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We report on the onset of anti-resonant behaviour of mass transport systems driven by time-
dependent forces. Anti-resonances arise from the coupling of a sufficiently high number of space-time
modes of the force. The presence of forces having a wide space-time spectrum, a necessary condition
for the formation of an anti-resonance, is typical of confined systems with uneven and deformable
walls that induce entropic forces dependent on space and time. We have analyzed, in particular,
the case of polymer chains confined in a flexible channel and shown how they can be sorted and
trapped. The presence of resonance-antiresonance pairs found can be exploited to design protocols
able to engineer optimal transport processes and to manipulate the dynamics of nano-objects.

Many biological processes and micro- and nano-
technological applications depend on the dynamics of
soft systems, such as electrolytes, polymers and macro-
molecules [1, 2, 6, 8, 10], which are confined. This is,
for example, the case of ionic and microfluidic chan-
nels [7, 11], blue energy rectifiers [9] and DNA-sequencing
devices [8]. Due to their small size, the dynamics of these
systems are strongly affected by thermal noise and by
noise generated by external sources.

The interplay between noise and external forces has
been so far analyzed for cases in which only one or some
few spatial and/or temporal modes contribute to the
force. Indeed, in Brownian ratchets, although the force
may consist of different spatial modes, its dependence
on time typically reduces to a single mode [19, 27, 39,
41, 46, 50, 51]. In contrast, in ghost stochastic reso-
nance [24] multiple temporal frequencies are involved in
the force but just a single spatial modes is excited. So
far, the most general situation in which the force spec-
trum includes harmonics of a higher order both in time
and space has not been analyzed. Such a scenario can be
realized by means of optical, electric or magnetic fields
[26, 42, 48] or by forces resulting from the geometrical
confinement of the particles. This is the case of the ondu-
latory motion of worm-like organisms [20, 33], peristaltic
pumping [34, 35, 37, 38], fluctuating ion channels and
pores [12–18, 21, 22, 31, 32, 36] as well as synthetic soft
micro- nanofluidic devices [28–30]. Knowing what the
impact of higher order harmonics is on the response of
the system is a question of great current interest.

In this Letter, we show that when a greater number of
space-time modes contributes to the force spectrum, the
particle current develops resonance-antiresonance pairs
that increase or decrease the current and can therefore,
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FIG. 1: Schematic representation of the Brownian
motion of microscopic objects in an oscillatory channel
of period L with a time-dependent radius h(x, t) (in
black). The free energy F(x, t) (in blue) consists of
energetic and entropic contributions related to the
applied force f0 and to the entropic forces resulting
from constrictions of the channel that give rise to a
time- and space-dependent cross-sectional area.

by engineering the spectrum, set up optimal scenarios
for the manipulation and transport of particles. The
presence of antiresonances is detected from a perturba-
tive analysis of the average particle current that progres-
sively incorporates different modes into the force spec-
trum. The analytical predictions are supported by nu-
merical solutions performed for the case of a single poly-
mer chain confined in a channel whose walls undergo sus-
tained oscillations. We show that if the amplitude of the
oscillations of the effective force on the polymer is large
enough, the current exhibits a rich Fourier spectrum,
even for simple single-mode oscillations of the shape of
the walls. Our numerical data confirm that the onset
of the resonance-antiresonance pairs is controlled by the
"richness" of the Fourier spectrum of the effective force
acting on the polymer.

In the overdamped regime, the evolution of the prob-
ability distribution ρ(x, t) is governed by the Smolu-
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chowski equation

∂ρ(x, t)

∂t
= −∂J(x, t)

∂x
= D

∂

∂x

[
∂

∂x
− βf(x, t)

]
ρ(x, t)

(1)

where D is the diffusion coefficient of the particle and
β−1 = kBT , with kB the Boltzmann constant and T
the absolute temperature. After relaxation of the initial
conditions, the density and current averaged over time
(over the period of the force) are no longer dependent
on time and reach a stable value. In order to obtain an
analytical view of the process, we assume that the local
force can be decomposed as

f(x, t) = f0 + f1(x, t) (2)

with f0 a constant force. We expand both the time av-
eraged density and flux for small values of f1 (for a de-
tailed derivation see Suppl. Mat.). At first order, the
time-averaged flux reads

J (1) = 2
∑
p

∑
v

ρ̄β2|fp,v|2
βf̄0

k2
v

Γp,v − 1

Γ2
p,v + 4

(
βf0
kv

)2 (3)

where |fp,v| is the amplitude of the Fourier mode of the
force with frequency ωp and wave number kv and

Γp,v =

(
ωp
Dk2

v

)2

+ 1−
(
β
f̄0

kv

)2

(4)

is a function of the ratios between the three relevant time
scales: the diffusion time ∼ 1/(Dk2

v) for the mode with
wavelength 2π/kv, the period of the force ∼ 1/ωp and
the drift time ∼ 2π/(βDf0kv). The second order contri-
bution reads:

J (2) = 2
βD

L

∑
p

∑
v

Re(R(2)
p,vf

∗
p,v) (5)

where R(2)
p,v are the amplitudes of the modes of the proba-

bility density at second order in the expansion (see Suppl.
Mat.)

R(2)
p,v = − 1

Γp,v + 2ι
βf̄0

kv

∑
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∑
i

R
(1)
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kv
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− 3
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with

R
(1)
n,i = −βfn,i

ki
ρ̄

ι− βf̄0
ki

Γn,i + 2ιβf̄0ki

. (7)

For just one spatial or temporal mode, R(2)
p,v is zero since
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FIG. 2: Particle current J normalized to the current in
a planar channel J0 = βDρ0Nf0 for Nω = 9 temporal
modes and Nk = 1, 12 spatial modes corresponding
respectively to red squares and blue downward

triangles. ω and k denote respectively, the frequency
and wave number of the oscillatory channel. Curves

have been obtained for a force with Re(fp,v) = 8
5

1
p and

Im(fp,v) = 12
5 (−1)v 1

p .

eitherR(1)
p,v or fp,v in Eq. (6) are zero and hence the contri-

bution of J (2) to J becomes negligible. Accordingly, the
total current is determined solely by its first order con-
tribution J (1). Fig.2 shows that in this case J exhibits
a resonant peak in agreement with previous studies on
polymer translocation across fluctuating pores [13–17].
When multiple spatial and temporal modes are present,
R

(2)
p,v 6= 0 and hence J (2) 6= 0. The coupling of these

modes, not present in J (1), causes the formation of the
resonant-antiresonant doublet of the current shown in
Fig.2.
A typical case in which the spatio-temporal spectrum of
the external force induces an antiresonance is that of a
nano-object moving in an environment bounded by irreg-
ular walls whose shape changes over time. In the case of
a flexible pore, even though the deformation, character-
ized by its half-height, is given in terms of a single spatial
and temporal mode

h(x, t) = h0 + h1 cos(kx) sin(ωt) (8)

the effective force induced on the confined particle is char-
acterized by a rich Fourier spectrum. In order to show
this, in the following we specialize the case of a Gaussian
polymer chain confined in a 3D flexible channel whose
half-height undergoes periodic oscillations according to
Eq. (8).

When h(x, t) varies smoothly (|∂xh(x, t)| � 1), the
dynamics of the polymer can be mapped onto that of a
point-like particle in the presence of the effective local
free energy [40]

βF(x, t) = −βNf0x+ βA(x, t) (9)
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FIG. 3: Variance V versus β∆A. Orange symbols
correspond to the case ∆Amon/∆Acm < 1 whereas
green symbols to ∆Amon/∆Acm > 1. Averages are

taken during a time T = 2π/ω.

with

βA(x, t) = βAcm(x, t) + βAmon(x, t) (10)

≡ −2 ln

[
16h(x, t)

h0π2

]
− 2 ln

 ∞∑
p=odd

e
−π2p2

(
RG

2h(x,t)

)2

p2


where RG =

√
Nr2

6 is the radius of gyration of the
polymer in an unbounded medium, N the number of
monomers and r the Kuhn length. The first term on
the rhs of Eq. (9) is an energetic contribution due to
the action of external force f0 on each monomer. The
second term, denoted as βAcm(x, t), is an entropic con-
tribution resulting from the number of allowed positions
(microstates) of the centre of mass of the polymer within
the channel [23, 25, 43, 52, 53] whereas the third one
βAmon(x, t) accounts for the correction to the second
term due to the presence of the other monomers [40].
The diffusion current J in Eq. (1) is obtained by con-
sidering that the force is f(x, t) = −∂F(x,t)

∂x and that,
according to the Rouse model, D = D0/N is the diffu-
sion coefficient of the polymer with D0 that of a single
monomer.

We remark the fact that even in the present case in
which channel oscillations consist of a single k-ω mode,
the spectrum of the force f(x, t) contains contributions
from higher order spatial and temporal modes whose am-
plitudes depend on the maximum free energy difference

β∆A = max
x,t

βA(x, t)−min
x,t

βA(x, t) . (11)

For β∆A 6= 0, the amplitude of the modes is sensitive
to the nature of the system. For confined hard spheres,
Amon drops out and the value of ∆A is controlled only
by the geometry of the channel. Typical experimental

realizations limits this value to β∆A . 3 [49]. For con-
fined uncharged polymers, Amon can give rise to arbi-
trary large values of ∆A upon increasing the radius of
gyration RG. Finally, for charged colloids, polymers or
even more complex particles the magnitude of ∆A can be
quite large [23, 47] and is controlled by both geometry
of the channels and (electrostatic) interactions with the
channel walls.

Our analysis reveals that the key factor for the onset
of an antiresonance is the existence of a "rich" spectrum
of both spatial and temporal modes of the external force.
The "spectral richness" of the power spectrum Pp,v =
f2
p,v of a given external force f(x, t) is captured by means
of the variance

V ≡
〈
P2
p,v

〉
− 〈Pp,v〉2 (12)

where 〈...〉 denotes average over p and v. Fig.3 shows V
versus β∆A, for different values of β∆Acm and β∆Amon.
For a given ∆A and ∆Amon/∆Acm < 1, the variance
displays a power law behavior represented by the orange
master branch: V ≈ (β∆A)2. For ∆Amon/∆Acm > 1,
it shows a significant sensitivity to changes of the pa-
rameters that characterize the channel geometry and the
polymer, as evidenced by the appearance of multiple sec-
ondary branches (green symbols). On the other hand,
given a value of ∆Acm and varying ∆A along the master
branch towards the corresponding secondary branch, the
variance increases.

The presence of higher order harmonics of the force
originates the antiresonance in the particle current J ,
normalized to the current for a flat channel J0, plotted
in Fig.4-a. The different colors stand for the upward
series of values β∆A at which V grows. In all cases,
resonant/antiresonant maximum/minimum emerge with
more pronounced minima at higher values of V. Fig.4-
a also shows the presence of different transport regimes.
The limit ω/Dk2 → 0 corresponds to the dynamics of
a point-like particle moving in an almost static effective
potential characterized by a free energy barrier β∆A and
under the action of an external force f0. In contrast, for
ω/Dk2 →∞ the walls of the channel oscillate so fast, as
compared to the typical time scale of the polymer, that
it experiences an average potential equivalent to that of
a polymer moving through a flat channel under the ac-
tion of the external force f0 [55]. In between these two
limiting regimes, the current shows a non-monotonic be-
havior with a resonance and an antiresonance. In partic-
ular, for all values of β∆A , J exhibits a resonant peak at
ω
Dk2 ' 100, as predicted by our model (see Eq. (3)). In-
terestingly, although the analytical results are obtained
via a perturbative approach, the prediction about the
appearance of a resonant peak is robust for high barriers
and its location depends only weakly on the magnitude
of β∆A. However, its amplification for increasing values
of β∆A is not found under this approach. The analytical
results also predict the appearance of the antiresonance
observed in Fig.4a). The onset of the antiresonance min-
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FIG. 4: (a): J/J0 as a function of ω/Dk2 for
βf0L = 0.01, 0.1, 1, RG = 0.03, N = 10 and β∆Acm ≈ 5.
Different colors correspond to increasing values (from
brown to blue) of β∆A = 27, 50, 100, 150, 200, 300. The
reference current is J0 = βDρ0Nf0, the current in the
case of point particles moving through a flat channel.
(b): ∆J/J0 (See Eq. (13)) versus V for different values

of the force and β∆A (see legend).

imum is captured by the quantity

∆J ≡ J
( ω

Dk2
= 102

)
− J

( ω

Dk2
= 104

)
(13)

Indeed, in the absence of an antiresonant minimum
∆J/J0 � 1, whereas once the antiresonance sets
∆J/J0 & 1. Fig.4b shows that for a "simple" Fourier
spectra (V < 1.5) ∆J/J0 � 1, whereas for larger values
of V i.e. for a "rich" Fourier spectra ∆J/J0 & 1 which
triggers the antiresonance. The presence of a resonance-
antiresonance doublet can be exploited to design a dy-
namical protocol able to sort and trap polymers. The
protocol runs as follows: an external force f0 is applied
along with a time modulation of the channel half-height
h(x, t) characterized by a frequency ω1 during a time T/2.
Then the force is switched to −f0 and the frequency to
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FIG. 5: (a) J̄/J0 and (b) J̄L/D versus N for the
proposed protocol. ω1 = 2 (full), ω1 = 102 (dashed),
ω1 = 103 (dotted), ω1 = 5 · 103 (dotted-dashed) and

ω2 = 3 · 104 in all cases. Other parameters: β∆Acm = 5,
βf0L = 0.1, b/h0 = 0.01.

ω2. It is also applied during a time T/2. The time T is
chosen such that T � 2π/ω1,2. Finally, we calculate the
mean current in T

J̄ =
J1 + J2

2
, (14)

where Ji are the average currents in each half-period com-
puted as indicated previously.

Fig.5a, shows J̄ as function of N . We observe that
chains with lengths in the range 102 to 104 times a
monomer size can be immobilized and separated with a
good resolution. The choice of ω1,2 is crucial to improve
the performance of the protocol that requires the pres-
ence of a deep antiresonant minima that occur for large
values of V. Optimal conditions are achieved when one of
the frequencies, say ω2, is the antiresonant one (Fig.5a).
The protocol is particularly effective for long polymers,
for which J̄ crosses the zero value with a very steep profile
(see Fig.5a), with a value much larger than the character-
istic diffusion velocity D/L. These conditions essentially
take place when ω1 is out of the amplification regime (res-
onance). For polymers whose lengths are very similar to
that of the target (polymer with J̄ = 0), the signal-to-
noise ratio is small which gives rise to a poor trapping
resolution.

In this Letter, we have shown that cooperation be-
tween the noise and an external forces whose spectrum
contains a high enough number of harmonics leads to the
appearance of new resonant states of the system. The oc-
currence of the resonant peak results from the well-known
synchronisation of the hopping events induced by noise
with the oscillations of the force (in our case of entropic
origin). The increase in the number of modes of the force
causes the system to move from a regime of a single reso-
nant peak, typical of the case of a small number of modes,
to a regime in which a pair of resonant-antiresonant peaks
arises. The presence of a large number of modes causes
the noise to synchronise with the different modes, which
can lead to destructive interferences that make the parti-
cle current to decrease. Forces whose spectrum consists
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of a high number of coupled modes required for the ap-
pearance of antiresonances arise naturally in the case of
systems confined by uneven and flexible walls.

We have shown this feature by analyzing the dynamics
of a polymer chain confined within a channel whose walls
undergo sustained oscillations. Our numerical data con-
firm the predictions of the analytical model and show a
clear correlation between the number of modes (encoded
in the variance of the Fourier power spectrum V) and the
onset of the antiresonant minimum.

The results obtained broaden the understanding of the

resonant phenomena in drift-diffusion systems and may
provide the rational for the interpretation of dataset ex-
isting in the literature [32, 42, 44, 45]. The existence
of the new regimes we have found, in which resonances
and antiresonances coexist, opens up the possibility of
designing the driving force to be able to control the flow
of particles and to manipulate nano-objects in order to
study their properties.
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