the commutator filtration (1) in the case when g is free.
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Lemma 2.1. Let V be a vectorspace, LV the free Lie algebra, TV the tensor
algebra, and e as in (23). Then

(1) e(Poiss≥n V ) = FnTV
(2) The operator Bp : PoissV ⊗ PoissV −→ PoissV of (24) is homogeneous of

degree +p for the ||∗-degree (7).

Proof. One checks that if g is any Lie algebra and Ug its enveloping algebra, then
for F0g = g, Fdg = [g, Fd−1g] (d ≥ 1) we have

FnUg =
∑

r

∑

d1+···+dr≥n

Fd1
g · . . . · Fdr

g

For g = LV , we obtain

(25) FnTV =
∑

r

∑

d1+···+dr≥n

Ld1
V · . . . · Ldr

V

From (25) and (9) it is clear that e(Poiss≥n V ) ⊂ FnTV . We must show that
FnTV ⊂ e(Poiss≥n V ). Consider the following subspace of FnTV

Ap,n :=
∑

r≤p

∑

d1+···+dr≥n

Ld1
V · . . . · Ldr

V

Clearly FnTV = ∪p≥1Ap,n An inductive argument similar to that of the usual
proof of the surjectivity of e shows that for p ≥ 1, Ap,n ⊂ e(Poiss≥n V ). This
proves assertion (1). Assertion (2) follows by counting degrees in the formula for
Bp given in [1] 1.1. �

Corollary 2.2. (Compare [2], 3.4.7) The natural map

PoissV = PSV →̃

∞⊕

n=0

FnTV/Fn+1TV

is an isomorphism. �

2.3. PBW quantization of PA for A local and smooth. Let (A,M) be a
smooth local commutative algebra and X = {x1, . . . , xn} ⊂ M a regular system
of parameters. Set V = kn. We are going to combine Theorem 1.4 and the PBW
quantization of PoissV to obtain an associative product

BX(~) =

∞∑

p=0

BX
p ~p : PA⊗ PA[[~]] −→ PA[[~]]

Because the map Bp : PoissV ⊗ PoissV −→ PoissV is a differential operator, it is
continuous with respect to the topology of any ideal I ⊂ PoissV . Applying this for
I = V ·PoissV and completing we obtain the horizontal solid arrow in the following
commutative diagram

(26) PA⊗ PA

ιX ⊗̂ιX
��

BX
p

// PA

ιX

��

k[[t]]⊗̂SL+V ⊗̂k[[t]]⊗̂SL+V
B̂p

// k[[t]]⊗̂SL+V
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Here ⊗̂ is the completed tensor product and k[[t]] is shorthand for k[[t1, . . . , tn]].
The map ιX is the composite

ιX : PA
αX

→̃A⊗ SL+V →֒ Â⊗̂SL+V
jX⊗1

→̃ k[[t]]⊗̂SL+V

where αX is the isomorphism of 1.4, →֒ is the passage to completion and jX : Â ∼=
k[[t]] is the isomorphism determined by xi 7→ ti (i = 1, . . . , n). Because A →֒ Â is
injective, so are both vertical maps in (26). The map BX

p is defined by the following
lemma.

Lemma 2.4. The map B̂p of (26) sends the image of ιX⊗̂ιX to the image of ιX .

Proof. Let Z = X ∪{y1, y2, . . .} be a basis as that of Lemma 1.3. Every monomial

on the elements of Z can be written as xα
′

yα
′′

=
∏n

i=1 x
α′(i)
i

∏∞
j=1 y

α′′(j)
j for some

multi-indices α′ : {1, . . . , n} −→ Z≥0 and α′′ : Z≥1 −→ Z≥0 with α′′(n) = 0 for

n >> 0. Let ∂|α|

∂xα′
∂yα′′ be the higher derivation with symbol xα

′

yα
′′

. Because

Bp : SLV ⊗SLV −→ SLV is a bidifferential operator of order ≤ p, it can be written
as an SLV -linear combination of cup products of higher derivations with respect
to the basis Z

Bp =
∑

|α|,|β|≤p

cα,β
∂|α|

∂xα′∂yα′′ ∪
∂|β|

∂xβ′∂yβ′′

Since each of the higher derivations above maps A ⊂ k[[t]] to itself, so does B̂p. �

Theorem 2.5. Let (A,M) be a smooth local algebra, X ⊂M·AM a regular system

of parameters, p ≥ 0, BX
p as in (26) and P̂A = lim←−d PA/P>dA =

∏∞
d=0 PdA. Then

(1) BX(~) =
∑∞

p=0B
X
p ~p : PA⊗ PA[[~]] −→ PA[[~]] is associative.

(2) BX
p is a differential operator of order ≤ p.

(3) BX
p (PnA⊗ PmA) ⊂ Pn+m+pA.

(4) The map BX(~) induces a continuous associative product

BX(1) :=
∞∑

p=0

BX
p : P̂A⊗̂P̂A −→ P̂A

(5) For the associative algebra QX = (P̂A, BX(1)), we have

FnQX =
∏

d≥n

PdA

(6) There is a commutative diagram of monomorphisms

k{t1, . . . , tn} //

inc
((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

QX

��

k{{t1, . . . , tn}}

where inc is the canonical inclusion of the noncommutative polynomials into
the noncommutative power series.
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Proof. Assertions (1), (2) and (3) are immediate from the analogous properties of
the PBW quantization; (4) follows from (3), and (5) from Lemma 2.1. It is clear

from the definition of QX that there is a diagram as that in (5) but with ŜLV :=

(
∏

n≥0 k[[t]]⊗̂SL+V, B̂) substituted for k{{t}}. Note that, for I =
∑
ti·k[t1, . . . , tn],

ŜLV is the completion of SLV with respect to the filtration {I · SLV + S≥nLV :
n ≥ 0}, and that J := e−1(< t1, . . . , tn >) = I ⊕ S+LV . By lemmas 2.1 and 2.6

ŜLV ∼= lim←−n TV/e(J)
n = k{{t1, . . . , tn}}. �

Lemma 2.6. Let G = ⊕∞
n=0Gn be a graded commutative algebra. Assume G is

additionally equipped with an associative –but not necesarily commutative- product

Φ =

∞∑

p=0

Φp : G⊗G −→ G

such that Φ0 is the original commutative product, and that for each p ≥ 1, Φp is
a bidifferential operator. Let I ⊂ G0 be an ideal for Φ0, and J ⊂ G the Φ-ideal it
generates. Then the linear topologies induced on the underlying vectorspace of G by
the filtrations {Jn +G≥n : n ≥ 0} and {InG+G≥n : n ≥ 0} coincide.

Proof. It suffices to prove that for each d ≥ 0 the filtrations {Jn +G≥d+1/G≥d+1 :
n ≥ 0} and {InG + G≥d+1/G≥d+1 : n ≥ 0} of G/G≥d+1 are equivalent. Thus we
may assume that Gm = 0 for m ≥ d+ 1. Hence Φ is a bidifferential operator. Let
α be the order of Φ. We write x ⋆ y := Φ(x⊗ y), and if X ⊂ G is any subspace, we
put X⋆n for the subspace generated by all products x1 ⋆ · · · ⋆ xn with xi ∈ X . Let
i ∈ I, p ≥ 1, n, r ≥ 0, Fi(x) := i ⋆ x. Because Fi is a differential operator of order
≤ α,

(27) Fi(I
pα+rGn) ⊂ I

pα+r+1Gn + IpG≥n+1

Using (27) one checks by induction that for (cr . . . c0) :=
∑r

i=0 ciα
i,

(28) I⋆(cr...c0) ⊂M(cr...c0) :=

r∑

j=0

I(cr...cj)G≥j +G≥r+1

We remark that M(cr...c0) is an ideal for both ⋆ and the original product. Hence
for N ≥ (cr . . . c0) + d and r ≥ d,

J⋆N ⊂ (I ⊕G≥1)
⋆N ⊂< I⋆(cr...c0) >⋆⊂M(cr...c0) ⊂ I(cr...cd)G

where the subindex ⋆ denotes two sided ideal generated by the product ⋆. Now
using (28), and noting that I⋆n ⋆ Gd = InGd and that in general the projection
G։ Gj maps I⋆n ⋆ Gj surjectively onto InGj , one checks that, for r ≥ d

M(cr...c0) =
d∑

j=0

I⋆(cr...cj) ⋆ Gd−j

It follows that
J⋆n ⊃Mnαd ⊃ Inα

d

�
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3. Smooth nilcommutative and nil-Poisson algebras

3.0 Nil-Poisson algebras. Let P be a Poisson algebra. Put F0P = P and
inductively

(29) Fn+1P :=

n∑

i=1

FiPFn+1−iP +

n∑

i=0

< {FiP, Fn−iP} >

for n ≥ 0. This is the Poisson analogue of the commutator filtration (1). For
example if A is any commutative algebra then

FrPA = P≥rA =
∞⊕

n=r

PnA (r ≥ 0)

The analogue of a nilcommutative algebra of order ≤ d is called a nil-Poisson
algebra of order ≤ d. The category of ni-Poisson algebras of order ≤ d is NPd. We
put NP = ∪d≥0NPd. Formal d-smoothness and d-smoothness for objects of NPd

are the obvious analogues of the same properties for objects of NCd as defined in §1.
If A is (formally) smooth in the commutative sense, then PA/P>dA is (formally)
d-smooth. It turns out that every (formally) d-smooth Poisson algebra is of this
form; see proposition 3.3. The following Lemma is the analogue of [2], 1.2.7 for
Poisson algebras.

Lemma 3.1. Let P ∈ NPd and f : P −→ P a Poisson endomorphism. Assume the
induced map P/F1P −→ P/F1P is the identity. Then the restriction of f to Fd+1P
is the identity also.

Proof. Consider the map D : P −→ P , Dp := fp− p. We have

D{p, q} = {Dp, q}+ {p,Dq} − {Dp,Dq}(30)

D(pq) = pDq + qDp−DpDq

By hypothesis, DP ⊂ F1P ; it follows from this, using (30), (29) and induction,
that for n ≥ 0, D(FnP ) ⊂ Fn+1P . In particular D(FdP ) = 0. �

Remark 3.2. The proof of the lemma above still applies if one substitutes NCd

for NPd and “algebra endomorphism” for “Poisson endomorphism”. This gives an
alternate proof of [2], 1.2.7.

Proposition 3.3. Let P ∈ NPd, A = P/F1P . Then the following conditions are
equivalent
i) P is d-formally smooth.

ii) A is 0-formally smooth and PA/P>dA ∼= P .

The same holds if we replace “formally smooth” by “smooth” in both i) and ii).

Proof. That ii)⇒i) is clear, as is that i) implies A is formally smooth. Use the
formal smoothness of A to obtain a section s : A −→ P ∈ ((Comm)) of the projection
P ։ A, and then the universal property of PA to lift s to a map of extensions
α : PA/P>dA −→ P . To prove that if i) holds then α : PA/P>dA −→ P is an
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isomorphism, note that, by the hypothesis on P , there is a map β : P −→ PA/P>dA
which descends to the identity of A. One is thus reduced to showing that αβ and
βα are isomorphisms. This follows from lemma 3.1. �

Part (1)⇒(2) of the following theorem is due to Kapranov ([2] 4.2.1); we give a
new proof.

Theorem 3.4. Let R ∈ NCd, G = ⊕d
n=0Gn the associated graded Poisson algebra,

A = G0, π : R −→ A the projection. The following conditions are equivalent

(1) R is d-smooth.
(2) A is 0-smooth and the canonical map PA/P>dA −→ G is an isomorphism.
(3) For every maximal ideal M ⊂ A, there is a regular system of parameters

X ⊂M·AM such that for QX as in theorem 2.5, the Øre localization of R
at π−1(M) is isomorphic to QX/F>dQX .

Proof. Assume (1) holds. Then clearly A is 0-smooth. Let M ⊂ A be a maximal
ideal, M = π−1(M), X ⊂ M · AM a regular system of parameters and Q =
QX/F>dQX . Because the Øre localization RM is d-smooth, the identity of AM

can be lifted to a map f : RM −→ Q. By lemma 3.1, the map induced by f at the
graded level is an isomorphism, whence f is an isomorphism. We have just proved
that (1)⇒(3). It is clear that (3)⇒(2). We prove next that (2)⇒(1), by induction
on d ≥ 0. The case d = 0 is tautological. Assume d ≥ 1 and that the theorem is true
for d − 1. Let R ∈ NCd satisfy the hypothesis of the theorem. Then by inductive
assumption Rd−1 = R/FdR is d − 1-smooth. Let π : U ։ Rd−1 be the universal
central extension as defined in [2] 1.3.6. By [2] 1.6.2, U is d-smooth. One checks
that ker π = FdU . By [2] 1.3.8, there is a map α : U −→ R which induces the identity
of Rd−1. Consider the Poisson homomorphism β induced by α at the associated
graded level. Because (1)⇒(2), β is an endomorphism of PA/P>dA. By virtue of
Lemma 3.1, because β induces the identity modulo PdA and is homogeneous, it has
to be the identity. Thus α is an isomorphism. �
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