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Experimental demonstration of a PAM-4 based 20 Gb/s PON using dispersion pre-compensation . . . 283
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Abstract—There is an increasing interest in replacing a unique,
complex, and expensive vehicle equipped with several sensors
with a group of small vehicles, each of them carrying fewer
sensors. There are several advantages in these segmented archi-
tectures, such as cost, flexibility, redundancy, and robustness,
among others. The advantage of segmented architectures is
even more noticeable if the vehicles carrying those sensors have
different characteristics or environments of operation, e.g. aerial,
terrestrial or marine vehicles. This work proposes a multi-robot
system where an autonomous marine vehicle avoids obstacles
relying on aerial images provided by an autonomous flying
vehicle. Both robots navigate in a coordinated fashion increasing
the detection area and allowing to adjust the obstacle detection
horizon. In order to validate the control scheme two simulation
scenarios are presented.

Index Terms—Mobile robotics, unmanned aerial vehicles, au-
tonomous surface vehicle, cluster space control

I. INTRODUCTION

In recent years, great progress has been made on the
use of autonomous surface vehicles (ASV) in water domain
applications, such as water sampling [1], oil skimming [2] and
surveillance [3]. Advances on electronic sensors, miniaturiza-
tion of electric motors and advances on lithium-ion batteries,
allowed designers to think of small vehicles as a feasible
option for a variety of applications. Although small vehicles
can carry just a few sensors, they are cheaper and simpler to
design, build and deploy, making them an interesting platform,
specially for shallow water operations, see for instance [4], [5],
and [6].

At the same time, Unmanned Aerial Vehicles (UAV) de-
velopment has grown exponentially. They have the advantage
of being able to see a wide panorama from the sky, making
them useful for several applications such as monitoring tasks
and surveillance. In [7] this property has been used to help
an ASV navigate in an unstructured environment. This aerial
perspective is beneficial to complement the navigation infor-
mation acquired by the ASV, which usually relies on local
information.

UAV and ASV collaboration has been proven to be effective
for several tasks, in particular for environmental monitor-
ing applications, such as characterization of highly dynamic
coastal regions [8], oil spill mitigation [9], among others.

In [7] the UAV serves as an additional sensor, providing
information to the ASV. Due to weight restrictions, the ASV
navigation computer has more computational power than the
UAV embedded computer. This is the reason why all the
information is sent to the ASV and the marine vehicle runs
the guidance algorithm. However, in some scenarios, a more
reactive strategy should be adopted. In this work it is assumed
that, instead of sending navigation information to the ASV to
be processed afterwards, information from the UAV is used to
generate appropriate commands to navigate the environment
in execution time.

For systems of multiple mobile robots, one of the key
technical considerations is the technique used to coordinate
the motions of the individual vehicles. A wide variety of
techniques have been and continue to be explored, drawing on
work in control theory, robotics, and biology [2] and applicable
for robotic applications throughout land, sea, air, and space.
Notable work in this area includes the use of leader-follower
techniques, in which follower robots control their position
relative to a designated leader [10], [11], [12]. A variant of this
is leader-follower chains, in which follower robots control their
position relative to one or more local leaders, which, in turn,
are following other local leaders in a network that ultimately is
led by a designated leader [13] Researchers have demonstrated
the use of automated tugboat fleets and swarm navigation
techniques in order to move other ships [14] or the use of
two ASVs for tele-supervised sensing of aquatic phenomena
such as harmful algae blooms [15]. These solutions had been
implemented with robots in the same domain (water or air or
ground). Working with multi-domain vehicles allows users to
achieve complex tasks thanks to the flexibility of the system.
However, the control strategy has to take into account the
constraints and dynamics of each vehicle. The cluster space
[16] approach is a formation control method that promotes the
simple specification and monitoring of the motion of a mobile
multi-robot system. The strategy conceptualizes the n-robot
system as a single entity, a cluster, and desired motions are
specified as a function of cluster attributes, such as position,
orientation, and geometry.

This work is particularly focused on the ability to navigate
an autonomous marine surface vehicle avoiding collisions.



Such collisions may be due to obstacles on the water or
the coastlines of the water course being traversed. Usually,
obstacle detection relies on onboard sensors, such as lidars
[17], cameras [18], or sonars [19]. This work proposes a
distributed system where a camera is situated onboard an
unmanned aerial vehicle flying above the ASV. This allows to
improve the detection area and adjust the obstacle detection
horizon.

A multi-robot formation definition is proposed to properly
specify and monitor the parameters of a collision avoidance
algorithm, such as imaged area and relative camera pose
with respect to the marine vehicle. Based on the image-
processing algorithm, a controller is defined to guide the for-
mation through a collision-free course. Numerical simulations
in different situations are presented to validate the approach.

II. MULTI-ROBOT FORMATION APPROACH

This work implements the cluster space control method to
specify the task at hand. This method allows for the selection
of a set of independent system state variables suitable for
specification, control, and monitoring tailored to the problem
to be solved. These state variables form the system’s cluster
space. Cluster space state variables may be related to robot-
specific state variables, actuator state variables, etc. through
a formal set of kinematic transforms. These transforms allow
cluster commands to be converted to robot specific commands,
and for sensed robot-specific state data to be converted to
cluster space state data. As a result, a supervisory operator or
real-time pilot can specify and monitor system motion from
the cluster perspective. The hypothesis is that such interaction
enhances usability by offering a level of control abstraction
above the robot and actuator-specific implementation details
[20]–[23].

In this work we present a cluster space control scheme
applied to an ASV-UAV formation. The UAV is equiped
with a RGB Camera pointing downwards, with the main
goal of detecting the ASV, obstacles and the coast-line for
navigation purposes. With this setup, an operator can control
the position of the cluster, the imaged area or swath width, and
orientation for the camera, as well as the forward/backward or
the left/right offsets of the UAV with respect to the ASV. While
the operator or supervisor algorithm can specify values for
these parameter, the cluster space control method will control
the individual vehicles’ positions to meet such specifications.

The first step in the implementation is the selection of an
appropriate set of cluster space state variables. To do this, we
introduce a cluster reference frame and select a set of state
variables that capture key pose and geometry elements of the
cluster.

A. Cluster Space State Variables

Figure 1 depicts the relevant reference frames for the UAV-
USV formation and the selected cluster space parameters.

We have chosen to locate the cluster frame {C} co-
incident with the ASV position and orientation. Based

Fig. 1. Cluster Space Variables and frames

on this, the seven robot space state variables correspond-
ing to the 3-DOF ASV pose and the 4-DOF UAV
pose ~r = (xASV , yASV , θASV , xUAV , yUAV , zUAV , θUAV )T

are mapped into seven cluster space variables ~c =
(xc, yc, θc, sc, lac, ofc, γc)

T , where (xc, yc, θc) defines the
cluster frame, the swath or imaged area width is defined by sc,
the backward/forward offset between ASV and UAV is defined
by lac, the left/right offset is defined by ofc, and UAV (i.e.,
camera) orientation is defined by γc. Controlling the last four
parameters, an operator can change the image taken by the
UAV’s onboard camera.

B. Kinematic Equations

The forward position kinematics are the set of equations that
allow the transformation from vehicles variables ~r to cluster
variables ~c.

~c = KIN(G~r) (1)

where

xc = xASV (2)
yc = yASV (3)
θc = θASV (4)

sc = 2zUAV tan

(
FOVh

2

)
(5)

lac = cos(θUAV )∆x + sin(θUAV )∆y (6)
ofc = − sin(θUAV )∆x + cos(θUAV )∆y (7)
γc = θUAV (8)

with: ∆x = xUAV − xASV and ∆y = yUAV − yASV , and
FOVh is the horizontal field of view of the on-board camera.

The inverse kinematics allow the cluster variables to be
transformed back into robot variables.

G~r = KIN−1(~c) (9)



where

xASV = xc (10)
yASV = yc (11)
θASV = θc (12)
xUAV = xc + lac cos(γc)− ofc sin(γc) (13)
yUAV = yc + lac sin(γc) + ofc cos(γc) (14)

zUAV =
sc

2tan(FOVh

2 )
(15)

θUAV = γc (16)

By differentiating the forward and inverse position kinemat-
ics, the forward and inverse velocity kinematics can easily be
derived, obtaining the jacobian GJ(G~r) and inverse jacobian
J−1(c) matrices relating parameter velocities in both spaces:

~̇c =G J(G~r)G~̇r (17)

G~r = J−1(c)~̇c (18)

C. Cluster Space Controller

Figure 2 shows the navigation reference generator system.
It takes cluster velocity (Vc), orientation (θc), and UAV-ASV
offsets (lac, ofc) from an operator and an image from UAV’s
on-board camera and calculates cluster parameter references.
Figure 3 presents the control architecture for trajectory based
cluster space control of an ASV-UAV system. A cluster
level PID controller compares cluster position and velocity
with desired trajectory values and outputs cluster commanded
velocities, which are translated into individual robot veloci-
ties through the inverse jacobian. Data from the robots are
converted to cluster space information through the forward
kinematics and jacobian and fed back into the controller.
The non-holonomic constraint given by the differential drive
motion of the ASV effectively reduces its mobility from three
degrees of freedom down to two. Due to this, the UAV-
ASV cluster becomes a six-DOF system. As a consequence,
an inner-loop ASV-level heading control is needed and the
cluster space controller does not regulate the cluster parameter
corresponding to the yaw orientation of the ASV relative to
the cluster.

D. Obstacle Avoidance Algorithm

The UAV is equipped with an RGB camera, pointing
downwards in order to detect the ASV and obstacles. The
acquisition process is made by an OpenCV-to-ROS bridge. The
image obtained is subjected to a cascade of image processing
filters. The first step is the conversion from RGB to gray-scale
image. The second stage applies a threshold filter in order to
obtain a segmented version of the original image. After this,
the white part of the image represents the water and the black
part represents the ASV and the obstacles. In order to remove
some water artifacts, a dilatation filter followed by an erosion
filter are applied. The object detection happens on the top 100

Fig. 2. Navigation reference generator diagram

Fig. 3. Cluster space control architecture for an ASV-UAV system

pixels of the image. On that region a momentum calculation is
performed and its X coordinate is evaluated. Without obstacles,
the X value is horizontal pixels/2. With an object in the
right (left) side of the image, this value decreases (increases),
giving an indication of the obstacle location.

III. NUMERIC VALIDATION

In this section, the simulation setup used to numerically
validate the control scheme presented in the previous section
is described.

The simulation was implemented on a desktop PC running
Ubuntu 16.04 x86 64, with 8 GB of RAM and an Intel’s
i7 core. The simulation runs in a Robot Operating System
(ROS)—Kinetic—and Gazebo 7.0. environment. The UAV
was modeled using a Gazebo plugin from the Autonomous
System Lab of ETH Zürich University [24] for the 3D-
Robotics’ IRIS quadcopter and the PX4 firmware. The com-
munication with the model was done through a MAVROS
interface. An 800× 800-pixel RGB camera plugin is used to
get an image from the UAV. With this setup and controlling
the flight altitude of the UAV, objects with dimensions from
a couple of centimeters to some meters can be detecteds. The
world models used were generated with a tool developed by
Clear Path Robotics [25]. The ASV model, from the same
authors, consists of a differential-drive boat with two thrusters
at the stern, commanded with forward speed and angular
velocity around the z axis. The cluster space control logic
is programmed as ROS nodes using python language. These
nodes are connected to the simulated vehicles through ROS



topics. Fig. 4 shows the simulated vehicles within the Gazebo
simulator.

Fig. 4. ASV and UAV in the Gazebo environment simulator

The goal of this setup is to perform autonomous navigation
over a course of water while performing object avoidance.

Fig. 5. Path of the ASV and UAV over a water course

IV. RESULT

In order to validate our approach, two simulation scenarios
are evaluated.

A. Navigation over a course of water

In this scenario, initial cluster state parameters are Xc =
0, Yc = 0, θc = 0, sc = 10[m], las = 0, ofs = 0, γc = 0.
A forward cluster velocity Vc is commanded and the for-
mation starts moving. This velocity provides (VXc, VY c) =
(Vccos(γc), Vcsin(γc)), where γc is set by the obstacle avoid-
ance algorithm. Velocities are then integrated in order to pro-
duce new (Xc, Yc) references. When D.I.P. Obstacle Detection
block (see fig. 2) detects a coastline, the position (left/right) of
the detected coast is used by the Cluster Reference Generator
block in order to change the cluster state parameter γc and
so to change the direction of the forward velocity Vc. The
formation continues moving with its new orientation while
Cluster Reference Generator produces new forward position
references. In the presence of a new detected coast, the
previous steps are repeated.

Fig. 6. Top view of Fig. 5

As seen in Fig. 5 and 6, the formation autonomously
navigates the water course, detecting the coast-line and making
corrections to the position and orientation reference values.

B. Object avoidance

In this scenario, the main goal is to avoid objects in the
formation path while performing autonomous navigation. For
this purpose, navigation starts with a constant cluster forward
velocity Vc. The UAV flies at 7m above the ASV. When
an object is detected in the path of the ASV, an avoidance
maneuver is applied to the formation by changing the γc
reference angle with a sign according to which side of the
ASV the obstacle is on. Once the formation negotiates the
object, γc is set back to its initial value.

Figures 7 and 8 show a 3D and top view of the second
simulation scenario. It can be seen that the formation is
maintained while the obstacles encountered along the way are
avoided by the ASV.

Figure 9 shows a sequence of four images from the UAV
camera. The red dot is the calculated top region momentum
after image binarization. In the first image the red dot is at the
center of the frame, indicating that there are no obstacles in the
formation path. In the second image, the red dot is at the right
part of the image indicating that there is an obstacle at the
left of the navigation path. The Cluster Reference Generator
block commands a positive value for γc and the formation
turns in clock-wise direction. Once the obstacle was avoided
the resulting momentum is at the center of the image and a
γc = 0 is commanded (image 3). Finally, in the fourth image,
the formation continues navigating until the next obstacle is
detected.



Fig. 7. 3d view of the object avoidance implementation

Fig. 8. Top view of the object avoidance implementation of Fig. 7.

V. CONCLUSION

In this work, an ASV-UAV formation that works in a
coordinated fashion using the cluster space control technique
is presented. Each robot operates in a different domain and
therefore has a different sensing capabilities of the surround-
ing environment. The formation definition allows to define
in a simple way the characteristics of the group that are
relevant to a vision-based obstacle avoidance algorithm. The
UAV equipped with an RGB camera identifies distant objects
and avoidance maneuvers can be executed accordingly. The
concept of sensors spatially distributed over a formation of
autonomous robots allowed to solve the task of collision-free
navigation in a simple way.

Two scenarios were presented in order to validate the
proposed approach. Both show a good performance of the
implemented system. The concept of using a formation of
robots working in different domains to achieve collision-
free navigation, was numerically validated. Future work will
focus on obtaining experimental results and on analysing
how a supervisory control can vary formation parameters to
dynamically adjust the obstacle avoidance algorithm behavior
to different environment characteristics.

Fig. 9. Sequence of images from the UAV onboard camera
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