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1 Introduction

This work is devoted to the study of the nonlinear second order system of elliptic
equations for a vector function u : Ω → R

N given by

∆u = f(x, u) in Ω, (1)

subject to the following nonlinear boundary condition:

∂u

∂ν
= g(x, u) on ∂Ω. (2)

Copyright © 2009 Inderscience Enterprises Ltd.
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Here Ω ⊂ R
d is a bounded smooth domain, and ν denotes the unit outward normal

vector field on ∂Ω. Nonlinear boundary conditions of this kind appear for example
when the problem of finding extremals for the best constant in the Sobolev trace
inequality is considered (Fernández Bonder and Rossi, 2001). On the other hand,
if d = 1, the scalar problem N = 1 may be regarded as a second order analogue
of a fourth order equation that models a beam with a nonlinear elastic foundation
g : R → R acting at the extremities (Grossinho and Ma, 1994; Rebelo and Sanchez,
1995). In this case, if Ω = (0, T ) the nonlinear condition (2) reads:

u′(0) = −g(u(0)), u′(T ) = g(u(T )).

Using topological methods, we shall prove the existence of solutions of the above
problem (1)–(2) under a variant of the so-called Hartman condition, which has been
firstly used by Hartman (1960) for the Dirichlet problem. Later, it was employed
in Knobloch (1971) for the periodic problem, under a Lipschitz assumption on the
nonlinear term. Further extensions can be found in Gaines and Mawhin (1997), and
Mawhin and Ureña (2002).

Here, we adapt the mentioned results for the nonlinear boundary conditions (2).
Our proof relies on the maximum principle and the unique solvability of the
associated linear Robin problem.

Moreover, in Section 3 we obtain a second existence result assuming
appropriate conditions of Nirenberg type (Nirenberg, 1971). For the scalar case,
a Landesman-Lazer type condition can be deduced from our results (see e.g.,
Mawhin (2000)). This kind of conditions have been obtained in Martínez and Rossi
(2003) for a p-Laplacian scalar equation under nonlinear boundary conditions, using
variational methods. In contrast with these results, the arguments below can be
extended for a more general equation ∆u = f(x, u, Du), which has non-variational
structure.

For simplicity, we shall assume that the functions f : Ω × R
N → R

N and g :
∂Ω × R

N → R
N are continuous.

2 Hartman type conditions

In this section we prove the existence of solutions of equations (1)–(2) under the
following Hartman type condition for some R > 0:

〈f(·, u), u〉 ≥ 0 ≥ 〈g(·, u), u〉 for u ∈ R
N , |u| = R. (3)

In particular, if g = 0 we retrieve the standard (non-strict) Hartman condition,
for a Neumann boundary value problem.

Theorem 2.1: Assume that condition (3) holds. Then problem (1)–(2) admits at least
one classical solution u, with ‖u‖C(Ω,RN ) ≤ R.

Proof: We shall apply a fixed point argument on the space C(Ω, RN ) equipped with
the supremum norm.
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Define the function P : R
N → R

N given by

Pu =




u if |u| ≤ R

R
u

|u| otherwise,

and for fixed λ, µ > 0 consider the Robin problem given by




∆u − λu = f(x, Pu(x)) − λPu(x) in Ω

∂u

∂ν
+ µu = g(x, Pu(x)) + µPu(x) on ∂Ω.

(4)

As the right hand side terms are both bounded, a straightforward application of
Schauder’s Theorem shows that equation (4) has at least one solution u ∈ C(Ω, RN ).
We shall see that |u(x)| ≤ R for every x ∈ Ω, which implies that u is a solution of
the original problem.

Indeed, let us define the function φ(x) = |u(x)|2, then

∂φ

∂xj
= 2

N∑
i=1

ui
∂ui

∂xj
,

and

∆φ = 2

(
〈∆u, u〉 +

N∑
i=1

|∇ui|2
)

.

Let x0 be the absolute maximum of φ over Ω, and suppose that |u(x0)| > R.
If x0 ∈ Ω, then ∇φ(x0) = 0 and

∆φ(x0) ≥ 2〈f(x0, Pu(x0)), u(x0)〉 + 2λ〈u(x0) − Pu(x0), u(x0)〉

= 2
|u(x0)|

R
〈f(x0, Pu(x0)), Pu(x0)〉 + 2λ|u(x0)|(|u(x0)| − R) > 0,

a contradiction.
Next, assume that x0 ∈ ∂Ω. As |u(x)| ≤ |u(x0)| for x ∈ Ω, then

0 ≤ ∂φ

∂ν
(x0) = 2

〈
∂u

∂ν
(x0), u(x0)

〉

= 2〈g(x0, Pu(x0)), u(x0)〉 − 2µ〈u(x0) − Pu(x0), u(x0)〉

= 2
|u(x0)|

R
〈g(x0, Pu(x0)), Pu(x0)〉 − 2µ|u(x0)|(|u(x0)| − R) < 0.

This new contradiction proves that ‖u‖C(Ω,RN ) ≤ R, and so completes the proof. �

Remark 2.2: It follows from the previous proof that the solution belongs to the
space C2(Ω) ∩ C1(Ω).



Topological methods for a nonlinear elliptic system 59

3 An extension of a result by Nirenberg

In this section, we prove the existence of solutions of equations (1)–(2) under
Nirenberg type conditions. We recall that, in Nirenberg’s original work (Nirenberg,
1971) for f(x, u) = p(x) − f̃(u) and linear boundary conditions, the assumption is
made that the radial limits

f̃v := lim
s→+∞ f̃(sv)

exist uniformly on v ∈ SN−1, the unit sphere of R
N . In this case, if f̃v �= p̄ :=

1
|Ω|

∫
Ω p(x)dx for any v ∈ SN−1, existence of solutions can be proved when the degree

of the mapping

v �→ f̃v − p̄

|f̃v − p̄|
is different from zero.

In the present work, these assumptions are relaxed. More precisely, we shall
assume that for each v ∈ SN−1 uniform (radial) upper limits of the bounded
functions f and g exist, but only on a neighbourhood of v, and some specified
directions. Then, under an appropriate degree condition, we shall prove a
generalisation of Nirenberg’s result for problem (1)–(2). A result of this kind has
been obtained in Amster and De Nápoli (2007) for a one-dimensional p-Laplacian
equation under periodic conditions.

Condition (L): There exists a family {(Uj , wj)}j=1,...,K where Uj is an open subset
of SN−1 and wj ∈ SN−1, such that {Uj} covers SN−1 and the limits

lim sup
s→+∞

〈f(x, su), wj〉 := f̄u,j(x) (5)

and

lim inf
s→+∞〈g(x, su), wj〉 := g

u,j
(x) (6)

exist uniformly for u ∈ Uj .

Remark 3.1: In particular, if the limits

lim
s→+∞ f(·, sv) and lim

s→+∞ g(·, sv)

exist uniformly on v ∈ SN−1, then condition (L) holds. Indeed, it suffices to consider
any family {(Uj , wj)}j=1,...,K such that {Uj} is an open covering of SN−1 and
wj ∈ SN−1.

Theorem 3.2: Let f and g be bounded, and assume that Condition (L) holds.
Further, assume that:

1 For each u ∈ SN−1 there exists j ∈ {1, . . . , K} such that u ∈ Uj and∫
Ω

f̄u,j(x)dx <

∫
∂Ω

g
u,j

(x)dS.
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2 degB(φ, Br, 0) �= 0 for all r > 0 large enough, where φ : R
N → R

N is given by:

φ(u) =
∫

Ω
f(x, u)dx −

∫
∂Ω

g(x, u)dS

and Br ⊂ R
N is the ball of radius r centred at 0.

Then problem (1)–(2) admits at least one solution.

For a proof of Theorem 3.2, we shall apply Leray-Schauder topological degree.
Let us prove first a continuation theorem associated to our problem:

Theorem 3.3: Assume that the following conditions hold:

1 There exists R > 0 such that for each 0 < λ ≤ 1 the problem




∆u = λf(x, u) in Ω

∂u

∂ν
= λg(x, u) on ∂Ω

(7)

has no solution u ∈ H2(Ω, RN ) with ‖u‖H1 = R.

2 degB(φ, Br, 0) �= 0, with φ as before and r = R
|Ω|1/2 .

Then (1)–(2) admits at least one solution u ∈ H2(Ω, RN ) with ‖u‖H1 < R.

Proof: For (ϕ, ξ) ∈ L2(Ω, RN ) × H1/2(∂Ω, RN ) define the constant Q(ϕ, ξ) ∈ R
N

given by:

Q(ϕ, ξ) =
1

|Ω| + |∂Ω|
(∫

Ω
ϕ(x)dx −

∫
∂Ω

ξ(x)dS

)
.

Moreover, if Q(ϕ, ξ) = 0 define Kλ(ϕ, ξ) as the unique solution u of the problem




∆u = λϕ in Ω

∂u

∂ν
= λξ on ∂Ω

ū = 0,

where, as before, ū denotes the average of u given by ū = 1
|Ω|

∫
Ω u(x)dx. Next, for

0 ≤ λ ≤ 1 define the operator Tλ : H1(Ω, RN ) → H1(Ω, RN ) given by

Tλu = ū + Qu + Kλ(f(·, u) − Qu, g(·, u|∂Ω) + Qu),

where Qu := Q(f(·, u), g(·, u|∂Ω)). From the definition of Q,

∫
Ω
(f(x, u) − Qu)dx =

∫
∂Ω

(g(x, u) + Qu)dS;
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thus, Tλ is well defined. Furthermore, a standard argument proves that Tλ is
compact.

Suppose that u = Tλu, then taking average at both sides it follows that Qu = 0.
If λ = 0, then u = ū ∈ R

N , and
∫
Ω f(·, u) =

∫
∂Ω g(·, u); hence |u| �= r, or equivalently

‖u‖H1 �= R.
On the other hand, if λ > 0, then u = ū + Kλ(f(·, u), g(·, u|∂Ω)). Then u is

a solution of equation (7), which implies that ‖u‖H1 �= R. Thus, degLS(I − Tλ,
BR(0), 0) is well defined, and by homotopy invariance and the definition of the
Leray-Schauder degree, we have:

degLS(I − T1, BR(0), 0) = degLS(I − T0, BR(0), 0) = degB((I − T0)|RN , Br, 0).

As

(I − T0)|RN (u) = −Qu = −(|Ω| + |∂Ω|)φ(u),

we deduce that degLS(I − T1, BR(0), 0) �= 0. Hence T1 has a fixed point in BR(0) ⊂
H1(Ω, RN ), which is a solution of the problem. �

Proof of Theorem 3.2: In order to verify the conditions of the previous
continuation theorem, we shall obtain a priori bounds for the solutions of
problem (7).

Suppose there exists a sequence {un} such that ‖un‖H1 → ∞ and




∆un = λnf(x, un) in Ω

∂un

∂ν
= λng(x, un) on ∂Ω

with 0 < λn ≤ 1. Multiplying by un − ūn and integrating by parts yields the
following inequality:

‖∇un‖2
L2 ≤ ‖un − ūn‖L2 .‖∆un‖L2 +

∫
∂Ω

〈
un − ūn,

∂un

∂ν

〉
dS.

Furthermore, as

‖∆un‖L2 ≤ ‖f(·, un)‖L2 ≤ C,

and ∥∥∥∥∂un

∂ν

∥∥∥∥
L2(∂Ω)

≤ ‖g(·, un)‖L2(∂Ω) ≤ C

for some constant C, from the Poincaré-Wirtinger and the trace inequalities we
deduce that the sequence {‖∇un‖L2} is bounded.

Moreover, if p > d, from standard estimates and the boundedness of ∂un

∂ν on
∂Ω we deduce that ‖un − ūn‖W 1,p ≤ c1 + c2‖∆un‖Lp for some constants c1 and c2.
As f is bounded, from the Sobolev embedding W 1,p(Ω) ↪→ L∞(Ω) we conclude
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that ‖un − ūn‖L∞ is bounded, and hence |ūn| → ∞. Passing to a subsequence if
necessary, we may assume that ūn

|ūn| → u for some u ∈ SN−1. Set zn := un

|un| , then∣∣∣∣zn(x) − ūn

|ūn|
∣∣∣∣ ≤ |(|ūn| − |un(x)|) · un(x) + |un(x)|(un(x) − ūn)|

|un(x)| · |ūn| ≤ 2|un(x) − ūn|
|ūn| ,

and it follows that zn also converges to u, uniformly in x. From assumption 1, we
may fix j such that∫

Ω
f̄u,j(x)dx <

∫
∂Ω

g
u,j

(x)dS.

Integrating the equation, by the divergence theorem we obtain:

λn

∫
Ω

f(x, un)dx = λn

∫
∂Ω

g(x, un)dS,

and by Fatou’s Lemma we deduce that∫
Ω

lim sup
n→∞

〈f(x, |un|zn), wj〉dx ≥
∫

∂Ω
lim inf
n→∞ 〈g(x, |un|zn), wj〉dS.

For x ∈ Ω and ε > 0, fix s0 > 0 and a sequence sn → +∞ such that

〈f(x, sv), wj〉 < f̄v,j(x) +
ε

4
s ≥ s0,

〈f(x, snv), wj〉 < f̄v,j(x) − ε

4
n ∈ N

for every v ∈ Uj . Fix s ∈ {sn}n∈N such that s ≥ s0, and δ > 0 such that if |v − u| < δ,
then

|〈f(x, sv), wj〉 − 〈f(x, su), wj〉| <
ε

4
,

whence

|f̄v,j(x) − f̄u,j(x)| ≤ |f̄v,j(x) − 〈f(x, sv), wj〉| + |〈f(x, sv), wj〉 − 〈f(x, su), wj〉|
+ |〈f(x, su), wj〉 − f̄u,j(x)| <

3ε

4
.

Thus, if n0 is such that |un(x)| ≥ s0 and |zn(x) − u| < δ for n ≥ n0, we conclude
that

〈f(x, |un|zn), wj〉 = (〈f(x, |un|zn), wj〉 − f̄zn,j(x))
+ (f̄zn,j(x) − f̄u,j(x)) + f̄u,j(x) < f̄u,j(x) + ε.

In the same way, if x ∈ ∂Ω then

〈g(x, |un|zn), wj〉 ≥ g
u,j

(x) − ε
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for n large enough, and hence∫
Ω

f̄u,j(x) ≥
∫

∂Ω
g

u,j
(x),

a contradiction. �

Next, we present an example for which conditions of Theorem 3.2 hold.

Example 3.4: In order to illustrate Theorem 3.2, we shall consider a system which
uncouples at infinity, namely


∆ui = θi(ui) +

Vi(x, u)
1 + |ui| := fi(x, u),

∂ui

∂ν
= ωi(ui) +

Wi(x, u)
1 + |ui| := gi(x, u)

where θi : Ω × R → R, Vi : Ω × R
N → R ωi : ∂Ω × R → R, Wi : ∂Ω × R

N → R are
bounded. Further, assume that

lim sup
s→+∞

θi(s) − lim inf
s→+∞ ωi(s) < 0 < lim inf

s→−∞ θi(s) − lim sup
s→−∞

ωi(s). (8)

It is worth noticing that Nirenberg’s Theorem does not apply for this case, since
radial limits of the functions f and g do not necessarily exist in those directions
v ∈ SN−1 such that vi = 0 for some i.

However, conditions of Theorem 3.2 hold. Indeed, we may set {w1, . . . , wN}
as the canonical basis of R

N . For fixed u ∈ SN−1, there exists j such that uj �= 0,
and then |vj | ≥ c for some constant c > 0 and v in an appropriate connected
neighbourhood Vu of u. If uj > 0, then

lim sup
s→+∞

〈f(x, sv), wj〉 = lim sup
s→+∞

fj(x, sv) = lim sup
s→+∞

θj(s)

uniformly on Vu. If uj < 0, then

lim sup
s→+∞

〈f(x, sv), wj〉 = − lim inf
s→−∞ fj(x,−sv) = − lim inf

s→−∞ θj(s)

uniformly on Vu. Thus, compactness of SN−1 and an analogous argument for g
prove that condition (L) is satisfied. Moreover, by equation (8) condition 1 of
Theorem 3.2 holds.

Finally, the second condition of Theorem 3.2 is verified by considering the
homotopy H : [0, 1] × R

N → R
N given by

H(t, u) = tφ(u) − (1 − t)u.

If H(tn, un) = 0 for some tn ∈ [0, 1] and |un| → ∞, then taking a subsequence
we may assume that |(un)i| → ∞ and tn → t ∈ [0, 1]. Suppose for example that
(un)i → +∞, then

0 = Hi(tn, un) = tnφi(un) − (1 − tn)(un)i.
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Hence

tn

(∫
Ω

fi(x, un)dx −
∫

∂Ω
gi(x, un)dS

)
= (1 − tn)(un)i ≥ 0,

and from Fatou’s Lemma a contradiction yields. A similar argument for the case
(un)i → −∞ shows that H does not vanish on [0, 1] × ∂BR for R � 0. Thus,

deg(φ, BR, 0) = (−1)Ndeg(Id, BR, 0) = ±1,

and all the assumptions of Theorem 3.2 are fulfilled.

Remark 3.5: As it was mentioned in the introduction, Theorem 3.2 can be extended
for the system

∆u = f(x, u, Du),

which is non-variational.
However, some obvious changes are required: firstly, the limits in equation (5)

now depend on a third variable V ∈ R
N×N ; thus, it is needed to replace the

assumption by

lim sup
s→+∞

〈f(x, su, V ), wj〉 := f̄u,j(x)

uniformly for u ∈ Uj and |V | ≤ M , where the constant M is defined from the a priori
L∞-bounds for Du. On the other hand, also the definition of φ must be changed to:

φ(u) =
∫

Ω
f(x, u, 0)dx −

∫
∂Ω

g(x, u)dS.

Further extensions could be obtained also when f is unbounded, as far as one is able
to get a priori bounds for Du. For example, this is straightforward if f has sublinear
growth in V , although a more general result (e.g., subquadratic growth) could be
expected.
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