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Abstract. In this paper we study some questions concerning ÃLukasiewicz implication al-

gebras. In particular, we show that every subquasivariety of ÃLukasiewicz implication alge-

bras is, in fact, a variety. We also derive some characterizations of congruence permutable

algebras. The starting point for these results is a representation of finite ÃLukasiewicz

implication algebras as upwardly-closed subsets in direct products of MV-chains.
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In the first section we present the definition and some basic facts about
ÃLukasiewicz implication algebras which we use throughout the article. Sec-
tion 2 begins with a representation of finite ÃLukasiewicz implication algebras
as upwardly-closed subsets in direct products of finite MV-chains. In this
section we also develop some consequences of this representation; namely,
we characterize congruences and show that every homomorphic image is, in
fact, a retract.

In Section 3 we study quasivarieties. We deal first with the locally finite
case by means of critical algebras and then use a representation of free
ÃLukasiewicz implication algebras given in [6] to extend these results to the
general case.

In the last two sections we concentrate on giving characterizations for
congruence permutability. First we show that congruence permutability is
equivalent to the existence of meets for every pair of elements. In addition,
we prove a Nachbin-like theorem characterizing congruence permutable finite
algebras as those algebras which do not have certain algebras as quotients.

1. Preliminaries

ÃLukasiewicz implication algebras are the algebraic counterpart of the impli-
cational fragment of super-ÃLukasiewicz logic (see [13, 14]). In fact, they are
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the class of all {→, 1}-subreducts of Wajsberg algebras (Wajsberg algebras
are term-wise equivalent to Chang’s MV-algebras and bounded commuta-
tive BCK-algebras [5, 9, 15]). They are also called C-algebras in [13, 14] and
ÃLukasiewicz residuation algebras by J. Berman and W. J. Blok in [3].

A ÃLukasiewicz implication algebra is an algebra A = 〈A,→, 1〉 of
type 〈2, 0〉 that satisfies the equations:

(ÃL1) 1 → x ≈ x,

(ÃL2) (x → y) → ((y → z) → (x → z)) ≈ 1,

(ÃL3) (x → y) → y ≈ (y → x) → x,

(ÃL4) (x → y) → (y → x) ≈ y → x.

We denote by L the variety of all ÃLukasiewicz implication algebras. The
following properties are satisfied by any ÃLukasiewicz implication algebra:

(ÃL5) x → x ≈ 1,

(ÃL6) x → 1 ≈ 1,

(ÃL7) if x → y ≈ 1 and y → x ≈ 1, then x ≈ y,

(ÃL8) x → (y → x) ≈ 1,

(ÃL9) x → (y → z) ≈ y → (x → z).

If A ∈ L then the relation a ≤ b if and only if a → b = 1 is a partial
order on A, called the natural order of A, with 1 as its greatest element.
The join operation x ∨ y is given by the term (x → y) → y and if c ∈ A,
then the polynomial p(x, y, c) = ((x → c) ∨ (y → c)) → c is such that
p(a, b, c) = a ∧ b = inf{a, b} for a, b ≥ c. The lattice operations satisfy the
following properties:

(ÃL10) (x → y) ∨ (y → x) ≈ 1,

(ÃL11) (x ∨ y) → z ≈ (x → z) ∧ (y → z),

(ÃL12) z → (x ∨ y) ≈ (z → x) ∨ (z → y),

and if for a, b ∈ A the meet a ∧ b exists, then for any c ∈ A,

(ÃL13) (a ∧ b) → c ≈ (a → c) ∨ (b → c),

(ÃL14) c → (a ∧ b) ≈ (c → a) ∧ (c → b).

Moreover, if A = 〈A,→, 1〉 is a ÃLukasiewicz implication algebra and
c ∈ A, then Ac = 〈[c) = {a ∈ A : c ≤ a},→c,¬c, c, 1〉 becomes a Wajsberg
algebra defining
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• ¬cx := x → c,

• x →c y := x → y.

ÃLukasiewicz implication algebras are congruence 1-regular. For each con-
gruence relation θ on an algebra A ∈ L, 1/θ is an implicative filter, i.e., it
contains 1 and if a, a → b ∈ 1/θ, then b ∈ 1/θ (modus ponens); in particular,
1/θ is upwardly-closed with respect to the natural order. Conversely, for any
implicative filter F of A the relation

θF = {(a, b) ∈ A2 : a → b, b → a ∈ F}

is a congruence on A such that F = 1/θF . In fact, the correspondence
θ 7→ 1/θ gives an order isomorphism from the family of all congruence re-
lations on A onto the family of all implicative filters of A, ordered by in-
clusion. For this reason, we often write A/F instead of A/θF . We usually
write a ≡F b instead of (a, b) ∈ θF .

It is easily shown that if a, b ∈ F and the meet of a and b exists, then it
must lie in F as well. Note also that since any implicative filter F contains
1 and is closed by →, it is the universe of a subalgebra F of A.

The following result about implicative filters is needed in Section 5. We
include it here for completeness.

Proposition 1.1. Let A be a ÃLukasiewicz implication algebra and F an
implicative filter of A. The following conditions are equivalent:

(i) A/F is a chain,

(ii) for every x, y ∈ A, either x → y ∈ F or y → x ∈ F ,

(iii) for every x, y ∈ A, if x ∨ y ∈ F , then x ∈ F or y ∈ F .

Proof. The only nontrivial implication is (iii) ⇒ (i). Assume (iii) and
consider x, y ∈ A/F . By (ÃL10), we have that (x → y) ∨ (y → x) = 1, so
(x → y) ∨ (y → x) ∈ F . Hence either x → y ∈ F or y → x ∈ F , so x ≤ y or
y ≤ x.

An implicative filter satisfying the conditions in the previous proposition is
called a prime filter.

Proposition 1.2. Given a ÃLukasiewicz implication algebra A and two ele-
ments x1, x2 ∈ A, Fg(x1) ∩ Fg(x2) = Fg(x1 ∨ x2), where Fg(x) stands for
the implicative filter generated by x.
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Every subdirectly irreducible algebra in L is linearly ordered relative
to the natural order. Linearly ordered ÃLukasiewicz implication algebras
are called L-chains. Finite L-chains are the {→, 1}-reducts of finite MV-
chains and we denote them by ÃLn, n ≥ 1. The universe of ÃLn is the
set of rational numbers ÃLn = {0, 1

n , 2
n , . . . , n−1

n , 1}, and for each a, b ∈ ÃLn,
a → b = min(1, 1− a + b). Another important L-chain is the {→, 1}-reduct
of Chang’s algebra (see [5, p. 474]):

Cω = {(0, y) : y ∈ N} ∪ {(1,−y) : y ∈ N},

where N is the set of non-negative integers and

(x, y) → (z, u) =





(1, 0) if z > x,

(1, min(0, u− y)) if z = x,

(1− x + z, u− y) otherwise.

The set ÃLω = {(1,−y) : y ∈ N} is the only maximal implicative filter of
Cω, and Cω/ÃLω

∼= ÃL1. Its associated subalgebra ÃLω is not finitely generated,
and any infinite subalgebra of ÃLω is isomorphic to a copy of it. Moreover,
every non-trivial finite subalgebra of ÃLω is isomorphic to ÃLn, for some n ≥ 1.
In addition, Cω and all ÃLn, n ≥ 1, are two-generated and every non-trivial
finitely generated subalgebra of ÃLω is isomorphic to ÃLn, for some n ≥ 1. In
particular, ÃLn is isomorphic to a subalgebra of ÃLm if and only if n ≤ m, and
every infinite L-chain contains a copy of ÃLn for all n ≥ 1 (see [14]). Finally,
it is easy to see that any simple algebra in L is isomorphic to ÃLα for some
α ∈ ω ∪ {ω} (again, see [14]).

The lattice of all subvarieties of L was described in [14], and it is an
(ω + 1)-chain:

T ( V (ÃL1) ( . . . ( V (ÃLn) ( . . . ( V (ÃLω) = V (Cω) = L,

where V (A) denotes the variety generated by an algebra A and T stands
for the trivial variety. Observe that V (ÃL1) is the variety of all implication
algebras, also known as Tarski algebras (see [1, 2, 7]).

2. Finite ÃLukasiewicz Implication Algebras

We give here a representation for finite ÃLukasiewicz implication algebras that
is useful to get an insight of these algebras. In the following theorem and
in the sequel we refer to the set of complemented elements of a lattice B as
the Boolean skeleton of B.
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Theorem 2.1. Given a finite ÃLukasiewicz implication algebra A, there exists
a finite MV-algebra B (which is a direct product of ÃLk’s) such that A is an
upwardly-closed subset in B and such that every element in B is a meet of
elements in A. Moreover, A contains the coatoms of the Boolean skeleton
of B.

Proof. Let A be a subdirect product of ÃLk1 , . . . , ÃLkn . Since each ÃLki is
simple, ÃLki

∼= A/Mi for some maximal implicative filter Mi in A. We must
also have that

⋂
i Mi = {1}. In addition, we may assume that for each j,⋂

i6=j Mi 6= {1}, for otherwise we could erase the j-th factor in the subdirect
product.

In what follows, we identify A with its image in the product
∏n

i=1 ÃLki .
Looking at this product as an MV-algebra, we can define the set B consist-
ing of those elements in

∏n
i=1 ÃLki which are meets of elements in A. Let

πi : A → ÃLki denote the projection of A onto ÃLki . Since πi is surjective,
there exists ai ∈ A such that πi(ai) = 0. Hence

∧
i ai = 0 and so 0 ∈ B.

Moreover, if
∧

i ai,
∧

j a′j ∈ B,

∧

i

ai →
∧

j

a′j =
∧

j

(∨

i

(ai → a′j)

)
∈ B.

This shows that B is closed under → and, consequently, also under
¬x := x → 0 and x ⊕ y = ¬x → y. Hence B is an MV-subuniverse of∏

ÃLki .
We claim that B =

∏
ÃLki . Note first that B contains the elements

ci = (1, . . . , 1, 0, 1, . . . , 1) with 0 in the i-th position and 1 everywhere else.
Indeed, for each i,

⋂
j 6=i Mj 6= {1}, so there is some di ∈

⋂
j 6=i Mj , di 6= 1.

But di 6∈ Mi, thus di = (1, . . . , 1, x, 1, . . . , 1) where x 6= 1 occupies the i-th
entry. Recall that in ÃLki we have xki = 0 if x 6= 1. Hence, dki

i = ci. This
shows that ci belongs to B, since di does.

Consider now an arbitrary element b ∈ ∏
ÃLki , b = (b1, . . . , bn). Since

πi : A → ÃLki is surjective, there exists ai ∈ A such that πi(ai) = bi. So
(1, . . . , 1, bi, 1, . . . , 1) = ai ∨ ci ∈ B, where bi is in the i-th entry. Thus
b =

∧
(ai ∨ ci) ∈ B. This shows that B =

∏
ÃLki .

We prove now that A is upwardly-closed in B. Let a ∈ A and b ∈ B
with a ≤ b. We have b =

∧
ai, ai ∈ A. Since a ≤ ai for every i, the meet of

{ai} belongs to A.

We have already noted that there are ai ∈ A such that πi(ai) = 0. Since
A is upwardly-closed and ci ≥ ai, ci ∈ A, where ci = (1, . . . , 1, 0, 1, . . . , 1),
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with 0 in the i-th position. Thus A contains the coatoms of the Boolean
skeleton of B.

Remark 2.2. Observe that the MV-extension where A is embedded is
unique in the following sense: if B1 and B2 are to such extensions, then
there exists an isomorphism ϕ : B1 → B2 such that ϕ is the identity map
on A. Indeed, since A is upwardly-closed and contains the coatoms of the
Boolean skeleton of B1 and B2, the meet-irreducible elements of A, B1 and
B2 coincide. Hence, the assertion follows immediately.

We continue to use the notation of the last theorem throughout the
remainder of this section, that is, A denotes a finite ÃLukasiewicz implication
algebra embedded as an upwardly-closed subset in an MV-algebra, which is
a finite product of ÃLk’s. Moreover, A contains C = {c1, . . . , cn}, the set of
coatoms of the Boolean skeleton of the MV-algebra.

We now characterize congruences on A by means of subsets of C. Note
first the following property of congruences.

Proposition 2.3. Let F be an implicative filter in a ÃLukasiewicz implication
algebra A. If a ≡F b, c ≡F d and a∧ c, b∧ d both exist, then a∧ c ≡F b∧ d.

Proof. Note that

(a ∧ c) → (b ∧ d) = ((a ∧ c) → b) ∧ ((a ∧ c) → d)
= ((a → b) ∨ (c → b)) ∧ ((a → d) ∨ (c → d)).

Since a → b, c → d ∈ F and F is upwardly-closed and closed under ∧ (where
∧ is defined), we get that (a∧c) → (b∧d) ∈ F . Analogously, (b∧d) → (a∧c)
also lies in F .

Proposition 2.4. The mapping F 7→ C ∩ F gives a lattice isomorphism
between the lattice of implicative filters of A and the power set of C. The
corresponding inverse map is given by U 7→ A ∩ [

∧
U), for U ⊆ C, where

[x) = {a ∈ A : a ≥ x}.
Proof. Let h be the mapping given by h(F ) = C ∩ F for any implicative
filter F . We claim that F = A ∩ [

∧
h(F )).

Indeed, let f ∈ F . If f = 1 there is nothing to prove. Suppose that
f 6= 1. Then f =

∧
i∈I fi with fi 6= 1 and fi = (1, . . . , 1, xi, 1, . . . , 1) ≥ ci.

Here xi is of the form r
k with 0 ≤ r < k. If r = 0, fi = ci ∈ F . If

1 ≤ r < k, we get fi → (1, . . . , 1, r−1
k , 1, . . . , 1) = (1, . . . , 1, k−1

k , 1, . . . , 1) ∈ F
so (1, . . . , 1, r−1

k , 1, . . . , 1) ∈ F . Applying this procedure as many times as
necessary we get that ci ∈ F .
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Finally,
∧

h(F ) ≤ ∧
i∈I ci ≤ ∧

i∈I fi = f . This shows that
f ∈ A ∩ [

∧
h(F )).

Conversely, let a ∈ A ∩ [
∧

h(F )). We have that a ≥ ∧
c∈C∩F c. We also

know that a =
∧

i∈I ai where each ai is greater than or equal to some c ∈ C.
If c ≤ ai for some c ∈ C ∩ F , then ai ∈ F . Now suppose c 6≤ ai for all

c ∈ C ∩ F . Then there is some c0 ∈ C \ F with c0 ≤ ai. Since c0 ∈ C \ F ,
¬c0 ≤ c for every c ∈ C ∩ F . Hence

¬c0 ≤
∧

c∈C∩F

c ≤ ai.

Since c0 ≤ ai and ¬c0 ≤ ai, it follows that ai = 1 ∈ F .
This shows that ai ∈ F for every i ∈ I. Since a ∈ A and F is ∧-closed

(where ∧ is defined), a ∈ F .

We now show that given U ⊆ C, we have C ∩ A ∩ [
∧

U) = U . Since
C ⊆ A, we must show that C ∩ [

∧
U) = U .

Let c ∈ C ∩ [
∧

U). Then c ≥ ∧
u∈U u. If c 6∈ U , ¬u ≤ c for every u ∈ U .

Hence
¬

∧

u∈U

u =
∨

u∈U

¬u ≤ c.

Therefore
c ≥ ¬

∧

u∈U

u ∨
∧

u∈U

u = 1,

a contradiction. So c ∈ U . The converse is immediate.

This proves that h is a bijection. We show now that h preserves the
partial ordering.

If F1 ⊆ F2, it is clear that h(F1) ⊆ h(F2). Conversely, if U1 ⊆ U2, Ui ⊆ C,
then

∧
U2 ≤

∧
U1. So [

∧
U1) ⊆ [

∧
U2) and A ∩ [

∧
U1) ⊆ A ∩ [

∧
U2).

Let D denote the set of meet-irreducible elements of A, that is,
D = [C) \ {1} ⊆ A. For a ∈ A, let Da = {x ∈ D : x ≥ a}. Given an
implicative filter F , let DF = D ∩ F .

Observe that, as a partially ordered subset, D consists of mutually in-
comparable chains. The minimal elements in D are the coatoms of the
Boolean skeleton of A, that is, C. Moreover, given an implicative filter F on
A, F ∩D consists of some of those chains of meet-irreducibles. In particular
F ∩D contains precisely those chains whose minimal elements are in F ∩C.
Note that F ∩D = F ∩ C = ∅ if and only if F = {1}.

The following proposition gives a characterization of the congruence
relation associated with an implicative filter in terms of meet-irreducible
elements.



270 M. Campercholi, D. Castaño and J. P. Dı́az Varela

Proposition 2.5. Let F be an implicative filter in A and a, b ∈ A. Then
a ≡F b if and only if Da \DF = Db \DF .

Proof. First suppose a ≡F b, so a → b, b → a ∈ F . Let x ∈ Da \ DF .
We have a ≤ x, so b → a ≤ b → x and then b → x ∈ F . Since x es
meet-irreducible, b → x is either meet-irreducible or 1.

Assume b → x is meet-irreducible. As b → x ∈ F , we get x ∈ F (since x
lies in the same chain of meet-irreducibles as b → x), a contradiction. Hence
b → x = 1 and b ≤ x, i.e., x ∈ Db \DF .

This shows that Da \ DF ⊆ Db \ DF . The reverse inclusion follows
analogously.

Now assume Da \ DF = Db \ DF holds. Write a =
∧

Da, b =
∧

Db.
Deleting those meet-irreducibles which are in F , we get a ≡F

∧
Da \ DF

and b ≡F
∧

Db \DF . It follows immediately that a ≡F b.

As a result of Proposition 2.4, we get a useful fact about finite
ÃLukasiewicz implication algebras. This allows us to determine the critical
algebras in the next section.

Proposition 2.6. Every homomorphic image of A is isomorphic to a sub-
algebra of A. In symbols, H(A) ⊆ IS(A). Moreover, every homomorphic
image of A is a retract of A.

Proof. Let F be a filter in A and let U be the subset of C which de-
termines F , that is, U = F ∩ C. Without loss of generality we may as-
sume that U = {c1, . . . , ct} with t ≤ n. Consider the subuniverse of A
given by S = {x ∈ A : πi(x) = 1, 1 ≤ i ≤ t} and define h : A → S by
h(a1, . . . , an) = (1, . . . , 1, at+1, . . . , an) where there is a 1 in each of the first
t entries. Recalling that F = A ∩ [

∧
U), it is easily seen that A/F ∼= S.

Moreover, since h(x) = x for any x ∈ S, h is a retraction.

3. Quasivarieties

In this section we study quasivarieties in L. In fact, we show that every
quasivariety of ÃLukasiewicz implication algebras is a variety. We show this
first in the locally finite case, that is, within the varieties V (ÃLn). Then we
extend the result to the whole variety.

A finite algebra A is called critical if it does not belong to the quasiva-
riety generated by its proper subalgebras. The importance of these algebras
is exemplified in the next theorem. We reproduce a proof of this fact given
by J. Gispert and A. Torrens in [11].
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Theorem 3.1. Every locally finite quasivariety is generated by its critical
algebras.

Proof. Let K be a locally finite quasivariety and let A ∈ K. Consider
the family F of finitely generated subalgebras of A. It is known that A
can be embedded in an ultraproduct of members of F (see [4, Chapter V,
Theorem 2.14]). Therefore A ∈ ISPU (F ). Since K is locally finite we have
that A ∈ ISPU ({B ≤ A : B is finite}) ⊆ Q(Kfin), where Kfin denotes the
family of finite algebras in K. This shows that K = Q(Kfin).

Let A ∈ Kfin. We claim that Q(A) = Q({B ≤ A : B is critical}).
We proceed by induction on the cardinal of A. If |A| = 1, then A is
critical and the statement becomes obvious. Now assume that |A| = n.
If A is critical, the statement again follows immediately. On the other
hand, if A is not critical, then Q(A) = Q({B ≤ A : B 6= A}). For any
B ≤ A, B 6= A, we have that |B| < n and, by inductive hypothesis,
Q(B) = Q({C ≤ B : C is critical}). Putting everything together we get
that Q(A) = Q({C ≤ A : C is critical}), as was to be shown.

We finally get

K = Q(Kfin) = Q({B : B is critical, B ≤ A,A ∈ Kfin}) = Q(Kcrit) ⊆ K,

where Kcrit is the family of critical algebras in K.

We now determine all critical ÃLukasiewicz implication algebras.

Theorem 3.2. Let A be a ÃLukasiewicz implication algebra. A is critical if
and only if A ∼= ÃLk for some k ∈ N.

Proof. Let A be a finite ÃLukasiewicz implication algebra. Since A is finite,
A ∈ ISP (ÃLi1 , . . . , ÃLir) for some i1, . . . , ir ∈ N, where each ÃLij is a homo-
morphic image of A and, by Corollary 2.6, isomorphic to a subalgebra of
A.

If A is not isomorphic to any ÃLk, k ∈ N, then A belongs to the quasiva-
riety generated by its proper subalgebras, that is, A is not critical.

Conversely, if A ∼= ÃLk, its proper subalgebras are ÃLi, 1 ≤ i ≤ k − 1.
Since A 6∈ V (ÃLk−1), it follows that A is critical.

Corollary 3.3. V (ÃLk) = Q(ÃLk) for every k ∈ N.

Proof. By Theorem 3.1, V (ÃLk) is generated as quasivariety by its critical
algebras. But the only critical algebras in V (ÃLk) are ÃL1, . . . , ÃLk and they
are all subalgebras of ÃLk. Therefore V (ÃLk) = Q(ÃLk).
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Corollary 3.4. Every subquasivariety of V (ÃLk), k ∈ N, is a variety.

Proof. Let Q be a subquasivariety of V (ÃLk). By Theorem 3.1, Q is gen-
erated as quasivariety by its critical members which are ÃL1, ÃL2, . . . , ÃLr for
some r ≤ k. Therefore Q = Q(ÃLr) = V (ÃLr), which is a variety.

We would like to extend Corollary 3.4 to the variety L of ÃLukasiewicz
implication algebras. In [10] it is shown that the variety of MV-algebras
has the Finite Embeddability Property (FEP, for short). Since ÃLukasiewicz
implication algebras are the subreducts of MV-algebras, the following also
holds.

Theorem 3.5. The variety L has the FEP.

Corollary 3.6. L is generated as quasivariety by its finite members.

Corollary 3.7. L = Q({ÃLk : k ∈ N}).

In [6], free ÃLukasiewicz implication algebras are characterized. In par-
ticular, the free ÃLukasiewicz implication algebra over two generators is com-
puted. We reproduce the construction here.

Let FreeMV(1) be the free MV-algebra over one generator, that is, the
MV-algebra of McNaughton functions over the real interval [0, 1]. Let

M2 = FreeMV(1)× FreeMV(1).

We say that (f1, f2) ∈ M2 is compatible if f1(0) = f2(0). Let Mc
2 be the

MV-subalgebra of compatible pairs. Let x1 = (x, 0) and x2 = (0, x), where
x is the free generator of FreeMV(1). For i = 1, 2, we consider the upwardly-
closed sets [xi) = {(f1, f2) ∈ M c

2 : xi ≤ (f1, f2)}. Then

FreeL(2) ∼= [x1) ∪ [x2).

Proposition 3.8. FreeL(2) has a subalgebra isomorphic to ÃLk for every
k ∈ N.

Proof. ÃL1 is a subalgebra of any non-trivial ÃLukasiewicz implication alge-
bra. For each k ≥ 2 we consider the following McNaughton function

fk(x) =





1− x for 0 ≤ x ≤ 1
k ,

(k − 1)x for 1
k ≤ x ≤ 1

k−1 ,

1 for 1
k−1 ≤ x ≤ 1.
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Figure 1. McNaughton functions fk

It is easily seen that

f r
k (x) =





1− rx for 0 ≤ x ≤ 1
k ,

r(k − 1)x− r + 1 for 1
k ≤ x ≤ 1

k−1 ,

1 for 1
k−1 ≤ x ≤ 1,

for 1 ≤ r ≤ k. See Figure 1.
We claim that {1, fk, f

2
k , . . . , fk

k } is an implicative subalgebra of
FreeMV(1) isomorphic to ÃLk. Indeed, from Figure 1 it is clear that

f r
k → fs

k =
{

1 if r ≥ s,
f s−r

k if r < s.

We can also represent fk by means of an MV-term. Indeed, from Figure
1, it is clear that this term is tk = ¬x ∨ (k − 1)x.

Now consider the following elements in FreeL(2): (1, 1), (1, fk), (1, f2
k ),

. . ., (1, fk
k ). It is immediate that they all belong to FreeL(2) since they are

compatible pairs and they are all greater than or equal to (x, 0). Hence
FreeL(2) has a subalgebra isomorphic to ÃLk.

Theorem 3.9. Every subquasivariety of L is a variety.

Proof. Let Q be a subquasivariety of L and consider V = V (Q). V is a
subvariety of L, so either V = V (ÃLk) for some k ∈ N or V = L.
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In the first case, Q ⊆ V (ÃLk), so Corollary 3.4 implies that Q is a variety.
In the second case, we have that L = V (Q). Then FreeL(2) ∼= FreeQ(2) so
FreeL(2) ∈ Q. By the last proposition, we conclude that ÃLk ∈ Q for every
k ∈ N. Finally, Corollary 3.7 implies that Q = L.

Remark 3.10. ÃLukasiewicz implication algebras are the {→, 1}-subreducts
of Wajsberg hoops. So it is natural to try to face the problem of finding
the subquasivarieties of the variety WH of Wajsberg hoops. It turns out
that WH contains subquasivarieties which are not varieties, as is shown in
[8]. For example, if ÃL·,→n denotes the {·,→, 1}-reduct of the (n + 1)-element
MV-chain, it is shown that the class

WH : ÃL·,→n = {A ∈WH : ÃL·,→n 6∈ IS(A)}

is a proper quasivariety for n ≥ 2 (see Lemma 2.19 and Example 2.20 in [8]).
This shows the great difference between these two subreducts of Wajsberg
algebras as well as the poor expression power of→ in the context of Wajsberg
algebras when considered alone.

4. Congruence permutable ÃLukasiewicz implication algebras

In this section we show that congruence permutable ÃLukasiewicz implication
algebras are precisely those ÃLukasiewicz implication algebras that have an
underlying lattice structure, that is, the meet of every pair of elements exists.

We shall need the universal result stated below, which gives a repre-
sentation of arithmetical algebras as global subdirect products of finitely
subdirectly irreducible algebras. The reader can find more information on
global subdirect representations in [17], [16] and [12].

Theorem 4.1. Let A be an arithmetical algebra and suppose that the class
V(A)FSI ∪ {trivial algebras}, which consists of the finitely subdirectly irre-
ducible algebras in the variety generated by A and the trivial algebras, is a
universal class. Then the embedding

A ↪→
∏
{A/θ : θ is meet irreducible or θ = A×A}

is a global subdirect product under the equalizer topology.

Proof. This follows from the fact that every congruence system is solvable
in an arithmetical algebra (also known as the Chinese remainder theorem
condition) and Theorem 2.1 of [12].
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In our present case, given a congruence permutable ÃLukasiewicz impli-
cation algebra A, the class V(A)FSI ∪ {trivial algebras} is definable by the
universal sentence

(∀x)(∀y)(x ∨ y = 1 → (x = 1 or y = 1)).

Moreover this class of algebras contains only chains. Therefore, the last the-
orem guarantees that every congruence permutable ÃLukasiewicz implication
algebra is a global subdirect product of chains. We are now in a position to
prove the characterization of congruence permutability.

Theorem 4.2. Let A be a ÃLukasiewicz implication algebra. Then A is
congruence permutable if and only if for every x, y ∈ A, the meet x ∧ y
exists.

Proof. Consider the following sentence

ϕ = (∀x, y)(∃!z)(z → x = 1 & z → y = 1 & (x → z) ∨ (y → z) = 1).

It is easy to see that ϕ is valid in a ÃLukasiewicz implication algebra A if and
only if the meet x ∧ y exists for every x, y ∈ A. This condition is valid in
any chain, hence it is also valid in any congruence permutable ÃLukasiewicz
implication algebra, since validity of this type of sentences is preserved by
global subdirect products (see [17]).

Now assume that A is a ÃLukasiewicz implication algebra such that every
pair of its elements has a meet. Let f : A3 → A be given by

f(x, y, z) = ((x → y) → z) ∧ ((z → y) → x).

Although f is not a term-function in the language of ÃLukasiewicz implication
algebras, by Proposition 2.3, we have that if xi ≡F yi, 1 ≤ i ≤ 3, then
f(x1, x2, x3) ≡F f(y1, y2, y3).

Observe that the function f acts like a Mal’cev term. Indeed, it is imme-
diately verified that f(x, x, z) = z and f(x, z, z) = x. Now if x ≡F1 z ≡F2 y,
we have that

x = f(x, z, z) ≡F2 f(x, y, z) ≡F1 f(y, y, z) = z.

This proves that A is congruence permutable.

The global representability of congruence permutable ÃLukasiewicz impli-
cation algebras by means of chains may be derived in a slightly different way
using Theorem 3.4 in [16]. To accomplish that, we also need a kind of prime
filter theorem for ÃLukasiewicz implication algebras. We state and prove this
theorem because it may be of independent interest.
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Theorem 4.3. Let A be a ÃLukasiewicz implication algebra. Let F be an
implicative filter and M a subset of A closed under ∨ such that M ∩ F = ∅.
Then there exists a prime filter P such that F ⊆ P and P ∩M = ∅.
Proof. Let F be the family consisting of the filters G of A such that
F ⊆ G and G ∩M = ∅. Clearly F is nonempty since F ∈ F . By a routine
application of Zorn’s Lemma, there exists a filter P maximal in F . We claim
that P is a prime filter.

Indeed, assume x1 ∨ x2 ∈ P , x1, x2 6∈ P for some x1, x2 ∈ A. Since P
is maximal in F , there exists mi ∈ M , i = 1, 2, such that mi ∈ Fg(P, xi).
Since M is closed under joins, we may assume that m1 = m2 = m. Thus
m ∈ Fg(P, x1) ∩ Fg(P, x2).

Observe now that

Fg(P, x1) ∩ Fg(P, x2) = (P ∨ Fg(x1)) ∩ (P ∨ Fg(x2))
= P ∨ (Fg(x1) ∩ Fg(x2))
= P ∨ Fg(x1 ∨ x2)
= P.

Hence m ∈ P , a contradiction.

The following straightforward lemma gives a partial affirmative answer to
the existence of meets in a congruence permutable ÃLukasiewicz implication
algebra.

Lemma 4.4. Let A be a congruence permutable ÃLukasiewicz implication al-
gebra. For every x, y ∈ A such that x ∨ y = 1, the meet x ∧ y exists.

Proof. Let F1 = Fg(x) and F2 = Fg(y) and let θ1, θ2 be the corresponding
congruences. Clearly (x, 1) ∈ θ1 and (1, y) ∈ θ2, that is, (x, y) ∈ θ1◦θ2. Since
θ1 and θ2 permute, there exists z ∈ A such that (x, z) ∈ θ2 and (z, y) ∈ θ1.
Thus z → x ∈ F2 and z → y ∈ F1. Moreover, we get z → x, z → y ∈ F1∩F2.
Now observe that F1 ∩ F2 = Fg(x ∨ y) = {1}. Hence, z ≤ x and z ≤ y, so
x ∧ y exists.

We are now in a position to show the global representation of congru-
ence permutable ÃLukasiewicz implication algebras by means of chains. In
fact, by Theorem 3.4 in [16], we only need to show that the set MI(A) of
meet irreducible congruences on A is compact in the following sense: given
S ⊆ A×A such that for every θ ∈ MI(A), there exists (a, b) ∈ S such that
(a, b) ∈ θ, then there exists some finite subset S0 ⊆ S such that for every
θ ∈ MI(A), there is (a, b) ∈ S0 with (a, b) ∈ θ.
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Recall that for any a, b ∈ A we have that (a → b) ∨ (b → a) = 1
and since A is congruence permutable, Lemma 4.4 implies that the meet
(a → b) ∧ (b → a) exists. Let X = {∨n

i=1(ai → bi) ∧ (bi → ai) : (ai, bi) ∈ S}
and assume 1 6∈ X. By Theorem 4.3 there exists a prime filter P in A such
that P ∩ X = ∅. On the other hand, since P is a prime filter, A/P is a
chain, so θP ∈ MI(A). Hence, there exists (a, b) ∈ S such that (a, b) ∈ θP .
It follows that (a → b) ∧ (b → a) ∈ P ∩X, a contradiction.

This shows that 1 ∈ X. Hence, 1 =
∨n

i=1(ai → bi) ∧ (bi → ai) for
some (ai, bi) ∈ S. Now, given any θ ∈ MI(A), the associated filter Pθ

is a prime filter, and since 1 ∈ P , there exists j ∈ {1, . . . , n} such that
(aj → bj) ∧ (bj → aj) ∈ Pθ, or equivalently, (aj , bj) ∈ θ. This concludes the
proof that MI(A) is compact.

5. Another characterization of permutability

We say that an algebra A is minimally non-permutable if it is not con-
gruence permutable, yet each one of its non trivial quotients is congruence
permutable. The following result is immediate.

Lemma 5.1. Given a finite algebra A, A is not congruence permutable if
and only if one of its quotients is minimally non-permutable.

We now give a simple characterization of minimally non-permutable
ÃLukasiewicz implication algebras.

Lemma 5.2. A finite ÃLukasiewicz implication algebra is minimally non-
permutable if and only if it is isomorphic to an upwardly-closed proper im-
plicative subalgebra of a product of finite chains, B, which contains the atoms
of the Boolean skeleton of B.

Proof. Let A be a minimally non-permutable finite ÃLukasiewicz implica-
tion algebra. We may consider A as an upwardly-closed implicative subal-
gebra of a product of finite chains B such that A contains the coatoms of
the Boolean skeleton of B (see Theorem 2.1). Since A is not congruence-
permutable, A is a proper implicative subalgebra of B.

We may write B =
∏n

i=1 Bi, where each Bi is a finite MV-chain. For each
j ∈ {1, . . . , n}, let Fj = {x ∈ A : x(i) = 1 for i 6= j}. It is clear that Fj is
a non-trivial implicative filter of A. Thus A/Fj is congruence permutable,
and by Theorem 4.2, every pair of elements in A/Fj has a meet. Since
A/Fj

∼= {x ∈ A, x(j) = 1}, it follows that (0, . . . , 0, 1, 0, . . . , 0) ∈ A, where 1
occupies the j-th position.
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This shows that A contains all the atoms of the Boolean skeleton of B.

Conversely, assume A contains all the atoms of the Boolean skeleton. It
is clear then that every non-trivial quotient has a least element and hence
is congruence permutable.

Corollary 5.3. A finite ÃLuksaiewicz implication algebra is congruence per-
mutable if and only if none of its quotients is isomorphic to a proper im-
plicative subalgebra of a product of finite chains containing the atoms of the
Boolean skeleton.
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