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Self-energy effects in electronic Raman spectra of doped cuprates due to magnetic fluctuations
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We present results for magnetic excitations in doped copper oxides using the random phase approximation
and itinerant electrons. In the [1,0] direction the observed excitations resemble dispersive quasiparticles both in
the normal and in the superconducting state, similarly to recent resonant inelastic x-ray scattering experiments.
In the [1,1] direction the excitations form, except for the critical region near the antiferromagnetic wave vector
Q = (π,π ), only very broad continua. Using the obtained spin propagators we calculate electron self-energies
and their effects on electronic Raman spectra. We show that the recently observed additional peak at about twice
the pair breaking in B1g symmetry below Tc in HgBa2CuO4+δ can be explained as a self-energy effect where a
broken Cooper pair and a magnetic excitation appear as final states. The absence of this peak in B2g symmetry,
which probes mainly electrons near the nodal direction, is explained by their small self-energies compared to
those in the antinodal direction.
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Electronic Raman spectra in doped cuprates are dominated
by a pair-breaking peak in the superconducting state, whereas
in the normal state they are rather structureless. The main
features of the spectra in the superconducting state can be
explained within BCS theory using free quasiparticles.1 On
the other hand, x-ray scattering (RIXS) experiments have
shown the existence of spin fluctuations in doped cuprates
in the form of dispersive, broad but well-defined excitations,
both in the normal and in the superconducting state.2–4 The
interaction between spin fluctuations and electrons gives rise to
self-energies5–7 which have been used to explain, for instance,
the observed kinks in the electronic dispersion in many high-Tc

superconductors.8–10 Self-energy effects should also be present
in electronic Raman spectra,11 causing, for instance, the
recently observed broad peak above the pair-breaking peak in
HgBa2CuO4+δ .12 It is the purpose of this paper to calculate the
properties of spin fluctuations, the resulting self-energies, and
their effects on Raman scattering and to compare the results
with recent experiments.2,12 Our calculations are based on an
itinerant picture of magnetism and are limited to the optimally
doped and overdoped region to avoid unsolved problems with
the existence and nature of the pseudogap in the underdoped
regime.

The Raman susceptibility can be written in the supercon-
ducting state as13

χα(iνm) = 1

Nc

∑
k

γ 2
α (k)(�11,11(k,iνm) + �22,22(k,iνm)

− �12,21(k,iνm) − �21,12(k,iνm)), (1)

�ij,kl(k,iνm) =
∫ ∞

−∞
dεdε′Aij (k,ε)Akl(k,ε′)

f (ε′) − f (ε)

iνm + ε′ − ε
.

(2)

The indices i,j, . . . assume the value 1 or 2, νm denotes a
bosonic Matsubara frequency, f the Fermi function, and Nc

the number of primitive cells. Assuming a square lattice and
using the lattice constant as the length unit, γα(k) stands for the
form factors γ1(k) = t( cos kx + cos ky) + 4t ′ cos kx cos ky ,
γ3(k) = t(cos kx − cos ky), and γ4(k) = −4t ′ sin kx sin ky ,

corresponding to the representations A1g , B1g , and B2g of the
point group D4h, respectively. t and t ′ are the effective nearest-
and second-nearest-neighbor hopping amplitudes.

Using the Nambu representation the inverse of the
2 × 2 electron Green’s function matrix G(k,iωn) is

G−1(k,iωn) = (iωn − �+(k,iωn))τ0

− (ε(k) + �−(k,iωn))τ3 − (k)τ1. (3)

τ1 and τ3 are Pauli matrices, τ0 is the 2 × 2 unit matrix, and
ωn is a fermionic Matsubara frequency. �±(k,iωn) stands
for (�11(k,iωn) ∓ �11(−k,−iωn))/2, where �11(k,iωn) is the
(1,1) component of the 2 × 2 self-energy matrix. ε(k) is the
electron energy,

ε(k) = −2t(cos kx + cos ky) − 4t ′ cos kx cos ky − μ, (4)

and the spectral function Aij is defined by −1/π Im Gij (k,ω +
iη). The self-energy � is calculated from the Fock diagram
with a bosonic propagator describing spin fluctuations. To
simplify the calculation we do not consider the nondiagonal
part of �, assuming that it has already been taken into account
by the phenomenological gap parameter (k). Assuming also
that the frequency-independent Fock term has been accounted
for in the phenomenological hoppings t and t ′, the frequency-
dependent part of �11 is given by8

�11(k,iωn)

= − T

2Nc

∑
q,m

J 2(q)χ (q,iνm)G(0)
11 (k + q,iωn + iνm). (5)

χ (k,iνm) is the zz component of the spin susceptibility, which
assumes, in the RPA for the strong-coupling case, the form8,14

χ (k,iνm) = χ (0)(k,iνm)

1 − J (k)χ (0)(k,iνm)
. (6)

χ (0)(q,iνm) represents the bare spin bubble. J (k) is equal to
2J (cos kx + cos ky), where J is the Heisenberg constant. Since
self-energy effects in Raman spectra are expected to be rather
small we may use G

(0)
11 instead of G11 in Eq. (5).
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In the following calculations we use the parameters t ′/t =
−0.25 and μ/t = −0.9 corresponding to the doping δ = 0.15,
where t is the effective nearest-neighbor hopping amplitude
and about 0.15 eV in optimally doped YBCO.15 We expect a
similar value in the case of HgBa2CuO4+δ . J was determined
so that the experimental value of 0.056 eV16 for the magnetic
resonance energy in the superconducting state was reproduced,
yielding J/t = 1.30. The bare order parameter  was fixed
to /t = 0.45, which reproduces roughly the position of the
observed pair-breaking peak in B1g symmetry in the sample
with the highest Tc of 94 K in Ref. 12.

An important ingredient for the calculation of � is the
dynamical spin susceptibility χ (k,ω). Its imaginary part
χ ′′(k,ω) has been discussed extensively in the literature14

in conjunction with the resonant mode, i.e., in the supercon-
ducting state and near the antiferromagnetic wave vector Q.
We extend these calculations to wave vectors throughout the
Brillouin zone and also to the normal state. Such calculations
are interesting in view of recent RIXS measurements2 which
cover a more extended region. The upper and lower diagrams
in Fig. 1 show χ ′′(k,ω) along the [1,1] direction in the normal
and the superconducting state, respectively. For wave vectors
away from Q [and also from the origin (0,0)] the spectra are
extremely broad and structureless, often exhibiting several flat
maxima. Only the center of gravity of the lines indicates an
increase with momentum up to around the middle of the zone
and then a pronounced decrease towards Q. In the normal state
the curve for momentum Q shows a well-pronounced critical
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FIG. 1. (Color online) χ ′′(k,ω) along the [1,1] direction in the
normal (top) and superconducting (bottom) state at T = 0.
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FIG. 2. (Color online) χ ′′(k,ω) along the [1,0] direction in the
normal (top) and superconducting (bottom) state at T = 0.

peak due to the proximity of the antiferromagnetic instability.
In the superconducting state this peak moves to somewhat
higher energies and becomes the resonant peak with a finite
width due to our employed damping constant η = 0.1. Being a
bound state inside the gap it attracts a huge amount of spectral
weight. This holds to a lesser degree even for the momentum
3Q/4, where the structureless continuum in the normal state
transforms into a well-pronounced peak in the presence of
superconductivity.

χ ′′(k,ω) looks quite different in the [1,0] direction as
illustrated in Fig. 2. It shows, in both the normal and the
superconducting state, well-defined and narrow peaks which
disperse as a function of momentum similarly to the spin waves
of a Heisenberg model. However, in our case the sharp peaks do
not describe collective excitations. This means that the sharp
peaks in Fig. 2 do not correspond to poles of the denominator
of χ (k,ω) but are due to dynamical nesting properties of
χ (0)(k,ω). The energy scale of the magnetic dispersion is, in
our case, determined by the electron band dispersion, i.e., by
the kinetic energy of the electrons and not by the Heisenberg
constant J . This is especially clear at the point (π,0): In the
RPA J drops out in χ and the energy of the magnetic exitation
is soley due to the kinetic energy of the electrons. Using
different band parametrizations (for instance, those given in
Table I in Ref. 15) we found results very similar to those in
Figs. 1 and 2, showing that these results are generic for doped
cuprates.
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FIG. 3. Imaginary part of the self-energy (top) and spectral
function (bottom) for the momentum on the Fermi line in the [1,1]
direction in the normal and superconducting states.

χ ′′(k,ω) has recently been determined by RIXS measure-
ments along the [1,0] direction for several copper oxides and
successfully interpreted within a local-moment model includ-
ing damping.2 Figure 2 and its comparison with Ref. 2 show
that the nature of the magnetic excitations, their dispersion,
and their band width are similar in the itinerant and in the
local moment approach, though the underlying phyics is quite
different. One reason for this is that J and the effective hopping
t have very similar values of about 150 meV. In the [1,1]
direction the two approaches may show larger differences
because the itinerant model predicts in this case rather broad
and irregular line shapes except for a small critical region
around (π,π ).

Figure 3 depicts the imaginary part of �(k,ω) (top) and
the spectral function A11(k,ω) (bottom) for the momentum on
the Fermi line along the [1,1] direction. In the normal state
Im�(k,ω) is 0 at ω = 0, increases away from 0 due to scatter-
ing of electrons with spin fluctuations, and, finally, decreases
due to the finite band width. In the superconducting state elec-
tron scattering is impeded by the gap leading to a depletion of
spectral weight around ω = 0 in Im�. On the other hand, super
conductivity causes a large shift in the spectral weight of
spin fluctuations towards low energies, especially near (π,π ).
Momentum transfers of about (π,π ) lead in general to scattered
electrons far away from the Fermi line for the considered
intial electron momentum. The result is the superconductivity-
induced peak around ω/t ∼ 2., i.e., well away from the Fermi
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FIG. 4. Imaginary part of the self-energy (top) and spectral
function (bottom) for the momentum on the Fermi line in the
(π,0) − (π,π ) direction in the normal and superconducting states.

energy. The spectral function A11(k,ω) consists of a simple
peak at ω = 0 without any sidebands.

Figure 4 is the same as Fig. 3 but for the electron momentum
on the Fermi line along the (π,0) − (π,π ) direction. Now there
are important electronic transitions between the surroundings
of (π,0) and (0,π ) with momentum transfers near (π,π ), i.e.,
where spin fluctuations have a large spectral weight and low
energies. In the normal state the peak due to critial scattering
near (π,π ) in the upper diagram in Fig. 1 causes the low-lying
peaks in the imaginary part of �(k,ω), as shown in Fig. 4. In the
superconducting state the same scattering processes are even
much stronger due to the appearance of the resonant mode,
which carries a large amount of spectral weight. As a result
the distance between the two low-lying peaks in Im�(k,ω)
in the normal state increases due to the superconducting gap,
and at the same time the peaks gain a lot of strength. The
corresponding spectral functions reflect the low-lying peaks
in the form of sidebands, which are strongly pronounced
especially in the superconducting state. The position of the
sideband peaks would be, in the absence of dispersion, the
sum of half of the superconducting gap plus the resonance fre-
quency. The dispersion of electrons and of the resonance peak
causes an additional shift in the positions shown in Fig. 4.

Finally, Fig. 5 gives our results for the Raman intensity
−Imχα(ω + iη), where α denotes one of the three symmetries
B1g , B2g , and A1g . In each case the dashed line corresponds
to the normal, and the solid line to the superconducting, state.
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FIG. 5. (Color online) Raman spectra with B1g symmetry (top
plot) and B2g and A1g symmetries (bottom plot) in the normal (dashed
lines) and superconducting (solid lines) states.

Let us first discuss the B1g spectrum (upper plot in Fig. 5). In
the free case, defined by � = 0, the Raman intensity would
consist in the normal state of a δ function at ω = 0 (not shown
in the figure) and a Lorentzian-like pair-breaking peak at the
unrenormalized energy 2. Turning on �(k,ω) the δ function
is replaced by a continuum in the normal state which increases
rather abruptly from 0 at zero frequency to a finite value
and then decreases very slowly towards higher frequencies.
This is the result of electron scattering from spin fluctuations.
The solid curve, referring to the superconducting state and
B1g symmetry, exhibits two maxima. The first one is due to
the renormalized pair-breaking peak; the second one, due to the
additional emission of a magnetic excitation, for instance, the
resonance mode. The position of the additional high-frequency
peak can also be estimated from the spectral function A11.
According to Eq. (1) the Raman intensity at frequency ω

is essentially obtained as a folding of two spectal functions
displaced by the frequency ω. As a result the pair-breaking
peak arises from transitions between the two dominating
peaks in Fig. 4. A smaller peak is expected from transitions
between one of the large peaks and a sideband peak, yielding
a frequency of about 1.3, in good agreement with Fig. 5.
The ratio of the positions of the two peaks is about 1.9,
which is near the experimental value.12 We stress that the
position and the intensity of the second peak in this spectrum
are not fitted but a consequence of the parameters J and 

determined such that the observed resonance frequency and
the pair-breaking peak are at least approximately reproduced.
Using the electronic parameters from Ref. 8 the additional peak

in the B1g spectrum is practically absent. The reason for this is
that the self-energy in this case is substantially lower than in
our case. The difference in the magnitude of the self-energies
can at least partially be traced back to the large difference in
the resonance frequencies, namely, 56 meV in HgBa2CuO4+δ

and 40 meV in YBCO for nearly optimally doped samples.
The B2g spectrum (shown in the lower diagram in Fig. 5)

is in the normal state similar to that of the B1g symmetry
except that its intensity is lower by one order of magnitude.
In the superconducting state it shows a pair-breaking peak but
no additional peak at higher frequencies, in agreement with
experiment.17 The reason for this can easily be understood:
The form factor in the B2g symmetry weights electrons near
the nodal direction strongly. There the gap and also the
self-energy are small. As a result the pair breaking moves
somewhat to lower frequencies compared to the B1g symmetry
and no additional peak appears as a result of self-energy
effects. For completeness we also show the A1g spectrum
(lower diagram in Fig. 5) where Coulomb screening has been
taken into account. Here we encounter the well-known and
hitherto unsolved problem that its intensity is too low by about
one order of magnitude compared to experiments.18 Thus we
exclude it from our discussion.

We used in our treatment a broken Cooper pair times a spin
fluctuation as final states. Using the same interactions one may
also consider a competing process where two spin fluctuations
or paramagnons appear as final states.12 For zero or very low
doping such a localized description is certainly appropriate,
whereas in the optimal or overdoped regime a description in
terms of itinerant electrons should be a better choice. For
instance, it allows us easily to understand why the additional
high-energy peak shows a strong dependence on Tc similarly
to the resonance mode12 or why its existence is tied to the
existence of the pair-breaking peak and the depletion region
below it. It also has been argued19 that two-magnon processes
are negligibly small in the B1g and B2g configurations and thus
may be discarded in these cases.

In summary, we have shown that an itinerant picture of
magnetism may account for the observed dispersive magnetic
excitations in the [1,0] direction in doped cuprates and also
for the observed additional structure above the pair-breaking
peak in electronic Raman scattering in HgBa2CuO4+δ .
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