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Foreword

DOI: 10.1134/S1560354711030014

It is a remarkable fact that for most classical integrable systems, the solution with generic
initial values admits an analytic continuation which is a meromorphic function, in particular it is
single-valued.

In the case of the Euler top (a rigid body which rotates around a fixed point which is its center of
gravity), the analytic continuation of the generic solution is expressible in terms of elliptic functions.
Thus, after complexification, the circles (ovals) which fill up the phase space and on which occurs
the periodic motion of the top, become elliptic curves, likewise called elliptic Riemann surfaces.

At first, the above phenomenon seemed to be a very particular and exceptional one, being
restricted to integrable systems in one degree of freedom, or more generally to integrable systems
whose solutions are periodic functions of time, as a few other examples of this type were discoverd.
However, when Kowalevski integrated the top which bears her name in terms of genus two, rather
than elliptic (genus one) theta functions, it became clear that the concepts and tools developed by
Jacobi, and further generalized by Riemann, were going to play a decisive role in the study of the
integrable problems of classical mechanics: theta functions, Riemann surfaces, Jacobi varieties and
Abelian integrals were the new tools, enabling the explicit integration of the integrable problems of
mechanics. Nevertheless, when Poincaré showed that the three body problem is not integrable, the
further development of the theory of integrable systems slowed down, in particular the remarkable
connection with the emerging theory of Riemann surfaces and Abelian varieties was put to rest.

In the 1960’s, half a century later, a series of important discoveries were made on the (by now
famous) Korteweg–de Vries equation (KdV equation), which describes long waves in a shallow one-
dimensional channel. The magical interaction between the solitary waves which appear as solutions,
the so-called solitons, led to the discovery that the KdV equation can be viewed as an infinite-
dimensional integrable Hamiltonian system. The KdV equation is nowadays still considered as the
prototype of an integrable PDE: Lax equations, multi-Hamiltonian structures, Virasoro symmetries,
matrix integral solutions, Backlund transformations, and so on, have not only be constructed for
this equation, the KdV equation is in fact the first equation for which each item of this list has
been constructed.

The same holds true for what brings us back to Riemann surfaces and Abelian varieties: Its-
Matveev show in 1975 that every hyperelliptic theta function, with properly scaled space and time
coordinates as arguments, is a solution to the Korteweg-de Vries equation (the time and space
coordinates being thought of as complex). This observation and its generalization to arbitrary
theta functions in connection with the Kadomtsev-Petviashvili equation (KP equation) led to very
striking new results. The classical Schottky problem, for example, which asks for a characterization
of Jacobi varieties among all so-called principally polarized Abelian varieties gets a very definite
answer in terms of the KP equation: the theta function of a polarized Abelian variety comes from
a Jacobian if and only if it is a solution of the KP equation (the Novikov conjecture, proven by
Shiota in 1986)! These results and several others generated a breakthrough which brought algebraic
geometry back in the realm of integrable systems and the classical results on (finite-dimensional)
integrable systems were revisited from a new angle, leading often to a better understanding of what
was known, and of course to many new results and techniques, both in the finite-dimensional and
infinite-dimensional integrable world.

A particular instance of this is the notion of “algebraic integrability”, which is the topic of the
present special volume. When Adler and van Moerbeke revisited the original works of Kowalevski,
they not only adopted the method by which Kowalevski found her top in order to find new cases
of integrable systems, they moreover transformed her tool into an efficient instrument which allows
one to unveil the beautiful (complex!) geometry that underlies integrable systems, such as the
Euler, Lagrange and Kowalevski tops, and basically all classically known integrable systems. While
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Kowalevski does an explicit integration of the equations of motion, by a real tour de force, leading
to explicit formulas for the motion of the top in terms of genus two theta functions, Adler and van
Moerbeke take a much more geometric point of view, considering the complex invariant manifolds,
which are the affine algebraic varieties on which the flow takes place and they show that these are
Abelian surfaces (compact complex tori of dimension two), minus a pair of genus three curves on
which the flow (with complex time) blows up. Thus, the notion of an algebraic completely integrable
system (a.c.i. system) is born: it is a complex integrable system for which the invariant manifolds
are affine parts of Abelian varieties (commutative algebraic groups, in general) and such that the
flow of the integrable vector fields are linear on these tori.

Thirty years have passed by and a lot of progress on algebraic integrability has been made. Not
all complex integrable systems are a.c.i., but a vast number of examples is known; they include
several types of Toda lattices and similar lattices, potentials such as the Garnier potential, certain
geodesic flows, integrable systems on moduli spaces of connections, reductions of equations such as
the KdV and KP equation, and many systems which appear naturally in algebraic geometry. Often
these systems have deep connections with Lie theory, which is apparent from their Hamiltonian
structure or from the definition of their phase space, which account for the integrability, but
the direct connection between Lie theory and algebraic integrability remains poorly understood.
Similarly, starting from a Lax operator with spectral parameter in some Lie algebra, we have a
fair understanding of the connection between the isospectral deformations describing the flow of
the corresponding integrable system as a linear flow on the Jacobi variety of the spectral curve;
but given an integrable Hamiltonian coming from classical mechanics, with no extra information
such as Lax equations, underlying Lie algebras or spectral curves, we have at present only a partial
understanding of how the apparently intertwined Lie algebraic and algebraic-geometric properties
are encoded (hidden!), in the sparse information which is contained in the Hamiltonian and its
constants of motion.

The purpose of the current volume on algebraic integrability is to give an overview of the actual
state of the theory, a few of the papers being review papers the other ones being research papers
which contain new results. In either case, they are written by researchers which are currently active
in the field of algebraic integrability. We hope that these papers will be a significant contribution
to the area and will give the reader a overview of the subject as well as of the main problems which
remain unsolved.

Pantelis Damianou (University of Cyprus) and Pol Vanhaecke (University of Poitiers)
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Abstract—In this paper, I present an overview of the active area of algebraic completely
integrable systems in the sense of Adler and van Moerbeke. These are integrable systems whose
trajectories are straight line motions on abelian varieties (complex algebraic tori). We make,
via the Kowalewski–Painlevé analysis, a study of the level manifolds of the systems. These
manifolds are described explicitly as being affine part of abelian varieties and the flow can
be solved by quadrature, that is to say their solutions can be expressed in terms of abelian
integrals. The Adler–Van Moerbeke method’s which will be used is devoted to illustrate how
to decide about the algebraic completely integrable Hamiltonian systems and it is primarily
analytical but heavily inspired by algebraic geometrical methods. I will discuss some interesting
and well known examples of algebraic completely integrable systems: a five-dimensional system,
the Hénon–Heiles system, the Kowalewski rigid body motion and the geodesic flow on the group
SO(n) for a left invariant metric.
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The problem of finding and integrating Hamiltonian systems, has attracted a considerable
amount of attention in recent years. Beside the fact that many integrable Hamiltonian systems
have been on the subject of powerful and beautiful theories of mathematics, another motivation
for its study is: the concepts of integrability have been applied to an increasing number of physical
systems, biological phenomena, population dynamics, chemical rate equations, to mention only
a few. However, it seems still hopeless to describe or even to recognize with any facility, those
Hamiltonian systems which are integrable, though they are exceptional. The resolution of the
well known Korteweg–de Vries equation has generated an enormous number of new ideas in the
area of Hamiltonian completely integrable systems. It has led to unexpected connections between
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mechanics, spectral theory, Lie algebra theory, algebraic geometry and even differential geometry.
All these connections have generated renewed interest in the questions around complete integrability
of finite and infinite dimensional systems, ordinary and partial differential equations. However given
a Hamiltonian system, it remains often hard to fit it into any of those general frameworks. But
luckily, most of the problems possess the much richer structure of the so called algebraic complete
integrability (concept introduced and systematized by Adler and van Moerbeke). A dynamical
system is algebraic completely integrable in the sense of Adler–Van Moerbeke [1, 2] if it can be
linearized on a complex algebraic torus Cn/Lattice (=abelian variety). The invariants (often called
first integrals or constants) of the motion are polynomials and the phase space coordinates (or
some algebraic functions of these) restricted to a complex invariant variety defined by putting these
invariants equal to generic constants, are meromorphic functions on an abelian variety. Moreover, in
the coordinates of this abelian variety, the flows (run with complex time) generated by the constants
of the motion are straight lines. However, besides the fact that many Hamiltonian completely
integrable systems possess this structure, another motivation for its study is: algebraic completely
integrable systems come up systematically whenever you study the isospectral deformation of some
linear operator containing a rational indeterminate. Indeed a theorem by Adler–Kostant–Symes [3]
applied to Kac–Moody algebras provides such systems which, by a theorem of van Moerbeke–
Mumford [4], are algebraic completely integrable. Also some interesting integrable systems appear
as coverings of algebraic completely integrable systems [5, 6]. The invariant varieties are coverings
of abelian varieties and these systems are called algebraic completely integrable in the generalized
sense. The concept of algebraic complete integrability is quite effective in small dimensions and has
the advantage to lead to global results, unlike the existing criteria for real analytic integrability,
which, at this stage are perturbation results. The methods used are primarily analytical but heavily
inspired by algebraic geometrical methods. Abelian varieties and cyclic coverings of abelian varieties,
very heavily studied by algebraic geometers, enjoy certain algebraic properties which can then be
translated into differential equations and their Laurent solutions.

In this paper, I present an overview of the concept of algebraic completely integrable systems in
the sense of Adler–Van Moerbeke. I will discuss some examples of algebraic completely integrable
systems: a five-dimensional system, the Hénon–Heiles system, the Kowalewski rigid body motion
and the geodesic flow on the group SO(n) for a left invariant metric. For details the reader is
referred to Adler–Van Moerbeke–Vanhaecke excellent books [3, 6], where other interesting problems
are being discussed in detail such that the Toda lattice, the odd and the even Mumford systems,
the Garnier potential, the Goryachev–Chaplygin top, etc.

1. ALGEBRAIC COMPLETE INTEGRABILITY

We give some results about abelian surfaces which will be used, as well as the basic techniques to
study two-dimensional algebraic completely integrable systems (details can be found in [3, 6–8]). Let
M = C/Λ be a n−dimensional abelian variety where Λ is the lattice generated by the 2n columns
λ1, . . . , λ2n of the n× 2n period matrix and let D =

∑
kjDj , kj ∈ Z, be a divisor on M. Define

L(D) = {f meromorphic on M : (f) > −D}, i.e., a function f ∈ L(D) has at worst a kj−fold pole
along Dj . The divisor D is called ample when a basis (f0, . . . , fN ) of L(kD) embeds M smoothly
into PN (C) for some k, via the map

M −→ PN (C), p 7−→ [1 : f1(p) : . . . : fN (p)],

then kD is called very ample. It is known that every positive divisor D on an irreducible abelian
variety is ample and thus some multiple of D embeds M into PN (C). By a theorem of Lefschetz,
any k > 3 will work. Moreover, there exists a complex basis of Cn such that the lattice expressed
in that basis is generated by the columns of the n× 2n period matrix diag(δ1, . . . , δn|Z), with
Z> = Z, ImZ > 0, δj ∈ N∗ and δj |δj+1. The integers δj which provide the so-called polarization of
the abelian variety M are then related to the divisor as follows:

dimL(D) = δ1 . . . δn. (1.1)

In the case of a 2−dimensional abelian varieties (surfaces), even more can be stated: the geometric
genus g of a positive divisor D (containing possibly one or several curves) on a surface M is given
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ALGEBRAIC INTEGRABILITY: THE ADLER–VAN MOERBEKE APPROACH 189

by the adjunction formula

g(D) =
KM .D +D.D

2
+ 1, (1.2)

where KM is the canonical divisor on M, i.e., the zero-locus of a holomorphic 2−form, D.D denotes
the number of intersection points of D with a +D (where a +D is a small translation by a of D
on M), where as the Riemann–Roch theorem for line bundles on a surface tells you that

χ(D) = pa(M) + 1 +
1
2
(D.D −DKM ), (1.3)

where pa (M) is the arithmetic genus of M and χ(D) the Euler characteristic of D. To study abelian
surfaces using Riemann surfaces on these surfaces, we recall that

χ(D) = dimH0(M,OM (D))− dimH1(M,OM (D)),

= dimL(D)− dimH1(M, Ω2(D ⊗K∗
M )), (Kodaira–Serre duality),

= dimL(D), (Kodaira vanishing theorem), (1.4)

whenever D ⊗K∗
M defines a positive line bundle. However for abelian surfaces, KM is trivial and

pa(M) = −1; therefore combining relations (1.1), (1.2), (1.3) and (1.4),

χ (D) = dimL(D) =
D.D

2
= g (D)− 1 = δ1δ2.

A divisor D is called projectively normal, when the natural map

L(D)⊗k −→ L(kD),

is surjective, i.e., every function of L(kD) can be written as a linear combination of k-fold products
of functions of L(D). Not every very ample divisor D is projectively normal but if D is linearly
equivalent to kD0 for k > 3 for some divisor D0, then D is projectively normal.
Now consider the exact sheaf sequence

0 −→ OC
π∗−→ O eC −→ X −→ 0,

where C is a singular connected Riemann surface, C̃ =
∑

Cj the corresponding set of smooth
Riemann surfaces after desingularization and π : C̃ → C the projection. The exactness of the sheaf
sequence shows that the Euler characteristic

X (O) = dimH0(O)− dimH1(O),

satisfies

X (OC)−X (O eC) + X (X) = 0, (1.5)

where X (X) only accounts for the singular points p of C; X (Xp) is the dimension of the set of
holomorphic functions on the different branches around p taken separately, modulo the holomorphic
functions on the Riemann surface C near that singular point. Consider the case of a planar
singularity (example a tacnode for which X (X) = 2, as well), i.e., the tangents to the branches lie
in a plane. If fj(x, y) = 0 denotes the jth branch of C running through p with local parameter sj ,
then

X (Xp) = dim ΠjC[[sj ]]/
C[[x, y]]

Πjfj(x, y)
.

So using (1.4) and Serre duality, we obtain X (OC) = 1− g(C) and

X (O eC) = n−
n∑

j=1

g(Cj).
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190 LESFARI

Also, replacing in the formula (1.5), gives

g(C) =
n∑

j=1

g(Cj) + X (X) + 1− n.

Finally, recall that a Kähler variety is a variety with a Kähler metric, i.e., a hermitian metric
whose associated differential 2-form of type (1, 1) is closed. The complex torus C2/lattice with the
euclidean metric

∑
dzi ⊗ dzi is a Kähler variety and any compact complex variety that can be

embedded in projective space is also a Kähler variety. A compact complex Kähler variety having
as many independent meromorphic functions as its dimension is a projective variety.

Consider now Hamiltonian problems of the form

XH : ẋ = J
∂H

∂x
≡ f(x), x ∈ Rm, (1.6)

where H is the Hamiltonian and J = J(x) is a skew-symmetric matrix with polynomial entries in x,

for which the corresponding Poisson bracket {Hi,Hj} = 〈∂Hi
∂x , J

∂Hj

∂x 〉, satisfies the Jacobi identities.
The system (1.6) with polynomial right hand side will be called algebraic complete integrable (a.c.i.)
in the sense of Adler–Van Moerbeke [1, 2] when:

i) The system possesses n + k independent polynomial invariants H1, . . . ,Hn+k of which
k lead to zero vector fields J ∂Hn+i

∂x (x) = 0, 1 6 i 6 k, the n remaining ones are in involu-
tion (i.e., {Hi,Hj} = 0) and m = 2n + k. For most values of ci ∈ R, the invariant varieties
n+k⋂
i=1

{x ∈ Rm : Hi = ci} are assumed compact and connected. Then, according to the Arnold–

Liouville theorem [9], there exists a diffeomorphism
n+k⋂

i=1

{x ∈ Rm : Hi = ci} −→ Rn/Lattice,

and the solutions of the system (1.6) are straight lines motions on these tori.
ii) The invariant varieties, thought of as affine varieties in Cm can be completed into complex

algebraic tori, i.e.,
n+k⋂

i=1

{x ∈ Cm : Hi = ci} ∪ D = Cn/Lattice,

where Cn/Lattice is a complex algebraic torus (i.e., abelian variety) and D a divisor. Algebraic

means that the torus can be defined as an intersection
l⋂

i=1

{Pi(X0, . . . , XN ) = 0} involving a large

number of homogeneous polynomials Pi. In the natural coordinates (t1, . . . , tn) of Cn/Lattice
coming from Cn, the functions xi = xi(t1, . . . , tn) are meromorphic and (1.6) defines straight line
motion on Cn/Lattice.
Condition i) means, in particular, there is an algebraic map

(x1(t), . . . , xm(t)) 7−→ (µ1(t), . . . , µn(t)),

making the following sums linear in t :
n∑

i=1

∫ µi(t)

µi(0)
ωj = djt , 1 6 j 6 n, dj ∈ C,

where ω1, . . . , ωn denote holomorphic differentials on some algebraic curves.
Adler and van Moerbeke [2] have shown that the existence of a coherent set of Laurent solutions:

xi =
∞∑

j=0

x
(j)
i tj−ki , ki ∈ Z, some ki > 0, (1.7)
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depending on dim (phase space)− 1 = m− 1 free parameters is necessary and sufficient for
a Hamiltonian system with the right number of constants of motion to be a.c.i. So, if the
Hamiltonian flow (1.6) is a.c.i., it means that the variables xi are meromorphic on the torus
Cn/Lattice and by compactness they must blow up along a codimension one subvariety (a divisor)
D ⊂ Cn/Lattice. By the a.c.i. definition, the flow (1.6) is a straight line motion in Cn/Lattice and
thus it must hit the divisor D in at least one place. Moreover through every point of D, there
is a straight line motion and therefore a Laurent expansion around that point of intersection.
Hence the differential equations must admit Laurent expansions which depend on the n− 1
parameters defining D and the n + k constants ci defining the torus Cn/Lattice the total count
is therefore m− 1 = dim (phase space)− 1 parameters. Assume now Hamiltonian flows to be
(weight)-homogeneous with a weight νi ∈ N, going with each variable xi, i.e.,

fi (αν1x1, . . . , α
νmxm) = ανi+1fi (x1, . . . , xm) , ∀α ∈ C.

Observe that then the constants of the motion H can be chosen to be (weight)-homogeneous:

H (αν1x1, . . . , α
νmxm) = αkH (x1, . . . , xm) , k ∈ Z.

If the flow is algebraically completely integrable, the differential equations (6) must admits Laurent
series solutions (7) depending on m− 1 free parameters. We must have ki = νi and coefficients in
the series must satisfy at the 0thstep non-linear equations,

fi

(
x

(0)
1 , . . . , x(0)

m

)
+ gix

(0)
i = 0, 1 6 i 6 m, (1.8)

and at the kthstep, linear systems of equations:

(L− kI) z(k) =





0 for k = 1

some polynomial in x(1), . . . , x(k−1) for k > 1,
(1.9)

where

L = Jacobian map of (8) =
∂f

∂z
+ gI |z=z(0) .

If m− 1 free parameters are to appear in the Laurent series, they must either come from the non-
linear equations (8) or from the eigenvalue problem (9), i.e., L must have at least m− 1 integer
eigenvalues. These are much less conditions than expected, because of the fact that the homogeneity
k of the constant H must be an eigenvalue of L. Moreover the formal series solutions are convergent
as a consequence of the majorant method [3]. Next we assume that the divisor is very ample and
in addition projectively normal. Consider a point p ∈ D, a chart Uj around p on the torus and a
function yj in L(D) having a pole of maximal order at p. Then the vector (1/yj , y1/yj , . . . , yN/yj)
provides a good system of coordinates in Uj . Then taking the derivative with regard to one of the
flows (

yi

yj

)
˙=

ẏiyj − yiẏj

y2
j

, 1 6 j 6 N,

are finite on Uj as well. Therefore, since y2
j has a double pole along D, the numerator must also

have a double pole (at worst), i.e., ẏiyj − yiẏj ∈ L(2D). Hence, when D is projectively normal, we
have that (

yi

yj

)
˙=

∑

k,l

ak,l

(
yk

yj

)(
yl

yj

)
,

i.e., the ratios yi/yj form a closed system of coordinates under differentiation. At the bad points,
the concept of projective normality plays an important role: this enables one to show that yi/yj is
a bona fide Taylor series starting from every point in a neighborhood of the point in question.

To prove the algebraic complete integrability of a given Hamiltonian system, the main steps of
the method are:

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



192 LESFARI

– The first step is to show the existence of the Laurent solutions, which requires an argument
precisely every time k is an integer eigenvalue of L and therefore L− kI is not invertible.

– One shows the existence of the remaining constants of the motion in involution so as to reach
the number n + k.

– For given c1, . . . , cm, the set

D ≡




xi (t) = t−νi

(
x

(0)
i + x

(1)
i t + x

(2)
i t2 + · · ·

)
, 1 6 i 6 m,

Laurent solutions such that : Hj (xi (t)) = cj + Taylor part ,





defines one or several n− 1 dimensional algebraic varieties (divisor) having the property that
n+k⋂

i=1

{z ∈ Cm : Hi = ci} ∪ D,

is a smooth compact, connected variety with n commuting vector fields independent at every point,
i.e., a complex algebraic torus Cn/Lattice. The flows J

∂Hk+i

∂z , . . . , J
∂Hk+n

∂z are straight line motions
on this torus.

From the divisor D, a lot of information can be obtained with regard to the periods and the
action-angle variables. Some others integrable systems appear as coverings of algebraic completely
integrable systems. The manifolds invariant by the complex flows are coverings of abelian varieties
and these systems are called algebraic completely integrable in the generalized sense.

2. THE LIOUVILLE–ARNOLD–ADLER–VAN MOERBEKE THEOREM
The idea of the Adler–Van Moerbeke’s proof [10] we shall give here is closely related to

the geometric spirit of the (real) Arnold–Liouville theorem [9]. Namely, a compact complex
n-dimensional variety on which there exist n holomorphic commuting vector fields which are
independent at every point is analytically isomorphic to a n-dimensional complex torus Cn/Lattice
and the complex flows generated by the vector fields are straight lines on this complex torus.

Theorem 1. Let M be an irreducible variety defined by an intersection

M =
⋂

i

{Z = (Z0, Z1, . . . , Zn) ∈ PN (C) : Pi(Z) = 0},

involving a large number of homogeneous polynomials Pi with smooth and irreducible affine part
M = M ∩ {Z0 6= 0}. Put M ≡ M ∪ D, i.e., D = M ∩ {Z0 = 0} and consider the map

f : M −→ PN (C), Z 7−→ f(Z).

Let M̃ = f(M) = f(M), D = D1 ∪ . . . ∪ Dr, where Di are codimension 1 subvarieties and S ≡
f(D) = f(D1) ∪ . . . ∪ f(Dr) ≡ S1 ∪ . . . ∪ Sr. Assume that:

(i) f maps M smoothly and 1-1 onto f(M).
(ii) There exist n holomorphic vector fields X1, . . . , Xn on M which commute and are indepen-

dent at every point. One vector field, say Xk(1 6 k 6 n), extends holomorphically to a neighborhood
of Sk in PN (C).

(iii) For all p ∈ Sk, the integral curve f(t) ∈ PN (C) of the vector field Xk through f(0) = p ∈ Sk

has the property that
{f(t) : 0 <| t |< ε, t ∈ C} ⊂ f(M).

This condition means that the orbits of Xk through Sk go immediately into the affine part and in
particular, the vector field Xk does not vanish on any point of Sk. Then

a) M̃ is compact, connected and admits an embedding into PN (C).
b) M̃ is diffeomorphic to a n-dimensional complex torus. The vector fields X1, . . . , Xn extend

holomorphically and remain independent on M̃ .
c) M̃ is a Kähler variety.
d) M̃ a Hodge variety. In particular, M is the affine part of an abelian variety M̃ .
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ALGEBRAIC INTEGRABILITY: THE ADLER–VAN MOERBEKE APPROACH 193

Proof. a) A crucial step is to show that the orbits running through Sk form a smooth variety
Σp, p ∈ Sk such that Σp\Sk ⊆ M . Let p ∈ Sk, ε > 0 small enough, gt

Xk
the flow generated by Xk

on M and {gt
Xk

: t ∈ C, 0 <| t |< ε}, the orbit going through the point p. The vector field Xk is
holomorphic in the neighborhood of any point p ∈ Sk and non-vanishing, by (ii) and (iii). Then
the flow gt

Xk
can be straightened out after a holomorphic change of coordinates. Let H ⊂ PN (C)

be a hyperplane transversal to the direction of the flow at p and let Σp be the surface element
formed by the divisor Sk and the orbits going through p. Consider the segment of S ′ ≡ H∩Σp and
so locally, we have Σp = S ′ ×C. We shall show that Σp is smooth. Note that S ′ is smooth. Indeed,
suppose that S ′ is singular at 0, then Σp would be singular along the trajectory (t-axis) which goes
immediately into the affine f(M), by condition (iii). Hence, the affine part would be singular which
is impossible by condition (i). So, S′ is smooth and by the implicit function theorem, Σp is smooth
too. Consider now the map

M ⊂ Pm(C) −→ PN (C), Z 7−→ f(Z),

where Z = (Z0, Z1, . . . , Zn) ∈ Pm(C) and M̃ = f(M) = f(M). Recall that the flow exists in a full
neighborhood of p in PN (C) and it has been straightened out. Therefore, near p ∈ Sk, we have
Σp = M̃ and Σp\Sk ⊆ M . Otherwise, there would exist an element Σ′p ⊂ M̃ such that

{gt
Xk

: t ∈ C, 0 <| t |< ε} = (Σp ∩ Σ′p)\p ⊂ M,

by condition (iii). In other words, Σp ∩Σ′p=t-axis and hence M would be singular along the t-axis
which is impossible. Since the variety M is irreducible and since the generic hyperplane sectionHgen.

of M̃ is also irreducible, all hyperplane sections are connected and hence D is also connected. Now
consider the graph Gf ⊂ Pm(C)× PN (C) of the map f , which is irreducible together with M̃ .
It follows from the irreducibility of Gf that a generic hyperplane section Gf ∩ (Hgen. × PN (C))
is irreducible, hence the special hyperplane section Gf ∩ ({Z0 = 0} × PN (C)) is connected and
therefore the projection map

ProjPN (C)[Gf ∩ ({Z0 = 0} × PN (C))] = f(D) ≡ S,

is connected. Hence, the variety

M̃ = M ∪
⋃

p∈Sk

Σp = M ∪ Sk ⊆ PN (C),

is compact, connected and embeds smoothly into PN (C) via f .
b) Let gti be the flow generated by Xi on M and let p1 ∈ M̃ \M . For small ε > 0 and for all t1 ∈ C
such that 0 < |t1| < ε, note that q ≡ gt1(p1) is well defined and gt1(p1) ∈ f(M), using condition
(iii). Let U(q) ⊆ M be a neighborhood of q and let

gt2(p2) = g−t1 ◦ gt2 ◦ gt1(p2), ∀p2 ∈ U(p1) ≡ g−t1 (U(q)) ,

which is well defined since by commutativity one can see that the right hand side is independent
of t1:

g−(t1+ε) ◦ gt2 ◦ gt1+ε(p2) = g−(t1+ε) ◦ gt2 ◦ gt1 ◦ gε(p2),

= g−(t1+ε) ◦ gε ◦ gt2 ◦ gt1(p2),

= g−t1 ◦ gt2 ◦ gt1(p2).

Note that gt2(p2) is a holomorphic function of p2 and t2, because in U(p1) the function gt1 is
holomorphic and its image is away from S, i.e., in the affine, gt2 is holomorphic. The same argument
applies to gt3(p3), . . . , gtn(pn) where

gtn(pn) = g−tn−1 ◦ gtn ◦ gtn−1(pn), ∀pn ∈ U(pn−1) ≡ g−tn−1(U(q)).
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Thus X1, . . . , Xn have been holomorphically extended, remain independent and commuting on M̃ .
Therefore, we can show along the same lines as in the Arnold–Liouville theorem [9] that M̃ is a
complex torus Cn/lattice. And that will be done, by considering the local diffeomorphism

Cn −→ M̃, t = (t1, . . . , tn) 7−→ gtp = gt1 ◦ . . . ◦ gtn(p),

for a fixed origin p ∈ f(M). The additive subgroup L = {t ∈ Cn : gtp = p} is a lattice of Cn (spanned
by 2n vectors in Cn, independent over R), hence Cn/L −→ M̃ is a biholomorphic diffeomorphism.
c) Let

ds2 =
n∑

k=1

dtk ⊗ dtk,

be a hermitian metric on the complex variety M̃ and let ω its fundamental (1, 1)-form. We have

ω = −1
2

Im ds2 =
√−1

2

n∑

k=1

dtk ∧ dtk.

So we see that ω is closed and the metric ds2 is Kähler and consequently M̃ is a Kähler variety.
d) On the Kähler variety M̃ are defined periods of ω. If these periods are integers (possibly after
multiplication by a number), we obtain a variety of Hodge. More specifically, integrals

∫
γk

ω of

the form ω (where γk are cycles in H2(M̃,Z)) determine the periods ω. As they are integers, then
M̃ is a Hodge variety. The variety M̃ is equipped with n holomorphic vector fields, independent
and commuting. From a) and b) the variety M̃ is both a projective variety and a complex torus
and hence an abelian variety as a consequence of Chow theorem [8]. Another proof is to use the
result that we just show since every Hodge torus is abelian, the converse is also true. Note also
that by Moishezon’s theorem [11], a compact complex Kähler variety having as many independent
meromorphic functions as its dimension is an abelian variety. ¤

3. A FIVE-DIMENSIONAL SYSTEM

Let us consider the following system of five differential equations in the unknowns z1, . . . , z5:

ż1 = 2z4, ż3 = z2(3z1 + 8z2
2),

ż2 = z3, ż4 = z2
1 + 4z1z

2
2 + z5, (3.1)

ż5 = 2z1z4 + 4z2
2z4 − 2z1z2z3.

The system (3.1) possesses three quartic invariants

F1 =
1
2
z5 − z1z

2
2 +

1
2
z2
3 −

1
4
z2
1 − 2z4

2 ,

F2 = z2
5 − z2

1z5 + 4z1z2z3z4 − z2
1z

2
3 +

1
4
z4
1 − 4z2

2z
2
4 , (3.2)

F3 = z1z5 + z2
1z

2
2 − z2

4 ,

and is completely integrable in the sense of Liouville. It can be written as a Hamiltonian vector
field

ż = J
∂H

∂z
, z = (z1, z2, z3, z4, z5)>,

where H = F1. The Hamiltonian structure is defined by the Poisson bracket

{F, H} =
〈

∂F

∂z
, J

∂H

∂z

〉
=

5∑

k,l=1

Jkl
∂F

∂zk

∂H

∂zl
,
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where ∂H
∂z =

(
∂H
∂z1

, ∂H
∂z2

, ∂H
∂z3

, ∂H
∂z4

, ∂H
∂z5

)>
, and

J =




0 0 0 2z1 4z4

0 0 1 0 0

0 −1 0 0 2z1z2

−2z1 0 0 0 2z5 + 4z1z
2
2

−4z4 0 −2z1z2 −2z5 − 4z1z
2
2 0




,

is a skew-symmetric matrix for which the corresponding Poisson bracket satisfies the Jacobi
identities. The second flow commuting with the first is regulated by the equations ż = J ∂F2

∂z ,
z = (z1, z2, z3, z4, z5)> and is written explicitly as

ż1 = 8z2
1z2z3 − 16z1z

2
2z4 + 8z4z5 − 4z2

1z4,

ż2 = 2z1 (2z2z4 − z1z3) ,

ż3 = −4z1z3z4 + 8z2z
2
4 + 4z1z2z5 − 2z3

1z2,

ż4 = 2z2
1z5 − 8z1z2z3z4 + 4z2

1z
2
3 − 2z4

1 + 4z2
5 + 8z1z

2
2z5 − 4z3

1z
2
2 ,

ż5 = 8z1z4z5 − 16z2z3z
2
4 + 8z1z

2
3z4 − 4z3

1z4 − 8z2
1z

2
2z4 + 4z3

1z2z3

−8z1z2z3z5 + 16z2
2z4z5 − 16z2

1z
3
2z3 + 32z1z

4
2z4.

These vector fields are in involution: {F1, F2} = 0, and the remaining one is a Casimir: J ∂F3
∂z = 0.

Let z ∈ C5, t ∈ C. By the functional independence of the integrals F1, F2, F3, the map

ϕ : (F1, F2, F3) : C5 −→ C3,

is submersive, i.e., dF1(z), dF2(z) and dF3(z) are linearly independent on a non empty Zariski open
set ∆ ⊂ C5. Let

Ω = ϕ
(
C5\∆)

,

=
{
c ≡ (c1, c2, c3) ∈ C3 : ∃z ∈ ϕ−1(c) with

dF1(z), dF2(z), dF3(z) linearly dependent} ,

be the set of critical values of ϕ. We denote by Ω the Zariski closure of Ω in C3. The set{
z ∈ C5 : ϕ(z) ∈ C3\Ω}

is a non-empty Zariski open set in C5. Hence this set is everywhere dense
in C5 for the usual topology. Let A be the complex affine variety defined by

A = ϕ−1(c) =
2⋂

k=1

{z : Fk(z) = ck} ⊂ C5. (3.3)

For every c ≡ (c1, c2, c3) ∈ C3\Ω, the fibre A is a smooth affine surface. Now, the main problem will
be to complete A(3.3) into a non singular compact complex algebraic variety Ã = A ∪ D in such a
way that the vector fields XF1 and XF2 generated respectively by F1 and F2, extend holomorphically
along a divisor D and remain independent there. If this is possible, Ã is an algebraic complex
torus (an abelian variety) and the coordinates z1, . . . , z5 restricted to A are abelian functions. A
naive guess would be to take the natural compactification A of A by projectivizing the equations:
A =

⋂3
k=1{Fk(Z) = ckZ

4
0} ⊂ P5(C). Indeed, this can never work for a general reason: an abelian

variety Ã of dimension bigger or equal than two is never a complete intersection, that is it can never
be described in some projective space Pn(C) by n-dim Ã global polynomial homogeneous equations.
In other words, if A is to be the affine part of an abelian surface, A must have a singularity
somewhere along the locus at infinity A ∩ {Z0 = 0} . In fact, we shall show that the existence of
meromorphic solutions to the differential equations (3.1) depending on 4 free parameters can be
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used to manufacture the tori, without ever going through the delicate procedure of blowing up and
down. Information about the tori can then be gathered from the divisor.

Theorem 2. The system (3.1) possesses Laurent series solutions which depend on 4 free parame-
ters: α, β, γ and θ. These meromorphic solutions restricted to the surface A (3.3) are parameterized
by two copies C−1 and C1 of the same Riemann surface (3.5) of genus 7.

Proof. Consider points at infinity which are limit points of trajectories of the flow. To be precise, we
search for the set of Laurent solutions which remain confined to the fixed affine invariant surface A
(3.3), related to specific values of c1, c2 and c3. The first fact to observe is that if the system is
to have Laurent solutions depending on 4 free parameters α, β, γ, θ, the Laurent decomposition of
such asymptotic solutions must have the following form

z1 =
1
t
α− 1

2
α2 + βt− 1

16
α

(
α3 + 4β

)
t2 + γt3 + · · · ,

z2 =
1
2t

ε− 1
4
εα +

1
8
εα2t− 1

32
ε
(−α3 + 12β

)
t2 + θt3 + · · · ,

z3 = − 1
2t2

ε +
1
8
εα2 − 1

16
ε
(−α3 + 12β

)
t + 3θt2 + · · · , (3.4)

z4 = − 1
2t2

α +
1
2
β − 1

16
α

(
α3 + 4β

)
t +

3
2
γt2 + · · · ,

z5 =
1

2t2
α2 − 1

4t

(
α3 + 4β

)
+

1
4
α

(
α3 + 2β

)− (
α2β − 2γ + 4εθα

)
t + · · · ,

with ε = ±1. Using the majorant method [3], we can show that these series are convergent.
Substituting the Laurent solutions (3.4) into (3.2): F1 = c1, F2 = c2 and F3 = c3, and equating
the t0-terms yields

F1 =
7
64

α4 − 1
8
αβ − 5

2
εθ = c1,

F2 =
1
16

(
4β − α3

) (
4α2β − α5 + 64εθα− 32γ

)
= c2,

F3 = − 1
32

α6 − β2 − 1
4
α3β − 3εθα2 + 4αγ = c3.

Eliminating γ and θ from these equations, leads to an equation connecting the two remaining
parameters α and β:

C : 64β3 − 16α3β2 − 4
(
α6 − 32α2c1 − 16c3

)
β

+α
(
32c2 − 32α4c1 + α8 − 16α2c3

)
= 0. (3.5)

The Laurent solutions restricted to the surface A(3.3) are thus parametrized by two copies C−1 and
C1 of the same Riemann surface C (3.5). According to the Riemann–Hurwitz formula, the genus of
the Riemann surface C is 7, which establishes the theorem. ¤

In order to embed C into some projective space, one of the key underlying principles used is
the Kodaira embedding theorem, which states that a smooth complex manifold can be smoothly
embedded into projective space PN (C) with the set of functions having a pole of order k along
positive divisor on the manifold, provided k is large enough; fortunately, for abelian varieties, k
need not be larger than three according to Lefshetz. These functions are easily constructed from the
Laurent solutions (3.4) by looking for polynomials in the phase variables which in the expansions
have at most a k-fold pole. The nature of the expansions and some algebraic properties of abelian
varieties provide a recipe for when to terminate our search for such functions, thus making the
procedure implementable. Precisely, we wish to find a set of polynomial functions {f0, . . . , fN}, of
increasing degree in the original variables z1, . . . , z5 having the property that the embedding D of
C1 + C−1 into PN (C) via those functions satisfies the relation: geometric genus of D ≡ g(D) = N + 2.
At this point, it may be not so clear why D must really live on an abelian surface. Let us say, for
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the moment, that the equations of the divisor D (i.e., the place where the solutions blow up),
as a Riemann surface traced on the abelian surface Ã (to be constructed in theorem 4), must be
understood as relations connecting the free parameters as they appear firstly in the expansions (3.4).
This means that (3.5) must be understood as relations connecting α and β. Let

L(r) =





polynomials f = f(z1, . . . , z5)

of degree 6 r, such that

f(z(t)) = t−1(z(0) + · · · ),
with z(0) 6= 0 on D
and with z(t) as in (3.4)





/[Fk = ck, k = 1, 2, 3],

and let (f0, f1, . . . , fNr) be a basis of L(r). We look for r such that: g(D(r)) = Nr + 2, D(r) ⊂ PNr .
We shall show that it is unnecessary to go beyond r = 4.

Theorem 3. a) The spaces L(r), nested according to weighted degree, are generated as follows

L(1) = {f0, f1, f2},
L(2) = L(1) ⊕ {f3, f4, f5, f6},
L(3) = L(2) ⊕ {f7, f8, f9, f10},
L(4) = L(3) ⊕ {f11, f12, f13, f14, f15}, (3.6)

where f0 = 1, f1 = z1, f2 = z2, f3 = 2z5 − z2
1, f4 = z3 + 2εz2

2, f5 = z4 + εz1z2, f6 = [f1, f2], f7 =
f1(f1 + 2εf4), f8 = f2(f1 + 2εf4), f9 = z4(f3 + 2εf6), f10 = z5(f3 + 2εf6), f11 = f5(f1 + 2εf4),
f12 = f1f2(f3 + 2εf6), f13 = f4f5 + [f1, f4], f14 = [f1, f3] + 2ε [f1, f6], f15 = f3 − 2z5 + 4f2

4 , with
[sj , sk] = ṡjsk − sj ṡk, the wronskian of sk and sj.
b) L(4) provides an embedding of D(4) into projective space P15(C) and D(4) has genus 17.

Proof. a) The proof of a) is straightforward and can be done by inspection of the expansions (3.4).
b) It turns out that neither L(1), nor L(2), nor L(3), yields a Riemann surface of the right genus;
in fact g(D(r)) 6= dim L(r) + 1, r = 1, 2, 3. For instance, the embedding into P2(C) via L(1) does
not separate the sheets, so we proceed to L(2) and the corresponding embedding into P6(C) is
unacceptable since g(D(2))− 2 > 6 and D(2) ⊂ P6(C) 6= Pg−2(C), which contradicts the fact that
Nr = g(D(2))− 2. So we proceed to L(3) and we consider the corresponding embedding into P10(C),
according to the functions (f0, . . . , f10). For finite values of α and β, dividing the vector (f0, . . . , f10)
by f2 and taking the limit t −→ 0, to yield

[0 : 2εα : 1 : −ε(4β − α3) : −α : −εα2 :
1
2
(4β − α3) : εα3 :

1
2
α2 :

1
4
εα3(4β − α3) : −1

4
εα4(4β − α3)].

The point α = 0 requires special attention. Indeed near α = 0, the parameter β behaves as follows:
β ∼ 0, i

√
c3,−i

√
c3. Thus near (α, β) = (0, 0), the corresponding point is mapped into the point

[0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0],

in P10(C) which is independent of ε = ±1, whereas near the point (α, β) = (0, i
√

c3) (resp. (α, β) =
(0,−i

√
c3)) leads to two different points:

[0 : 0 : 1 : −4εi
√

c3 : 0 : 0 : 2εi
√

c3 : 0 : 0 : 0 : 0],

(resp.

[0 : 0 : 1 : 4εi
√

c3 : 0 : 0 : −2εi
√

c3 : 0 : 0 : 0 : 0]),
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according to the sign of ε. The Riemann surface (3.4) has three points covering α = ∞, at which β
behaves as follows:

β ∼ −1279
216

α3,
1

432
α3

(
1333− 1295i

√
3
)

,
1

432
α3

(
1333 + 1295i

√
3
)

.

Then by dividing the vector (f0, . . . , f10) by f10, the corresponding point is mapped into the point

[0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1],

in P10(C). Thus, g(D(3))− 2 > 10 and D(2) ⊂ P10 6= Pg−2(C), which contradicts the fact that
Nr = g(D(3))− 2. Consider now the embedding D(4) into P15(C) using the 16 functions f0, . . . , f15

of L(4)(3.6). It is easily seen that these functions separate all points of the Riemann surface (except
perhaps for the points at α = ∞ and α = β = 0). The Riemann surfaces C1 and C−1 are disjoint
for finite values of α and β except for α = β = 0; dividing the vector (f0, . . . , f15) by f2 and taking
the limit t → 0, to yield

[0 : 2εα : 1 : −ε(4β − α3) : −α : −εα2 :
1
2
(4β − α3) : εα3 :

1
2
α2 :

1
4
εα3(4β − α3) :

−1
4
εα4(4β − α3) : −1

2
εα4 : −1

4
α3(4β − α3) :

3
4
α

(
4β − α3

)
: εα3

(
4β − α3

)
: −2εα3].

As before, the point α = 0 require special attention and the parameter β behaves as follows:
β ∼ 0, i

√
c3,−i

√
c3. Thus near (α, β) = (0, 0), the corresponding point is mapped into the point

[0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0],

in P15(C) which is independent of ε = ±1, whereas near the point (α, β) = (0, i
√

c3) (resp. (α, β) =
(0,−i

√
c3)) leads to two different points:

[0 : 0 : 1 : −4εi
√

c3 : 0 : 0 : 2εi
√

c3 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0],

(resp.

[0 : 0 : 1 : 4εi
√

c3 : 0 : 0 : −2εi
√

c3 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0]),

according to the sign of ε. About the point α = ∞, it is appropriate to divide by f10; then the
corresponding point is mapped into the point

[0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0],

in P15(C) which is independent of ε. The divisor D(4) obtained in this way has genus 17 and
D(4) ⊂ P15(C) = Pg−2(C), as desired. This ends the proof of the theorem. ¤

Let L = L(4) and D = D(4). Next we wish to construct a surface strip around D which will
support the commuting vector fields. In fact, D has a good chance to be very ample divisor on an
abelian surface. Following the method (theorem 1), we obtain the following theorem:

Theorem 4. The variety A (3.3) generically is the affine part of an abelian surface Ã. The reduced
divisor at infinity Ã\A = C1 + C−1, consists of two copies C1 and C−1 of the same genus 7 Riemann
surface C (3.5). The system of differential equations (3.1) is algebraically completely integrable and
the corresponding flows evolve on Ã.

Remark 1. a) Note that the reflection σ on the affine variety A amounts to the flip σ :
(z1, z2, z3, z4, z5) 7→ (z1,−z2, z3,−z4, z5), changing the direction of the commuting vector fields. It
can be extended to the (-Id)-involution about the origin of C2 to the time flip (t1, t2) 7→ (−t1,−t2) on
Ã, where t1 and t2 are the time coordinates of each of the flows XF1 and XF2 . The involution σ acts
on the parameters of the Laurent solution (3.4) as follows σ : (t, α, β, γ, θ) 7−→ (−t,−α,−β,−γ, θ)
and the linear space L can be split into a direct sum of even and odd functions.
b) Consider on Ã the holomorphic 1-forms dt1 and dt2 defined by dti(XFj ) = δij , where XF1 and
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XF2 are the vector fields generated respectively by F1 and F2. Taking the differentials of ζ = 1/z1

and ξ = z1/z2 viewed as functions of t1 and t2, using the vector fields and the Laurent series (3.4)
and solving linearly for dt1 and dt2, we obtain the holomorphic differentials

ω1 = dt1|Cε =
1
4(

∂ξ

∂t2
dζ − ∂ζ

∂t2
dξ)|Cε =

8
α (−4β + α3)

dα,

ω2 = dt2|Cε =
1
4(

−∂ξ

∂t1
dζ − ∂ζ

∂t1
dξ)|Cε =

2
(−4β + α3)2

dα,

with ∆ ≡ ∂ζ
∂t1

∂ξ
∂t2

− ∂ζ
∂t2

∂ξ
∂t1

. The zeroes of ω2 provide the points of tangency of the vector field XF1

to Cε. We have ω1
ω2

= 4
α

(−4β + α3
)
, and XF1 is tangent to Cε at the point covering α = ∞.

There are many examples of differential equations which have the weak Painlevé property
that all movable singularities of the general solution have only a finite number of branches and
some interesting integrable systems appear as coverings of algebraic completely integrable systems.
The invariant varieties are coverings of abelian varieties and these systems are called algebraic
completely integrable in the generalized sense. These systems are Liouville integrable and by the
Arnold–Liouville theorem, the compact connected manifolds invariant by the real flows are tori;
the real parts of complex affine coverings of abelian varieties. Most of these systems of differential
equations possess solutions which are Laurent series of t1/n (t being complex time) and whose
coefficients depend rationally on certain algebraic parameters. It was shown in series of publications
of Vanhaecke [12, 13], Abenda and Fedorov [14] and others that Θ-divisor can serve as a carrier
of integrability. Let H be a hyperelliptic curve of genus g and Jac(H) = Cg/Λ its jacobian variety
where Λ is a lattice of maximal rank in Cg. Let

Ak : Symk(H) → Jac(H), (P1, . . . , Pk) 7→
k∑

j=1

∫ Pj

∞
(ω1, . . . , ωg)mod.Λ, 0 6 k 6 g,

be the Abel map where (ω1, . . . , ωg) is a canonical basis of the space of differentials of the first kind
on H. The theta divisor Θ is a subvariety of Jac(H) defined as Θ ≡ A [

Symg−1(H)
]
/Λ. By Θk we

will denote the subvariety (called strata) of Jac(H) defined by Θk ≡ Ak

[
Symk(H)

]
/Λ and we have

the following stratification

{O} ⊂ Θ0 ⊂ Θ1 ⊂ Θ2 ⊂ . . . ⊂ Θg−1 ⊂ Θg = Jac(H),

where O is the origin of Jac(H). Vanhaecke [12] showed that these stratifications of the jacobian are
connected with stratifications of the Sato grassmannian, via an extension of Krichever’s map. He
discussed the relation between Laurent solutions for the Master systems and stratifications of the
jacobian of a hyperelliptic curve. In [13], Vanhaecke studied Lie-Poisson structure in the jacobian
and showed that invariant manifolds associated with Poisson brackets can be identified with these
strata. Some problems were considered in [13] and [14], where a connection was established with
the flows on these strata. Such varieties or their open subsets often appear as coverings of complex
invariants manifolds of finite dimensional integrable systems (Hénon–Heiles and Neumann systems).

Consider the case F3 = 0, and the following change of variables

z1 = q2
1, z2 = q2, z3 = p2, z4 = p1q1, z5 = p2

1 − q2
1q

2
2.

Substituting this into the constants of motion F1, F2, F3 leads obviously to the relations

H1 =
1
2
p2
1 −

3
2
q2
1q

2
2 +

1
2
p2
2 −

1
4
q4
1 − 2q4

2, (3.7)

H2 = p4
1 − 6q2

1q
2
2p

2
1 + q4

1q
4
2 − q4

1p
2
1 + q6

1q
2
2 + 4q3

1q2p1p2 − q4
1p

2
2 +

1
4
q8
1,

whereas the last constant leads to an identity. Using the differential equations (3.1) combined with
the transformation above leads to the system of differential equations

q̈1 = q1

(
q2
1 + 3q2

2

)
, (3.8)

q̈1 = q2

(
3q2

1 + 8q2
2

)
.
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The last equation (3.1) for z5 leads to an identity. Thus, we obtain the potential constructed
by Ramani, Dorozzi and Grammaticos [15, 16]. Evidently, the functions H1 and H2 commute:
{H1,H2} = 0. The system (3.8) is weight-homogeneous with q1, q2 having weight 1 and p1, p2 weight
2, so that H1 and H2 have weight 4 and 8 respectively. We show that this system is algebraic
completely integrable in the generalized sense. To be more precise, when one examines all possible
singularities, one finds that it is possible for the variable q1 to contain square root terms of the type
t1/2, which are strictly not allowed by the Painlevé–Kowalewski test (i.e., the general solutions
have no movable singularities other than poles). However, these terms are trivially removed by
introducing the variables z1, . . . , z5 which restores the Painlevé–Kowalewski property to the system.
Let B be the affine variety defined by

B =
2⋂

k=1

{z ∈ C4 : Hk(z) = bk}, (3.9)

where (b1, b2) ∈ C2. We show that the system (3.8) admits 3-dimensional family of Laurent solutions
in t1/2, depending on three free parameters: u, v and w. There are precisely two such families,
labelled by ε = ±i, and they are explicitly given as follows

q1 =
1√
t

(
u− 1

4
u3t + vt2 − 5

128
u7t3 +

1
8
u
(3

4
u3v − 7

256
u8 + 3εw

)
t4 + · · ·

)
,

q2 =
1
t

(1
2
ε− 1

4
εu2t +

1
8
εu4t2 +

1
4
εu

( 1
32

u5 − 3v
)
t3 + wt4 + · · ·

)
, (3.10)

p1 =
1

2t
√

t

(
−u− 1

4
u3t + 3vt2 − 25

128
t3u7

+
7
8
u
(3

4
u3v − 7

256
u8 + 3εw

)
t4 + · · ·

)
,

p2 =
1
t2

(
−1

2
ε +

1
8
εu4t2 +

1
2
εu

( 1
32

u5 − 3v
)
t3 + 3wt4 + · · ·

)
.

These formal series solutions are convergent as a consequence of the majorant method. By
substituting these series in the constants of the motion H1 = b1 and H2 = b2, one eliminates the
parameter w linearly, leading to an equation connecting the two remaining parameters u and v:

Γ :
65
4

uv3 +
93
64

u6v2 +
3

8192
(−9829u8 + 26112H1

)
u3v (3.11)

−10299
65536

u16 − 123
256

H1u
8 + H2 +

15362 98731
52

= 0.

According to Hurwitz’s formula, this defines a Riemann surface Γ of genus 16. The Laurent
solutions restricted to the surface B(3.9) are parametrized by two copies Γ−1 and Γ1 of the same
Riemann surface Γ. Applying the method explained in Piovan [5], we show that the invariant
surface B(3.9) can be completed as a cyclic double cover B of the abelian surface Ã, ramified
along the divisor C1 + C−1. Consequently, the system (3.8) is algebraic complete integrable in the
generalized sense. Moreover, B is smooth except at the point lying over the singularity (of type A3)
of C1 + C−1 and the resolution B̃ of B is a surface of general type with invariants: X (B̃) = 1 and
pg(B̃) = 2. The asymptotic solution (3.10) can be read off from (3.4) and the change of variables:
q1 =

√
z1, q2 = z2, p1 = z4/q1, p2 = z3. The function z1 has a simple pole along the divisor C1 + C−1

and a double zero along a Riemann surface of genus 7 defining a double cover of Ã ramified along
C1 + C−1.

4. THE HÉNON–HEILES SYSTEM
The Hénon–Heiles system

q̇1 =
∂H

∂p1
, q̇2 =

∂H

∂p2
, ṗ1 = −∂H

∂q1
, ṗ2 = −∂H

∂q2
,
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with

H ≡ H1 =
1
2

(
p2
1 + p2

2 + Aq2
1 + Bq2

2

)
+ q2

1q2 + 6q3
2,

i.e.,

q̇1 = p1, ṗ1 = −Aq1 − 2q1q2, (4.1)

q̇2 = p2, ṗ2 = −Bq2 − q2
1 − 6q2

2,

has another constant of motion
H2 = q4

1 + 4q2
1q

2
2 − 4p1 (p1q2 − p2q1) + 4Aq2

1q2 + (4A−B)
(
p2
1 + Aq2

1

)
,

where A, B, are constant parameters and q1, q2, p1, p2 are canonical coordinates and momenta,
respectively. First studied as a mathematical model to describe the chaotic motion of a test star in
an axisymmetric galactic mean gravitational field this system is widely explored in other branches of
physics. It is well-known from applications in stellar dynamics, statistical mechanics and quantum
mechanics. It provides a model for the oscillations of atoms in a three-atomic molecule. The system
(21) possesses Laurent series solutions depending on 3 free parameters α, β, γ, namely

q1 =
α

t
+

(
α3

12
+

αA

2
− αB

12

)
t + βt2 + q

(4)
1 t3 + q

(5)
1 t4 + q

(6)
1 t5 + · · · ,

q2 = − 1
t2

+
α2

12
− B

12
+

(
α4

48
+

α2A

10
− α2B

60
− B2

240

)
t2 +

αβ

3
t3 + γt4 + · · · ,

where p1 =
.
q1, p2 =

.
q2 and

q
(4)
1 =

αAB

24
− α5

72
+

11α3B

720
− 11α3A

120
− αB2

720
− αA2

8
,

q
(5)
1 = −βα2

12
+

βB

60
− Aβ

10
,

q
(6)
1 = −αγ

9
− α7

15552
− α5A

2160
+

α5B

12960
+

α3B2

25920
+

α3A2

1440
− α3AB

4320
+

αAB2

1440

− αB3

19440
− αA2B

288
+

αA3

144
.

Let D be the pole solutions restricted to the surface

M =
2⋂

i=1

{
x ≡ (q1, q2, p1, p2) ∈ C4, Hi (x) = ci

}
,

to be precise D is the closure of the continuous components of the set of Laurent series solutions
x (t) such that

Hi (x (t)) = ci, 1 6 i 6 2,

i.e., D = t0 − coefficient of M . Thus we find an algebraic curve defined by

D : β2 = P8(α), (4.2)

where

P8 (α) = − 7
15552

α8 − 1
432

(
5A− 13

18
B

)
α6 − 1

36

(
671

15120
B2 +

17
7

A2 − 943
1260

BA

)
α4

− 1
36

(
4A3 − 1

2520
B3 − 13

6
A2B +

2
9
AB2 − 10

7
c1

)
α2 +

1
36

c2.

The curve D determined by an eight-order equation is smooth, hyperelliptic and its genus is 3.
Moreover, the map

σ : D −→ D, (β, α) 7−→ (β,−α), (4.3)
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is an involution on D and the quotient E = D/σ is an elliptic curve defined by

E : β2 = P4(ζ), (4.4)

where P4 (ζ) is the degree 4 polynomial in ζ = α2 obtained from (22) . The hyperelliptic curve D
is thus a 2-sheeted ramified covering of the elliptic curve E (24) ,

ρ : D −→ E , (β, α) 7−→ (β, ζ), (4.5)

ramified at the four points covering ζ = 0 and ∞. The affine surface M completes into an abelian
surface M̃ , by adjoining the divisor D. The latter defines on M̃ a polarization (1, 2). The divisor 2D
is very ample and the functions 1, q1, q2

1, q2, p1, p2
1 + q2

1q2, p2q1 − 2p1q2, p1p2 + 2Aq1q2 + 2q1q
2
2,

embed M̃ smoothly into P7(C) with polarization (2, 4). Then the system (4.1) is algebraically
completely integrable and the corresponding flow evolves on an abelian surface M̃ = C2/Lattice,

where the lattice is generated by the period matrix


 2 0 a c

0 4 c b


, Im


 a c

c b


 > 0, (a, b, c ∈ C).

Theorem 5. The abelian surface M̃ which completes the affine surface M is the dual Prym variety
Prym∗ (D/E) of the genus 3 hyperelliptic curve D(4.2) for the involution σ interchanging the sheets
of the double covering ρ(4.5) and the problem linearizes on this variety.

Proof. Let (a1, a2, a3, b1, b2, b3) be a canonical homology basis of D such that σ (a1) = a3, σ (b1) = b3,
σ (a2) = −a2, σ (b2) = −b2, for the involution σ(4.3). As a basis of holomorphic differentials
ω0, ω1, ω2 on the curve D(4.2) we take the differentials ω1 = α2dα

β , ω2 = dα
β , ω3 = αdα

β and
obviously σ∗(ω1) = −ω1, σ∗(ω2) = −ω2, σ∗(ω3) = ω3. Recall that the Prym variety Prym (D/E)
is a subabelian variety of the Jacobi variety Jac(D) = Pic0(D) = H1(OD) / H1(D,Z) constructed
from the double cover ρ, the involution σ on D interchanging sheets, extends by linearity to a map
σ : Jac(D) → Jac(D) and up to some points of order two, Jac(D) splits into an even part and an
odd part: the even part is an elliptic curve (the quotient of D by σ, i.e., E (4.4)) and the odd part
is a 2−dimensional abelian surface Prym (D/E). We consider the period matrix Ω of Jac(D)

Ω =




∫
a1

ω1

∫
a2

ω1

∫
a3

ω1

∫
b1

ω1

∫
b2

ω1

∫
b3

ω1
∫
a1

ω2

∫
a2

ω2

∫
a3

ω2

∫
b1

ω2

∫
b2

ω2

∫
b3

ω2
∫
a1

ω3

∫
a2

ω3

∫
a3

ω3

∫
b1

ω3

∫
b2

ω3

∫
b3

ω3


 .

Then,

Ω =




∫
a1

ω1

∫
a2

ω1 −
∫
a1

ω1

∫
b1

ω1

∫
b2

ω1 −
∫
b1

ω1
∫
a1

ω2

∫
a2

ω2 −
∫
a1

ω2

∫
b1

ω2

∫
b2

ω2 −
∫
b1

ω2
∫
a1

ω3 0
∫
a1

ω3

∫
b1

ω3 0
∫
b1

ω3


 ,

and therefore the period matrices of Jac(E)(i.e., E), Prym(D/E) and Prym∗(D/E) are respectively

∆ =
(∫

a1
ω3

∫
b1

ω3

)
,

Γ =


 2

∫
a1

ω1

∫
a2

ω1 2
∫
b1

ω1

∫
b2

ω1

2
∫
a1

ω2

∫
a2

ω2 2
∫
b1

ω2

∫
b2

ω2


 ,

and

Γ∗ =




∫
a1

ω1

∫
a2

ω1

∫
b1

ω1

∫
b2

ω1
∫
a1

ω2

∫
a2

ω2

∫
b1

ω2

∫
b2

ω2


 .
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Let LΩ =





∑3
i=1 mi

∫
ai




ω1

ω2

ω3


 + ni

∫
bi




ω1

ω2

ω3


 : mi, ni ∈ Z





, be the period lattice associated to Ω.

Let us denote also by L∆, the period lattice associated to ∆. We have the following diagram

0

↓
E D
↓ ρ∗ ↙ ↓ ρ

0 −→ kerNρ −→ Prym(D/E)⊕ E = Jac(D)
Nρ−→ E −→ 0

↘ τ ↓
M̃ = M ∪ 2D ' C2/Lattice

↓
0

where Nρ is the norm mapping (surjective). The polarization map

τ : Prym(D/E) −→ M̃ = Prym∗(D/E),

has kernel (ρ∗E) ' Z2 × Z2 and the induced polarization on Prym(D/E) is of type (1,2). Let
M̃ → C2/LΛ : p y

∫ p
p0

(
dt1
dt2

)
, be the uniformizing map where dt1, dt2 are two differentials on M̃

corresponding to the flows generated respectively by H1, H2 such that: dt1|D = ω1 and dt2|D = ω2,

LΛ = {
4∑

k=1

nk




∫
νk

dt1
∫
νk

dt2


 : nk ∈ Z},

is the lattice associated to the period matrix

Λ =




∫
ν1

dt1
∫
ν2

dt1
∫
ν3

dt1
∫
ν4

dt1
∫
ν1

dt2
∫
ν2

dt2
∫
ν3

dt2
∫
ν4

dt2


 ,

and (ν1, ν2, ν3, ν4) is a basis of H1(M̃,Z). By the Lefschetz theorem on hyperplane section [8], the
map H1(D,Z) −→ H1(M̃,Z) induced by the inclusion D ↪→ M̃ is surjective and consequently we
can find 4 cycles ν1, ν2, ν3, ν4 on the curve D such that

Λ =




∫
ν1

ω1

∫
ν2

ω1

∫
ν3

ω1

∫
ν4

ω1
∫
ν1

ω2

∫
ν2

ω2

∫
ν3

ω2

∫
ν4

ω2


 ,

and LΛ =





∑4
k=1 nk




∫
νk

ω1
∫
νk

ω2


 : nk ∈ Z



. The cycles ν1, ν2, ν3, ν4 in D which we look for are

a1, a2, b1, b2 and they generate H1(M̃,Z) such that

Λ =




∫
a1

ω1

∫
a2

ω1

∫
b1

ω1

∫
b2

ω1
∫
a1

ω2

∫
a2

ω2

∫
b1

ω2

∫
b2

ω2


 ,
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is a Riemann matrix. So Λ = Γ∗, i.e., the period matrix of Prym∗(D/E) dual of Prym(D/E).
Consequently M̃ and Prym∗(D/E) are two abelian varieties analytically isomorphic to the same
complex torus C2/LΛ. By Chow’s theorem [8], M̃ and Prym∗(D/E) are then algebraically
isomorphic. ¤

5. THE KOWALEWSKI RIGID BODY MOTION

The motion for the Kowalewski’s top is governed by the equations
.
m = m ∧ λm + γ ∧ l,

.
γ = γ ∧ λm, (5.1)

where m, γ and l denote respectively the angular momentum, the directional cosine of the z-axis
(fixed in space), the center of gravity which after some rescaling and normalization may be taken
as l = (1, 0, 0) and λm = (m1/2,m2/2,m3/2) . The system (5.1) can be written

.
m1 = m2 m3,

.
γ1 = 2 m3γ2 −m2γ3,

.
m2 = − m1 m3 + 2γ3,

.
γ2 = m1γ3 − 2m3γ1, (5.2)

.
m3 = −2γ2,

.
γ3 = m2γ1 −m1γ2,

with constants of motion

H1 =
1
2

(
m2

1 + m2
2

)
+ m2

3 + 2γ1 = c1,

H2 = m1γ1 + m2γ2 + m3γ3 = c2, (5.3)

H3 = γ2
1 + γ2

2 + γ2
3 = c3 = 1,

H4 =

((
m1 + im2

2

)2

− (γ1 + iγ2)

)((
m1 − im2

2

)2

− (γ1 − iγ2)

)
= c4.

In her famous Acta Mathematica paper [17], Kowalewski integrates the problem in terms of
hyperelliptic integrals, using a very beautiful change of variables. Here, we sketch the integration
of the problem using the Laurent solutions, as carried out in full detail in [18]. The result is
that the invariant surfaces could be completed via the flow into complex algebraic tori (abelian

surfaces) C2/Lattice were the lattice is spanned by the columns of the period matrix


 1 0 a c

0 2 c b


,

Im


 a c

c b


 > 0, i.e., the problem is not expressed in terms of hyperelliptic integrals but rather

in terms of abelian integrals associated with the period matrix. As we have seen in the previous
section, such abelian surfaces come up naturally as Prym varieties of double covers of elliptic curves
ramified over four points. The system (5.2) admits two distinct families of Laurent series solutions:

m1 (t) =





α1
t + i

(
α2

1 − 2
)
α2 + ◦ (t) ,

α1
t − i

(
α2

1 − 2
)
α2 + ◦ (t) ,

γ1 (t) =





1
2t2

+ ◦ (t) ,

1
2t2

+ ◦ (t) ,

m2 (t) =





iα1
t − α2

1α2 + ◦ (t) ,

−iα1
t − α2

1α2 + ◦ (t) ,
γ2 (t) =





i
2t2

+ ◦ (t) ,

−i
2t2

+ ◦ (t) ,

m3 (t) =





i
t + α1α2 + ◦ (t) ,

−i
t + α1α2 + ◦ (t) ,

γ3 (t) =





α2
t + ◦ (t) ,

α2
t + ◦ (t) ,
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which depend on 5 free parameters α1, . . . , α5. By substituting these series in the constants of the
motion Hi (5.3), one eliminates three parameters linearly, leading to algebraic relation between
the two remaining parameters, which is nothing but the equation of the divisor D along which the
mi, γi blow up. Since the system (5.2) admits two families of Laurent solutions, then D is a set of
two isomorphic curves of genus 3, D = D1 +D−1 :

Dε : P (α1, α2) =
(
α2

1 − 1
) ((

α2
1 − 1

)
α2

2 − P (α2)
)

+ c4 = 0, (5.4)

where P (α2) = c1α
2
2 − 2εc2α2 − 1 and ε = ±1. Each of the curve Dε is a 2-1 ramified cover

(α1, α2, β) of elliptic curves D0
ε :

D0
ε : β2 = P 2 (α2)− 4c4α

4
2, (5.5)

ramified at the 4 points α1 = 0 covering the 4 roots of P (α2) = 0. It was shown [18] that each
divisor Dε is ample and defines a polarization (1, 2) , whereas the divisor D, of geometric genus 9, is
very ample and defines a polarization (2, 4). The affine surface M =

⋂4
i=1 {Hi = ci} ⊂ C6, defined

by putting the four invariants (5.3) of the Kowalewski flow (5.2) equal to generic constants, is the
affine part of an abelian surface M̃ with

M̃ \ M = D = one genus 9 curve consisting of two genus 3
curves Dε (5.4) intersecting in 4 points. Each

Dε is a double cover of an elliptic curve D0
ε (5.5)

ramified at 4 points.
Moreover, the Hamiltonian flows generated by the vector fields XH1 and XH4 are straight lines
on M̃ . The 8 functions 1, f1 = m1, f2 = m2, f3 = m3, f4 = γ3, f5 = f2

1 + f2
2 , f6 = 4f1f4 − f3f5,

f7 = (f2γ1 − f1γ2) f3 + 2f4γ2, form a basis of the vector space of meromorphic functions on M̃
with at worst a simple pole along D Moreover, the map

M̃ ' C2/Lattice → P7(C) , (t1, t2) 7→ [(1, f1 (t1, t2) , . . . , f7 (t1, t2))] ,

is an embedding of M̃ into P7(C). Following the method (theorem 5), we obtain the following
theorem:

Theorem 6. The tori M̃ can be identified as M̃ = Prym∗(Dε/D0
ε), i.e., dual of Prym(Dε/D0

ε)
and the problem linearizes on this Prym variety.

6. THE GEODESIC FLOW ON SO(n) FOR A LEFT INVARIANT METRIC

Consider the group SO(n) and its Lie algebra so(n) paired with itself, via the customary inner
product 〈X,Y 〉 = −1

2 tr (X.Y ) , where X, Y ∈ so(n). A left invariant metric on SO(n) is defined
by a non-singular symmetric linear map Λ : so(n) −→ so(n), X 7−→ Λ.X, and by the following
inner product; given two vectors gX and gY in the tangent space SO(n) at the point g ∈ SO(n),
〈gX, gY 〉 =

〈
X, Λ−1.Y

〉
. The question of classifying the metrics for which geodesic flow on SO(n) is

algebraically completely integrable is difficult. As the Euler rigid body motion is always algebraically
completely integrable and can be regarded as geodesic flow on SO(3), we consider the case n = 4.
The problem has been resolved for SO(4) by Adler and van Moerbeke [3, 10]. It more convenient
to use the coordinates u = (x1, x2, x3) and v = (x4, x5, x6), they correspond to the decomposition
u⊕ v ∈ so(4) ' so(3)⊕ so(3). In these coordinates, the geodesic flow on the group SO(4) can be
written as

u̇ = u× ∂H

∂u
, v̇ = v × ∂H

∂v
,

for the metric defined by the quadratic form

H =
1
2

6∑

j=1

λjx
2
j +

3∑

j=1

µjxjxj+3, (6.1)
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where λ1, . . . , λ6, µ1, µ2, µ3 ∈ C and λ12λ23λ31λ45λ56λ64µ1µ2µ3 6= 0 with λjk ≡ λj − λk. The equa-
tions have besides the energy H1 = H, two trivial constants of the motion

H2 = x2
1 + x2

2 + x2
3,

H3 = x2
4 + x2

5 + x2
6.

Adler and van Moerbeke [3, 10] have shown that the geodesic flow on SO(4) for the metric
defined by the quadratic form (6.1) is algebraically completely integrable if and only if:
a) The quadratic form H is diagonal with regard to the customary so(4) coordinates (Manakov
metric), i.e.,

2H =
4∑

j,k=1
j<k

ΛjkX
2
jk, (Xjk)16j,k64) ∈ so(4),

with

Λjk =
βj − βk

αj − αk
, (αj , βj ∈ C, 1 6 j 6 4),

all Λjk distinct. The extra invariant H4 is quadratic and the flow evolves on abelian surfaces

C2/lattice ⊆ P7(C), having period matrix


 2 0 a c

0 4 c b


, Im


 a c

c b


 > 0, (a, b, c ∈ C). According to

Haine [19] and Mumford [1],
4⋂

j=1

{
x ∈ C6 : Hj(x) = cj

}
= Prym (C/C0) \D,

where D is a curve of genus 9, C0 is an elliptic curve defined as

C0 =
{

(t1, t2, t3, t4) ∈ P3(C) such that
∑

tjHj has rank 3
}

,

and C is a double cover of C0 ramified at the 4 points C0 ∩ {
∑

tjcj = 0}. The periods of this Prym
variety Prym (C/C0) provide the exact periods of the motion in terms of abelian integrals. The
problem of the solid body in a fluid in the case of Clebsch is a particular case of this metric.
b) The quadratic form H satisfies the conditions

(
µ2

1, µ
2
2, µ

2
3

)
=

λ12λ23λ31λ45λ56λ64

(λ46λ32 − λ65λ13)
2

(
(λ23 − λ56)2

λ23λ56
,
(λ31 − λ64)2

λ31λ64
,
(λ12 − λ45)2

λ12λ45

)
,

with the product µ1µ2µ3 being rational in λ1, . . . , λ6 and with the following sign specification

µ1µ2µ3 =
λ12λ23λ31λ45λ56λ64

(λ46λ32 − λ65λ13)
3 (λ12 − λ45)(λ23 − λ56)(λ31 − λ64).

The extra invariant H4 is quadratic and the flow linearizes on 2-dimensional hyperelliptic jacobians.
More precisely

4⋂

j=1

{
x ∈ C6 : Hj(x) = cj

}
= Jac (hyperelliptic curve C of genus 2)\D,

where D is a divisor of genus 17, which contains 4 translates of the Θ-divisor in Jac(C), each of
which is isomorphic to C. The hyperelliptic curve C is a double cover of the curve C0 (see a)) of
rank 4 quadrics which in this case is isomorphic to P1(C). The periods of the motion are given by
the periods of the hyperelliptic curve C. The problem of the solid body in a fluid in the case of
Lyapunov–Steklov is a particular case of this metric.
c) The form H satisfies

(
µ4

1, µ
4
2, µ

4
3

)
= λ13λ46λ21λ54λ32λ65

(
1

λ32λ65
,

1
λ13λ46

,
1

λ21λ54

)
.
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The quantities ζ, ξ and η defined by

ζ2 ≡ λ46

λ13
, ξ2 ≡ λ54

λ21
, η2 ≡ λ65

λ32
,

satisfy the quadratic relations

ζξ + ξη + ηζ + 1 = 0, 3ξη + η − ξ + 1 = 0.

The geodesic flow has a quartic invariant H4, evolves on abelian surfaces Ã ⊆ P23(C) having period

matrix


 2 0 a c

0 12 c b


, Im


 a c

c b


 > 0, (a, b, c ∈ C) and it will be expressed in terms of abelian

integrals. More precisely
4⋂

j=1

{
x ∈ C6 : Hj(x) = cj

}
= Ã\D,

where D is a curve of genus 25 with 8 singular points. Put in a more geometrical language, the tori Ã
contain a very ample and projectively normal curveD of geometric genus 25, with 8 normal crossings
whose smooth version C is a 4-1 unramified cover of a curve C0 of genus 5. The curve C0 itself is a
double cover ramified over 4 points of a genus 2 hyperelliptic curve H. Moreover, the linearization
takes place on a 2-dimensional subtorus of the 3-dimensional Prym variety Prym (C0/H) with

Prym (C0/H) = Ã⊕ E ,

where E is an elliptic curve. This situation provides a full description of the moduli for the abelian
surfaces of polarization (1, 6).

We have seen throughout this work that if a system is algebraically completely integrable,
then it has a family of meromorphic Laurent series depending on ”dim (phase space)− 1” free
parameters. Now, trying to generalize the result to the geodesic flow on SO(n) for n > 5 using
the same method leads to insurmountable calculations. As was shown by Haine [20], for n > 5
Manakov’s metrics are the only left invariant diagonal metrics on SO(n) for which the geodesic
flow is algebraically completely integrable. Note that it turns out that the geodesic flow on SO(n)
admits a lot of invariant manifolds on which they reduce to geodesic flow on SO(3) and the solutions
of the differential equation with initial conditions on these manifolds are elliptic functions and this
without any condition on the metric. Haine [20] has shown that looking at solutions near these
special a priori known solutions and imposing these solutions to be single-valued functions of t ∈ C,
suffices to single out the left invariant diagonal metrics for which the geodesic flow is algebraically
completely integrable.

I wish to express my thanks to an anonymous referee for his valuable helpful comments and
suggestions.
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Separable Systems, Acta Appl. Math., 2000, vol. 60, pp. 137–178.

15. Ramani, A., Dorozzi, B., and Grammaticos, B., Painlevé Conjecture Revisited, Phys. Rev. Lett., 1982,
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Abstract—We give a birational morphism between two types of genus 2 Jacobians in P15. One
of them is related to an Algebraic Completely Integrable System: the Geodesic Flow on SO(4),
metric II (so termed after Adler and van Moerbeke). The other Jacobian is related to a linear
system in |4Θ| with 12 base points coming from a Göpel tetrad of 4 translates of the Θ divisor.
A correspondence is given on the base spaces so that the Poisson structure of the SO(4) system
can be pulled back to the family of Göpel Jacobians.
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1. INTRODUCTION

It was Jacobi who realized that new Integrable Systems were very difficult to find. In the best
cases, if one has a good change of coordinates that relates a given System to a known Integrable
System, one could expect to integrate the given one via this change of coordinates. We asked
ourselves whether there would be an Algebraic Completely Integrable System related with genus
two Jacobians in P15 and associated to a divisor D0 in |4Θ| formed by four translates of the Θ
divisor by 1

2 -periods intersecting into 12 nodes e1, . . . , e12 as shown in Fig. 1. Such a divisor is an
even section of |4Θ| cut out by a hyperplane section at infinity. The affine variables expressed in
terms of the complex time flow have to blow up at D0 in order for this to be associated with an
Algebraic Completely Integrable System in the sense of Adler and van Moerbeke.
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Fig. 1

This is the classical configuration that comes up when in the related Kummer surfaces in P3

we pick a Göpel tetrad of theta functions as coordinates of the ambient 3-space. This subject is
extensively described in [1–3].

The Geodesic Flow on SO(4), metric II is an Algebraic Completely Integrable System that was
studied by Adler and van Moerbeke [4, 5], (See also [6–8]). In [8] an alternative way of obtaining this
system via algebro-geometric considerations is given. This Integrable System linearizes on genus
two Jacobians and has at infinity divisors D1 which consists of four translates by 1

2 -periods of the
Θ divisor that intersect into four triple points (Fig. 2).
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ON ROSENHAIN–GÖPEL CONFIGURATIONS 211

&%

'$r
r

rr &%

'$

&%

'$

&%

'$D1

Fig. 2

The configuration divisor D1 comes up when in the related Kummer surface in P3 we choose a
Rosenhain tetrad of theta functions as coordinates of the ambient 3-space [1–3]. In terms of the
(−1)-involution applied to the theta functions defining D1, this divisor becomes odd, as opposed
to D0.

We realized there should be a map between the variables associated with the functions in
L(D0) and those in L(D1) in the following way. Write D0 = Θ0 + Θ1 + Θ2 + Θ3 where the Θi’s
are the four translates by 1

2 -periods of the Θ divisor and therefore homologous to Θ. Analogously,
D1 = Θ0

′ + Θ1
′ + Θ2

′ + Θ3
′, where the Θi

′’s are homologous to Θ. Since the Θi’s are related to
a Göpel tetrad and the Θi

′’s to a Rosenhain tetrad, they must be linearly equivalent to 4Θ. In
particular, we have the linear equivalences 4Θi ∼ D0 ∼ 4Θ ∼ D1 ∼ 4Θi

′ that imply a linear map
between L(D0) and L(D1) on each Jacobian. Now, the divisors 2Θi and 2Θi

′ are algebraically
equivalent and because they are totally symmetric we have the linear equivalence 2Θi ∼ 2Θi

′

(see [7]). The functions of L(2Θi) and L(2Θi
′) embed the respective Kummer surfaces in P3 and

they are therefore related by a linear transformation in P3. This map gives an isomorphism between
the Kummer surfaces of the Rosenhain and Göpel configurations and can be extended to a linear
map in P15 by a procedure that was described in [7]. Thus we get a biregular map at the level of
the Jacobians.

The main result of this paper is Theorem 1, the linear map in P3 that relates the Göpel and
Rosenhain Kummer surfaces biregularly. As a bypass we can translate the Poisson structure of the
SO(4) system to the Göpel family of Jacobians.

2. GENUS TWO THETA FUNCTIONS
Let τ be the 2× 2 Riemann matrix of a (generic and principally polarized) genus 2 Jacobian.

A pair of real vectors (m,m∗) is associated univocally with the point m∗ + mτ of IC2.
For the pair of row vectors (m,m∗) (called characteristics) we define the classical theta functions

[3, §8.5] as (1) below, where e(z) = exp(2πiz), z ∈ IC. They have the properties (2), (3), (3′), (4).

(1) ϑm,m∗(τ, ζ) =
∑

ψ∈ZZn e(1
2(ψ + m)τ t(ψ + m) + (ψ + m)t(ζ + m∗))

(2) ϑm,m∗(τ,−ζ) = ϑ−m,−m∗(τ, ζ)

(3) ϑm+ψ,m∗+ψ∗(τ, ζ) = e(mtψ∗)ϑm,m∗(τ, ζ), forψ, ψ∗ ∈ ZZn

(3′) ϑm,m∗(τ, ζ + uτ + u∗) = e(−1
2uτ tu− ut(ζ + u∗))e(−utm∗)ϑm+u,m∗+u∗(τ, ζ).

We also use the customary notation ϑm,m∗(τ, ζ) = ϑ


 m

m∗


(τ, ζ), and agree to represent the

point m∗ + mτ either by


 m

m∗


 or





m

m∗



, when τ is fixed.

If





m

m∗



 ∈ 1

2ZZ2g/ZZ2g is a half period, then we have the formula (Prop. 3.14 — Ch. II. p. 167 [9]).

(4) ϑm,m∗(τ,−ζ) = e(2mtm∗)ϑm,m∗(τ, ζ) = e∗(m∗ + mτ)ϑm,m∗(τ, ζ)
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There are 22g half periods on an abelian variety of dimension g. We say that a half period of

characteristic





m

m∗



 is odd (even) if the factor e∗





 m

m∗




τ


 is negative (positive).

For a genus 2 Jacobian the even half period characteristics are given by

e35 =





0 0

0 0



 , e23 =





0 0

1/2 0



 , e45 =





0 0

0 1/2



 , e13 =





1/2 0

0 0





e12 =





0 1/2

0 0



 , e25 =





1/2 1/2

0 0



 , e14 =





1/2 0

0 1/2



 , e15 =





0 1/2

1/2 0





e24 =





0 0

1/2 1/2



 , e34 =





1/2 1/2

1/2 1/2



 .

While the odd characteristics are the following

e0 =





1/2 1/2

1/2 0



 , e1 =





1/2 1/2

0 1/2



 , e2 =





0 1/2

1/2 1/2



 , e3 =





1/2 0

1/2 1/2





e4 =





1/2 0

1/2 0



 , e5 =





0 1/2

0 1/2





It follows that the theta functions ϑ[ei] are odd functions with respect to the involution, while
the ϑ[eij ]’s are even. One has the relations ei + ej = eij + e0, 0 < i < j 6 5, and

∑5
i=0 ei = 0 on

the Jacobian.
The odd half periods are the Weierstrass points of the theta divisor {ζ : ϑ0,0(τ, ζ) = 0} = Θ and

Θ is also the genus 2 curve into its Jacobian.
Any Rosenhain divisor D1 (i.e. related to the SO(4) system) and any Göpel divisor D0

can be constructed from one of the 16 symmetric curves {Θ0i = Θ + e0 + ei, 0 6 i 6 5; Θij =
Θ + ei + ej , 0 < i < j 6 5} by acting on it with a particular group of translates G = ZZ2 × ZZ2 =
{1, t1, t2, t3 = t1 + t2} and by selecting the origin to be one of the ei’s. As well known, there are 80
Rosenhain tetrads and 60 Göpel tetrads that can be chosen among these 16 curves possibly after
choosing the right origin [1], [2]. For any curve C, define C` := C + e`, ` = 0, . . . 5.

The 60 Göpel divisors have the form D0 = Θ` + (Θij)` + (Θkl)` + (Θmn)`, where i, j, . . . , n are
all different and 0 6 ` 6 5. The 80 Rosenhain divisors are D1 = Θ` + (Θ0i)` + (Θ0j)` + (Θij)` with
0 < i < j 6 5, and D′1 = Θ` + (Θij)` + (Θjk)` + (Θki)`, with 0 < i < j < k 6 5; 0 6 ` 6 5.

These divisors are all linearly equivalent in |4Θ|. Also, any divisor 2(Θij)` is linearly equivalent
to 2Θ. However, there may be issues once an origin is chosen.

Let us call G0 = ZZ2 × ZZ2 = {1, t1, t2, t3 = t1 + t2} a Göpel group if acting on Θ` by translations
it defines a Göpel divisor. G1 = ZZ2 × ZZ2 = {1, t′1, t

′
2, t

′
3 = t′1 + t′2} is a Rosenhain group if acting on

Θ` by translations it defines a Rosenhain divisor.
Assume that on the Jacobian A we have chosen an origin and fixed a Göpel or Rosenhain divisor

D given as the zeroes of theta function s0s1s2s3, where the si’s are translates of the Riemann theta
function by 1

2 -periods. We have the following:
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Proposition 1 ([7]). Let D = Θ0 + Θ1 + Θ2 + Θ3 be a Göpel or Rosenhain divisor defined by
the theta sections s0, s1, s2, s3 Then, the sections of 2Θ: {s2

0, s
2
1, s

2
2, s

2
3} are linearly independent and

therefore give a basis for H0(A, 2Θ). If X represents a generic global vector field, then a basis for the
even sections of H0(A, 4Θ) is given by the sections {s4

0, s
2
0s

2
1, s

2
0s

2
2, s

2
0s

2
3, s

4
1, s

2
1s

2
2, s

2
1s

2
3, s

4
2, s

2
2s

2
3, s

4
3},

and a basis for the odd sections of H0(A, 4Θ) is {WX(s2
0, s

2
1), WX(s2

0, s
2
2),WX(s2

0, s
2
3), WX(s2

1, s
2
2),

WX(s2
1, s

2
3),WX(s2

2, s
2
3)}, where s0, s1, s2, s3 are theta functions vanishing on Θ0,Θ1,Θ2, Θ3 respec-

tively.

3. KUMMER EQUATIONS
Here we will give the equations of the Kummer surfaces in the Rosenhain and Göpel basis

of H0(A, 2Θ). We will work with a particular choice of theta functions and the action of the
Rosenhain (Göpel) group on the respectively chosen Rosenhain (Göpel) basis is one of the possible
many actions that essentially differ by a symplectic automorphism.

Pick three points e0, e1, e2 in Θ = {ζ : ϑ(τ, ζ) = 0}, e0 as origin and consider the group G1

generated by e1 − e0, e2 − e0. This has an extra element e12 − e0. We write

t1 = e1 − e0 =





0 0

−1/2 1/2



 = e24 +





0 0

−1 0





t2 = e2 − e0 =




−1/2 0

0 1/2



 = e14 +




−1 0

0 0





t3 = e12 − e0 =




−1/2 0

−1/2 0



 = e4 +




−1 0

−1 0





and consider the translates of the ϑ-divisor Θ by these elements of ZZ2 × ZZ2. These translates are
given by the sections

so = ϑ[e35](τ, ζ) = ϑ(τ, ζ), s1 = ϑ[e24](τ, ζ), s2 = ϑ[e14](τ, ζ), and s3 = ϑ[e4](τ, ζ).
Thus, the zero locus of Z1(τ, ζ) = ϑ[e35]ϑ[e24]ϑ[e14]ϑ[e4] gives a typical SO(4) divisor. As Z1 is the
product of 3 even sections and one odd section, Z1 is odd.

We will make a table with the action of ti defined by t−xϑ(ζ) = ϑ(ζ + x). This action is associated
with the Schrodinger representation of the Theta group (see [3] and [7] for those matters).

s0 = ϑ[e35](τ, ζ) s1 = ϑ[e24] s2 = ϑ[e14] s3 = ϑ[e4]

t1 ϑ[e35](τ, ζ + e1 − e0) = ϑ[e24] ϑ[e35] −ϑ[e4] ϑ[e14]

t2 ϑ[e35](τ, ζ + e2 − e0) = f(ζ)ϑ[e14] f(ζ)iϑ[e4] f(ζ)ϑ[e35] f(ζ)iϑ[e24]

t3 ϑ[e35](τ, ζ + e12 − e0) = −g(ζ)ϑ[e4] g(ζ)iϑ[e14] g(ζ)ϑ[e24] g(ζ)iϑ[e35]

(3.1)

This induces the following action on the Rosenhain basis of H0(A, 2Θ)

Table I

x1 = s2
0 x2 = s2

1 x3 = s2
2 x4 = s2

3

t1 x2 x1 x4 x3

t2 f2x3 −f2x4 f2x1 −f2x2

t3 g2x4 −g2x3 g2x2 −g2x1

where f, g are factors corresponding to trivial ϑ-functions.
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Using Table I we deduce the equation of the Kummer surface in terms of a Rosenhain basis.
This is the following (compare with [1, p. 83] for a slightly different equation due to a different
action on the basis)

2sx1x2x3x4 + u2
(
x2

1x
2
4 + x2

2x
2
3

)
+ 2uv(x1x4 − x2x3)(x1x3 − x2x4)

+2uw(x1x4 + x2x3)(x1x2 + x3x4) + v2
(
x2

1x
2
3 + x2

2x
2
4

)

−2vw(x1x3 + x2x4)(x1x2 − x3x4) + w2
(
x2

1x
2
2 + x2

3x
2
4

)
= 0

(3.2)

The intersection of this surface with the coordinate planes xi = 0 give double conics. Also, the
equation can be written as x2

1p2(x2, x3, x4) + x1p3(x2, x3, x4) + (q2(x2, x3, x4))2 = 0, where pi, qi are
homogeneous polynomials of degree i. Having the equation written down in this form in a Rosenhain
basis allows us to quickly find the branch locus of the projection from [1 : 0 : 0 : 0] onto the plane
{x1 = 0}. This is given by decomposing ∆ = p2

3 − 4p2q
2
2 into its 6 linear forms (possibly using roots

of u, v, w), each one of these forms defines a plane that intersects the surface into a double conic.
The branch locus of the projection is precisely the union of these 6 double conics. This branch locus
is important to find if we want to match two Kummer surfaces. As it was shown in [7, Prop. II, Ch.
V], two Kummer surfaces with chosen double points are biregularly equivalent (K, p) ∼= (K ′, p′)
if and only if there is a linear map in P3 preserving the branch loci of the projections from p
(respectively p′) onto a plane. So essentially in order to match a Rosenhain Kummer surface and a
Göpel one we have to carry the Göpel equation into Rosenhain form by a linear change which will
probably involve a choice of an origin in the Jacobian.

Notice that four of the double points of the surface are the corners of the tetrahedron formed
by the planes xi = 0; namely the points {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1]} of
P3. These double points correspond in the Jacobian to the triple points of a Rosenhain divisor D1.

Now, let us write down for later use the action of G1 on the sections vij = s2
i s

2
j , i < j of 4Θ.

These sections are closely related to one of the incarnations of the SO(4) system that was worked
out in [7] and [8].

v01 v02 v03 v12 v13 v23 Z1

t1 v01 v13 v12 v03 v02 v23 −Z1

t2 −f4v23 f4v02 −f4v12 −f4v03 f4v13 −f4v01 −f4Z1

t3 −g4v23 g4v13 −g4v03 −g4v12 g4v02 −g4v01 g4Z1

(3.3)

In the Göpel situation we choose the 1
2 -periods e0, e15, e4, e23. Fix the origin e0 and let G0 be

the group generated by {e15 − e0, e4 − e0, e23 − e0}. Write

t′1 = e15 − e0 =




−1/2 0

0 0



 = e13 +




−1 0

0 0





t′2 = e4 − e0 =





0 −1/2

0 0



 = e12 +





0 −1

0 0





t′3 = e23 − e0 =




−1/2 −1/2

0 0



 = e25 +




−1 −1

0 0



 .
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Therefore, consider the translates of the ϑ-divisor Θ by these elements of ZZ2 × ZZ2. These
translates are given by the sections

s′o = ϑ[e35](τ, ζ) = ϑ(τ, ζ), s′1 = ϑ[e13](τ, ζ), s′2 = ϑ[e12](τ, ζ), and s′3 = ϑ[e25](τ, ζ).

Thus, the zero locus of Z0(τ, ζ) = ϑ[e35]ϑ[e13]ϑ[e12]ϑ[e25] gives a Göpel divisor. As Z0 is the product
of 4 even sections, Z0 is even.

We will make a table with the action of t′i on the theta functions as in the Rosenhain case.

s′o = ϑ[e35](τ, ζ) s′1 = ϑ[e13] s′2 = ϑ[e12] s′3 = ϑ[e25]

t′1 ϑ[e35](τ, ζ + e15 − e0) = g(ζ)ϑ[e13] g(ζ)ϑ[e35] g(ζ)ϑ[e25] g(ζ)ϑ[e12]

t′2 ϑ[e35](τ, ζ + e4 − e0) = f(ζ)ϑ[e12] f(ζ)ϑ[e25] f(ζ)ϑ[e35] f(ζ)ϑ[e13]

t′3 ϑ[e35](τ, ζ + e23 − e0) = f(ζ)g(ζ)ϑ[e25] f(ζ)g(ζ)ϑ[e12] f(ζ)g(ζ)ϑ[e13] f(ζ)g(ζ)ϑ[e35]

(3.4)

This leads to the following action on the Göpel basis of H0(A, 2Θ)

Table II

x = (s′0)
2 y = (s′1)

2 z = (s′2)
2 t = (s′3)

2

t′1 g2y g2x g2t g2z

t′2 f2z f2t f2x f2y

t′3 f2g2t f2g2z f2g2y f2g2x

Again, f and g are factors corresponding to trivial ϑ-functions.
The equation in these variables is already given in [1, p. 85]:

(
2p(tx + yz) + 2q(ty + xz) + 2r(tz + xy) + t2 + x2 + y2 + z2

)2

−16txyz
(
p2 − 2pqr + q2 + r2 − 1

)
= 0.

(3.5)

Using Table II and the invariance of the Kummer surface under this action, we deduce the same
equation as Hudson for which we get the relation Z2

0 = xyzt and moreover, our section x (in Table
II) and x1 (in Rosenhain case) is the same theta function ϑ[e35]

2.
The 12 double points corresponding to the 12 half periods in a Göpel divisor D0 are met

at the intersection of each pair of coordinate planes (i.e. at an edge of the fundamental Göpel
tetrahedron whose faces are the planes {x = 0}, {y = 0}, {z = 0}, {t = 0}). There are two double
points per edge. The remaining 4 double points are outside any of the double conics obtained by
intersecting the surface with a face of the tetrahedron. They come from the 1

2 -periods in the affine
part of the Jacobian in P15 whose hyperplane section at infinity is precisely Z0. One checks that
if P0 = [1 : y0 : z0 : t0] (with all entries 6= 0) is one of these 4 double points, then p, q, and r are
obtained in the following way:




p = − t20 − y2
0 − z2

0 + 1
2(t0 − y0z0)

,

q = − t20 + y2
0 − z2

0 − 1
2(t0y0 − z0)

,

r =
t20 − y2

0 + z2
0 − 1

2(y0 − t0z0)
,

φ0 = 2p(t0 + y0z0) + 2q(t0y0 + z0) + 2r(t0z0 + y0) + t20 + 1 + y2
0 + z2

0 =

= −2t0y0z0(t0 − y0 − z0 + 1)(t0 + y0 − z0 − 1)(t0 − y0 + z0 − 1)(t0 + y0 + z0 + 1)
(t0y0 − z0)(t0z0 − y0)(t0 − y0z0)

.

(3.6)
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These relations are deduced from the condition that P0 be a singular double point in the Kummer
surface, and as soon as this happens, the orbit G0.P0 gives the 4 double points corresponding to the
1
2 -periods in the affine part. It is by using (3.6) into the general quartic equation invariant under
G0 that one obtains (after several calculations) equation (3.5). It matters here that the intersection
of a coordinate plane and the surface has to be a double conic.

The four points G0.P0 are the vertices of a Rosenhain tetrahedron. We would like to map the
vertices of the Rosenhain tetrahedron coming from the SO(4) system to the tetrahedron with
vertices in G0.P0 (although this is not unique). In order to do that, we write Göpel’s equation (3.5)
around the point P0. We need to do a Taylor expansion of (3.5) about P0 keeping in mind that
P0 is a double point. The change of coordinates involved is the following: {x = x, y = y + y0x, z =
z + z0x, t = t + t0x} and in these new variables the equation can be written down as follows:




x2P2(y, z, t) + xP3(y, z, t) + (Q2(y, z, t))2 = 0, where

P2(y,z, t) =
64s2(ty0z0 + t0yz0 + t0y0z)2

φ2
0

+ 2φ0

(
2(pyz + qty + rtz) + t2 + y2 + z2

)− 16s(tyz0 + ty0z + t0yz),

P3(y,z, t) =
16s

(
2(pyz + qty + rtz) + t2 + y2 + z2

)
(ty0z0 + t0yz0 + t0y0z)

φ0
− 16styz,

Q2(y,z, t) = 2(pyz + qty + rtz) + t2 + y2 + z2, and

s = p2 + q2 + r2 − 2pqr − 1.

(3.7)

Although (3.7) looks like a Rosenhain form, we will need to go to the roots of the moduli numbers
{x0, y0, z0} in order to fully factorize these expressions. In fact, the double conics that should appear
by intersecting equation (3.7) with the coordinate planes {y = 0}, {z = 0}, and {t = 0}, only

appear after taking the root
{

α =
√

(t0−z0−y0+1)(t0+y0−z0−1)(t0−y0+z0−1)(t0+y0+z0+1)
}

.
Also, notice that the groups G0 and G1 do not correspond well under this translation.

4. THE SO(4) SYSTEM

The SO(4) system for the metric II is the system of differential equations [5], [6], [7].

τ̇1 = τ2τ6 τ̇4 = τ3τ5

τ̇2 =
1
2
τ3(τ1 + τ4) τ̇5 = τ3τ4

τ̇3 =
1
2
τ3(τ1 + τ4) τ̇6 = τ1τ2.

One can pick a Poisson matrix for this system

JSO(4) =




0 τ3 τ2 0 0 (2τ2 − τ5)

−τ5 0 0 0 0 0

−τ2 0 0 0 0 0

0 0 0 0 0 τ5

0 0 0 0 0 τ4

−(τ4 − τ5) 0 0 −τ5 −τ4 0




with Poisson bracket {f, g} =
〈

∂f
∂τ , JSO(4) · ∂g

∂τ

〉
.

By making the change of variables

v1 = τ1 + τ6, v2 = τ6 − τ1, v3 = τ2 + τ3, v4 = τ2 − τ3, v5 = τ4 + τ5, v6 = τ5 − τ4
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the Poisson matrix takes the form

JSO(4) =




0 2(v3 + v4)− (v5 + v6) v3 −v4 −v5 v6

−2(v3 + v4) + (v5 + v6) 0 −v3 v4 −v5 v6

−v3 v3 0 0 0 0

v4 −v4 0 0 0 0

v5 v5 0 0 0 0

v6 −v6 0 0 0 0




and the invariants are Q2 = v1v2 = a2, Q3 = v3v4 = a3
4 , Q1 = v5v6 = a1; Q4 = 1

2(v4 + v3 − v5 −
v6)2 + 1

2(v3 − v4 − v1 − v2)2 − 1
4(v1 − v2 − v5 + v6)2 = a4 with Q1 and Q3 as the Casimirs. The

SO(4) system possess a group ZZ2 × ZZ2 =< σ, τ > of translations by 1
2 -periods leaving invariant the

equations and the vector fields whose action on the affine variables vi’s is given in the following

Table III

v1 v2 v3 v4 v5 v6

σ −v2 −v1 −v3 −v4 −v6 −v5

τ −v1 −v2 v4 v3 v6 v5

This Algebraic Completely Integrable System linearizes on Jacobians of genus 2 curves and
has an odd divisor D1 = Θ0 + Θ1 + Θ2 + Θ3 at infinity given by 4 translates of the theta divisor
(Rosenhain divisor). The functions {1, k1 = v2v6, k2 = v2v3, k3 = v3v6} yield a basis of H0(A, 2Θ)
(see [7]). With the four invariants at hand one easily deduces the equation for the Kummer surface
in P3 in terms of the homogeneous variables {k0, k1, k2, k3}

−(−a1k0k2 + a2k0k3 − k1k2 + k1k3)2 + 2
(
−a1k0k2 +

a3k0k1

4
− k1k3 + k2k3

)2

+2
(

a2k0k3 +
a3k0k1

4
+ k1k2 − k2k3

)2

− 16a4k0k1k2k3 = 0

(4.1)

We need to exhibit an expression for the branch locus of this Kummer surface in order to relate
equation (4.1) to equation (3.7). First, we need to connect the Kummer equation (4.1) with the
basis {s2

0, s
2
1, s

2
2, s

2
3} of H0(A, 2Θ). The action of G1 on the affine variables {V1 = v02

Z1
, V2 = v13

Z1
, V3 =

v23
Z1

, V4 = v01
Z1

, V5 = v03
Z1

, V6 = v12
Z1
} is the same as that given in Table III by substituting the vi’s

with the Vi’s (see [8] and [7]). Moreover V1V2 = 1, V3V4 = 1, V5V6 = 1, and also V2V6 = s2
1

s2
0
, V2V3 =

s2
3

s2
0
, V3V6 = s2

2

s2
0
. As shown in [7], the divisors of the functions ki, i = 1, 2, 3 have precisely the form

(ki) = 2Θi − 2Θ0. Thus, the vi’s are just a rescaling of the Vi’s. We can pick k0 to be cs2
0 for some

constant c. This is done by conveniently fixing an origin for the Kummer surface (3.2).
For the SO(4) system the four triple points of D1 go down to the points {p0 = [1 : 0 : 0 : 0], p1 =

[0 : 1 : 0 : 0], p2 = [0 : 0 : 1 : 0], p3 = [0 : 0 : 0 : 1]} in the Kummer surface (4.1). We will project from
the point p0 to the plane {k0 = 0} and obtain

Proposition 2. The branch locus of the projection from p0 = [1 : 0 : 0 : 0] to the plane {k0 = 0}
in the Kummer surface (4.1) of the SO(4) system is given by the zeroes of the linear forms in the
sextic form

∆ = k1k2k3

3∏

i=1

(
a3λik1 +

2a1λi

λi − 1
k2 + 2a2k3

)
(4.2)
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where the roots λi’s are obtained from the relations




a1 = −a3(λ1 − 1)(λ2 − 1)(λ3 − 1),
a2 = −a3λ1λ2λ3,

a4 = −a3(λ1 − 1
2)(λ2 − 1

2)(λ3 − 1
2).

(4.3)

Proof. Write equation (4.1) as P2k
2
0 + P3k0 + Q2

2 = 0, so that the branch locus will be a multiple
of P 2

3 − 4P2Q
2
2 =

∏6
i=1(µi1k1 + µi2k2 + µi3k3). We compute

P 2
3 − 4P2Q

2
2 = 4k1k2k3

(−8a2
1k1k

2
2 + 8a2

1k1k2k3 + 8a2
1k

3
2 − 8a2

1k
2
2k3 − 8a1a2k1k

2
2 + 16a1a2k1k2k3

− 8a1a2k1k
2
3 + 6a1a3k

2
1k2 − 2a1a3k

2
1k3 − 6a1a3k1k

2
2 − 2a1a3k1k2k3 + 4a1a3k

2
2k3

+ 16a1a4k1k
2
2 − 48a1a4k1k2k3 + 32a1a4k

2
2k3 + 8a2

2k1k2k3 − 8a2
2k1k

2
3 − 8a2

2k2k
2
3

+ 8a2
2k

3
3 + 2a2a3k

2
1k2 − 6a2a3k

2
1k3 + 2a2a3k1k2k3 + 6a2a3k1k

2
3 − 4a2a3k2k

2
3

− 48a2a4k1k2k3 + 16a2a4k1k
2
3 + 32a2a4k2k

2
3 − a2

3k
3
1 + a2

3k
2
1k2 + a2

3k
2
1k3 − a2

3k1k2k3

−8a3a4k
2
1k2 + 8a3a4k

2
1k3 + 64a2

4k1k2k3

)
.

(4.4)

Look at the quadratic polynomial in equation (4.1) when we put k0 = 1 (i.e. when we do a
Taylor expansion around the point p0 in affine coordinates). This is the polynomial

1
4

(
4a2

1k
2
2 + 8a1a2k2k3 − 4a1a3k1k2 + 4a2

2k
2
3 + 4a2a3k1k3 + a2

3k
2
1

)
, (4.5)

which already gives a double point at p0; but when intersecting with the form (µi1k1 + µi2k2 +
µi3k3) = 0, there has to be a double tangent because the intersection of one of these planes with
the surface is a double conic. Assume µi3 6= 0, then k3 = µ1k1 + µ2k2 and by substituting this
into (4.5) the condition of double tangency is met if µ2 = − 2a1µ1

a3+2a2µ1
. If µ1 = 0 we get k3 = 0. If

µ1 = ∞ we get k1 = 0, and µ1 = − a3
2a2

implies k2 = 0. The remaining linear forms are proportional

to
(
−µik1 + 2a1µi

a3+2a2µi
k2 + k3

)
. Therefore, after rescaling µi = − a3

2a2
λi, we get (4.2) up to a constant.

Now, by comparing (4.4) with (4.2) we get the relations (4.3).

5. BRANCH LOCI

Here we will write the linear forms that appear in the factorization of the branch locus about
the point P0 for the Göpel equation (3.7) in its Rosenhain form. As a first approximation we try
to factorize the polynomial ∆ = P3(y, z, t)2 − 4P2(y, z, t)Q2(y, z, t)2. Using the relations given in
(3.6) we get (up to a constant c′ depending on y0, z0, t0) that ∆ = c′R1R2R3, where the Ri’s are
the quadrics

Ri(y,z, t) = y2 + z2 + t2 + ϕi1yz + ϕi2yt + ϕi3zt, i = 1, 2, 3,

and the coefficients ϕij are given in the following list




ϕ11 =
t40 − t20y

2
0 − t20z

2
0 − 2t20 + 4t0y0z0 − y2

0 − z2
0 + 1

(t0y0 − z0)(t0z0 − y0)
, ϕ12 = ϕ22 = − t20 + y2

0 − z2
0 − 1

t0y0 − z0
,

ϕ23 = −−t20y
2
0 − t20 + 4t0y0z0 + y4

0 − y2
0z

2
0 − 2y2

0 − z2
0 + 1

(t0y0 − z0)(t0 − y0z0)
, ϕ31 = ϕ21 = − t20 − y2

0 − z2
0 + 1

t0 − y0z0
,

ϕ32 = −−t20z
2
0 − t20 + 4t0y0z0 − y2

0z
2
0 − y2

0 + z4
0 − 2z2

0 + 1
(t0z0 − y0)(t0 − y0z0)

, ϕ13 = ϕ33 = − t20 − y2
0 + z2

0 − 1
t0z0 − y0

.

(5.1)
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These coefficients are related to the original p, q, r in the following way:




ϕ11 = ϕ21 − φ0

2y0z0
, ϕ12 = ϕ22 = 2q,

ϕ23 = ϕ33 − φ0

2z0t0
, ϕ31 = ϕ21 = 2p,

ϕ32 = ϕ22 − φ0

2y0t0
, ϕ13 = ϕ33 = 2r.

In order to factorize Ri(y,z, t) = (y + βiz + γit)(y + β′iz + γ′it), we get that βi, β
′
i must be the

roots of the equation ζ2 − ϕi1ζ + 1 = 0. Analogously, γi, γ
′
i are the roots of ζ2 − ϕi2ζ + 1 = 0, but

the signs of these roots must be carefully chosen so that the relation βiγ
′
i + γiβ

′
i = ϕi3 holds. Call

r±ij the roots of the equation ζ2 − ϕijζ + 1 = 0. We get the following




r±11 =
1
2

(
ϕ11 ± (t20 − 1)α

(t0y0 − z0)(t0z0 − y0)

)
, r±22 =

1
2

(
ϕ22 ± α

t0y0 − z0

)
,

r±32 =
1
2

(
ϕ32 ± (z2

0 − 1)α
(y0 − t0z0)(y0z0 − t0)

)
, r±21 =

1
2

(
ϕ21 ± α

t0 − y0z0

)
,

(5.2)

where
{
α2 = (t0 − z0 − y0 + 1)(t0 + y0 − z0 − 1)(t0 − y0 + z0 − 1)(t0 + y0 + z0 + 1)

}
.

We state now the following

Proposition 3. Let P0 = [1 : y0 : z0 : t0] be a double point of the Kummer surface coming from
one of the four 1

2 -period not sitting on a Göpel divisor D0. After translating to P0 Göpel equation
(3.5), the projection from P0 to the plane {x = 0} has a branch locus determined by the zeroes of
the following sextic form

∆ = (y + r+
11z + r−22t)(y + r−11z + r+

22t)(y + r+
21z + r+

22t)

× (y + r−21z + r−22t)(y + r−21z + r+
32t)(y + r+

21z + r−32t),
(5.3)

where the r±ij ’s are in (5.2)

Proof. This follows from the considerations above. Since r+
ij + r−ij = ϕij , and r+

ijr
−
ij = 1, in order to

obtain a decomposition into linear factors for the quadratic polynomial Ri(y, z, t), we only need to
check that the roots βi, β

′
i, γi, γ

′
i satisfy the relation β′i

γ′i
+ βi

γi
= ϕi3. This tells how to pick the right

roots for each linear factor. We check that r+
11

r−12
+ r−11

r+
12

= ϕ13;
r+
21

r+
22

+ r−21
r−22

= ϕ23; and r+
31

r+
32

+ r−31
r−32

= ϕ33

by using (5.1) and (5.2). Thus, having decomposed into linear factors each Ri according to this
prescription and using the equalities in (5.1) we obtain the stated decomposition for ∆.

6. MAPPING THE GÖPEL AND ROSENHAIN KUMMER SURFACES

The plan now is to match the branch loci of the Göpel and Rosenhain Kummer surfaces. As
said before, the linear map in IP3 has to take P0 → p0 and ∆ → ∆ so as to give the required
isomorphism. We discussed in section 4 that k0 = cs2

0 = cx = cx (after choosing a different origin
for the SO(4) system if necessary). Therefore one of the possible linear maps that take P0 → p0

and ∆ → ∆ is (in the affine chart {x 6= 0}) the following




k1 = c1(y + r+
11z + r−22t),

k2 = c2(y + r−21z + r−22t),

k3 = c3(y + r−21z + r+
32t).

(6.1)
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After a relabeling of the roots λi’s if necessary, we need to check that the following relations
hold 




(
a3λ1k1 +

2a1λ1

λ1 − 1
k2 + 2a2k3

)
= d1

(
y + r−11z + r+

22t
)
,

(
a3λ2k1 +

2a1λ2

λ2 − 1
k2 + 2a2k3

)
= d2

(
y + r+

21z + r+
22t

)
,

(
a3λ3k1 +

2a1λ3

λ3 − 1
k2 + 2a2k3

)
= d3

(
y + r+

21z + r−32t
)
.

(6.2)

This implies the di’s are determined once the constants ci’s are given. Just substitute (6.1) into
(6.2) and compare the coefficients of y on each side of the three equations (6.2). We obtain

di = a3λic1 +
2a1λi

λi − 1
c2 + 2a2c3, for i = 1, 2, 3. (6.3)

The remaining equations that appear by comparing the coefficients of z and t in (6.2) allow us
to determine c2, c3 and the λi’s in terms of y0, z0, t0 and α. So the correspondence is written as
follows





c3 = −c2(λ1 − 1)
λ1

,

c1 =
2c2(λ1 − 1)(r+

21 − r−21)
r+
11 − r+

21

,

λ3 = −(r+
11 − r−21)(r

+
22 − r−22)

(r+
11 − r+

21)(r
−
22 − r+

32)
,

λ2 =
(r+

11 − r−21)(r
−
22 − r−32)

(r+
11 − r+

21)(r
−
22 − r+

32)
,

λ1 =
(r−21 − r+

11)(r
+
32 − r+

22)
(r+

21 − r−21)(r
−
22 − r+

32)
.

(6.4)

Here, we substituted (4.3) and (6.3) into (6.2). Then we factored and solved the equations.
Finally we used (5.2) and the expression for α2. Notice that there is one degree of freedom in the
coefficients ci’s since we can pick any c2. This is due to homogeneity of the branch locus. We have

Theorem 1. The Göpel Kummer surface and the SO(4) Kummer surface are biregularly equiv-
alent. A linear mapping in P3 taking one into the other in such a way that the point P0 goes to
p0 is given by combining (6.1) and (6.4) with the translation that takes P0 → p0. The constants
of motion of the SO(4) system are obtained by substituting (6.4) into (4.3). Thus, they depend on
y0, z0, t0 and the root α. By inverting this map and using the extension procedure of Proposition 1
we induce on the Göpel family a Poisson structure. Moreover, The Jacobians of the SO(4) and
Göpel configuration are isomorphic.

Proof. The proofs of the procedure have been described in [7] and the procedure is carried out as
described above. Notice that the constant c such that k0 = cx = cx is determined in terms of c2,
a3 and other constants y0, z0, t0, α. We will not make this relation precise here. If we are given a
set ai’s of SO(4) constants of motion, we find the λi’s by solving a cubic equation because by using
(4.3) we get the symmetric functions in λi’s. Obtaining the quantities y0, z0, t0 by inverting (6.4) is
much more difficult and has to be done locally. Once we get y0, z0, t0 as functions of the ai’s and we
have y, z, t (affine variables) as functions of {1, k1 = v2v6, k2 = v2v3, k3 = v3v6} (also affine variables
of P3) then we use the SO(4) Poisson structure to translate the SO(4) vector fields to the Göpel
family. In doing that we have to keep in mind that the constants ai’s have to be treated as functions
of the entire phase space. Namely, computing {f, a3} we get 0 since Q3 is a Casimir, while {f, a2}
is differentiation under the nontrivial vector field generated by Q2. In other words, we replace all

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011
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the ai’s by the functions Qi’s of the SO(4) affine space. Let ′ denote differentiation with regard
to the SO(4) vector field. Now, with the given functions of H0(A, 2Θ): {1, y, z, t} we construct the
embedding of the Jacobian in P15 via the functions of H0(A, 4Θ) = {1, y, z, t, y2, yz, yt, z2, zt, t2}+⊕
{y′, z′, t′, yz′− zy′, yt′− ty′, zt′− tz′}− which are split into even and odd functions. The isomorphism
obtained from the SO(4) Kummer surface to the Göpel Kummer surface is then extended to
a linear map in P15 [7] that yields an isomorphism of the respective Jacobians. Let Z0 be the
Göpel function of H0(A, 4Θ). That is, if s0s1s2s3 is the Göpel section then Z0 = s1s2s3

s3
0

. We have

Z2
0 = yzt, then we will be able to compute the SO(4) Poisson bracket of any two of the functions

in H0(A,Z0) = { 1
Z0

, y
Z0

, z
Z0

, t
Z0

, y2

Z0
, yz

Z0
, yt

Z0
, z2

Z0
, zt

Z0
, t2

Z0
}+⊕{ y′

Z0
, z′

Z0
, t′

Z0
, yz′−zy′

Z0
, yt′−ty′

Z0
, zt′−tz′

Z0
}−. This

leads to expressions that close up in terms of the affine variables vi, i = 1, . . . , 6 of the SO(4) system.
However, using the isomorphism H0(A,Z1) ∼= H0(A,Z0) between the SO(4) and Göpel variables
in P15 one gets the closure of the Göpel variables in P15.

7. CONCLUDING REMARKS
A more direct way would be desirable to get a Poisson structure and integrals for functions

related to a Göpel configuration. In some cases this has been carried out successfully [8]. For
instance one starts with the sections s′0, s

′
1, s

′
2, s

′
3 of a Göpel configuration so that Z0 = s′0s

′
1s
′
2s
′
3

gives the section at infinity. Then from Table II one gets the action of a Göpel group G0 and

this can be extended to the even functions uij =
(s′i)

2(s′j)
2

Z0
, 0 6 i 6 j 6 3 ; and the odd functions

wij =
(s′i)

2X((s′j)
2)−(s′j)

2X((s′i)
2)

Z0
, 0 6 i < j 6 3 (X a generic global vector field) of H0(A,Z0) just by

tensoring the action. Then we ask whether there would be a subset of these functions that entitle
as the phase space variables of an Integrable System with integrals and Poisson structure invariant
under G0 and D0 as divisor at infinity. One way is to look at the linear system |D0 −

∑12
i=1 ei| of

functions vanishing at the 12 half periods of D0 or |D0 −
∑12

i=1 ei +
∑16

i=13 ei|; then exhibit a basis
of functions for these systems, compute dimensions of the spaces of odd and even functions for
linear, quadratic, cubic expressions (etc.) and find the invariants. Unfortunately, the first linear
system is not symmetric and the second does not have fixed components. So they do not apply
as candidates in the theory developed by Bauer [10] and Szemberg [11]. A new algebro-geometric
theory is needed. Moreover, functions that are related to these linear systems are the Wronskians
wij . However, relations for the Wronskians of genus 2 theta functions are very difficult to work out.
Some of them are explained in the old books by Baker [12] and M. Krause [13].

The other functions on which we may try to define a phase space for the Göpel family
are the 6 even functions uij , 0 6 i < j 6 3. The advantage here is that with the relations
uii = uijuikuil, i, j, k, l all different, and Kummer equation (3.5) we already have four invariants:
u01u23 = 1, u02u13 = 1, u03u12 = 1, and (u01u02u03 + u01u12u13 + u02u12u23 + u03u13u23 + 2p(u03 +
u12) + 2q(u02 + u13) + 2r(u01 + u23))2 = 16s = 16(p2 + q2 + r2 − 2pqr− 1). In a way this is how one
obtains the SO(4) system from Rosenhain Kummer equation (3.2) by rescaling the theta functions
and using a basis vij ’s (3.3), which are the cousins of the uij ’s because they are constructed similarly
but for the Rosenhain sections s0, s1, s2, s3. The problem here is that Z0 is also an even section
and therefore the quadratic vector fields (in the variables of P15) have to be sums of products of
an odd and an even function. In the variables of H0(A, 4Θ) for genus 2 Jacobians the square of
an odd function can be written as a quadratic polynomial of even functions, and because of the
relations held by the uii’s, as a sextic polynomial in the uij , i 6= j. Thus, and this seems awkward,
square roots of the uij would have to be introduced. These are odd sections and the (−1)-involution
changes the sign of the roots. A Poisson matrix JGöpel that is equivariant with respect to G0 and
changes sign with regard to the (−1)-involution will have to contain some of these square roots in its
entries, otherwise if only polynomial in the even variables uij ’s we obtain the null matrix. The other
approach is to extend the phase space with some odd functions and again it will be difficult to find
Wronskian relations and new invariants, now with the addition of even functions. Both solutions
seem workable, although kind of difficult may give an invariant way of expressing what was shown
here and a new Algebraic Completely Integrable System whose Jacobians are isomorphic to those
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of the SO(4) metric II system. Although Rosenhain and Göpel divisors are linearly equivalent (and
therefore follows the setting explained in this paper) we can state that the two families are in a way
different. This is explained because the actions of the groups G0 and G1 are not preserved under
the obtained isomorphism. They are related to two different choices of a ZZ2 × ZZ2 group inside the
Heisemberg group. In any case if the matrix JGöpel is found it may lead to a system quite different
from the SO(4) metric II.
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1. INTRODUCTION

The study of the separability of the Hamilton–Jacobi (HJ) equations associated with a given
Hamiltonian function H is a very classical issue in Mechanics, dating back to the foundational
works of Jacobi, Stäckel, Levi-Civita, and others. It has recently received a strong renewed interest
thanks to its applications to the theory of integrable PDEs of KdV type (namely, the theory of
finite gap integration) and to the theory of quantum integrable systems (see, e.g., [1, 2]).

As it is well known, the problem can be formulated as follows. Let (M,ω) be a 2n dimensional
symplectic manifold, and let (p1, . . . , pn, q1, . . . , qn) ≡ (p,q) be canonical coordinates in U ⊂ M ,
i.e., ω|U =

∑n
i=1 dpi ∧ dqi. The (stationary) HJ equation reads

H(q1, . . . , qn;
∂S

∂q1
, . . . ,

∂S

∂qn
) = E . (1.1)

Definition 1. A complete integral S(q;α1, . . . , αn) of the HJ equation is a solution of (1.1),
depending on n parameters (α1, . . . , αn) such that Det ∂2S

∂qi∂αj
6= 0. The Hamiltonian H is said to

be separable in the coordinates (p,q) if the HJ equation admits an additively separated complete
integral, that is, a complete integral of the form

S(q;α1, . . . , αn) =
n∑

i=1

Si(qi; α1, . . . , αn). (1.2)

In this paper we will focus on an equivalent definition of separability, originally due to Jacobi and
recently widely used by Sklyanin and his collaborators. Let us consider an integrable Hamiltonian H,
that is, let us suppose that, along with H = H1 we have further (n− 1) mutually commuting
integrals of the motion H2, . . . Hn, with dH1 ∧ . . . ∧ dHn 6= 0.

Definition 2. An integrable system (H1, . . . , Hn) is separable in the coordinates (p,q) if there exist
n non-trivial relations

Φi(qi, pi; H1, . . . , Hn) = 0, i = 1, . . . n , (1.3)

connecting single pairs (qi, pi) of canonical coordinates with the n Hamiltonians Hi.

This alternative definition is indeed a constructive approach to separability, since the knowledge of
the separation relations (1.3) allows one to reduce the problem of finding a separated solution of HJ
to quadratures. In fact, let us suppose that the relations Φi(qi, pi; H1, . . . ,Hn) = 0, for i = 1, . . . , n,
can be solved in terms of the pi to get pi = pi(qi; H1, . . . , Hn). Then one can define:

S(q; α1, . . . , αn) =
n∑

i=1

∫ qi

pi(q′i;H1, . . . , Hn)∣∣
Hi=αi

dq′i . (1.4)

This is by construction a separated solution of HJ; the fact that it is a complete integral is equivalent
to the (already assumed) fact that the integrals of the motion depend non trivially on the momenta.

In intrinsic terms, one notices that the equations Hi = αi, for i = 1, . . . , n, define a foliation F
of M . The leaves of F are nothing but the (generalized) tori of the Arnol’d–Liouville theorem.
The foliation is Lagrangian, that is, the restriction of the two-form ω to F vanishes. Hence the
restriction to F of the Liouville form θ =

∑n
i=1 pidqi is (locally) exact. Indeed, the function S

defined by (1.4) is a (local) potential for such restriction. What is non intrinsic, and singles out
the separation coordinates (p,q), is that the separation relations (1.3), which are another set of
defining equations for the foliation F , have the very special property of containing a single pair of
canonical coordinates at a time. The problem to find such a system of coordinates and relations is
the core of the theory of SoV. In particular, a natural question arises:

Is it possible to formulate intrinsic condition(s) on the Hamiltonians (H1, . . . ,Hn) to a priori
ensure separability in a (given) set of canonical coordinates?

Actually, this is the main issue studied by both the “classical” Eisenhart–Benenti theory [3]
of separability of natural systems defined on cotangent bundles to Riemannian manifolds (M, g),
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as well as the “modern” theory, mainly due to the St. Petersburg [2] and Montreal [4, 5] schools,
of SoV for systems admitting a Lax representation. Even though a detailed survey of the huge
mass of results in these fields is clearly outside the aim of this paper, we notice that both such
general approaches require, generally speaking, the presence of an additional structure to solve the
problem. Indeed, the Eisenhart–Benenti theory requires the existence of a conformal Killing tensor
for the metric g (but we mention that, under additional hypotheses, such tensor can be computed
starting from a given Hamiltonian function, see [6, 7] and references cited therein), while the Lax
theory requires – in addition to the knowledge of a Lax representation with spectral parameter
for the Hamiltonian system under study – the existence of an r-matrix structure for such a Lax
representation. To be more precise, the existence of an r-matrix is needed to prove the involutivity
of the integrals of motion given by the Lax representation, and, as shown in [8], the converse
statement is also true. In this case too, we have to point out that, in some special circumstances,
a multi-Hamiltonian structure can be provided by the Lax matrix (see, e.g., [9–11]).

The method we review in this paper has recently been exposed in the literature (see, e.g., [12–24]),
and can be seen as a kind of bridge between the classical and the modern points of view, putting an
emphasis on the geometrical aspects of the Hamiltonian theory. Its “additional” structure is simply
the requirement of the existence, on the symplectic manifold (M, ω), of a second Hamiltonian
structure, compatible with the one defined by ω. Namely, the bihamiltonian structure on M will
allow us:

1. To encompass the definition of a special set of coordinates, to be called Darboux–Nijenhuis
(DN) coordinates, within a well defined geometrical object.

2. To formulate intrinsic (i.e., tensorial) conditions for the separability of a Hamiltonian
integrable system, in the DN coordinates associated with the bihamiltonian structure.

3. To give recipes to characterize, find and handle sets of DN coordinates.

A very important issue that is close to the separability problem is the notion of algebraically
completely integrable Hamiltonian systems (see, e.g., [25]). In general, a (Hamiltonian) system
is said to be algebraically integrable whenever its flow(s) linearize on the Jacobian variety of an
algebraic curve (the spectral curve). The latter is usually recovered as the characteristic polynomial
of the Lax matrix of the system (provided the latter is known/given), and the integration of the
equation of motion reconducted to a Jacobi inversion problem.

It is fair to say that in the bihamiltonian setting we are herewith discussing we are, so far, not
able to provide general criteria for the algebraic integrability of our systems. However, as we shall
see below, we are in a position to make contact with the problem of algebraic integrability, at least
in the (slightly different and weaker) setting of Veselov and Novikov [26], that can be summarized
as follows.

Given a Hamiltonian systems one assumes that the phase space M fulfills the following
properties:

a) M has the fibered structure

M
SkΓ−→B, (1.5)

where the base B is an n-dimensional manifold whose points b determine an algebraic curve
Γ(b), and the fiber is the k–th symmetric product of that curve. In more details, one requires
that Γ(b) be given as an m–sheeted covering Γ(b) m−→C of the complex λ-plane, and that
points of M can be parameterized via the curve Γ(b), and a set of k points on it, that is,
the coordinates λ1,. . . ,λk of the projection on the λ-plane of a set of points on it, as well as
discrete parameters εi that specify on which sheet of the covering the points live.
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b) An Abelian differential Q(Γ) on Γ (or possibly on a covering of Γ), smoothly depending on the
point b ∈ B, is defined. It is furthermore required that, if Q(Γ) is given by

Q(Γ) = Q(b; λ)dλ (1.6)

according to the representation of Γ as a covering of the λ-plane, the closed two-form

ωQ =
k∑

i=1

dQ(b;λi) ∧ dλi (1.7)

gives rise to a Poisson bracket, conveniently called algebro-geometric Poisson bracket, with
λi and µi = Q(b; λi) playing the role of Darboux coordinates on the symplectic leaves of this
bracket.

In such a case, it was proven in [26] that functions that depend only on the curve Γ — i.e., on
the points of B — are in involution with respect to the Poisson bracket defined by (1.7), and
these geometric data explicitly define action-angle variables for the corresponding Hamiltonian
flows. The Veselov–Novikov picture was further generalized in more recent works of Krichever and
Phong [27, 28], who showed (besides generalizing the construction to include also 1 + 1 PDEs) how
to construct out of algebro-geometric data some “universal” symplectic form on suitable moduli
spaces, whose Darboux coordinates are, by construction, algebro-geometrical coordinates. Also,
Sklyanin’s interpretation [2] of the method of the poles of the Baker–Akhiezer function can be seen
as a particularly efficient scheme of implementing the Veselov–Novikov axiomatic picture also for
the case of quantum integrable systems, especially quantum spin chains.

In [29] we studied some relations between the bihamiltonian approach to SoV and the Veselov–
Novikov description of algebraic integrability, especially within the example of the Volterra lattice.
It might be useful to remark the following change of “perspective” that (si parva licet) qualifies
the approach described in the above-mentioned paper of ours, as well as the present paper, with
respect to the Novikov–Veselov (and Krichever–Phong) approach. We start from a bi-Hamiltonian
structure to produce separation coordinates that eventually turn out to be associated with an
algebro-geometric structure; on the other hand, it is fair to say that in the approach of the “Moscow
school” the building block is the algebraic geometry of Riemann surfaces and moduli thereof, and
Poisson structure(s) an output.

As far as the organization of this paper is concerned, in Section 2 we briefly introduce the notions
of bihamiltonian geometry relevant for the subsequent sections. In particular, we discuss the notion
of DN coordinates, as well as methods to find them. In Section 3 we present the main theorems of
the bihamiltonian set-up for SoV, namely, the tensorial conditions ensuring separability of the HJ
equations in DN coordinates. Section 4 is devoted to separable systems coming from bihamiltonian
systems by means of a reduction along a suitable transversal distribution. Then we discuss our
constructions in a specific example, whose separability, to the best of our knowledge, has not been
considered in the literature yet. It is a generalization of the periodic Toda lattice with four sites. In
Section 5 we recall its definition, and show how the “bihamiltonian recipe” for SoV can be applied
to it. Although our constructions can be generalized to the generic N -site system, for the sake of
concreteness and brevity we choose to consider the four-site system only, and sometimes rely on
direct computations to prove some of its properties. In the last subsection we apply our geometrical
scheme to study a specific reduction of this generalized Toda system, and to find integrals of the
motion which are not encompassed in the Lax representation. This result can possibly be a suitable
step towards an alternative approach to the so–called chopping method [30] for the full (non-
periodic) Toda Lattice.

2. SOME ISSUES IN THE GEOMETRY OF BIHAMILTONIAN MANIFOLDS
We start this section recalling some well known facts in the theory of Poisson manifolds (see,

e.g., [31]).

Definition 3. A Poisson manifold (M, {·, ·}) is a manifold endowed with a Poisson bracket, that
is, a bilinear antisymmetric composition laws defined on the space C∞(M) satisfying:

1. The Leibniz rule: {fg, h} = f{g, h}+ g{f, h};
2. The Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.
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A Poisson bracket (or Poisson structure) can be equivalently described with the corresponding
Poisson tensor, i.e., with the application P : T ∗M → TM , smoothly varying with m ∈ M , defined
by

{f, g} = 〈df, Pdg〉,
where 〈·, ·〉 denotes the canonical pairing between T ∗M and TM . In a given coordinate system
(x1, . . . , xn) on M , the Poisson tensor P associated with the Poisson bracket {·, ·} is represented as

P =
n∑

i,j=1

P ij ∂

∂xi
∧ ∂

∂xj
, with P ij = {xi, xj}.

The Jacobi identity is translated into a quadratic differential condition on the matrix
(
P ij

)
, known

as the vanishing of the Schouten bracket, which in local coordinates reads
n∑

s=1

(
P is ∂P jk

∂xs
+ P js ∂P ki

∂xs
+ P ks ∂P ij

∂xs

)
= 0, ∀ i > j > k. (2.1)

A function in C∞(M) is said to be a Casimir function if its Poisson bracket with any other function
on M vanishes, or, equivalently, if its differential lies in the kernel of P .

The local structure of a Poisson manifold is described in details in [1, 31, 32]. For our purposes,
we just need to recall that (in the open subset of M where the rank r = 2n of the Poisson tensor
is maximal) M is foliated in symplectic leaves, that (locally) are the common level sets of k
Casimir functions C1, . . . , Ck of P . The dimension of M is related with the integers n and k by
dimM = k + 2n.

Let us now come to the definition of bihamiltonian manifold.
Definition 4. A manifold M is called a bihamiltonian manifold if it is endowed with two Poisson
brackets {·, ·} and {·, ·}′ such that, for any λ ∈ R (or λ ∈ C if M is complex), the linear combination

{f, g}′ − λ{f, g} ≡ 〈df, (P ′ − λP )dg〉 (2.2)

defines a Poisson bracket. This property is known as the compatibility condition between the two
brackets.

The expression (2.2) will be referred to as pencil of Poisson brackets, and the sum Pλ = P ′ − λP
as pencil of Poisson tensors. The most “popular” property of bihamiltonian manifolds is contained
in the following

Proposition 1. Let f and f ′ be two functions on a bihamiltonian manifold M , which satisfy the
characteristic condition Pdf = P ′df ′. Then the Poisson brackets {f, f ′} and {f, f ′}′ vanish.

Proof. It consists of a one-line computation. Let us consider, e.g., {f, f ′}:
{f, f ′} = 〈df, Pdf ′〉 = −〈df ′, Pdf〉 = −〈df ′, P ′df ′〉 = 0.

The vanishing of the other Poisson bracket is even easier. ¤

Definition 5. A vector field X that can be written as X = Pdf = P ′df ′ is called a bihamiltonian
vector field.

Corollary 1. Let fi, with i ∈ Z, be a sequence of functions satisfying

Pdfi = P ′dfi−1. (2.3)

Then {fi, fk} = {fi, fk}′ = 0 for all i, k ∈ Z.

Proof. Using twice equation (2.3) and the antisymmetry of the Poisson brackets we have

{fi, fk} = 〈dfi, Pdfk〉 = 〈dfi, P
′dfk−1〉 = −〈dfk−1, P

′dfi〉

= −〈dfk−1, Pdfi+1〉 = 〈dfi+1, Pdfk−1〉 = {fi+1, fk−1}.
Supposing k > i and iterating this procedure (k − i) times, we get {fi, fk} = {fk, fi}, so that
{fi, fk} = 0. The vanishing of {fi, fk}′ is an easy consequence. ¤
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Using the same technique, we can prove

Amplification 1. Let {fn}n>0 and {gn}n>0 be two sequences of functions satisfying

Pdfi = P ′dfi−1, Pdf0 = 0; Pdgi = P ′dgi−1, Pdg0 = 0. (2.4)

Then, along with {fn, fm} = {fn, fm}′ = {gn, gm} = {gn, gm}′ = 0, it holds

{fn, gm} = {fn, gm}′ = 0 ∀n,m > 0.

The family of vector fields associated with a sequence of functions satisfying the recursion
relations (2.3) are customarily said to form a Lenard–Magri sequence. Those sequences starting
from the null vector field, as in Amplification 1, are pictorially called anchored Lenard–Magri
sequences. Notice that anchored Lenard sequences can occur in bihamiltonian manifold where at
least one of the Poisson brackets is non-symplectic (indeed, e.g., df0 is a non-trivial element of
the kernel of P ). We can compactly express equations (2.4) relative, say, to the sequence fi by
considering the formal Laurent series f(λ) =

∑∞
i=0 fi/λi and writing the equation

(P ′ − λP )df(λ) = 0. (2.5)

If, as it often happens in the applications, inside the family fi we have an element fn satisfying
P ′dfn = 0, we can form a polynomial Casimir of the pencil as

F (λ) = λnf0 + λn−1f1 + · · ·+ fn. (2.6)

In analogy with the definition of Casimir of a Poisson bracket, Laurent series satisfying (2.5)
are called Casimirs of the Poisson pencil. The reader should, however, bear in mind that while
Casimir functions for a single Poisson bracket are, in a sense, uninteresting functions, Casimirs of
a pencil of Poisson bracket compactly encode non-trivial dynamics and constants of the motion.
More precisely, anchored Lenard sequences may give rise to families of integrable systems. Let us
see how this happens in the case of a (2n + 1)-dimensional manifold endowed with a rank-2n pencil
of Poisson tensors. Let us suppose that we have found a polynomial Casimir of the form (2.6),
such that the (n + 1) functions f0, . . . , fn are independent. Let Sc be a generic symplectic leaf of P ,
corresponding to f0 = c. The vector fields Xfi , with i = 1, . . . , n, are tangent to Sc, are Hamiltonian
on Sc (with respect to the symplectic form given by the restriction of P ), and the restrictions of the
functions f1, . . . , fn provide n commuting integrals for each of them. In general, it holds [33, 34]:

Proposition 2. Let (M, P, P ′) be a bihamiltonian manifold of dimension d = 2n + k, and let
dim(Ker(P ′ − λP )) = k for generic values of λ. Let us suppose that H(1)(λ), . . . , H(k)(λ) are k
polynomial Casimirs of the pencil Pλ of the form

H(a)(λ) = λnaH
(a)
0 + λna−1H

(a)
1 + · · ·+ H(a)

na
,

such that the collection of differentials {dH
(a)
j }a=1,...,k

j=0,...na
defines a (k + n)-dimensional distribution

in T ∗M . Then the vector fields defined by the anchored sequences associated with the H(a) are
integrable (in the Arnol’d–Liouville sense) on the generic symplectic leaves of P .

2.1. Geometry of Regular Bihamiltonian Manifolds and Darboux–Nijenhuis Coordinates

An important class of bihamiltonian manifold occurs when an element of the Poisson pencil
(which without loss of generality we will assume to be P ) is everywhere invertible, i.e., the Poisson
bracket {·, ·} associated with P is symplectic. The possibility of defining the inverse to one of the
Poisson tensors leads us to introduce a fundamental object in the bihamiltonian theory of SoV: the
Nijenhuis (or Hereditary, or Recursion) operator

N = P ′ P−1, (2.7)

together with its transpose N∗ = P−1 P ′. By definition, N (resp., N∗) is an endomorphism of
the tangent bundle to M (resp., of the cotangent bundle). As a remarkable consequence of the
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compatibility between P and P ′, the Nijenhuis torsion of N , defined by its action on a pair of
vector fields X, Y as

T (N)(X, Y ) = [NX, NY ]−N([NX,Y ] + [X, NY ]−N [X, Y ]), (2.8)

identically vanishes [35]. So, from the classical Frölicher-Nijenhuis theory, we know that its
eigenspaces are integrable distributions. Such distributions will be the building blocks of the
bihamiltonian set-up for SoV.

To explain this point, we have to make some remarks and a genericity assumption. It can be
shown that, owing to the antisymmetry of the Poisson tensors defining N , the eigenspaces of N are
pointwise even dimensional. Throughout this paper, we will assume that, for generic points m ∈ M ,
the operator Nm has the maximal number n = 1

2dimM of different eigenvalues λ1, . . . , λn, so that
the dimension of the eigenspace relative to any eigenvalue is 2. Otherwise stated, the characteristic
polynomial of N is the square of its degree-n minimal polynomial ∆N (λ), whose roots are pairwise
distinct. We will call regular a bihamiltonian manifolds endowed with a Poisson pencil with at least
one of the elements of the Poisson pencil invertible, and such that the eigenvalues of the associated
Nijenhuis tensor are maximally distinct.
Theorem 1. On a regular bihamiltonian manifold there exists a class of coordinates (yi, xi), to be
called Darboux–Nijenhuis (DN) coordinates, satisfying the two properties:

(Darboux) They are canonical, that is, {xi, yj} = δij, {xi, xj} = {yi, yj} = 0.

(Nijenhuis) They diagonalize N , that is, N =
∑

i λi

( ∂

∂yi
⊗ dyi +

∂

∂xi
⊗ dxi

)
.

The proof of this theorem can be found in [33, 36]. Here we will sketch it and discuss its meaning.
In words, the assertion states that DN coordinates are defined by the spectral properties of N , as
follows. For all m in the open set U where the eigenvalues λi of N (which are the same as the
eigenvalues of N∗) satisfy λi 6= λj for i 6= j, the cotangent space T ∗mM admits the decomposition

T ∗mM = ⊕n
i=1Dm,λi , dim Dm,λi = 2, (2.9)

into eigenspaces of N∗. Thanks to the vanishing of the torsion of N , each eigenspace Dm,λi is locally
generated by differentials of pairs of independent functions (fi, gi). This means that the pointwise
decomposition (2.9) holds (in U ′ ⊂ U) as

T ∗M|U′ = ⊕n
i=1Dλi ,

where Dλi is spanned by dfi and dgi, with N∗dfi = λidfi and N∗dgi = λidgi.
Functions whose differential belong to different summands Dλi are in involution with respect to

the Poisson brackets defined both by P and P ′. Indeed, suppose that f1 and f2 satisfy N∗df1 = λ1df1

and N∗df2 = λ2df2, with λ1 6= λ2. The relation N∗ = P−1P ′ implies that P ′df1 = λ1Pdf1 and
P ′df2 = λ2Pdf2. So,

{f1, f2}′ =



〈df1, P

′df2〉 = λ2〈df1, Pdf2〉 = λ2{f1, f2}
−〈df2, P

′df1〉 = −λ1〈df2, Pdf1〉 = λ1{f1, f2}
whence the assertion. It is equally straightforward to realize that the only non vanishing Poisson
brackets have the form

{fi, gi} = Fi(fi, gi), {fi, gi}′ = F ′
i (fi, gi), i = 1, . . . , n.

This means that from the n pairs of functions (fi, gi) we can construct by quadratures a set of
canonical coordinates satisfying the Nijenhuis property of Theorem 1. Thus the class of coordinates
where to frame the bihamiltonian set-up for SoV admits a clearcut and simple geometrical
description. Admittedly, in the general case the computation of DN coordinates requires the
integration of the two-dimensional distributions Dλi associated with the eigenvalues λi of N∗.
Fortunately enough, there are instances (that frequently occur in the applications) in which DN
coordinates can be found in an easier way.

For an analysis of Darboux–Nijenhuis coordinates within the theory of multi-hamiltonian
structure on loop algebras, see [15, 37, 38].
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2.2. On Darboux–Nijenhuis Coordinates

In this subsection we will briefly discuss conditions and “recipes” to algebraically find and/or
characterize sets of Darboux–Nijenhuis coordinates on regular bihamiltonian manifolds. A very
simplifying instance occurs whenever the eigenvalues λi of N (that are, in general, functions of the
point m ∈ M) are functionally independent. It holds (see, e.g., [39]):

Proposition 3. Let us define Ik = 1
2kTrNk for k = 1, . . . , n. In the open set U where dI1 ∧ · · · ∧

dIn 6= 0 the eigenvalues λi , i = 1, . . . , n, are functionally independent, satisfy N∗dλi = λidλi, and
so may be used to construct a set of Darboux–Nijenhuis coordinates.

Proof. We express the normalized traces Ik of the Nijenhuis tensor N in terms of its eigenvalues
as kIk =

∑n
i=1 λk

i . Hence dIk =
∑n

i=1 λk−1
i dλi, that is, in matrix terms:




dI1

dI2

...

dIn




=




1 1 · · · 1

λ1 λ2 · · · λn

...
...

. . .
...

λn−1
1 λn−1

2 · · · λn−1
n



·




dλ1

dλ2

...

dλn




(2.10)

So we have

dI1 ∧ · · · ∧ dIn =


∏

i6=j

(λi − λj)


 dλ1 ∧ · · · ∧ dλn,

i.e., on the open set where the traces of the powers of the Nijenhuis tensor are functionally
independent, we have that the eigenvalues λi are different and functionally independent.

To proceed further we need to recall [35] that the normalized traces Ik of the powers of Nijenhuis
operator satisfy the recursion relation

N∗dIk = dIk+1. (2.11)

This can be proved as follows. At first one notices that (2.11) is equivalent to the relation

LNX(Ik) = LX(Ik+1) for all vector field X,

as it can be easily seen evaluating the equality (2.11) on a generic vector field X. Thanks to the
Leibniz property of the Lie derivative and the cyclicity of the trace, we see that

LNX(Ik) = Tr(LNX(N) ·Nk−1) and LX(Ik+1) = Tr(LX(N) ·Nk). (2.12)

Since the vanishing of the Nijenhuis torsion of N implies that LNX(N) = N · LX(N), the validity
of (2.11) is proved.

We now express the relations (2.11) in terms of the eigenvalues λi as



1 1 · · · 1

λ1 λ2 · · · λn

...
...

. . .
...

λn−1
1 λn−1

2 · · · λn−1
n



·




N∗dλ1 − λ1dλ1

N∗dλ2 − λ2dλ2

...

N∗dλn − λndλn




=




0

0
...

0




. (2.13)

Since the Vandermond matrix in the left-hand side of this equation is, by assumption, invertible,
we conclude that N∗dλi = λidλi for all i = 1, . . . , n. ¤

This proposition can be rephrased saying that “half of” the DN coordinates are algebraically
provided by the Nijenhuis tensor itself. The remaining “half” µ1, . . . , µn can always be found by
quadratures. Actually, there is a condition leading to the algebraic solution of this problem too. To
elucidate this, the following two considerations are crucial.
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The first argument goes as follows. Let us consider the distinguished functions Ik introduced in
Proposition 3, and trade them for the coefficients pi of the minimal polynomial

∆N (λ) = λn − p1λ
n−1 − p2λ

n−2 − · · · − pn

of N . The functions pk and Ik are related by the triangular Newton formulas

I1 = p1; I2 = p2 +
1
2
p2
1; I3 = p3 + p2p1 +

1
3
p3
1;

I4 = p4 + p1p3 + p2
1p2 +

1
2
p2
2 +

1
4
p4
1; I5 = p5 + . . . .

(2.14)

As a consequence of the recursion relations (2.11), it can be easily shown that the pi’s satisfy the
“Frobenius” recursion relations

N∗dpi = dpi+1 + pidp1, with pn+1 ≡ 0. (2.15)

We can compactly write these relations as a single relation for the polynomial ∆N (λ); indeed, a
straightforward computation shows that they are equivalent to

N∗d∆N (λ) = λd∆N (λ) + ∆N (λ)dp1 . (2.16)

Actually, relations of this kind are very important for our purposes. Indeed, in [21] we proved the
following

Proposition 4. Let Φ(λ) be a smooth function defined on the manifold M , depending on an
additional parameter λ. Suppose that there exists a one-form αΦ such that

N∗dΦ(λ) = λdΦ(λ) + ∆N (λ)αΦ . (2.17)

Then, the n functions Φi obtained evaluating the “generating” function Φ(λ) for λ = λi, with
i = 1, . . . , n, are Nijenhuis functions, that is, they satisfy N∗dΦi = λidΦi.

Definition 6. We will call a generating function Φ(λ) satisfying equation (2.17) a Nijenhuis
functions generator.

Secondly, one remarks [21] that the n(n− 1)/2 equations {λi, µj} = δij can be replaced with the
requirement N∗dµj = λjdµj and the n equations

{λ1 + · · ·+ λn, µj} = 1, j = 1, . . . , n,

that do not involve the individual coordinates λi but only their sum
∑n

i=1 λi = I1. In terms of the

Hamiltonian vector field Y = −PdI1 =
∑

i

∂

∂µi
, the condition we are looking for is

LY (µi) = 1. (2.18)

The relevance of Definition 6 in the search for DN coordinates stems from the fact that Nijenhuis
functions generators form an algebra N (M), which is closed under the action of the vector field
Y = −PdI1. In this way, knowing a set of Nijenhuis functions generators, we can obtain further
elements of the algebra N (M) by repeated applications of the vector field Y . Clearly, in such an
extended algebra, the characteristic equation

LY (Ψ(λ)) = 1 + ∆N (λ)fΨ,

corresponding to (2.18), may be easier to solve, thus yielding the missing Darboux–Nijenhuis
coordinates µi as µi = Ψ(λi). The following remark is very important in view of the relations
with algebraic integrability.

Remark 1. Suppose (H1, . . . , Hn) to be a separable system in the DN coordinates constructed
above. Then the separation relations (1.3) do not depend on the pair (λi, µi), i.e., they collapse to
the single relation

Φ(λ, µ;H1, . . . , Hn) = 0 . (2.19)
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Indeed, µi = Ψ(λi), where the λi are the eigenvalues of N . Since the Ik are invariant with respect
to the exchange λi ↔ λj , every function globally defined on M is invariant with respect to the
exchange (λi, µi) ↔ (λj , µj). This is in particular true for the Hamiltonians Hk, and the assertion
about (2.19) follows.

In many cases, equation (2.19) defines an algebraic curve, possibly coinciding with the spectral
curve associated with a Lax matrix for the Hamiltonian system at hand. We will see an instance
of this situation in the example of Section 5. The application of this scheme to (a particular class
of) Gaudin models have been spelled out in [23, 24].

3. SEPARABILITY CONDITIONS IN THE BIHAMILTONIAN SETTING

As we have briefly recalled in Section 2, on a bihamiltonian manifold one is usually led to
consider bihamiltonian vector fields, that is, vector fields X admitting the twofold Hamiltonian
representation X = Pdf = P ′dg. Let us now suppose that (M, P, P ′) be a regular bihamiltonian
manifold of dimension 2n, and that we were able to construct, by means of the Lenard–Magri
iteration procedure, a sequence of functions H1,H2, . . . satisfying P ′dHi = PdHi+1. Let us also
suppose that the first n of them be functionally independent. Then one easily shows that all the
further Hamiltonians Hn+1, . . . are functionally dependent from the first n. (This follows from the
fact that a regular Poisson manifold of dimension 2n cannot have more than n mutually commuting
independent functions). This means that, if we consider the Hamiltonian Hn+1, there must be a
relation of the form

ψ(H1, . . . , Hn;Hn+1) = 0, with ψHn+1 ≡
∂ψ

∂Hn+1
6= 0, (3.1)

relating it with the independent Hamiltonians Hi, with i = 1, . . . , n.

Actually, the case of Hi = Ii ≡ 1
2iTrN i is an instance of this situation. In fact, since by the

Cayley–Hamilton theorem N annihilates its minimal polynomial, we have Nn −∑n
i=1 piN

n−i = 0,
yielding the relation

2(n + 1)In+1 −
n∑

i=1

2(n− i + 1)piIn−i+1 = 0.

Differentiating equation (3.1) we see that, along with P ′dHi = PdHi+1, for i = 1, . . . , n− 1, it holds:

P ′dHn = PdHn+1 = − 1
ψHn+1

n∑

i=1

∂ψ

∂Hi
PdHi, (3.2)

that is, the vector field Xn+1 = PdHn+1 = P ′dHn is a linear combination of the vector fields
X1 = PdH1, . . . , Xn = PdHn.

This innocent looking observation is the clue for the bihamiltonian theory of SoV. Indeed,
let {H1,H2, . . .Hn} be any integrable system on M , that is, suppose that the Hi are mutually
commuting (with respect to P ) independent functions. We can construct an n-dimensional
distribution, namely the distribution DH spanned by the n mutually commuting vector fields
Xi = PdHi. This is nothing but the very classical tangent distribution to the invariant (generalized)
tori of the Liouville Arnol’d theory of integrable systems. Since M comes equipped with a second
Poisson tensor P ′, we can as well consider the distribution D′H generated by the Hamiltonians Hi

under the action of P ′, that is, generated by the vector fields X ′
i = P ′dHi. It holds:

Theorem 2. Let {H1, . . . , Hn} define, as explained above, an integrable system on a regular
bihamiltonian manifold (M,P, P ′). The Hamilton–Jacobi equations associated with any of the
Hamiltonians Hi are separable in the DN coordinates (x1, . . . , xn, y1, . . . , yn) defined by N = P ′P−1

if and only if the distribution D′H is contained in DH , or, equivalently, if and only if the distribution
DH is invariant along N .
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Proof. We will first prove the equivalence between the invariance of DH under N and the inclusion
D′H ⊂ DH . To say that D′H is contained in DH is tantamount to saying that there exists a matrix
Fij , whose entries are, in general, functions defined on M , such that

X ′
i ≡ P ′dHi =

∑

j

FijPdHj =
∑

j

FijXj for i = 1, . . . , n. (3.3)

Writing P ′ = NP , we can translate these equalities into NXi =
∑

j FijXj for all i = 1, . . . , n.

The full proof of the fact that the invariance of DH insures separability in DN coordinates can
be found in [21]. It goes as follows.

At first we notice that the translation in terms of the codistribution D∗H generated by the
differentials of the Hamiltonians Hi of the invariance condition for DH is the invariance condition
N∗D∗H ⊂ D∗H . This can be easily seen applying to (3.3) the operator P−1, to get N∗dHi =∑

j FijdHj .
Since all the Poisson brackets {Hi,Hj} vanish and M is a regular bihamiltonian manifold,

the matrix F defined by (3.3) can be shown to have simple eigenvalues, that coincide with the
eigenvalues λi of N . So there exists a matrix S satisfying SF = ΛS, where Λ = diag(λ1, . . . , λn) If
we introduce the n one-forms θi =

∑
j SijdHj , we get

N∗θi =
∑

j

SijN
∗dHj =

∑

j,k

SijFjkdHk =
∑

j,k

λiδijSjkdHk = λiθi, (3.4)

meaning that θi is an eigenvector of N∗ relative to λi. Hence there must exist functions Fi, Gi such
that ∑

j

SijdHj = Fidxi + Gidyi, (3.5)

whence the existence of a separation relation Φi(xi, yi;H1, . . . , Hn) for all i = 1, . . . , n. The converse
statement can be trivially proved. ¤

We would like to stress that the separability condition of Theorem 2 is a tensorial one. That
is, given a regular bihamiltonian manifold (M, P, P ′) this separability criterion can be checked
in any system of coordinates, without the a priori calculation of the DN coordinates themselves.
Notice, also, that the validity of the statement does not (as it should be!) depend on the choice of
mutually commuting integrals {H1, . . . , Hn}. That is, if we consider a “change of coordinates in the
space of the actions”, that is, we trade the Hi’s for another complete set of integrals of the motion
Ki = Ki(H1, . . . , Hn), then the separability of the new Hamiltonians Ki will hold if and only if the
separability of the original ones holds. Indeed, the dual distributions generated by the Hi’s and the
Ki’s coincide.

A second remark is important and deserves to be explicitly spelled out. Although we have
started our discussion considering the case of a family of bihamiltonian vector fields, that is, the
case of Lenard–Magri sequences, the hypotheses of Theorem 2 concern only the relations of the
distributions generated respectively under the action of P and P ′ by the Hamiltonians Hi, without
any mention of the fact that the generators of the distribution be bihamiltonian vector fields. Thus,
although it might seem a somewhat odd statement, the vector fields that are separable by means of
the bihamiltonian approach are not necessarily bihamiltonian vector fields! It is also important to
notice that it is not only a matter of choice of generators. Indeed, in [40] it has been shown that
the only bihamiltonian vector fields on a regular bihamiltonian manifold turn out to be associated
with separated functions of the eigenvalues of N , i.e., functions of the form H =

∑n
i=1 fi(λi). This

means that, in such a case, the distribution DH coincides with that generated by the distinguished
functions Ii. However, this is by far a very special example, that is, the range of applicability of
the method is much wider than that, as it has already been shown in the literature.

The separation condition of Theorem 2 is based on the analysis of the behaviour of the
characteristic distribution associated with an integrable system under the Nijenhuis tensor N .
An equivalent criterion, based on the analysis of the Poisson brackets associated with the tensor
P ′, can be formulated as follows.
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Theorem 3. Let {H1,H2, . . . Hn} be an integrable system defined on a regular bihamiltonian
manifold (M, P, P ′). The Hamiltonians Hi are separable in the DN coordinates defined by N =
P ′P−1 if and only if, along with the commutation relations {Hi, Hj} = 0, there also hold

{Hi,Hj}′ ≡ 〈dHi, P
′dHj〉 = 0, for i, j = 1, . . . , n. (3.6)

Proof. The key formula is the relation between P, P ′ and N∗. Indeed, suppose that D∗H be invariant
along N∗. Then:

{Hi,Hj}′ = 〈dHi, P
′dHj〉 = 〈dHi, NPdHj〉 = 〈N∗dHi, PdHj〉

=
∑

k

Fik〈dHk, PdHj〉 =
∑

k

Fik{Hk,Hi} = 0,

which, in view of Theorem 2, proves the statement in one direction. Now, let us suppose that (3.6)
holds. Then, for every i, j = 1, . . . , n, we have:

0 = {Hi,Hj}′ = 〈dHi, P
′dHj〉 = 〈dHi, NPdHj〉 = 〈N∗dHi, PdHj〉,

meaning that, for all i = 1, . . . , n, the one-form N∗dHi belongs to the annihilator (with respect to P )
of the distribution DH . Since such an annihilator coincides with D∗H , this means that N∗dHi ∈ D∗H
for all i = 1, . . . , n. ¤

This results lead to the following, (somewhat daring), comparison. The Liouville–Arnol’d
theorem on finite dimensional integrable Hamiltonian systems says that the geometrical structure
underlying integrability of a Hamiltonian vector field defined on a symplectic manifold (M, ω) is a
Lagrangian foliation of M . We can rephrase the content of Theorem 3 saying that the geometrical
structure underlying the separability of a system defined on a regular bihamiltonian manifold
(M, P, P ′) is a bilagrangian foliation of M .

We end our presentation of the bihamiltonian set-up for SoV with the following remark.
Theorem 2 concerns only the existence of the separation relations. In principle, one could try
to find these relations in concrete examples by actually diagonalizing the matrix F , and explicitly
finding and integrating the relations (3.5). However, there is a very simple tensorial criterion which
can be used to determine the functional form of the separation relations Φi(xi, yi;H1, . . . , Hn),
whose proof can be found in [21].

Proposition 5. Let {H1, . . . , Hn} be an integrable system defined on a regular bihamiltonian
manifold, which is separable in the Darboux–Nijenhuis coordinates associated with N = P−1P ′.
Consider the matrix Fij fulfilling the relations (3.3). Then the separation relations are affine in the
Hamiltonians Hi, that is, of the form

Φi(xi, yi;H1, . . . , Hn) =
∑

j

Sij(xi, yi)Hj + Ui(xi, yi), (3.7)

if and only if the matrix F satisfies the relation N∗dFij =
∑

k FikdFkj .

The matrix S on (3.7) can be shown to be a suitably normalized matrix of eigenvectors of the
matrix F . Its characteristic property is that, as expressed in the equation, the entries Sij of the
i–th row depend only on the pair (xi, yi) of Darboux–Nijenhuis coordinates. For this reason it can
be called a Stäckel matrix.

4. TRANSVERSAL DISTRIBUTIONS AND SEPARATION RELATIONS

A very natural source of integrable systems fulfilling the separability conditions given in
Theorems 2 and 3 is described in [21]. In this short section we recall this construction, and we
comment on the resulting separation relations, with a particular emphasis on the relations with
algebraic integrability.

Suppose that the hypotheses of Proposition 2 hold, and that there exists a k-dimensional foliation
Z on M , spanned by the vector fields Z1,. . . ,Zk, with the following properties:
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1. It is transversal to the symplectic foliation of P ; more precisely, the vector fields Za are
normalized in such a way that Za(H

(b)
0 ) = δb

a;

2. The Za are symmetries of P :

LZa(P ) = 0 ;

3. There exist vector fields Y b
a such that

LZaP
′ =

∑

b

Y b
a ∧ Zb.

It turns out that the Za commute, and that Y b
a = P d(Za(H

(b)
1 )). But the important point is that

any symplectic leaf S of P can be seen as a quotient space and inherits a (quotient) bi-Hamiltonian
structure from M . Moreover, the reduction of P coincides with the symplectic form of S, and
therefore S is a regular bihamiltonian manifold (if the eigenvalues of the associated Nijenhuis
tensor are maximally distinct).

Now, it can be shown that the integrable system described in Proposition 2 is separable in the
DN coordinates on S. As far as the Stäckel separability is concerned, a necessary and sufficient
condition is that Zb(Zc(H

(a)
j )) = 0 on S, for all a, b, c = 1, . . . , k and for all j = 1, . . . , na.

The search for DN coordinates is made easier by the fact that the determinant of the matrix

G(λ) =




Z1(H(1)(λ)) · · · Zk(H(1)(λ))
...

...

Z1(H(k)(λ)) · · · Zk(H(k)(λ))


 (4.1)

coincides on S with the minimal polynomial of the recursion operator N . Thus the coordinates
λi are the solutions of G(λ) = 0. To find the µi, one can use the results of Subsection 2.2 and the
following proposition, whose proof is given in [29].

Proposition 6. In the above setting, let us consider a generating function Γ(λ, µ) of the Casimirs
H(a)(λ) of the Poisson pencil, and let us suppose that Γ(λ, µ) = 0 defines a smooth algebraic curve.
Suppose that f is a Z-invariant root of the minimal polynomial of N , i.e.,

N∗df = fdf, and Zi(f) = 0, i = 1, . . . , k, (4.2)

and suppose that Γ(µ, f) = 0 defines generic point(s) of the affine curve Γ(λ, µ) = 0. Then, any
solution g of the equation Γ(g, f) = 0 which is invariant as well under Z satisfies N∗dg = fdg.

5. EXAMPLE: A GENERALIZED TODA LATTICE

In this final section we will apply the general scheme outlined in the previous sections to a specific
model, with the aim of showing how the recipes discussed so far from a theoretical standpoint can
be concretely applied. We will study a generalization of the four site Toda lattice, to be termed
Toda4

3 model. This system is a member of a family introduced in [41] as reductions of the discrete
KP hierarchy, whose continuous limits are further discussed in [42]. It can be described as follows.

We consider on M = C12, endowed with global coordinates {bi, ai, ci}i=1,2,3,4, the Hamiltonian

HGT =
1
2
(b2

1 + b2
2 + b2

3 + b2
4)− (a1 + a2 + a3 + a4), (5.1)
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and the linear Poisson tensor given by the matrix

P =




0 A1 C1

−AT
1 C2 0

−CT
1 0 0


 where A1 =




−a1 0 0 a4

a1 −a2 0 0

0 a2 −a3 0

0 0 a3 −a4




, (5.2)

C1 =




−c1 0 c3 0

0 −c2 0 c4

c1 0 −c3 0

0 c2 0 −c4




, C2 =




0 −c1 0 c4

c1 0 −c2 0

0 c2 0 −c3

−c4 0 c3 0




,

and we denoted by 0 the 4× 4 matrix with vanishing entries. Using (here and in the sequel) the cyclic
identifications ai+4 = ai, bi+4 = bi, and ci+4 = ci, the Hamiltonian vector field XHGT

= PdHGT can
be written as 



ḃi

ȧi

ċi


 =




ai−1 − ai

ai(bi+1 − bi) + ci−1 − ci

ci(bi−2 − bi)


 , i = 1, . . . , 4. (5.3)

The expert reader surely noticed that HGT coincides with the Hamiltonian of the periodic four-
site Toda lattice, written in the Flaschka coordinates bi = pi, ai = exp(qi − qi+1). Indeed, on the
hyperplane MT ' C8 defined by ci = 0 for i = 1, . . . , 4, the vector field XHGT

defines the periodic
Toda flow.

Proposition 7. The Hamiltonian vector field XHGT
admits the Lax representation L̇(ν) =

[L(ν), Φ], where

L(ν) =




b1 −ν c3
ν2

a4
ν

a1
ν b2 −ν c4

ν2

c1
ν2

a2
ν b3 −ν

−ν c2
ν2

a3
ν b4




, Φ =




0 0 c3
ν2

a4
ν

a1
ν 0 0 c4

ν2

c1
ν2

a2
ν 0 0

0 c2
ν2

a3
ν 0




. (5.4)

The bihamiltonian aspects of this system have been discussed in [43] (see also [44]). In particular, it
has been noticed that on M there exists a second Hamiltonian structure for the vector field XHGT

.
Namely, one considers the bivector P ′ having the following form:

P ′ =




A2 B1 C3

−BT
1 A3 C4

−CT
3 −CT

4 A4


 , where C3 =




−b1c1 0 b1c3 0

0 −b2c2 0 b2c4

c1b3 0 −b3c3 0

0 c2b4 0 −b4c4




, (5.5)
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A2 =




0 a1 0 −a4

−a1 0 a2 0

0 −a2 0 a3

a4 0 −a3 0




, B1 =




−b1a1 c1 −c3 b1a4

b2a1 −b2a2 c2 −c4

−c1 b3a2 −b3a3 c3

c4 −c2 b4a3 −b4a4




,

A3 =




0 −b2c1 − a1a2 0 b1c4 + a1a4

b2c1 + a1a2 0 −b3c2 − a2a3 0

0 b3c2 + a2a3 0 −b4c3 − a3a4

−b1c4 − a1a4 0 b4c3 + a3a4 0




,

C4 =




−a1c1 −a1c2 a1c3 a1c4

c1a2 −a2c2 −a2c3 a2c4

c1a3 c2a3 −a3c3 −a3c4

−c1a4 c2a4 c3a4 −a4c4




, A4 =




0 −c1c2 0 c1c4

c1c2 0 −c2c3 0

0 c2c3 0 −c3c4

−c1c4 0 c3c4 0




.

It can be easily checked that XHGT
= P ′d(−∑4

i=1 bi). More in general, we have the following

Proposition 8. The pencil P ′−λP is a pencil of Poisson brackets. The rank of the generic element
of the pencil is eight. The characteristic polynomial Det

(
λ1− L(ν)

)
can be expanded as:

Det
(
λ1− L(ν)

)
= λ4 − ν4 + H(λ) + (K(λ)− λ2J1)/ν4 + J2/ν8. (5.6)

The functions J1 and J2 are common Casimirs of P and P ′. The polynomials H(λ) and K(λ) are
Casimirs of the pencil Pλ = P ′ − λP . They have the form

H(λ) = λ3H0 − λ2H1 + λH2 −H3, K(λ) = K0λ + K1. (5.7)

Explicitly, J1 = c1c3 + c2c4 and J2 = c1c2c3c4, while the coefficients of H(λ) and K(λ) are given
by:

H0 =
4∑

i=1

bi, H1 =
4∑

i>j=1

bibj +
4∑

i=1

ai, H2 =
4∑

i=1

(
ci + bi(ai+1 + a1+2) + bibi+1bi+2

)

H3 =
4∑

i=1

bici+1 + a1a3 + a2a4 + cubic and quartic terms;

K0 =
4∑

i=1

(bici−1ci+1 − ciai−1ai+2), K1 =
4∑

i=1

aici+1ci+2 + quartic terms

One can show via a direct computation that the eight functions H0,H1,H2,H3, K0,K1, J1, J2 are
functionally independent and, thanks to the fact that they fill in Lenard sequences, are mutually
in involution. The kernel of P is generated (at generic points m ∈ M) by the differentials of the
four functions H0,K0, J1, J2. Hence, on the 8-dimensional manifold Sκ defined by the equations
H0 = κ1,K0 = κ2, J1 = κ3, J2 = κ4, that is, the generic symplectic leaf of P , the vector field XHGT

is completely integrable. To realize this we simply have to notice that HGT can be expressed as
1
2H2

0 −H1, and apply the properties of anchored Lenard–Magri sequences collected in Proposition 2.
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5.1. Separation of Variables

We will now show how to apply the ideas and recipes of the bihamiltonian set-up for SoV to the
Toda4

3 model introduced above. The first problem to deal with is that the Poisson tensor P ′ does
not restrict to Sκ, but must be projected according to the procedure outlined in Section 4. This
can be rephrased as follows, by means of a kind of Dirac reduction process (see [21, 37, 45, 46] for
details and the geometric background).

We consider the vector fields Z1 = − ∂

∂b4
and Z2 =

∂

∂a4
, and we notice that the matrix

G =


 LZ1(H0) LZ2(H0)

LZ1(K0) LZ2(K0)


 =




1 0

−c1c3 −c1a3 − a1c2




is invertible. Then we form the bivector

R =
2∑

i,j=1

(
G−1

)
ij

Zi ∧Xj
1 , where X1

1 = P ′dH0 and X2
1 = P ′dK0. (5.8)

Lemma 1. The modified bivector Q = P ′ −R defines a Poisson bracket, compatible with P ;
moreover, Q restricts to Sκ.

Proof. The proof of the fact that Qλ = Q− λP is a Poisson pencil follows (see, e.g., [45]) from the
equalities

LZ1P = 0, LZ1P
′ = Y 1

1 ∧ Z1 − c3
∂

∂a3
∧ Z2

LZ2P = (
∂

∂b1
− ∂

∂a1
) ∧ Z2, LZ2P

′ = (b4
∂

∂a4
+

∂

∂b1
) ∧ Z1 + Y 2

2 ∧ Z2,

(5.9)

where

Y 1
1 = a3

∂

∂a3
− a4

∂

∂a4
+ c2

∂

∂c2
− c4

∂

∂c4

Y 2
2 = b4

∂

∂b4
− b1

∂

∂b1
− a3

∂

∂a3
− a4

∂

∂a4
− c1

∂

∂c1
+ c2

∂

∂c2
+ c3

∂

∂c3
− c4

∂

∂c4
,

as well as from the fact that

QdH0 = QdK0 = QdJ1 = QdJ2 = 0. (5.10)

To show that (5.9) holds true is simply a matter of an explicit computation, while (5.10) follows
from the definition of Q. In fact, the last two equations hold since J1 and J2 are Casimirs of P ′
invariant under Z1 and Z2. For, e.g., H0 one computes

QdH0 = P ′dH0 −RdH0 = X1
1 −

2∑

i,j=1

(
G−1

)
ij

LZj (H0) ·Xi
1

= X1
1 −

2∑

i,j=1

(
G−1

)
ij

Gj1 ·Xi
1 = X1

1 −
∑

i

δi1 ·Xi
1 = 0,

where the second equality follows from the fact that all the functions Hi,Kα, Jα are in involution
with respect to P . ¤

Thanks to the above lemma, the generic symplectic leaf Sκ is endowed with the structure
of a regular bihamiltonian manifold. We know from Section 4 that the non trivial Hamiltonians
H1,H2,H3,K1 (more precisely, the restriction to Sκ of these Hamiltonians) satisfy the hypothesis
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of Theorem 2 with respect to the (restriction to Sκ) of the pencil Q− λP . This fact can be directly
shown as follows:

QdHi = P ′dHi −
2∑

i,j=1

(
G−1

)
ij

(Zi ∧Xj
1)(dHi) = PdHi+1 −

2∑

i,j=1

(
G−1

)
ij

LZi(Hi)X
j
1

(where we understand H4 = 0) and

QdK2 = P ′dK1 −
2∑

i,j=1

(
G−1

)
ij

(Zi ∧Xj
1)(dK2) =

2∑

i,j=1

(
G−1

)
ij

LZi(dK1)X
j
1

So we proved that, for generic values κi, with i = 1, . . . , 4, of the Casimirs, the system obtained
by restriction of the Toda4

3 flows on Sκ is separable in the DN coordinates associated with the
restriction to Sκ of the pencil Q− λP . To finish our job we finally have to:
a) explicitly compute the DN coordinates;
b) find the separation relations.

To solve the first problem, we will use the tools briefly described in Subsection 2.2. We rely on
a result of [21], as well as on explicit computations, to state the following proposition, whose first
part has been already discussed in Section 4.

Proposition 9. Let us consider the matrix

G(λ) =


 LZ1H(λ) LZ2H(λ)

LZ1K(λ) LZ2K(λ)


 . (5.11)

The roots of the degree-4 polynomial Det(G(λ)) are the roots of the minimal polynomial ∆(λ) =
λ4 −∑4

i=1 piλ
4−i of the Nijenhuis tensor N = P−1Q associated with the regular Poisson pencil Qλ.

The coefficients pi are functionally independent on the generic symplectic leaf Sκ. Furthermore, the
ratios

ρ(λ) = −G22/G12, σ(λ) = −G21/G11

are Nijenhuis function generators.

Thus, one half of the Darboux–Nijenhuis coordinates will be given by the roots of Det(G(λ)).
To find the remaining half we consider the vector field Y = −Pdp1, whose role has been discussed
in Subsection 2.2. Since an explicit computations shows that LY log(ρ(λ)) = 1, we can state the
following

Proposition 10. A set of Darboux–Nijenhuis coordinates for the restriction to the generic
symplectic leaf Sκ of the Toda4

3 flows are given by the four roots λi of Det(G(λ)) and by the values
µi of the function log(ρ(λ)) for λ = λi, where

ρ(λ) =
(−c1a3 − a1c2) λ + c2a1b3 − a1a2a3 + c1b2a3 + c1c2

c1c3λ + a1a2c3 − c1b2c3
.

(We assume that c3 6= 0 and c1λi + a1a2 − b2c1 6= 0 for all i = 1, . . . , 4.)

To find the separation relations, we notice that the pairs (λi, ρ(λi)) are common solutions to the
system

{
ρG11 + G21 = 0
ρG12 + G22 = 0

(5.12)
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since the rank of G(λi) is equal to 1. Then we reconsider the Lax matrix (5.4), and we compute the
Lie derivatives of the matrix L(λ, ν) = λ1− L(ν) along the vector fields Zi:

LZ1(L(λ, ν)) =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




, LZ2(L(λ, ν)) =




0 0 0 −ν−1

0 0 0 0

0 0 0 0

0 0 0 0




.

Since

LZa [Det(L(λ, ν))] = Tr
[
LZa(L(λ, ν))L(λ, ν)∨)

]
, a = 1, 2,

L(λ, ν)∨ being the classical adjoint to L(λ, ν) = λ1− L(ν), it follows from Proposition 8 and the
definition (5.11) of G(λ) that the solutions of the system (5.12) are related to those of the system

{
[L(λ, ν)∨]44 = 0
[L(λ, ν)∨]41 = 0

via ρ = ν4. Now we can state

Proposition 11. The separation relations connecting pairs of Darboux–Nijenhuis coordinates
(λi, µi), the Hamiltonians H1,H2, H3,K2, and the Casimirs H0,K1,K2, J0 are, on the generic
symplectic leaf Sκ, given by the evaluation of the characteristic polynomial Det(L(λ, ν)) in λ = λi

and ν = νi = exp(µi

4 ).

Proof. We know that the pairs (λi, νi) solve system (5.1), and we have to show that they satisfy
Det(L(λi, νi)) = 0. This can be done with the following adaptation of the algebro-geometrical
technique of finding the poles of the (normalized) Baker–Akhiezer function. Let us consider the
5× 4 matrix Mi obtained by putting the vector (0, 0, 0, 1) on the top of L(λi, νi). As we have
assumed at the end of Proposition 10, the 3× 3 matrix extracted from Mi by removing the 3rd
column and the 2nd and the 4th rows, is invertible. Since the system (5.1) is satisfied, the rank of
Mi is 3, and therefore Det(L(λi, νi)) vanishes. ¤

We notice that, a posteriori, the separation coordinates for the Toda4
3 system fall in the class

described in, e.g., [2, 4, 47–50]. Namely, the DN coordinates that separate the Toda4
3 system are

algebro-geometrical Darboux coordinates associated with the spectral curve (5.6), and fulfill the
so-called Sklyanin’s “magic recipe”. This is a quite general fact, as discussed in Section 4 (see
also [51] and Remark 1).

As a final remark, in connection with the discussion on the relation between the bihamiltonian
property of an integrable vector field and the separability of the associated HJ equations of Section 3,
we notice that the Hamiltonians H1, H2,H3,K2 are functionally independent from the coefficients of
the minimal polynomial of the Nijenhuis tensor obtained from Q− λP . So, this is a further instance
of a system which is not bihamiltonian on a regular manifold, but turns out to be separable via
the bihamiltonian method of SoV.

5.2. A Remarkable Subsystem: the Open Toda4
3 System

In this last subsection we will discuss a remarkable reduction of the periodic Toda4
3 system

(even though less interesting from the point of view of algebraic integrability), leading to the
corresponding generalization of the open (or non-periodic) one. In the manifold M ' C12 we
consider the nine-dimensional submanifold M0 defined by the equations

a4 = c3 = c4 = 0. (5.13)
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One can easily verify that the restriction X0
HGT

to M0 of the vector field XHGT
is tangent to M0.

Also, the tensor P can be restricted to M0; indeed, the expression of its restriction P0 with respect
to the natural coordinates {b1, . . . , b4, a1, . . . , a3, c1, c2} of M0 is obtained from (5.2) simply by
removing the 9th, 11th, 12th rows and columns. Moreover, one can check that X0

HGT
= P0dHGT,0,

with

HGT,0 =
1
2
(b2

1 + b2
2 + b2

3 + b2
4)− (a1 + a2 + a3), (5.14)

and recognize that this function is the Hamiltonian of the open Toda lattice. Also, a Lax pair for
X0

HGT
is

L0 =




b1 −ν 0 0

a1
ν b2 −ν 0

c1
ν2

a2
ν b3 −ν

−ν c2
ν2

a3
ν b4




, Φ0 =




0 0 0 0

a1
ν 0 0 0

c1
ν2

a2
ν 0 0

0 c2
ν2

a3
ν 0




. (5.15)

It should be clear from the form of the Lax pair that the system associated to the vector field X0
HGT

is an extension of the standard open Toda lattice towards the so-called full open Toda lattice, which
is a system describing a flow on the lower Borel subgroup of sl(N). The integrability of the full
(open) Toda lattice was established in [30] (see, also, [52]). The idea was to complement the integrals
of the motion coming from the Lax representation with additional integrals obtained by means of
the “chopping method”, within the group–theoretical point of view.

The need to supply the standard results of the Lax theory with further methods should be
clear from the following considerations. The only Casimir function of P0 is h0 =

∑4
i=1 bi. Hence, its

symplectic leaves Sξ ⊂ M0 are the eight-dimensional manifolds defined by h0 = ξ, and X0
HGT

can
be seen as a Hamiltonian system with four degrees of freedom. The characteristic polynomial of
the matrix L0 is

Det(λ1− L0(ν)) = −ν4 + λ4 − h0λ
3 + h1λ

2 − h2λ + h3, (5.16)

that is, it provides us with only three non trivial Hamiltonians,

h1 =
4∑

i>j=1

bibj +
3∑

i=1

ai, h2 =
4∑

i>j>k=1

bibjbk +
3∑

i=1

ai(bi+2 + bi+3) + c1 + c2

h3 = b1a2b4 + a1b3b4 + b1b2a3 + b1c2 + a1a3 + c1b4 + b1b2b3b4.

(5.17)

We will now show how the tools we previously introduced can be used to geometrically prove the
complete integrability of such a system and, moreover, yield the existence of an additional integral
of the motion. The main property is that, along with P , the tensor Q restricts to M0. This can be
proven as follows: one checks by direct inspection that this is true for P ′; then the assertion follows
from the fact that the vector field X2

1 = P ′dK0 vanishes on M0, while Z1 and X1
1 , which coincides

with XGT , are tangent to M0.
Furthermore, we add two observations. The first one concerns the restriction G0 to M0 of the

matrix G. It has the form

G0 =



G0

11 λ2 − (b2 + b3) λ + b2b3 + a2

0 − (c1a3 + a1c2) λ− a1a2a3 + c1c2 + c1b2a3 + a1c2b3


 (5.18)

and therefore its determinant (that is, the minimal polynomial of the Nijenhuis tensor N0 induced by
the pencil Q0 − λP0 on Sξ) factors as G0

11G0
22, where G0

11 = λ3 − π1λ
2 − π2λ− π3 is a degree-three
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polynomial. The second observation consists in the fact that the three surviving Hamiltonians
h1, h2, h3 given by (5.17) satisfy the conditions:

Q0dhi =
3∑

j=1

F 0
ijP0dhi, with F 0

ij =




π1 1 0

π2 0 1

π3 0 0


 . (5.19)

We notice that the functions π1, π2, π3, and the root

λ4 =
−a1a2a3 + c1c2 + a1c2b3 + c1b2a3

c1a3 + a1c2
(5.20)

of G0
22 are still functionally independent and hence (generically) different on Sξ.

Lemma 2. Let σ be any function satisfying Q0dσ = λ4P0dσ. Under the above hypotheses, the
brackets {σ, hi}P0 and {σ, hi}Q0 vanish.

Proof. Evaluating both sides of Q0dσ = λ4P0dσ on the differentials (dh1, dh2, dh3), and switching
the action of the Poisson tensors on the dhi’s, we get

〈dσ,Q0dhi〉 = λ4〈dσ, P0dhi〉, i = 1, 2, 3.

Inserting (5.19) we get the equation
∑3

j=1

(
F 0

ij − λ4δij

)〈dσ, P0dhj〉 = 0. Since λ4 is not an eigenvalue
of F 0

ij , the lemma is proved. ¤

So a fourth integral of the motion, that commutes with the Hamiltonian H0
GT of the open Toda4

3

lattice, is given indeed by the distinguished root λ4 of equation (5.20); this constructively proves
the integrability of the system.

Finally, we notice that this method proves the existence of a fifth integral of the motion. Indeed,
we know that, along with λ4, there must exist another independent function µ4, satisfying the
hypotheses of Lemma 2 and functionally independent of λ4 and of the hi’s. In such a comparatively
low dimensional case, such a function can be explicitly found to be

µ4 =
c2

(
a1b2c1 − a2a1

2 − c1
2 − c1b3a1

)

c1 (c1a3 + a1c2) (λ4
3 − π1λ4

2 − π2λ4 − π3)
.
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53. Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60,
New York: Springer, 1989.

54. Magri, F., Falqui, G., and Pedroni, M., The Method of Poisson Pairs in the Theory of Nonlinear PDEs, in
Direct and Inverse Methods in Nonlinear Evolution Equations, Lecture Notes in Phys., vol. 632, Berlin:
Springer, 2003, pp. 85–136.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



ISSN 1560-3547, Regular and Chaotic Dynamics, 2011, Vol. 16, Nos. 3–4, pp. 245–289. c© Pleiades Publishing, Ltd., 2011.

On Integrability of Hirota–Kimura Type Discretizations

Matteo Petrera*, Andreas Pfadler**, and Yuri B. Suris***

Institut für Mathematik, MA 7-2, Technische Universität Berlin,
Str. des 17. Juni 136, 10623 Berlin, Germany

Received August 3, 2010; accepted October 24, 2010

Abstract—We give an overview of the integrability of the Hirota–Kimura discretization method
applied to algebraically completely integrable (a.c.i.) systems with quadratic vector fields. Along
with the description of the basic mechanism of integrability (Hirota–Kimura bases), we provide
the reader with a fairly complete list of the currently available results for concrete a.c.i. systems.

MSC2010 numbers: 37K10, 14E05, 37J35, 37M15, 70E40

DOI: 10.1134/S1560354711030051

Keywords: algebraic integrability, integrable systems, integrable discretizations, birational
dynamics

Contents

1 INTRODUCTION 246

2 SOME GENERAL RESULTS ON INVARIANT MEASURES 247

3 HIROTA–KIMURA BASES AND INTEGRALS 249

4 WEIERSTRASS DIFFERENTIAL EQUATION 251

5 SOME TWO-DIMENSIONAL INTEGRABLE SYSTEMS 253
5.1 The Three-dimensional Suslov System 253
5.2 Reduced Nahm Equations 254

6 EULER TOP 255

7 ZHUKOVSKI–VOLTERRA SYSTEM 259
7.1 ZV System with Two Vanishing βk’s 260
7.2 ZV System with One Vanishing βk 262
7.3 ZV System with All βk’s Non-vanishing 262

8 VOLTERRA CHAIN 263
8.1 Periodic Volterra Chain with N = 3 Particles 263
8.2 Periodic Volterra Chain with N = 4 Particles 264

9 DRESSING CHAIN (N = 3) 265

10 COUPLED EULER TOPS 267

11 THREE WAVE SYSTEM 270

12 LAGRANGE TOP 272

13 KIRCHHOFF CASE OF THE RIGID BODY MOTION IN AN IDEAL FLUID 277

*E-mail: petrera@math.tu-berlin.de
**E-mail: pfadler@math.tu-berlin.de

***E-mail: suris@math.tu-berlin.de

245



246 PETRERA et al.

14 CLEBSCH CASE OF THE RIGID BODY MOTION IN AN IDEAL FLUID 279
14.1 First Flow of the Clebsch System 280
14.2 General Flow of the Clebsch System 283

15 su(2) RATIONAL GAUDIN SYSTEM WITH N = 2 SPINS 285

16 CONCLUSIONS 288

REFERENCES 288

1. INTRODUCTION

The discretization method studied in this paper seems to have been introduced in the geometric
integration literature by W. Kahan in the unpublished notes [1]. It is applicable to any system of
ordinary differential equations for x : R→ Rn with a quadratic vector field:

ẋ = Q(x) + Bx + c,

where each component of Q : Rn → Rn is a quadratic form, while B ∈ Matn×n and c ∈ Rn. Kahan’s
discretization reads as

x̃− x

ε
= Q(x, x̃) +

1
2
B(x + x̃) + c, (1.1)

where
Q(x, x̃) =

1
2

(Q(x + x̃)−Q(x)−Q(x̃))

is the symmetric bilinear form corresponding to the quadratic form Q. Here and below we use the
following notational convention which will allow us to omit a lot of indices: for a sequence x : Z→ R
we write x for xk and x̃ for xk+1. Eq. (1.1) is linear with respect to x̃ and therefore defines a rational
map x̃ = f(x, ε). Clearly, this map approximates the time-ε-shift along the solutions of the original
differential system, so that xk ≈ x(kε). (Sometimes it will be more convenient to use 2ε for the time
step, in order to avoid appearance of various powers of 2 in numerous formulas.) Since Eq. (1.1)
remains invariant under the interchange x ↔ x̃ with the simultaneous sign inversion ε 7→ −ε, one
has the reversibility property

f−1(x, ε) = f(x,−ε).

In particular, the map f is birational.
W. Kahan applied this discretization scheme to the famous Lotka–Volterra system and showed

that in this case it possesses a very remarkable non-spiralling property. This example is briefly
discussed in [2]. Some further applications of this discretization have been explored in [3].

The next, even more intriguing appearance of this discretization was in the two papers by
R. Hirota and K. Kimura who (being apparently unaware of the work by Kahan) applied it to two
famous integrable systems of classical mechanics, the Euler top and the Lagrange top [4, 5]. For the
purposes of the present text, integrability of a dynamical system is synonymous with the existence
of a sufficient number of functionally independent conserved quantities, or integrals of motion, that
is, functions constant along the orbits. We leave aside other aspects of the multi-faceted notion
of integrability, such as Hamiltonian ones or explicit solutions. Surprisingly, the Kahan–Hirota–
Kimura discretization scheme produced in both the Euler and the Lagrange cases of the rigid body
motion integrable maps. Even more surprisingly, the mechanism which assures integrability in these
two cases seems to be rather different from the majority of examples known in the area of integrable
discretizations, and, more generally, integrable maps, cf. [6]. The case of the discrete time Euler top
is relatively simple, and the proof of its integrability given in [4] is rather straightforward and easy
to verify by hands. As it often happens, no explanation was given in [4] about how this result has
been discovered. The “derivation” of integrals of motion for the discrete time Lagrange top in [5]
is rather cryptic and almost uncomprehensible.

We use the term “Hirota–Kimura (HK) type discretization” for Kahan discretization in the
context of integrable systems. At the Oberwolfach meeting on Geometric Integration in 2006,
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T. Ratiu proposed to apply the Hirota–Kimura discretization to the Clebsch case of the rigid body
motion in an ideal fluid and to the Kovalevsky top. The claim on the integrability of the HK
discretization of the Clebsch case was proven only several years later in [2], while the integrability
of the HK discretization of the Kovalevsky top remains an open problem (although there are
some indications in favor of its non-integrability). Anyway, the general question of integrability
of the HK type discretizations turns out to be very intriguing and rather difficult. In the present
overview, we will present a rather long list of examples of integrable HK discretizations. Actually,
this list is so impressive that in [2] we conjectured that HK discretizations of algebraically integrable
systems always remain integrable. At present, we have some indications that this conjecture is
wrong (although a rigorous proof of non-integrability for any of the apparently non-integrable cases
remains elusive). Nevertheless, the sheer length of our list of examples clearly shows that there exist
some general mechanisms that ensure integrability at least under certain additional assumptions.
We think that to uncover general structures behind the integrability of HK discretizations is a big
and important challenge for the modern theory of (algebraically) integrable systems.

The structure of our overview is as follows. In Section 2 we demonstrate some general sufficient
conditions for a HK discretization to be measure preserving. These conditions are not related to
integrability and do not cover all special cases considered in the main text. All our examples turn out
to be measure preserving but for the majority of them we only can prove this property individually
and do not know any general mechanisms. In Section 3 we present a formalization of the HK
mechanism from [5], which will hopefully unveil its main idea and contribute towards demystifying
at least some of its aspects. We introduce a notion of a “Hirota–Kimura basis” (HK basis) for a
given map f . Such a basis Φ is a set of simple (often monomial) functions, Φ = (ϕl, . . . , ϕl), such
that for every orbit {f i(x)} of the map f there is a certain linear combination c1ϕ1 + . . . + clϕl

of functions from Φ vanishing on this orbit. As explained in Section 3, this is a new mathematical
notion, not reducible to that of integrals of motion, although closely related to the latter. We
lay a theoretical fundament for the search for HK bases for a given discrete time system, and
discuss some practical recipes and tricks for doing this. Sections 4–15 contain our list of examples
of algebraically integrable systems with quadratic vector fields, for which the HK discretization
preserves integrability. For all the examples we provide the reader with a rather complete set of
currently available results. The proofs are omitted almost everywhere. One of the reasons is that
our investigations are based mainly on computer experiments, which are used both for discovery of
new results and for their rigorous proof. For a given system, a search for HK bases can be done with
the help of numerical experiments. If the search has been successful and a certain set of functions Φ
has been identified as a HK basis for a given map f , then numerical experiments can provide a very
convincing evidence in favor of such a statement. A rigorous proof of such a statement turns out to
be much more demanding. At present, we are not in possession of any theoretical proof strategies
and are forced to verify the corresponding statements by means of symbolic computations which in
some cases turn out to be hardly feasible due to complexity issues. All these issues are intentionally
avoided in our presentation here; an interested reader may consult [2] for a detailed discussion of
one concrete example (Clebsch system). Our main goal here is to document the available results
on integrable HK discretizations and to attract attention of specialists in integrable systems and
in algebraic geometry to these beautiful and mysterious objects which are definitely worth further
investigation.

2. SOME GENERAL RESULTS ON INVARIANT MEASURES
In this section, we prove the existence of invariant measures for Kahan discretizations of two

classes of dynamical systems with quadratic vector fields (not necessarily integrable).
The first class reads:

ẋi =
N∑

j=1

aijx
2
j + ci, 1 6 i 6 N,

with a skew-symmetric matrix A = (aij)N
i,j=1 = −AT. The Kahan’s discretization reads:

x̃i − xi = ε
N∑

j=1

aijxj x̃j + εci, 1 6 i 6 N. (2.1)
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Proposition 1. The map x̃ = f(x, ε) defined by Eqs. (2.1) has an invariant volume form:

det
∂x̃

∂x
=

φ(x̃, ε)
φ(x, ε)

⇔ f∗ω = ω, ω =
dx1 ∧ . . . ∧ dxN

φ(x, ε)
,

where φ(x, ε) = det(1− εAX), with X = diag(x1, . . . , xN ), is an even polynomial in ε.

Proof. Eqs. (2.1) can be put as

x̃ = A−1(x, ε)(x + εc), A(x, ε) = 1− εAX.

As for any Kahan type discretization, there holds the formula

det
∂x̃

∂x
=

det A(x̃,−ε)
det A(x, ε)

. (2.2)

Indeed, differentiation of eqs. (2.1) with respect to xj will give the j-th column of the matrix
equation

A(x, ε)
∂x̃

∂x
= A(x̃,−ε).

It remains to notice that detA(x, ε) = detA(x,−ε). Indeed, due to the skew-symmetry of A, we
have: det(1− εAX) = det(1− εXTAT) = det(1+ εXA) = det(1+ εAX).

The second class consists of equations of the Lotka–Volterra type:

ẋi = xi


bi +

N∑

j=1

aijxj


 , 1 6 i 6 N,

with a skew-symmetric matrix A = (aij)N
i,j=1 = −AT. The Kahan’s discretization (with the stepsize

2ε) reads:

x̃i − xi = εbi(xi + x̃i) + ε
N∑

j=1

aij(xix̃j + x̃ixj), 1 6 i 6 N. (2.3)

Proposition 2. The map x̃ = f(x, ε) defined by eqs. (2.3) has an invariant volume form:

det
∂x̃

∂x
=

x̃1x̃2 · · · x̃N

x1x2 · · ·xN
⇔ f∗ω = ω, ω =

dx1 ∧ . . . ∧ dxN

x1x2 · · ·xN
.

Proof. Eqs. (2.3) are equivalent to

x̃i

1 + εbi + ε
∑N

j=1 aij x̃j

=
xi

1− εbi − ε
∑N

j=1 aijxj

=: yi. (2.4)

We denote di(x, ε) = 1− εbi − ε
∑N

j=1 aijxj . In the matrix form equation (2.3) can be put as

x̃ = A−1(x, ε)(1+ εB)x,

where the i-th diagonal entry of A(x, ε) equals di(x, ε), while the (i, j)-th off-diagonal entry
equals −εxiaij . In other words, A(x, ε) = D(1− εY A), where D = D(x, ε) = diag(d1, . . . , dN ) and
Y = diag(y1, . . . yN ). Formula (2.2) holds true also in the present case, and it implies:

det
∂x̃

∂x
=

detD(x̃,−ε)
detD(x, ε)

det(1+ εY A)
det(1− εY A)

.

The second factor equals 1 due to the skew-symmetry of A, while the first factor equals

d1(x̃,−ε) · · · dN (x̃,−ε)
d1(x, ε) · · · dN (x, ε)

=
x̃1 · · · x̃N

x1 · · ·xN
,

by virtue of (2.4).

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



ON INTEGRABILITY OF HIROTA–KIMURA TYPE DISCRETIZATIONS 249

The statement of proposition 2 for the Kahan discretization of the classical Lotka–Volterra
model with two species, ẋ = x(a− by), ẏ = y(cx− d), was found in [7] and used to explain the
non-spiralling behavior of the numerical orbits in this case.

3. HIROTA–KIMURA BASES AND INTEGRALS
In this section a general formulation of a remarkable mechanism will be given, which seems to

be responsible for the integrability of the Hirota–Kimura type (or Kahan type) discretizations of
algebraically completely integrable systems. This mechanism is so far not well understood, in fact
at the moment we do not know what mathematical structures make it actually work.

Throughout this section f : Rn → Rn is a birational map, while hi, ϕi : Rn → R stand for
rational, usually polynomial functions on the phase space. We start with recalling a well known
definition.

Definition 1. A function h : Rn → R is called an integral, or a conserved quantity, of the
map f , if for every x ∈ Rn there holds

h(f(x)) = h(x),

so that h(f i(x)) = h(x) for all i ∈ Z.

Thus, each orbit of the map f lies on a certain level set of its integral h. As a consequence, if
one knows d functionally independent integrals h1, . . . , hd of f , one can claim that each orbit of f
is confined to an (n− d)-dimensional invariant set, which is a common level set of the functions
h1, . . . , hd.

Definition 2. A set of functions Φ = (ϕ1, . . . , ϕl), linearly independent over R, is called a Hirota–
Kimura basis (HK basis), if for every x ∈ Rn there exists a vector c = (c1, . . . , cl) 6= 0 such that

c1ϕ1(f i(x)) + . . . + clϕl(f i(x)) = 0 (3.1)

holds true for all i ∈ Z. For a given x ∈ Rn, the vector space consisting of all c ∈ Rl with this
property will be denoted by KΦ(x) and called the null-space of the basis Φ (at the point x).

Thus, for a HK basis Φ and for c ∈ KΦ(x) the function h = c1ϕ1 + . . . + clϕl vanishes along the
f -orbit of x. Let us stress that we cannot claim that h = c1ϕ1 + . . . .. + clϕl is an integral of motion,
since vectors c ∈ KΦ(x) do not have to belong to KΦ(y) for initial points y not lying on the orbit
of x. However, for any x the orbit {f i(x)} is confined to the common zero level set of d functions

hj = c
(j)
1 ϕ1 + . . . + c

(j)
l ϕl = 0, j = 1, . . . , d,

where the vectors c(j) =
(
c
(j)
1 , . . . , c

(j)
l

) ∈ Rl form a basis of KΦ(x). We will say that the HK basis Φ
is regular, if the differentials dh1, . . . , dhd are lineraly independent along the common zero level set
of the functions h1, . . . , hd. Thus, knowledge of a regular HK basis with a d-dimensional null-space
leads to a similar conclusion as knowledge of d independent integrals of f , namely to the conclusion
that the orbits lie on (n− d)-dimensional invariant sets. Note, however, that a HK basis gives no
immediate information on how these invariant sets foliate the phase space Rn, since the vectors
c(j), and therefore the functions hj , change from one initial point x to another.

Although the notions of integrals and of HK bases cannot be immediately translated into one
another, they turn out to be closely related.

The simplest situation for a HK basis corresponds to l = 2, dimKΦ(x) = d = 1. In this case we
immediately see that h = ϕ1/ϕ2 is an integral of motion of the map f . Conversely, for any rational
integral of motion h = ϕ1/ϕ2 its numerator and denominator ϕ1, ϕ2 satisfy

c1ϕ1(f i(x)) + c2ϕ2(f i(x)) = 0, i ∈ Z,

with c1 = 1, c2 = −h(x), and thus build a HK basis with l = 2. Thus, the notion of a HK basis
generalizes (for l > 3) the notion of integrals of motion.

On the other hand, knowing a HK basis Φ with dimKΦ(x) = d > 1 allows one to find integrals
of motion for the map f . Indeed, from Definition 2 there follows immediately:
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Proposition 3. If Φ is a HK basis for a map f , then
KΦ(f(x)) = KΦ(x).

Thus, the d-dimensional null-space KΦ(x) ∈ Gr(d, l), regarded as a function of the initial point
x ∈ Rn, is constant along trajectories of the map f , i.e., it is a Gr(d, l)-valued integral. Its Plücker
coordinates are then scalar integrals:
Corollary 1. Let Φ be a HK basis for f with dimKΦ(x) = d for all x ∈ Rn. Take a basis of KΦ(x)
consisting of d vectors c(i) ∈ Rl and put them into the columns of a l × d matrix C(x). For any
d-index α = (α1, . . . , αd) ⊂ {1, 2, . . . , n} let Cα = Cα1...αd

denote the d× d minor of the matrix C
built from the rows α1, . . . , αd. Then for any two d-indices α, β the function Cα/Cβ is an integral
of f .

Especially simple is the situation where the null-space of a HK basis has dimension d = 1.
Corollary 2. Let Φ be a HK basis for f with dimKΦ(x) = 1 for all x ∈ Rn. Let KΦ(x) = [c1(x) :
. . . : cl(x)] ∈ RPl−1. Then the functions cj/ck are integrals of motion for f .

An interesting (and difficult) question is about the number of functionally independent integrals
obtained from a given HK basis according to Corollaries 1 and 2. It is possible for a HK basis with
a one-dimensional null-space to produce more than one independent integral. The first examples of
this mechanism (with d = 1) were found in [5] and (somewhat implicitly) in [4].

We note, however, that HK bases appeared in a disguised form in the continuous time theory
long ago. We mention here two relevant examples.

• Classically, integration of a given system of ODEs in terms of elliptic functions started with
the derivation of an equation of the type ẏ2 = P4(y), where y is one of the components of
the solution, and P4(y) is a polynomial of degree 4 with constant coefficients (depending on
parameters of the system and on its integrals of motion), see examples in Sections 12, 13.
This can be interpreted as the claim about Φ = (ẏ2, y4, y3, y2, y, 1) being a HK basis with
a one-dimensional null-space.

• According to [8, Sect. 7.6.6], for any algebraically integrable system, one can choose projective
coordinates y0, y1, . . . , yn so that quadratic Wronskian equations are satisfied:

ẏiyj − yiẏj =
n∑

k,l=0

αkl
ijykyl,

with coefficients αkl
ij depending on integrals of motion of the original system. Again, this

admits an immediate interpretation in terms of HK bases consisting of the Wronskians and
the quadratic monomials of the coordinate functions: Φij =

(
ẏiyj − yiẏj , {ykyl}n

k,l=0

)
.

Thus, these HK bases consist not only of simple monomials, but include also more complicated
functions composed of the vector field of the system at hand. We will encounter discrete counterparts
of these HK bases, as well.

At present, we cannot give any theoretical sufficient conditions for existence of a HK basis Φ for
a given map f , and the only way to find such a basis remains the experimental one. Definition 2
requires to verify condition (3.1) for all i ∈ Z, which is, of course, impractical. However, it is enough
to check this condition for a finite number of iterates f i.

Typically (that is, for general maps f and general monomial sets Φ), the dimension of
the vector space of solutions of the homogeneous system of s linear equations (3.1) with i =
i0, i0 + 1, . . . , i0 + s− 1 decays with the growing s, from l − 1 for s = 1 down to 0 for s = l. If,
however, Φ is a HK basis for f with a d-dimensional null-space, then this dimension fails to
drop starting with s = l − d + 1. Thus, the dimension of the solution space of the system (3.1)
with i = i0, i0 + 1, . . . , i0 + s− 1 is equal to l − s for all 1 6 s 6 l − d, and remains equal to d
for s = l − d + 1. It is easy to see that this situation can be also characterized as follows: the d-
dimensional spaces of solutions of the system (3.1) with i = i0, i0 + 1, . . . , i0 + l − d− 1 and of the
system (3.1) with i = i0 + 1, i0 + 2, . . . , i0 + l − d coincide with each other and with KΦ(x). The
most important particular case of this characterization corresponds to d = 1 and reads as follows:
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Proposition 4. A set Φ = (ϕ1, . . . , ϕl) is a HK basis for a map f with dimKΦ(x) = 1 if and
only if the unique solution [c1 : . . . : cl] ∈ RPl−1 of the system (3.1) with i = i0, i0 + 1, . . . , i0 + l− 2
coincides with the unique solution of the analogous system with i = i0 + 1, i0 + 2, . . . , i0 + l − 1, in
other words, if this unique solution [c1 : . . . : cl] is an integral of motion:

[c1(x) : . . . : cl(x)] = [c1(f(x)) : . . . : cl(f(x))].

At this point it should be mentioned that a numerical testing of the above criterion usually
represents no problems, but the corresponding symbolic computations might be extremely compli-
cated, due to the complexity of the iterates f i(x). While the expression for f(x) is typically of a
moderate size, already the second iterate f2(x) becomes typically prohibitively big. See the detailed
discussion of the complexity issue for the case of the Clebsch system in [2]. In such a situation it
becomes crucial to reduce the number of iterates involved in (3.1) as far as possible. Several tricks
which can be used for this aim are also described in [2]. Here is one of them.

Proposition 5. Consider the non-homogeneous system of l − 1 equations

c1ϕ1(f i(x)) + . . . + cl−1ϕl−1(f i(x)) = ϕl(f i(x)), i = i0, i0 + 1, . . . , i0 + l − 2. (3.2)

Suppose that the index range i ∈ [i0, i0 + l − 2] in Eq. (3.2) contains 0 but is non-symmetric. If
the solution of this system

(
c1(x, ε), . . . , cl−1(x, ε)

)
is unique and is even with respect to ε, then

all ck(x, ε) are conserved quantities of the map f , and Φ = (ϕ1, . . . , ϕl) is a HK basis for f with
dimKΦ(x) = 1.

Proof. Considering the non-homogeneous system (3.2) instead of the homogeneous one (3.1)
corresponds just to fixing an affine representative of the projective solution [c1 : . . . : cl] by cl = −1.
The reversibility of the map f−1(x, ε) = f(x,−ε) yields that equations of the system (3.2) are
satisfied not only for i ∈ [i0, i0 + l − 2] but for i ∈ [−(i0 + l − 2),−i0], as well. Since, by condition,
the intervals [i0, i0 + l − 2] and [−(i0 + l − 2),−i0] overlap but do not coincide, their union is an
interval containing more than l integers.

Of course, it would be highly desirable to find some structures, like Lax representation, bi-
Hamiltonian structure, etc., which would allow one to check the conservation of integrals in a more
clever way, but up to now no such structures have been found for any of the HK type discretizations.

4. WEIERSTRASS DIFFERENTIAL EQUATION

Consider the second-order differential equation

ẍ = 6x2 − α. (4.1)

Its general solution is given by the Weierstrass elliptic function ℘(t) = ℘(t, g2, g3) with the invariants
g2 = 2α, g3 arbitrary, and by its time shifts. Actually, the parameter g3 can be interpreted as the
value of an integral of motion (conserved quantity) of system (4.1):

ẋ2 − 4x3 + 2αx = −g3.

Being re-written as a system of first-order equations with a quadratic vector field,




ẋ = y,

ẏ = 6x2 − α,
(4.2)

equation (4.1) becomes suitable for an application of the Kahan–Hirota–Kimura discretization:




x̃− x =
ε

2
(ỹ + y) ,

ỹ − y = ε (6xx̃− α) .

(4.3)
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Eqs. (4.3), put as a linear system for (x̃, ỹ), read:

 1 −ε/2

−6εx 1





x̃

ỹ


 =


x + εy/2

y − εα


 .

This can be immediately solved, thus yielding an explicit birational map (x̃, ỹ) = f(x, y, ε):




x̃ =
x + εy − ε2α/2

1− 3ε2x
,

ỹ =
y + ε(6x2 − α) + 3ε2xy

1− 3ε2x
.

(4.4)

This map turns out to be integrable: it possesses an invariant two-form

ω =
dx ∧ dy

1− 3ε2x
, (4.5)

and an integral of motion (conserved quantity):

I(x, y, ε) =
y2 − 4x3 + 2αx + ε2x(y2 − 2αx)− ε4α2x

1− 3ε2x
. (4.6)

Both these objects are O(ε2)-perturbations of the corresponding objects for the continuous time
system (4.2). The statement about the invariant two-form (4.5) is not difficult to prove. The fol-
lowing argument exemplifies considerations which hold for an arbitrary Kahan discretization (1.1).
Differentiating Eqs. (4.3) with respect to x and to y, we obtain the columns of the matrix equation


 1 −ε/2

−6εx 1


 ∂(x̃, ỹ)

∂(x, y)
=


 1 ε/2

6εx̃ 1


 ,

whence

det
∂(x̃, ỹ)
∂(x, y)

=
1− 3ε2x̃

1− 3ε2x
.

This is equivalent to the preservation of (4.5). The statement about the conserved quantity is most
simply verified with any computer system for symbolic manipulations.

System (4.3) is known in the literature on integrable maps, although in a somewhat different
form. Indeed, it is equivalent to the second order difference equation

x̃− 2x + x
˜

= ε2
(
3x(x̃ + x

˜
)− α

) ⇔ x̃− 2x + x
˜

=
ε2(6x2 − α)

1− 3ε2x
.

This equation belongs to class of integrable QRT systems [9, 10]; in order to see this, one should
re-write it as

x̃− 2x + x
˜

=
ε2(6x2 − α)(1 + ε2x)

1− 2ε2x− 3ε4x2
.

This difference equation generates a map (x, x
˜
) 7→ (x̃, x) which is symplectic, that is, preserves the

two-form ω = dx ∧ dx̃, and possesses a biquadratic integral of motion

I(x, x̃, ε) = (x̃− x)2 − 2ε2xx̃(x + x̃) + ε2α(x + x̃)− ε4(3x2x̃2 − αxx̃).

Under the change of variables (x, x̃) 7→ (x, y) given by the first equation in (4.4), these integrability
attributes turn into the two-form (4.5) and the conserved quantity (4.6) (up to an additive constant).

We note that a more usual QRT discretization of the Weierstrass second order equation (4.1)
would be

x̃− 2x + x
˜

=
ε2(6x2 − α)

1− 2ε2x
, (4.7)
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with a simpler conserved quantity

J(x, x̃, ε) = (x̃− x)2 − 2ε2xx̃(x + x̃) + ε2α(x + x̃).
Eq. (4.7) is equivalent to

x̃− 2x + x
˜

= ε2
(
2x(x̃ + x

˜
) + 2x2 − α

)
,

which is not obtained by the Kahan–Hirota–Kimura method.

5. SOME TWO-DIMENSIONAL INTEGRABLE SYSTEMS
5.1. The Three-dimensional Suslov System

The three-dimensional nonholonomic Suslov problem [11] is defined by the following system of
differential equations

ṁ = m× ω + λa, 〈a, ω〉 = 0, (5.1)

where ω = (ω1, ω2, ω3)T is the angular velocity, m = (m1, m2,m3)T = Iω is the angular momentum,
I is the inertia operator, a is a unit vector fixed in the body, and λ is the Lagrange multiplier. In
a basis where a = (0, 0, 1)T and

I =




I1 0 I13

0 I2 I23

I13 I23 I3


 ,

the constraint 〈a, ω〉 = 0 reduces to ω3 = 0, and equations of motion (5.1) read



I1ω̇1 = −(I13ω1 + I23ω2)ω2,

I2ω̇2 = (I13ω1 + I23ω2)ω1,

I13ω̇1 + I23ω̇2 = (I1 − I2)ω1ω2 + λ.

(5.2)

The first two equations in (5.2) form a closed system for ω1 and ω2. It possesses a conserved
quantity H = I1ω

2
1 + I2ω

2
2. After the solution of this system is found (Suslov gave it in terms

of trigonometric and exponential functions), one finds the Lagrange multiplier λ from the third
equation in (5.2).

To put the first two equations in (5.2) into a more convenient form, one can introduce the
coordinates x = I13ω1 + I23ω2, y = I23I1ω1 − I13I2ω2, and arrives at




ẋ = αxy,

ẏ = −x2,
(5.3)

where α = 1/I1I2. This system admits a conserved quantity

H = x2 + αy2.

Proposition 6 ([12]). HK discretization of system (5.3),




x̃− x = εα(x̃y + xỹ),

ỹ − y = −2εx̃x,

possesses an invariant two-form and an integral of motion, given by

ω =
dx ∧ dy

x(x2 + αy2)
, H(ε) =

x2 + αy2

1 + ε2αx2
.

Actually, the invariant two-form was not given in [12]; rather, this paper contains an explicit solution
of the discrete time Suslov system and its qualitative analysis.
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5.2. Reduced Nahm Equations

In [13] Nahm equations associated with symmetric monopoles are considered. Assuming
rotational symmetry groups of regular polytops leads to solutions of Nahm equations in terms
of elliptic functions. Reduced equations corresponding to tetrahedrally symmetric monopoles of
charge 3, to octahedrally symmetric monopoles of charge 4, and to icosahedrally symmetric
monopoles of charge 6 are two-dimensional algebraically integrable systems with quadratic vector
fields. More concretely, the reductions of Nahm equations derived in [13] read:

(i) tetrahedral symmetry:




ẋ = x2 − y2,

ẏ = −2xy,
(5.4)

with an integral of motion H = y(3x2 − y2);
(ii) octahedral symmetry:





ẋ = 2x2 − 12y2,

ẏ = −6xy − 4y2,
(5.5)

with an integral of motion H = y(2x + 3y)(x− y)2;
(iii) icosahedral symmetry:





ẋ = 2x2 − y2,

ẏ = −10xy + y2,
(5.6)

with an integral of motion H = y(3x− y)2(4x + y)3.
HK discretizations of systems (5.4)–(5.6) turn out to be algebraically integrable.

Proposition 7.
(i) HK discretization of system (5.4),





x̃− x = ε(x̃x− ỹy),

ỹ − y = −ε(x̃y + xỹ),

possesses an invariant two-form and an integral of motion, given by

ω =
dx ∧ dy

y(3x2 − y2)
, H(ε) =

y(3x2 − y2)
1− ε2(x2 + y2)

;

(ii) HK discretization of system (5.5),




x̃− x = ε (2x̃x− 12ỹy) ,

ỹ − y = −ε(3x̃y + 3xỹ + 4ỹy),

possesses an invariant two-form and an integral of motion given by

ω =
dx ∧ dy

y(2x + 3y)(x− y)
,

H(ε) =
y(2x + 3y)(x− y)2

1− 10ε2(x2 + 4y2) + ε4(9x4 + 272x3y − 352xy3 + 696y4)
;
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(iii) HK discretization of system (5.6),




x̃− x = ε (2x̃x− ỹy) ,

ỹ − y = ε(−5x̃y − 5xỹ + ỹy),

possesses an invariant two-form and an integral of motion given by

ω =
dx ∧ dy

y(3x− y)(4x + y)
, H(ε) =

y(3x− y)2(4x + y)3

1 + ε2c2 + ε4c4 + ε6c6
,

with

c2 = −7(5x2 − y2),

c4 = 7(37x4 + 22x2y2 − 2xy3 + 2y4),

c6 = −225x6 + 3840x5y + 80xy5 − 514x3y3 − 19x4y2 − 206x2y4.

6. EULER TOP

The differential equations of motion of the Euler top read




ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

(6.1)

with real parameters αi. This is one of the most famous integrable systems of the classical
mechanics, with a big literature devoted to it. It can be explicitly integrated in terms of elliptic
functions, and admits two functionally independent integrals of motion. Actually, a quadratic
function H(x) = γ1x

2
1 + γ2x

2
2 + γ3x

2
3 is an integral for Eqs. (6.1) as soon as γ1α1 + γ2α2 + γ2α2 = 0.

In particular, the following three functions are integrals of motion:

H1 = α2x
2
3 − α3x

2
2, H2 = α3x

2
1 − α1x

2
3, H3 = α1x

2
2 − α2x

2
1.

Clearly, only two of them are functionally independent because of α1H1 + α2H2 + α3H3 = 0. These
integrals appear also on the right-hand sides of the quadratic (in this case even linear) expressions
for the Wronskians of the coordinates xj :





ẋ2x3 − x2ẋ3 = H1x1,

ẋ3x1 − x3ẋ1 = H2x2,

ẋ1x2 − x1ẋ2 = H3x3.

(6.2)

Moreover, one easily sees that the coordinates xj satisfy the following differential equations with
the coefficients depending on the integrals of motion:





ẋ2
1 = (H3 + α2x

2
1)(α3x

2
1 −H2),

ẋ2
2 = (H1 + α3x

2
2)(α1x

2
2 −H3),

ẋ2
3 = (H2 + α1x

2
3)(α2x

2
3 −H1).

The fact that the polynomials on the right-hand sides of these equations are of degree four implies
that the solutions are given by elliptic functions.
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The HK discretization of the Euler top [4] is:




x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

(6.3)

(In this form it corresponds to the stepsize 2ε rather than ε.) The map f : x 7→ x̃ obtained by
solving (6.3) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)x, A(x, ε) =




1 −εα1x3 −εα1x2

−εα2x3 1 −εα2x1

−εα3x2 −εα3x1 1


 . (6.4)

It might be instructive to have a look at the explicit formulas for this map:




x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x

2
1 + α3α1x

2
2 + α1α2x

2
3)

∆(x, ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x

2
1 − α3α1x

2
2 + α1α2x

2
3)

∆(x, ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x

2
1 + α3α1x

2
2 − α1α2x

2
3)

∆(x, ε)
,

(6.5)

where

∆(x, ε) = detA(x, ε) = 1− ε2(α2α3x
2
1 + α3α1x

2
2 + α1α2x

2
3)− 2ε3α1α2α3x1x2x3. (6.6)

We will use the abbreviation dET for this map. As is always the case for a HK discretization, dET
is birational, with the reversibility property expressed as f−1(x, ε) = f(x,−ε).

Proposition 8. ([4, 14]) The quantities

F1 =
1− ε2α3α1x

2
2

1− ε2α1α2x2
3

, F2 =
1− ε2α1α2x

2
3

1− ε2α2α3x2
1

, F3 =
1− ε2α2α3x

2
1

1− ε2α3α1x2
2

,

are conserved quantities of dET. Of course, there are only two independent integrals since
F1F2F3 = 1.

The relation between Fi and the integrals Hi of the continuous time Euler top is straightforward:
Fi = 1 + ε2αiHi + O(ε4). As a corollary of Proposition 8, we find that, for any conserved quantity
H of the Euler top which is a linear combination of the integrals H1,H2,H3, the three functions
H/(1− ε2αjαkx

2
i ) are conserved quantities of dET. Hereafter (i, j, k) are cyclic permutations of

(1, 2, 3). In particular, the functions

Hi(ε) =
αjx

2
k − αkx

2
j

1− ε2αjαkx
2
i

(6.7)

are conserved quantities of dET. Again, only two of them are independent, since

α1H1(ε) + α2H2(ε) + α3H3(ε) + ε4α1α2α3H1(ε)H2(ε)H3(ε) = 0.

Proposition 9. ([14]) The map dET possesses an invariant volume form:

det
∂x̃

∂x
=

φ(x̃)
φ(x)

⇔ f∗ω = ω, ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
,
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where φ(x) is any of the functions

φ(x) = (1− ε2αiαjx
2
k)(1− ε2αjαkx

2
i ) or (1− ε2αiαjx

2
k)

2.

(The ratio of any two functions φ(x) is an integral of motion, due to Proposition 8).

The proof is based on formula (2.2) with the matrix A(x, ε) given in (6.4). Its determinant is given
in (6.6).

A proper discretization of the Wronskian differential equations (6.2) is given by the following
statement.

Proposition 10. The following relations hold true for dET:




x̃2x3 − x2x̃3 = εH1(ε)(x̃1 + x1),

x̃3x1 − x3x̃1 = εH2(ε)(x̃3 + x3),

x̃1x2 − x1x̃2 = εH3(ε)(x̃3 + x3),

(6.8)

with the functions Hi(ε) from (6.7).

The proof is based on relations

x̃i + xi =
2(1− ε2αjαkx

2
i )(xi + εαixjxk)

∆(x, ε)
, (6.9)

x̃jxk − xj x̃k =
2ε(αjx

2
k − αkx

2
j )(xi + εαixjxk)

∆(x, ε)
, (6.10)

which follow easily from the explicit formulas (6.5). They should be compared with

x̃i − xi = εαi(x̃jxk + xj x̃k) =
2εαi(xj + εαjxkxi)(xk + εαkxixj)

∆(x, ε)
. (6.11)

As pointed out in [2], a probable way to the discovery of the conserved quantities of dET in [4]
was through finding the HK bases for this map. In this respect, one has the following results.

Proposition 11. ([2])
(a) The set Φ = (x2

1, x2
2, x2

3, 1) is a HK basis for dET with dimKΦ(x) = 2. Therefore, any orbit
of dET lies on the intersection of two quadrics in R3.

(b) The set Φ0 = (x2
1, x2

2, x2
3) is a HK basis for dET with dimKΦ0(x) = 1. At each point x ∈ R3

we have:

KΦ0(x) = [c1 : c2 : c3] = [α2x
2
3 − α3x

2
2 : α3x

2
1 − α1x

2
3 : α1x

2
2 − α2x

2
1 ].

Setting c3 = −1, the following functions are integrals of motion of dET:

c1(x) =
α3x

2
2 − α2x

2
3

α1x2
2 − α2x2

1

, c2(x) =
α1x

2
3 − α3x

2
1

α1x2
2 − α2x2

1

. (6.12)

(c) The set Φ12 = (x2
1, x2

2, 1) is a further HK basis for dET with dimKΦ12(x) = 1. At each point
x ∈ R3 we have: KΦ12(x) = [d1 : d2 : −1], where

d1(x) = −α2(1− ε2α3α1x
2
2)

α1x2
2 − α2x2

1

, d2(x) =
α1(1− ε2α2α3x

2
1)

α1x2
2 − α2x2

1

. (6.13)

These functions are integrals of motion of dET independent on the integrals (6.12). We have:
KΦ(x) = KΦ0 ⊕KΦ12.
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Proof. To prove statement (b), we solve the system
{

c1x
2
1 + c2x

2
2 = x2

3,

c1x̃
2
1 + c2x̃

2
2 = x̃2

3.

The solution is given, according to the Cramer’s rule, by ratios of determinants of the type
∣∣∣∣∣
x2

i x2
j

x̃2
i x̃2

j

∣∣∣∣∣ =
4ε(αjx

2
i − αix

2
j )(x1 + εα1x2x3)(x2 + εα2x3x1)(x3 + εα3x1x2)

∆2(x, ε)
. (6.14)

(Here we used (6.10), (6.11)). In the ratios of such determinants everything cancels out, except for
the factors αjx

2
i − αix

2
j , so we end up with (6.12). The cancelation of the denominators ∆2(x, ε)

is, of course, no wonder, but the cancelation of all the non-even factors in the numerators is
rather remarkable and miraculous and is not granted by any well-understood mechanism. Since the
components of the solution do not depend on ε, we conclude that functions (6.12) are integrals of
motion of dET.

To prove statement (c), we solve the system
{

d1x
2
1 + d2x

2
2 = 1,

d1x̃
2
1 + d2x̃

2
2 = 1.

The solution is given by Eq. (6.13), due to Eq. (6.14) and the similar formula
∣∣∣∣∣
1 x2

i

1 x̃2
i

∣∣∣∣∣ =
4εαi(1− ε2αjαkx

2
i )(x1 + εα1x2x3)(x2 + εα2x3x1)(x3 + εα3x1x2)

∆2(x, ε)
,

which, in turn, follows from (6.9) and (6.10). This time the solution does depend on ε, but consists
of manifestly even functions of ε. Everything non-even luckily cancels, again. Therefore, functions
(6.13) are integrals of motion of dET.

Although each one of the HK bases Φ0, Φ1 delivers apparently two integrals of motion (6.12),
each pair turns out to be functionally dependent, as

α1c1(x) + α2c2(x) = α3, α1d1(x) + α2d2(x) = ε2α1α2α3.

However, functions c1, c2 are independent on d1, d2, since the former depend on x3, while the latter
do not.

Of course, permutational symmetry yields that each of the sets of monomials Φ23 = (x2
2, x2

3, 1)
and Φ13 = (x2

1, x2
3, 1) is a HK basis, as well, with dimKΦ23(x) = dimKΦ13(x) = 1. But we do not

obtain additional linearly independent null-spaces, as any two of the four found one-dimensional
null-spaces span the full null-space KΦ(x).

Summarizing, we have found a HK basis with a two-dimensional null-space, as well as two
functionally independent conserved quantities for the HK discretization of the Euler top. Both
results yield integrability of this discretization, in the sense that its orbits are confined to closed
curves in R3. Moreover, each such curve is an intersection of two quadrics, which in the general
position case is an elliptic curve.

Proposition 12. Each component xi of any solution of dET satisfies a relation of the type
Pi(xi, x̃i) = 0, where Pi is a biquadratic polynomial whose coefficients are integrals of motion of
dET:

Pi(xi, x̃i) = p
(3)
i x2

i x̃
2
i + p

(2)
i (x2

i + x̃2
i ) + p

(1)
i xix̃i + p

(0)
i = 0,

with

p
(3)
i = −4ε2αjαk, p

(2)
i =

(
1 + ε2αjHj(ε)

)(
1− ε2αkHk(ε)

)
,

p
(1)
i = −2

(
1− ε2αjHj(ε)

)(
1 + ε2αkHk(ε)

)
, p

(0)
i = 4ε2Hj(ε)Hk(ε).

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



ON INTEGRABILITY OF HIROTA–KIMURA TYPE DISCRETIZATIONS 259

Proof. From Eqs. (6.3) and (6.8) there follows:

(x̃i − xi)2

(εαi)2
+ ε2H2

i (ε)(x̃i + xi)2 = 2(x̃2
jx

2
k + x2

j x̃
2
k).

It remains to express x2
j and x2

k through x2
i and integrals Hj(ε), Hk(ε) given in Eq. (6.7).

It follows from Proposition 12 that solutions xi(t) as functions of the discrete time t ∈ 2εZ are
given by elliptic functions of order 2 (the order of an elliptic function is the number of the zeroes
or poles it possesses in a period parallelogram).

We would like to point out that Propositions 10 and 12 can be interpreted as existence of
further HK bases. For instance, according to Proposition 10, each pair (x̃jxk − xj x̃k, x̃i + xi) is a
HK basis with a 1-dimensional null-space. Similarly, Proposition 12 says that for each i = 1, 2, 3,
the set xp

i x̃
q
i (0 6 p, q 6 2) is a HK basis with a 1-dimensional null-space. Of course, due to the

dependence on the shifted variables x̃, these HK bases consist of complicated functions of x rather
than of monomials. A further instance of HK bases of this sort is given in the following statement.
Compared with Proposition 11, it says that for dET, for each HK basis consisting of monomials
quadratic in x, the corresponding set of monomials bilinear in x, x̃ is a HK basis, as well. This
seems to be a quite general phenomenon, further issues of which will appear later several times.
Proposition 13.

(a) The set Ψ = (x̃1x1, x̃2x2, x̃3x3, 1) is a HK basis for dET with dimKΨ(x) = 2.
(b) The set Ψ0 = (x̃1x1, x̃2x2, x̃3x3) is a HK basis for dET with dimKΨ0(x) = 1. At each point

x ∈ R3, the homogeneous coordinates c̄i of the null-space KΨ0(x) = [c̄1 : c̄2 : c̄3] are given by

c̄i = (αjx
2
k − αkx

2
j )

(
1− ε2(αiαjx

2
k + αkαix

2
j − αjαkx

2
i )

)
.

The quotients c̄i/c̄j are integrals of motion of dET.

(c) The set Ψ12 = (x̃1x1, x̃2x2, 1) is a further HK basis for dET with dimKΨ12(x) = 1. At each
point x ∈ R3, there holds: KΨ12(x) = [d̄1 : d̄2 : −1], where

d̄1(x) = −α2(1− ε2α3α1x
2
2)

α1x2
2 − α2x2

1

1− ε2(α2α3x
2
1 − α3α1x

2
2 + α1α2x

2
3)

1− ε2(α2α3x2
1 + α3α1x2

2 − α1α2x2
3)

,

d̄2(x) =
α1(1− ε2α2α3x

2
1)

α1x2
2 − α2x2

1

1− ε2(α3α1x
2
2 − α2α3x

2
1 + α1α2x

2
3)

1− ε2(α3α1x2
2 + α2α3x2

1 − α1α2x2
3)

,

are integrals of dET. We have: KΨ(x) = KΨ0(x)⊕KΨ12(x).

7. ZHUKOVSKI–VOLTERRA SYSTEM
The gyroscopic Zhukovski–Volterra (ZV) system is a generalization of the Euler top. It describes

the free motion of a rigid body carrying an asymmetric rotor (gyrostat) [15]. Equations of motion
of the ZV system read 




ẋ1 = α1x2x3 + β3x2 − β2x3,

ẋ2 = α2x3x1 + β1x3 − β3x1,

ẋ3 = α3x1x2 + β2x1 − β1x2,

(7.1)

with αi, βi being real parameters of the system. For (β1, β2, β3) = (0, 0, 0), the flow (7.1) reduces to
the Euler top (6.1). The ZV system is (Liouville and algebraically) integrable under the condition

α1 + α2 + α3 = 0. (7.2)

It can be explicitly integrated in terms of elliptic functions, see [15] and also [16] for a more recent
exposition. The following quantities are integrals of motion of the ZV system:

H1 = α2x
2
3 − α3x

2
2 − 2(β1x1 + β2x2 + β3x3),
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H2 = α3x
2
1 − α1x

2
3 − 2(β1x1 + β2x2 + β3x3), (7.3)

H3 = α1x
2
2 − α2x

2
1 − 2(β1x1 + β2x2 + β3x3).

Clearly, only two of them are functionally independent because of α1H1 + α2H2 + α3H3 = 0. Note
that

H2 −H1 = α3C, H3 −H2 = α1C, H1 −H3 = α2C,

with C = x2
1 + x2

2 + x2
3.

As in the Euler case, the Wronskians of the coordinates xj admit quadratic expressions with
coefficients dependent on the integrals of motion:




ẋ2x3 − x2ẋ3 = H1x1 + x1(β1x1 + β2x2 + β3x3) + β1C,

ẋ3x1 − x3ẋ1 = H2x2 + x2(β1x1 + β2x2 + β3x3) + β2C,

ẋ1x2 − x1ẋ2 = H3x3 + x3(β1x1 + β2x2 + β3x3) + β3C.

(7.4)

The HK discretization of the ZV system is:



x̃1 − x1 = εα1(x̃2x3 + x2x̃3) + εβ3(x̃2 + x2)− εβ2(x̃3 + x3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1) + εβ1(x̃3 + x3)− εβ3(x̃1 + x1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2) + εβ2(x̃1 + x1)− εβ1(x̃2 + x2).

(7.5)

The map f : x 7→ x̃ obtained by solving (7.5) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)(1+ εB)x,

with

A(x, ε) =




1 −εα1x3 −εα1x2

−εα2x3 1 −εα2x1

−εα3x2 −εα3x1 1


− εB, B =




0 β3 −β2

−β3 0 β1

β2 −β1 0


 .

We will call this map dZV. Formula (2.2) holds true for dZV, as for any HK discretization.

7.1. ZV System with Two Vanishing βk’s

In the case where two out of three βk’s vanish, say β2 = β3 = 0, the condition (7.2) is not
necessary for integrability of the ZV system. The functions H2 and H3 as given in (7.3) (with
β2 = β3 = 0) are in this case conserved quantities without any condition on αk’s, while their linear
combinations H1 and C are given by

H1 = − 1
α1

(α2H2 + α3H3) = α2x
2
3 − α3x

2
2 + 2β1

α2 + α3

α1
x1,

C =
1
α1

(H3 −H2) = x2
2 + x2

3 −
α2 + α3

α1
x2

1.

Wronskian relations (7.4) are replaced by




ẋ2x3 − x2ẋ3 = H1x1 − β1
α2 + α3

α1
x2

1 + β1C,

ẋ3x1 − x3ẋ1 = H2x2 + β1x1x2,

ẋ1x2 − x1ẋ2 = H3x3 + β1x1x3.

(7.6)

The HK discretization of the ZV system with β2 = β3 = 0 turns out to possess two conserved
quantities (without imposing condition (7.2)) and an invariant measure.
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Proposition 14. The functions

H2(ε) =
α3x

2
1 − α1x

2
3 − 2β1x1 + ε2β2

1α1x
2
2

1− ε2α3α1x2
2

,

H3(ε) =
α1x

2
2 − α2x

2
1 − 2β1x1 − ε2β2

1α1x
2
3

1− ε2α1α2x2
3

,

are conserved quantities of dZV with β2 = β3 = 0.

Proposition 15. The map dZV with β2 = β3 = 0 possesses an invariant volume form:

det
∂x̃

∂x
=

φ(x̃)
φ(x)

⇔ f∗ω = ω, ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
,

with φ(x) = (1− ε2α3α1x
2
2)(1− ε2α1α2x

2
3).

The conserved quantities of Proposition 14 appear on the right-hand sides of the following
relations which are the discrete versions of the Wronskian relations (7.6):

Proposition 16. The following relations hold true for dZV with β2 = β3 = 0:




x̃2x3 − x2x̃3 = εc1(x̃1 + x1) + 2εc2x̃1x1 + 2εc3,

x̃3x1 − x3x̃1 = εH2(ε)(x̃2 + x2) + εβ1(x̃1x2 + x1x̃2),

x̃1x2 − x1x̃2 = εH3(ε)(x̃3 + x3) + εβ1(x̃1x3 + x1x̃3),

with

c1 = −α2H2(ε) + α3H3(ε)
α1∆

, c2 = −β1(α2 + α3)
α1∆

, c3 =
β1

(
H3(ε)−H2(ε)

)

α1∆
,

∆ = 1 + ε4
(
α2H3(ε)− β2

1

)(
α3H2(ε) + β2

1

)
.

Next, we describe the HK bases found in this case.

Proposition 17.
(a) The set Φ = (x2

1, x2
2, x2

3, x1, 1) is a HK basis for dZV with β2 = β3 = 0, with dimKΦ(x) = 2.
Any orbit of dZV with β2 = β3 = 0 is thus confined to the intersection of two quadrics in R3.

(b) The set Φ0 = (x2
1, x2

2, x2
3, 1) is a HK basis for dZV with β2 = β3 = 0, with dimKΦ0(x) = 1.

At each point x ∈ R3 we have: KΦ0(x) = [−1 : d2 : d3 : d4], where

d2 =
α1

α2 + α3

(
1− ε2β2

1 − ε2α3H2(ε)
)
, d3 =

α1

α2 + α3

(
1− ε2β2

1 + ε2α2H3(ε)
)
,

d4 =
1

α2 + α3

(
H2(ε)−H3(ε)

)
.

(c) The set Φ23 = (x2
2, x2

3, x1, 1) is a HK basis for dZV with β2 = β3 = 0, with dimKΦ23(x) = 1.
At each point x ∈ R3 we have: KΦ23(x) = [c1 : c2 : c3 : c4], where

c1 = α1

(
α3 + ε2β2

1α2 + ε2α2α3H2(ε)
)
, c2 = −α1

(
α2 + ε2β2

1α3 − ε2α2α3H3(ε)
)
,

c3 = −2β1(α2 + α3), c4 = −(
α2H2(ε) + α3H3(ε)

)
.

Unlike the case of dET, we see that here a HK basis with a one dimensional null-space already
provides more than one independent integral of motion.

“Bilinear” versions of the above HK bases also exist:
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Proposition 18. The set Ψ = (x1x̃1, x2x̃2, x3x̃3, x1 + x̃1, 1) is a HK basis for dZV with β2 =
β3 = 0, with dimKΨ(x) = 2. The sets

Ψ0 = (x1x̃1, x2x̃2, x3x̃3, 1) and Ψ23 = (x2x̃2, x3x̃3, x1 + x̃1, 1)

are HK bases with one-dimensional null-spaces.

The following statement is a starting point towards an explicit integration of the map dZV with
β2 = β3 = 0 in terms of elliptic functions.

Proposition 19. The component x1 of the solution of the difference equations (7.5) satisfies a
relation of the type

P (x1, x̃1) = p0x
2
1x̃

2
1 + p1x1x̃1(x1 + x̃1) + p2(x2

1 + x̃2
1) + p3x1x̃1 + p4(x1 + x̃1) + p5 = 0,

coefficients of the biquadratic polynomial P being conserved quantities of dZV with β2 = β3 = 0.

Proof is parallel to that of Proposition 12.

7.2. ZV System with One Vanishing βk

In the case β3 = 0 (say) and generic values of other parameters, the ZV system has only one
integral H3 and is therefore non-integrable. One of the Wronskian relations holds true in this general
situation:

ẋ1x2 − x1ẋ2 = H3x3 + β1x1x3 + β2x2x3. (7.7)

Under condition (7.2), the ZV system becomes integrable, with all the results formulated in the
general case.

Similarly, the map dZV with β3 = 0 and generic values of other parameters possesses one
conserved quantity:

H3(ε) =
α1x

2
2 − α2x

2
1 − 2(β1x1 + β2x2)− ε2(β2

1α1 + β2
2α2)x2

3

1− ε2α1α2x2
3

.

Clearly, this fact can be re-formulated as the existence of a HK basis Φ = (x2
1, x

2
2, x

2
3, x1, x2, 1) with

dimKΦ = 1. The Wronskian relation (7.7) possesses a decent discretization:

x̃1x2 − x1x̃2 = εH3(ε)(x3 + x̃3) + εβ1(x̃1x3 + x1x̃3) + εβ2(x̃2x3 + x2x̃3).

However, it seems that the map dZV with β3 = 0 does not acquire an additional integral of motion
under condition (7.2). It might be conjectured that in order to assure the integrability of the dZV
map with β3 = 0, its other parameters have to satisfy some relation which is an O(ε)-deformation
of (7.2).

7.3. ZV System with All βk’s Non-vanishing

Numerical experiments indicate non-integrability for the map (7.5) with non-vanishing βk’s,
even under condition (7.2). Nevertheless, some other relation between the parameters might yield
integrability. In this connection we notice that the map dZV with (α1, α2, α3) = (α,−α, 0) admits
a polynomial conserved quantity

H = −αx2
3 − 2(β1x1 + β2x2 + β3x3) + ε2α(β2x1 − β1x2)2.
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8. VOLTERRA CHAIN

8.1. Periodic Volterra Chain with N = 3 Particles

Equations of motion of the periodic Volterra chain with three particles (VC3, for short):




ẋ1 = x1(x2 − x3),

ẋ2 = x2(x3 − x1),

ẋ3 = x3(x1 − x2).

(8.1)

This system is Liouville and algebraically integrable, with the following two independent integrals
of motion:

H1 = x1 + x2 + x3, H2 = x1x2x3.

There hold the following Wronskian relations:

ẋixj − xiẋj = H1xixj − 3H2. (8.2)

Eliminating xj , xk from equation of motion for xi with the help of integrals of motion, one arrives
at

ẋ2
i = x2

i (xi −H1)2 − 4H2xi,

which yields a solution in terms of elliptic functions.
The HK discretization of system (8.1) (with the time step 2ε) is:





x̃1 − x1 = εx1(x̃2 − x̃3) + εx̃1(x2 − x3),

x̃2 − x2 = εx2(x̃3 − x̃1) + εx̃2(x3 − x1),

x̃3 − x3 = εx3(x̃1 − x̃2) + εx̃3(x1 − x2).

(8.3)

The map f : x 7→ x̃ obtained by solving (8.3) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)x,

with

A(x, ε) =




1 + ε(x3 − x2) −εx1 εx1

εx2 1 + ε(x1 − x3) −εx2

−εx3 εx3 1 + ε(x2 − x1)


 .

Explicitly:

x̃i = xi
1 + 2ε(xj − xk) + ε2

(
(xj + xk)2 − x2

i

)

1− ε2(x2
1 + x2

2 + x2
3 − 2x1x2 − 2x2x3 − 2x3x1)

. (8.4)

This map will be called dVC3. From Proposition 2 there follows immediately:

Proposition 20. The map dVC3 possesses an invariant volume form:

det
∂x̃

∂x
=

φ(x̃)
φ(x)

⇔ f∗ω = ω, ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
,

with φ(x) = x1x2x3.

Concerning integrability of dVC3, we note first of all that H1 is an obvious conserved quantity. The
second one is most easily obtained from the following discretization of Wronskian relations (8.2).
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Proposition 21. For the map dVC3, the following relations hold:

x̃ixj − xix̃j = εH1(x̃ixj + xix̃j)− 6εH2(ε)
(
1− 1

3ε2H2
1

)
, (8.5)

where H2(ε) is a conserved quantity, given by

H2(ε) =
x1x2x3

1− ε2(x2
1 + x2

2 + x2
3 − 2x1x2 − 2x2x3 − 2x3x1)

. (8.6)

Proof. Define H2(ε) by Eq. (8.5). It is easily computed with explicit formulas (8.4). The result
given by (8.6) is a manifestly even function of ε and therefore an integral of motion.

Proposition 22.
(a) The set Φij = (xixj(xi + xj), x2

i + x2
j , xixj , xi + xj , 1) is a HK basis for the map dVC3 with

dimKΦij (x) = 1. In other words, the pairs (xi, xj) lie on a cubic curve

P (xi, xj) = p0xixj(xi + xj) + p1(x2
i + x2

j ) + p2xixj + p3(xi + xj) + p4 = 0,

whose coefficients pm are constant (expressed through integrals of motion).

(b) The set Ψi = (x2
i x̃

2
i , xix̃i(xi + x̃i), x2

i + x̃2
i , xix̃i, xi + x̃i, 1) is a HK basis for the map dVC3

with dimKΨi(x) = 1. In other words, the pairs (xi, x̃i) lie on a symmetric biquadratic curve with
constant coefficients (which can be expressed through integrals of motion).

Proof. Statement (a) follows by eliminating xk from (8.6) via xk = H1 − xi − xj . Statement (b)
is obtained with the help of MAPLE; it implies that xi as functions of t are elliptic functions of
degree 2 (i.e., with two poles within one parallelogram of periods).

8.2. Periodic Volterra Chain with N = 4 Particles

Equations of motion of VC4 are:




ẋ1 = x1(x2 − x4),

ẋ2 = x2(x3 − x1),

ẋ3 = x3(x4 − x2),

ẋ4 = x4(x1 − x3).

This system possesses three obvious integrals of motion: H1 = x1 + x2 + x3 + x4, H2 = x1x3, and
H3 = x2x4. One easily finds that x1, x3 satisfy the differential equation

ẋ2
1 = (x2

1 −H1x1 + H2)2 − 4H3x
2
1,

while x2, x4 satisfy a similar equation with H2 ↔ H3. This immeadiately leads to solution in terms
of elliptic functions. There are two types of Wronskian relations:

ẋ1x3 − x1ẋ3 = 2H2(x2 − x4), ẋ2x4 − x2ẋ4 = 2H3(x3 − x1), (8.7)

and
ẋ1x2 − x1ẋ2 = H1x1x2 − 2H2x2 − 2H3x1.

HK discretization (denoted by dVC4):



x̃1 − x1 = εx1(x̃2 − x̃4) + εx̃1(x2 − x4),

x̃2 − x2 = εx2(x̃3 − x̃1) + εx̃2(x3 − x1),

x̃3 − x3 = εx3(x̃4 − x̃2) + εx̃3(x4 − x2),

x̃4 − x4 = εx4(x̃1 − x̃3) + εx̃4(x1 − x4).

It possesses an obvious integral H1 = x1 + x2 + x3 + x4.
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Proposition 23. For the map dVC4, the following natural discretization of Eqs. (8.7) holds:

x̃1x3 − x1x̃3 = 2εH2(ε)(x2 + x̃2 − x4 − x̃4),
x̃2x4 − x2x̃4 = 2εH3(ε)(x1 + x̃1 − x3 − x̃3),

with the conserved quantities

H2(ε) =
x1x3

1− ε2(x2 − x4)2
, H3(ε) =

x2x4

1− ε2(x1 − x3)2
.

Proof. This can be shown directly; the fact that H2(ε), H3(ε) are even functions of ε, assures that
they are conserved quantities. One can also show this immediately from equations of motion: for
instance, multiplying the equations

x̃1

1 + ε(x̃2 − x̃4)
=

x1

1− ε(x2 − x4)
,

x̃3

1− ε(x̃2 − x̃4)
=

x3

1 + ε(x2 − x4)
,

shows that H2(ε) is a conserved quantity.

Proposition 24.
(a) For the iterates of map dVC4, the pairs (x1, x2) lie on a quartic curve whose coefficients are

constant (expressed through integrals of motion).

(b) The pairs (xi, x̃i) lie on a biquartic curve of genus 1 with constant coefficients (which can
be expressed through integrals of motion).

Proof. Statement (a) follows by eliminating x3, x4 from integrals H1,H2(ε),H3(ε). Statement (b)
is obtained with the help of MAPLE; it implies that xi as functions of t are elliptic functions of
degree 4 (i.e., with four poles within one parallelogram of periods).

Note that the reduction x4 = 0 of the periodic Volterra chain with N = 4 leads to the open-end
Volterra chain with N = 3 particles.

9. DRESSING CHAIN (N = 3)

The three-dimensional dressing chain (DC3, for short) is described by the following system of
quadratic ordinary equations [17]:





ẋ1 = x2
3 − x2

2 + α3 − α2,

ẋ2 = x2
1 − x2

3 + α1 − α3,

ẋ3 = x2
2 − x2

1 + α2 − α1,

(9.1)

with real parameters αi. The system (9.1) is (Liouville and algebraically) integrable. The following
quantities are integrals of motion:

I1 = x1 + x2 + x3,

I2 = (x1 + x2)(x2 + x3)(x3 + x1)− α1x1 − α2x2 − α3x3.

Sometimes it is more convenient to use the following integral instead of I2:

H2 = x3
1 + x3

2 + x3
3 + 3α1x1 + 3α2x2 + 3α3x3 = I3

1 − 3I2.

There hold the following Wronskian relations:

ẋixj − xiẋj = I1x
2
k + 2(αi − αk)xi + 2(αj − αk)xj + 3αkI1 −H2. (9.2)

Excluding xj , xk from equations of motion for xi with the help of integrals of motion, one arrives
at

ẋ2
i = x4

i + 6a2x
2
i + 4a3xi + a4, (9.3)
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with

a2 = −1
3(I2

1 + αj + αk − 2αi), a3 = (αj + αk − αi)I1 + I2,

a4 = I4
1 − 2(αj + αk)I2

1 + (αj − αk)2 − 4I1I2.

All three elliptic curves corresponding to (9.3) with i = 1, 2, 3, have equal Weierstrass invariants
(expressed through the parameters αi and the integrals of motion):

g2 = a4 + 3a2
2, g3 = a2a4 − a3

2 − a2
3, so that a2

3 = −4a3
2 + g2a2 − g3.

The coefficients in (9.3) can be thus parametrized in terms of the Weierstrass elliptic function with
the invariants g2, g3 as follows: a2 = −℘(Ai), a3 = ℘′(Ai), so that a4 = g2 − 3℘2(Ai). One can show
that A1 + A2 + A3 = 0 (modulo the period lattice), so that one can introduce Bi, defined up to a
common additive shift, through Ai = Bi −Bi+1. The solution of the dressing chain DC3 is then
given as

xi(t) = ζ(t−Bi+1)− ζ(t−Bi)− ζ(Bi −Bi+1).

The HK discretization of system (9.1) is:




x̃1 − x1 = ε(x̃3x3 − x̃2x2 + α3 − α2),

x̃2 − x2 = ε(x̃1x1 − x̃3x3 + α1 − α3),

x̃3 − x3 = ε(x̃2x2 − x̃1x1 + α2 − α1).

(9.4)

The map f : x 7→ x̃ obtained by solving (9.4) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)(x + εc),

with

A(x, ε) =




1 εx2 −εx3

−εx1 1 εx3

εx1 −εx2 1


 , c = (α3 − α2, α1 − α3, α2 − α1)T.

Explicitly:

x̃i =
xi + ε(x2

k − x2
j + αk − αj) + ε2

(
I1xjxk + (αk − αi)xj + (αj − αi)xk

)

1 + ε2(x1x2 + x2x3 + x3x1)
. (9.5)

This map will be called dDC3. From Proposition 1 there follows immediately:

Proposition 25. The map dDC3 possesses an invariant volume form:

det
∂x̃

∂x
=

φ(x̃)
φ(x)

⇔ f∗ω = ω, ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
,

with φ(x) = 1 + ε2(x1x2 + x2x3 + x3x1).

Concerning integrability of dDC3, we note first of all that I1 is an obvious conserved quantity. The
second one is most easily obtained from the following discretization of Wronskian relations (9.2).

Proposition 26. For the map dDC3, the following relations hold:

x̃ixj − xix̃j

ε
= I1xkx̃k + (αi − αk)(xi + x̃i) + (αj − αk)(xj + x̃j) + 3αkI1 −H2(ε), (9.6)

where H2(ε) is a conserved quantity, given by

H2(ε) =
H2 + ε2G2

1 + ε2(x1x2 + x2x3 + x3x1)
, (9.7)
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where

G2 = I2
1x1x2x3 + (α1x1 + α2x2 + α3x3)(x1x2 + x2x3 + x3x1)

+2I1(α1x2x3 + α2x3x1 + α3x1x1)

−(α2 − α3)2x1 − (α3 − α1)2x2 − (α1 − α2)2x3.

Proof. Define H2(ε) by Eq. (9.6). It is easily computed with explicit formulas (9.5). The result
given by (9.7) is a manifestly even function of ε and therefore an integral of motion.

Proposition 27.
(a) The set Φij = (x3

i , x3
j , xixj(xi + xj), x2

i , xixj , x2
j , xi, xj , 1) is a HK basis for the map dDC3

with dimKΦij (x) = 1. In other words, the pairs xi, xj satisfy equations of degree 3,

Pij(xi, xj) = p0x
3
i + p1x

3
j + p2xixj(xi + xj) + p3x

2
i + p4xixj + p5x

2
j + p6xi + p7xj + p8 = 0,

whose coefficients pm = p
(ij)
m are constant (expressed through parameters αk and integrals of

motion).

(b) The set Ψi = (xm
i x̃n

i )3m,n=0 is a HK basis for the map dDC3 with dimKΨi(x) = 1. In other
words, the pairs xi, x̃i lie on bicubic curves of genus 1:

Qi(xi, x̃i) =
3∑

m,n=0

qmnxm
i x̃n

i = 0,

whose coefficients qmn = q
(i)
mn are constant (expressed through parameters αk and integrals of

motion). Moreover, q13 = q31.

Proof. Statement (a) follows by eliminating xk from (9.7) via xk = I1 − xi − xj . Statement (b) is
obtained with the help of MAPLE. One can also show that these bicubic curves are of genus 1,
so that xi as functions of t are elliptic functions of degree 3 (i.e., with three poles within one
parallelogram of periods).

10. COUPLED EULER TOPS
In [18] a remarkable mechanical system was introduced, which can be interpreted as a chain of

coupled three-dimensional Euler tops. The differential equations governing the system are given by:




ẋ1 = α1x2x3,

ẋ2j = α3j−1x2j−1x2j+1,

ẋ2j+1 = α3jx2jx2j−1 + α3j+1x2j+2x2j+3,

ẋ2j+2 = α3j+2x2j+1x2j+3,

ẋ2N+1 = α3Nx2Nx2N−1,

(10.1)

with real parameters αi. Each triple of variables (x2j−1, x2j , x2j+1) can be considered as a 3D Euler
top, coupled with the neighboring triple (x2j+1, x2j+2, x2j+3) via the variable x2j+1. We will denote
system (10.1) by CETN . It has N + 1 independent conserved quantities:

H1 = α2x
2
1 − α1x

2
2,

Hj = α3j−3α3j−1x
2
2j−2 − α3j−4α3j−1x

2
2j−1 + α3j−4α3j−2x

2
2j , 2 6 j 6 N,

HN+1 = α3Nx2
2N − α3N−1x

2
2N+1.

Nothing is known about the possible Hamiltonian formulation of this system, and therefore about
its integrability in the Liouville–Arnold sense.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



268 PETRERA et al.

For N = 1 system (10.1) reduces to the usual Euler top (6.1). We will consider in detail the HK
discretization of the system CET2 given by





ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2 + α4x4x5,

ẋ4 = α5x5x3,

ẋ5 = α6x3x4.

(10.2)

It can be interpreted as two Euler tops, described by the two sets of variables (x1, x2, x3) and
(x3, x4, x5), respectively, coupled via the variable x3. It has three independent integrals of motion:

H1 = α2x
2
1 − α1x

2
2, H3 = α6x

2
4 − α5x

2
5,

H2 = α3α5x
2
2 − α2α5x

2
3 + α2α4x

2
4,

and it can be solved in terms of elliptic functions. We will be mainly interested in its particular
case which is superintegrable.

Proposition 28. If the coefficients αi satisfy the following condition,

α1α2 = α5α6, (10.3)

then the system CET2 is superintegrable: it has two additional integrals,

H4 = α5x2x5 − α2x1x4, H5 = α5x1x5 − α1x2x4,

and among the functions H1, . . . , H5 there are four independent ones.

In this case, the variable x3 satisfies the following differential equation:

ẋ2
3 =

(
x2

3 +
H2

α2α5

)(
α1α2x

2
3 +

α1

α5
H2 + α3H1 − α4H3

)
− α3α4

α2α5
H2

4 , (10.4)

so that its time evolution is described by an elliptic function of degree 2.

The HK discretization of the system CET2 reads:




x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2) + εα4(x̃4x5 + x4x̃5),

x̃4 − x4 = εα5(x̃5x3 + x5x̃3),

x̃5 − x5 = εα6(x̃3x4 + x3x̃4).

(10.5)

The map f : x 7→ x̃ obtained by solving (10.5) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)x,
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with

A(x, ε) =




1 εα1x3 εα1x2 0 0

εα2x3 1 εα2x1 0 0

εα3x2 εα3x1 1 εα4x5 εα4x4

0 0 εα5x5 1 εα5x3

0 0 εα6x4 εα6x3 1




.

This map will be called dCET2 in the sequel.

Proposition 29. The functions

H1(ε) =
α2x

2
1 − α1x

2
2

1− ε2α1α2x2
3

, H3(ε) =
α6x

2
4 − α5x

2
5

1− ε2α5α6x2
3

,

are conserved quantities of the map dCET2.

Proposition 29 gives only two independent integrals of motion for the map dCET2. Numerical
experiments indicate that the third integral does not exist in general. The situation is different
under condition (10.3). Note that in this case the denominators of the integrals H1(ε) and H3(ε)
coincide.

Proposition 30. If condition (10.3) holds, then the map dCET2 has in addition to H1(ε) and
H3(ε) also the following conserved quantities

H2(ε) =
α3α5x

2
2 − α2α5x

2
3 + α2α4x

2
4

1− ε2α1α2x2
3

,

H4(ε) =
α5x2x5 − α2x1x4

1− ε2α1α2x2
3

, H5(ε) =
α5x1x5 − α1x2x4

1− ε2α1α2x2
3

.

There are four independent functions among H1(ε), . . . , H5(ε).

We now present HK bases for the map dCET2.

Proposition 31. Under condition (10.3), the map dCET2 has the following HK bases.
(a) The set Φ = (x2

1, x2
2, x2

3, x2
4, x2

5, 1) is a HK basis with dimKΦ(x) = 3.

(b) The sets Φ1 = (x2
1, x2

2, x2
3, 1) and Φ2 = (x2

3, x2
4, x2

5, 1) are HK bases with one-dimensional
null-spaces. At each point x ∈ R5 we have: KΦ1(x) = [e1 : e2 : ε2α1α2 : −1] and KΦ2(x) = [ε2α1α2 :
f4 : f5 : −1]. The functions ei and fi are conserved quantities given by

e1 =
α2(1− ε2α1α2x

2
3)

α2x2
1 − α1x2

2

, e2 = −α1(1− ε2α1α2x
2
3)

α2x2
1 − α1x2

2

,

and

f4 =
α5(1− ε2α1α2x

2
3)

α5x2
4 − α4x2

5

, f5 = −α4(1− ε2α1α2x
2
3)

α5x2
4 − α4x2

5

.

The set Φ3 = (x2
1, x2

2, x2
3, x2

4) is a HK basis with a one-dimensional null-space. At each point x ∈ R5

we have: KΦ3(x) = [g1 : g2 : α5 : −α4]. The functions gi are conserved quantities given by

g1 =
α3α5x

2
2 − α2α5x

2
3 + α2α4x

2
4

α2x2
1 − α1x2

2

, g2 = −α3α5x
2
1 − α1α5x

2
3 + α1α4x

2
4

α2x2
1 − α1x2

2

.

Similar claim hold for the sets (x2
1, x2

2, x2
3, x2

5), (x2
1, x2

3, x2
4, x2

5), and (x2
2, x2

3, x2
4, x2

5).
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(c) The set Ψ = (x1, x2, x3, x4, x5) is a HK basis with dimKΨ(x) = 2.

(d) The sets Ψ1 = (x1, x2, x4), Ψ2 = (x1, x2, x5) are HK bases with one-dimensional null-spaces.
At each point x ∈ R5 we have: KΨ1(x) = [c1 : c2 : −1], KΨ2(x) = [d1 : d2 : −1]. The functions c1, c2

and d1, d2 are conserved quantities given by

c1 =
α2x1x4 − α5x2x5

α2x2
1 − α1x2

2

, c2 =
α5x1x5 − α1x2x4

α2x2
1 − α1x2

2

,

while

d1 =
α2

α5
c2, d2 =

α1

α5
c1.

A similar claim holds for the sets (x2, x4, x5) and (x1, x4, x5).

We see that the map dCET2 under condition (10.3) possesses four functionally independent
conserved quantities. It might look paradoxical that Φ ∪Ψ is a HK basis with a 5-dimensional
null-space, thus imposing seemingly 5 restrictions on any orbit of the map, which would yield 0-
dimensional invariant sets (instead of invariant curves in the continuous time case). The resolution
of this paradox is that the five restrictions are functionally dependent on their common set (i.e.,
along any orbit). In other words, the HK basis Φ ∪Ψ is not regular. This is the first and the only
instance of a non-regular HK basis in this paper.

The map dCET2 possesses, in its (super)-integrable regime, an invariant volume form:

Proposition 32. Under condition (10.3), the map dCET2 preserves the following volume form:

det
∂x̃

∂x
=

φ(x̃)
φ(x)

⇔ f∗ω = ω, ω =
dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5

φ(x)
,

with φ(x) = (1− ε2α1α2x
2
3)

3.

In this regime, the solutions can be found in terms of elliptic functions, as the following statement
shows.

Proposition 33. Under condition (10.3), the component x3 of any orbit of the map dCET2

satisfies a relation of the type

Q(x3, x̃3) = q0x
2
3x̃

2
3 + q1x3x̃3(x3 + x̃3) + q2(x2

3 + x̃2
3) + q3x3x̃3 + q4(x3 + x̃3) + q5 = 0,

coefficients of the biquadratic polynomial Q being conserved quantities of dCET2.

This statement is a proper discretization of Eq. (10.4).

11. THREE WAVE SYSTEM

The three wave interaction system of ordinary differential equations is [19]:




ż1 = iα1z̄2z̄3,

ż2 = iα2z̄3z̄1,

ż3 = iα3z̄1z̄2.

(11.1)

Here z = (z1, z2, z3) ∈ C3, while the parameters αi of the system are supposed to be real numbers.
If (i, j, k) stands for any cyclic permutation of (123), then we can write system (11.1) in the
abbreviated form

żi = iαiz̄j z̄k, (11.2)
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Writing zi = xi + iyi, i = 1, 2, 3, we put system (11.2) into the form




ẋi = αi(xjyk + yjxk),

ẏi = αi(xjxk − yjyk).
(11.3)

System (11.3) is completely integrable and can be integrated in terms of elliptic functions. It has
three independent integrals of motion: quadratic ones,

Hi = αj |zk|2 − αk|zj |2,
among which there are only two independent ones because of α1H1 + α2H2 + α3H3 = 0, and a
cubic one,

K =
1
2

(z1z2z3 + z̄1z̄2z̄3) = Re(z1z2z3).

The HK discretization of system (11.2) reads

z̃i − zi = iεαi(z̄j ˜̄zk + ˜̄zj z̄k),

or, in the real variables (xi, yi),



x̃i − xi = εαi(xj ỹk + x̃jyk + yj x̃k + ỹjxk),

ỹi − yi = εαi(xj x̃k + x̃jxk − yj ỹk − ỹjyk).

In the matrix form, this can be put as

A(x, y, ε)


x̃

ỹ


 =


x

y


 ⇔


x̃

ỹ


 = f(x, y, ε) = A−1(x, y, ε)


x

y


 ,

where

A(x, y, ε) =




1 −εα1y3 −εα1y2 0 −εα1x3 −εα1x2

−εα2y3 1 −εα2y1 −εα2x3 0 −εα2x1

−εα3y2 −εα3y1 1 −εα3x2 −εα3x1 0

0 −εα1x3 −εα1x2 1 εα1y3 εα1y2

−εα2x3 0 −εα2x1 εα2y3 1 εα2y1

−εα3x2 −εα3x1 0 εα3y2 εα3y1 1




.

The birational map f : R6 → R6 will be called d3W hereafter.

Proposition 34. The map d3W has three independent conserved quantities, namely, any two of

Hi(ε) =
αj |zk|2 − αk|zj |2
1− ε2αjαk|zi|2 ,

supplied with any one of

Ki(ε) =
Re(z1z2z3)(1− ε2αkαi|zj |2)(1− ε2αiαj |zk|2)

∆(z, z̄, ε)
,

where

∆(z, z̄, ε) = detA(x, y, ε) = 1− 2ε2(α2α3|z1|2 + α3α1|z2|2 + α1α2|z3|2)
+ ε4(α2α3|z1|2 + α3α1|z2|2 + α1α2|z3|2)2 − 4ε6α2

1α
2
2α

2
3|z1|2|z2|2|z3|2.
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Proposition 35. The map d3W possesses an invariant volume form:

det
∂z̃

∂z
=

φ(z̃)
φ(z)

⇔ f∗ω = ω, ω =
dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3

φ(z)
,

where φ(z) = ∆(z, z̄, ε).

Next, we give the results on the HK bases for the map d3W, which yield a complete set of integrals
of motion.

Proposition 36.

(a) The sets Φi = (|zj |2, |zk|2, 1), i = 1, 2, 3, are HK bases for the map d3W with dimKΦi(z) = 1.
At each point z ∈ C3 there holds: KΦi(z) = [d1 : d2 : −1], where the coefficients

d1(z) =
αk(1− ε2αiαj |zk|2)
αk|zj |2 − αj |zk|2 , d2(z) = −αj(1− ε2αkαi|zj |2)

αk|zj |2 − αj |zk|2 ,

are integrals of motion of the map d3W. They are functionally dependent because of αjd1(z) +
αkd2(z) = ε2α1α2α3.

(b) The sets Ψi = (Re(z1z2z3), |zi|2, 1), i = 1, 2, 3, are HK bases for the map d3W with
dimKΨi(z) = 1. At each point z ∈ C3 there holds: KΨi(z) = [e1 : e2 : −1], where the coefficients

e1(z) = − ∆(z, z̄, ε)

Re(z1z2z3)
(
1− ε2 (−αjαk|zi|2 + αkαi|zj |2 + αiαj |zk|2)

)2 ,

e2(z) =
4αjαkε

2(1− ε2αkαi|zj |2)(1− ε2αiαj |zk|2)(
1− ε2 (−αjαk|zi|2 + αkαi|zj |2 + αiαj |zk|2)

)2 ,

are independent integrals of motion of the map d3W.

12. LAGRANGE TOP

Lagrange top was the second integrable system, after Euler top, to which the HK discretization
was successfully applied [5]. We reproduce and re-derive here the results of that paper, and add
some new results.

Equations of motion of the Lagrange top are of the general Kirchhoff type:




ṁ = m×∇mH + p×∇pH,

ṗ = p×∇mH,
(12.1)

where m = (m1,m2,m3)T and p = (p1, p2, p3)T. Any Kirchhoff type system is Hamiltonian with
the Hamilton function H = H(m, p) with respect to the Lie–Poisson bracket on e(3)∗,

{mi,mj} = εijkmk, {mi, pj} = εijkpk, {pi, pj} = 0,

and admits the Hamilton function H and the Casimir functions

C1 = p2
1 + p2

2 + p2
3, C2 = m1p1 + m2p2 + m3p3, (12.2)

as integrals of motion. For the complete integrability of a Kirchhoff type system, it should admit a
fourth independent integral of motion.

The Hamilton function of the Lagrange top (LT) is H = H1/2, where

H1 = m2
1 + m2

2 + αm2
3 + 2γp3.
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Thus, equations of motion of LT read




ṁ1 = (α− 1)m2m3 + γp2,

ṁ2 = (1− α)m1m3 − γp1,

ṁ3 = 0,

ṗ1 = αp2m3 − p3m2,

ṗ2 = p3m1 − αp1m3,

ṗ3 = p1m2 − p2m1.

(12.3)

It follows immediately that the fourth integral of motion is simply H2 = m3. Traditionally, the
explicit integration of the LT in terms of elliptic functions starts with the following observation:
the component p3 of the solution satisfies the differential equation

ṗ2
3 = P3(p3), (12.4)

with a cubic polynomial P3 whose coefficients are expressed through integrals of motion:

P3(p3) = (H1 − αm2
3 − 2γp3)(C1 − p2

3)− (C2 −m3p3)2.

We mention also the following Wronskian relation which follows easily from equations of motion:

(ṁ1p1 −m1ṗ1) + (ṁ2p2 −m2ṗ2) + (2α− 1)(ṁ3p3 −m3ṗ3) = 0. (12.5)

Applying the HK discretization scheme to Eqs. (12.3), we obtain the following discrete system:




m̃1 −m1 = ε(α− 1)(m̃2m3 + m2m̃3) + εγ(p2 + p̃2),

m̃2 −m2 = ε(1− α)(m̃1m3 + m1m̃3)− εγ(p1 + p̃1),

m̃3 −m3 = 0,

p̃1 − p1 = εα(p2m̃3 + p̃2m3)− ε(p3m̃2 + p̃3m2),

p̃2 − p2 = ε(p3m̃1 + p̃3m1)− εα(p1m̃3 + p̃1m3),

p̃3 − p3 = ε(p1m̃2 + p̃1m2 − p2m̃1 − p̃2m1).

As usual, this can be solved for (m̃, p̃), thus yielding the reversible and birational map x 7→ x̃ =
f(x, ε) = A−1(x, ε)(1+ εB)x, where x = (m1,m2,m3, p1, p2, p3)T, and

A(x, ε) =




1 ε(1− α)m3 ε(1− α)m2 0 0 0

−ε(1− α)m3 1 −ε(1− α)m1 0 0 0

0 0 1 0 0 0

0 εp3 −εαp2 1 −εαm3 εm2

−εp3 0 εαp1 εαm3 1 −εm1

εp2 −εp1 0 −εm2 εm1 1




− εB,
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B =




0 0 0 0 γ 0

0 0 0 −γ 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




.

This map will be called dLT in the sequel. Obviously, m3 serves as a conserved quantity for dLT.
The remaining three conserved quantities can be found with the help of the HK bases approach.
A simple conserved quantity can be found from the following statement which serves as a natural
discretization of the Wronskian relation (12.5).

Proposition 37. The set Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3) is a HK basis for the
map dLT with dimKΓ(x) = 1. At each point x ∈ R6 we have: KΓ(x) = [1 : 1 : b3], where b3 is a
conserved quantity of dLT given by

b3 =
(2α− 1)m3 + ε2(α− 1)m3(m2

1 + m2
2) + ε2γ(m1p1 + m2p2)

m3∆1
, (12.6)

where

∆1 = 1 + ε2α(1− α)m2
3 − ε2γp3. (12.7)

Proof. A straightforward computation with MAPLE of the quantity

b3 = −(m̃1p1 −m1p̃1) + (m̃2p2 −m2p̃2)
(m̃3p3 −m3p̃3)

leads to the value (12.6). It is an even function of ε and therefore a conserved quantity.

Further integrals of motion were found by Hirota and Kimura. We reproduce here their results with
new simplified proofs.

Proposition 38. ([5])

(a) The set Φ = (m2
1 + m2

2, p1m1 + p2m2, p2
1 + p2

2, p2
3, p3, 1) is a HK basis for the map dLT with

dimKΦ(x) = 3.

(b) The set Φ1 = (1, p3, p2
3, m2

1 + m2
2) is a HK basis for the map dLT with a one-dimensional

null-space. At each point x ∈ R6 we have: KΦ1(x) = [c0 : c1 : c2 : −1]. The functions c0, c1, c2 are
conserved quantities of the map dLT, given by

c0 =
m2

1 + m2
2 + 2γp3 + ε2c

(4)
0 + ε4c

(6)
0 + ε6c

(8)
0 + ε8c

(10)
0

∆1∆2
,

c1 = −2γ
(
1− ε2α(1− α)m2

3

)(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)

∆1∆2
,

c2 = −ε2γ2
(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)

∆1∆2
.

Here ∆1 is given in (12.7), and ∆2 = 1 + ε2∆(2)
2 + ε4∆(4)

2 + ε6∆(6)
2 ; coefficients ∆(q) and c

(q)
k are

polynomials of degree q in the phase variables. In particular:

c
(2)
2 = m2

1 + m2
2 + (1− 2α + 2α2)m2

3 − 2γp3,

∆(2)
2 = m2

1 + m2
2 + (1− 3α + 3α2)m2

3 − γp3.
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(c) The set Φ2 = (1, p3, p2
3, m1p1 + m2p2) is a HK basis for the map dLT with a one-dimensional

null-space. At each point x ∈ R6 we have: KΦ2(x) = [d0 : d1 : d2 : −1]. The functions d0, d1, d2 are
conserved quantities of the map dLT, given by

d0 =
m1p1 + m2p2 + m3p3 + ε2d

(4)
0 + ε4d

(6)
0 + ε6d

(8)
0 + ε8d

(10)
0

∆1∆2
,

d1 = −m3 + ε2d
(3)
1 + ε4d

(5)
1 + ε6d

(7)
1 + ε8d

(9)
1

∆1∆2
,

d2 = −ε2γ(1− α)m3

(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)

∆1∆2
,

where d
(q)
k are polynomials of degree q in the phase variables. In particular,

d
(3)
1 = γ(m1p1 + m2p2)− γ(3− 2α)m3p3 + αm3(m2

1 + m2
2) + (1− 3α + 3α2)m3

3.

(d) The set Φ3 = (1, p3, p2
3, p2

1 + p2
2) is a HK basis for the map dLT with a one-dimensional

null-space. At each point x ∈ R6 we have: KΦ3(x) = [e0 : e1 : e2 : −1]. The functions e0, e1, e2 are
conserved quantities of the map dLT, given by

e0 =
p2
1 + p2

2 + p2
3 + ε2e

(4)
0 + ε4e

(6)
0 + ε6e

(8)
0 + ε8e

(10)
0

∆1∆2
,

e1 = −2ε2
(
e
(3)
1 + ε2e

(5)
1 + ε4e

(7)
1 + ε6e

(9)
1

)

∆1∆2
,

e2 = −
(
1 + ε2(1− α)2m2

3

)(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2

)

∆1∆2
,

where e
(q)
k are polynomials of degree q in the phase variables. In particular,

e
(3)
1 = γ(p2

1 + p2
2 + p2

3)− (1− α)m3(m1p1 + m2p2 + m3p3).

Proof. (b) We consider a linear system of equations

(c0 + c1p3 + c2p
2
3) ◦ f i(m, p, ε) = (m2

1 + m2
2) ◦ f i(m, p, ε), (12.8)

for all i ∈ Z. Numerically one sees that it admits a unique solution, and one can identify the linear
relation

1
2
γε2c1 =

(
1− ε2α(1− α)m2

3

)
c2. (12.9)

The system of three equations for three unknowns c0, c1, c2 consisting of (12.8) with i = 0, 1 and
(12.9) can easily be solved with MAPLE. Its solutions are even functions of ε, which proves that
they are integrals of motion.

(c) This time we consider the linear system of equations

(d0 + d1p3 + d2p
2
3) ◦ f i(m, p, ε) = (m1p1 + m2p2) ◦ f i(m, p, ε), (12.10)

for all i ∈ Z. Numerically we see that it admits a unique solution, and we can identify the linear
relation

γd2 = (1− α)m3c2. (12.11)

The system of three equations for the three unknowns d0, d1, d2 consisting of (12.10) for i = 0, 1
and of (12.11) with c2 already found in part b) can easily be solved with MAPLE. Its solutions are
even functions of ε and therefore are integrals.
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(d) Completely analogous to the last two proofs: we solve the linear system of three equations
for the three unknowns e0, e1, e2, consisting of the equations

(e0 + e1p3 + e2p
2
3) ◦ f i(m, p, ε) = (p2

1 + p2
2) ◦ f i(m, p, ε),

for i = 0, 1, and of the linear relation

ε2γ2e2 =
(
1 + ε2(1− α)2m2

3

)
c2,

and verify that they are even functions of ε.

We note that for α = 1 the integrals d0, d1, d2 simplify to

d0 =
m1p1 + m2p2 + m3p3

1− ε2γp3
, d1 = −m3 + ε2γ(m1p1 + m2p2)

1− ε2γp3
, d2 = 0.

It is possible to find a further simple, in fact polynomial, integral for the map dLT.

Proposition 39. ([5]) The function

F = m2
1 + m2

2 + 2γp3 − ε2
(
(1− α)m3m1 + γp1

)2 − ε2
(
(1− α)m3m2 + γp2

)2
,

is a conserved quantity for the map dLT.

Proof. Setting C = 1− ε2(1− α)2m2
3, D = −2ε2γ(1− α)m3, E = −ε2γ2, one can check that Cc1 +

Dd1 + Ee1 = 0 and Cc2 + Dd2 + Ee2 = −2γ. This yields for the conserved quantity F = Cc0 +
Dd0 + Ee0 the expression given in the Proposition.

Considering the leading terms of the power expansions in ε, one sees immediately that the
integrals c0, d0, e0, and m3 are functionally independent. Using exact evaluation of gradients we
can also verify independence of other sets of integrals. It turns out that for α 6= 1 each one of the
quadruples {d0, d1, d2,m3} and {e0, e1, e2,m3} consists of independent integrals.

A direct “bilinearization” of the HK bases of Proposition 38 provides us with an alternative
source of integrals of motion:
Proposition 40. The set

Ψ = (m1m̃1 + m2m̃2, p1m̃1 + p̃1m1 + p2m̃2 + p̃2m2, p1p̃1 + p2p̃2, p3p̃3, p3 + p̃3, 1)

is a HK basis for the map dLT with dimKΨ(x) = 3. Each of the following subsets of Ψ,

Ψ1 = (1, p3 + p̃3, p3p̃3, m1m̃1 + m2m̃2),
Ψ2 = (1, p3 + p̃3, p3p̃3, m1p̃1 + m̃1p1 + m2p̃2 + m̃2p2),
Ψ3 = (1, p3 + p̃3, p3p̃3, p1p̃1 + p2p̃2),

is a HK basis with a one-dimensional null-space.

Concerning solutions of dLT as functions of the (discrete) time t, the crucial result is given in the
following statement which should be considered as the proper discretization of Eq. (12.4).

Proposition 41. ([5]) The component p3 of the solution of difference equations (12.6) satisfies a
relation of the type

Q(p3, p̃3) = q0p
2
3p̃

2
3 + q1p3p̃3(p3 + p̃3) + q2(p2

3 + p̃2
3) + q3p3p̃3 + q4(p3 + p̃3) + q5 = 0,

coefficients of the biquadratic polynomial Q being conserved quantities of dLT. Hence, p3(t) is an
elliptic function of degree 2.

Although it remains unknown whether the map dLT admits an invariant Poisson structure, we
have the following statement.
Proposition 42. The map dLT possesses an invariant volume form:

det
∂x̃

∂x
=

φ(x̃)
φ(x)

⇔ f∗ω = ω, ω =
dm1 ∧ dm2 ∧ dm3 ∧ dp1 ∧ dp2 ∧ dp3

φ(x)
,

with φ(x) = ∆2(x, ε).
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13. KIRCHHOFF CASE OF THE RIGID BODY MOTION IN AN IDEAL FLUID

The motion of a rigid body in an ideal fluid is described by Kirchhoff equations (12.1) with
H being a quadratic form in m = (m1,m2, m3)T ∈ R3 and p = (p1, p2, p3)T ∈ R3. The physical
meaning of m is the total angular momentum, whereas p represents the total linear momentum
of the system. A detailed introduction to the general context of rigid body dynamics and its
mathematical foundations can be found in [20].

The integrable case of this system found in the original paper by Kirchhoff [21] and carrying his
name is characterized by the Hamilton function H = H1/2, where

H1 = a1(m2
1 + m2

2) + a3m
2
3 + b1(p2

1 + p2
2) + b3p

2
3.

The differential equations of the Kirchhoff case are:




ṁ1 = (a3 − a1)m2m3 + (b3 − b1)p2p3,

ṁ2 = (a1 − a3)m1m3 + (b1 − b3)p1p3,

ṁ3 = 0,

ṗ1 = a3p2m3 − a1p3m2,

ṗ2 = a1p3m1 − a3p1m3,

ṗ3 = a1(p1m2 − p2m1).

(13.1)

Along with the Hamilton function H and the Casimir functions (12.2), it possesses the obvious
fourth integral, due to the rotational symmetry of the system: H2 = m3. Traditionally, the explicit
integration of the Kirchhoff case in terms of elliptic functions starts with the following observation:
the component p3 of the solution satisfies the differential equation

ṗ2
3 = P4(p3),

with a quartic polynomial P4 whose coefficients are expressed through integrals of motion:

P4(p3) = a1

(
H1 − a3m

2
3 − b1(C1 − p2

3)− b3p
2
3

)
(C1 − p2

3)− a2
1(C2 −m3p3)2.

We mention also the following Wronskian relation which follows easily from equations of motion:

a1(ṁ1p1 −m1ṗ1) + a1(ṁ2p2 −m2ṗ2) + (2a3 − a1)(ṁ3p3 −m3ṗ3) = 0. (13.2)

Applying the HK approach to (13.1), we obtain the following system of equations:




m̃1 −m1 = ε(a3 − a1)(m̃2m3 + m2m̃3) + ε(b3 − b1)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(a1 − a3)(m̃1m3 + m1m̃3) + ε(b1 − b3)(p̃1p3 + p1p̃3),

m̃3 −m3 = 0,

p̃1 − p1 = εa3(p̃2m3 + p2m̃3)− εa1(p̃3m2 + p3m̃2),

p̃2 − p2 = εa1(p̃3m1 + p3m̃1)− εa3(p̃1m3 + p1m̃3),

p̃3 − p3 = εa1(p̃1m2 + p1m̃2)− εa1(p̃2m1 + p2m̃1).

As usual, these equations define a birational map x̃ = f(x, ε), x = (m, p)T. We will refer to this
map as dK. Like in the case of dLT, m3 is a conserved quantity of dK. A further “simple” conserved
quantity can be found from the following natural discretization of the Wronskian relation (13.2).
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Proposition 43. The set Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3) is a HK basis for the
map dK with dimKΓ(x) = 1. At each point x ∈ R6 we have: KΓ(x) = [1 : 1 : −γ3], where γ3 is a
conserved quantity of dK given by

γ3 =
∆0

a1∆1
, (13.3)

where

∆0 = a1 − 2a3 + ε2a2
1(a1 − a3)(m2

1 + m2
2) + ε2a1a3(b1 − b3)(p2

1 + p2
2), (13.4)

∆1 = 1 + ε2a3(a1 − a3)m2
3 + ε2a1(b1 − b3)p2

3. (13.5)

Proof. Like in the case of dLT, we let MAPLE compute the quantity

γ3 =
(m̃1p1 −m1p̃1) + (m̃2p2 −m2p̃2)

(m̃3p3 −m3p̃3)
,

which results in (13.3), an even function of ε and therefore a conserved quantity.

Interestingly enough, this same integral may also be obtained from another HK basis:

Proposition 44. The set Φ0 = (m2
1 + m2

2, p
2
1 + p2

2, p
2
3, 1) is a HK Basis for the map dK with

dimKΦ0(x) = 1. The linear combination of these functions vanishing along the orbits can be put
as ∆0 − γ3a1∆1 = 0.

Proof. The statement of the Proposition deals with the solution of a linear system of equations
consisting of

(c1(m2
1 + m2

2) + c2(p2
1 + p2

2) + c3p
2
3) ◦ f i(m, p, ε) = 1 (13.6)

for all i ∈ Z. We solve this system with i = −1, 0, 1 (numerically or symbolically), and observe that
the solutions satisfy a3(b1 − b3)c1 = a1(a1 − a3)c2. Then, we consider the system of three equations
for c1, c2, c3 consisting of the latter linear relation between c1, c2, and of Eqs. (13.6) for i = 0, 1.
This system is easily solved symbolically (by MAPLE), its unique solution can be put as in the
Proposition. Its components are manifestly even functions of ε, thus conserved quantities.

Proposition 45.
(a) The set Φ = (m2

1 + m2
2, p1m1 + p2m2, p2

1 + p2
2, p2

3, p3, 1) is a HK basis for the map dK with
dimKΦ(x) = 3.

(b) The set Φ1 = (1, p3, p2
3, m2

1 + m2
2) is a HK basis for the map dK with a one-dimensional

null-space. At each point x ∈ R6 we have: KΦ1(x) = [c0 : c1 : c2 : −1]. The functions c0, c1, c2 are
conserved quantities of the map dK, given by

c0 =
a1(m2

1 + m2
2)− (b1 − b3)p2

3 + ε2c
(4)
0 + ε4c

(6)
0 + ε6c

(8)
0 + ε8c

(10)
0

a1∆1∆2
,

c1 = −2ε2a3(b1 − b3)m3

(
C2 + ε2c

(4)
1 + ε4c

(6)
1 + ε6c

(8)
1

)

∆1∆2
,

c2 =
(b1 − b3)

(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2 + ε8c

(8)
2

)

a1∆1∆2
,

where ∆1 is given in (13.5), and ∆2 = 1 + ε2∆(2)
2 + ε4∆(4)

2 + ε6∆(6)
2 ; coefficients c

(q)
k and ∆(q)

2 are
homogeneous polynomials of degree q in the phase variables. In particular:

c
(2)
2 = −2a2

1(m
2
1 + m2

2)− (a2
1 − 2a1a3 + 3a2

3)m
2
3 + a1(b1 − b3)(p2

1 + p2
2)− a1(b1 − b3)p2

3,

∆(2)
2 = a2

1(m
2
1 + m2

2) + (a2
1 − 3a1a3 + 3a2

3)m
2
3 − a1(b1 − b3)(p2

1 + p2
2) + a1(b1 − b2)p2

3.
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(c) The set Φ2 = (1, p3, p
2
3, m1p1 + m2p2) is a HK basis for the map dK with a one-dimensional

null-space. At each point x ∈ R6 we have: KΦ2(x) = [d0 : d1 : d2 : −1]. The functions d0, d1, d2 are
conserved quantities of the map dK, given by

d0 =
C2 + ε2d

(4)
0 + ε4d

(6)
0 + ε6d

(8)
0 + ε8d

(10)
0

∆1∆2
,

d1 =
m3

(− 1 + ε2d
(2)
1 + ε4d

(4)
1 + ε6d

(6)
1 + ε8d

(8)
1

)

∆1∆2
,

d2 =
a1(b3 − b1)ε2

(
C2 + ε2c

(4)
1 + ε4c

(6)
1 + ε6c

(8)
1

)

∆1∆2
,

where d
(q)
k are homogeneous polynomials of degree q in the phase variables. In particular,

d
(2)
1 = −a1a3(m2

1 + m2
2)− (a2

1 − 3a1a3 + 3a2
3)m

2
3 + (a1 − a3)(b1 − b3)(p2

1 + p2
2)− 3a1(b1 − b3)p2

3.

(d) The set Φ3 = (1, p3, p2
3, p2

1 + p2
2) is a HK basis for the map dK with a one-dimensional

null-space. At each point x ∈ R6 we have: KΦ3(x) = [e0 : e1 : e2 : −1]. The functions e0, e1, e2 are
conserved quantities of the map dK, given by

e0 =
C1 + ε2e

(4)
0 + ε4e

(6)
0 + ε6e

(8)
0 + ε8e

(10)
0

∆1∆2
,

e1 =
2ε2a1(a3 − a1)m3

(
C2 + ε2c

(4)
1 + ε4c

(6)
1 + ε6c

(8)
1

)

∆1∆2
,

e2 =
−1 + ε2e

(2)
2 + ε4e

(4)
2 + ε6e

(6)
6 + ε8e

(8)
8

∆1∆2
,

where e
(q)
k are polynomials of degree q in the phase variables. In particular,

e
(2)
2 = −a2

1(m
2
1 + m2

2)− (2a2
1 − 4a1a3 + 3a2

3)m
2
3 + 2a1(b1 − b3)(p2

1 + p2
2)− a1(b1 − b3)p2

3.

Proof. Statement (b) is proven using direct calculation. Statements (c) and (d) then follow
analogously to Proposition 38 from the existence of linear relations between c1 and d2, as well
as between c1 and e1.

One can show that each of the sets {c0, c1, c2}, {d0, d1, d2}, and {e0, e1, e2} consists of three
independent integrals of motion. Moreover, each of the sets {c0, c1, c2,m3} and {e0, e1, e2,m3}
consists of four independent integrals. As further important results, me mention that Propositions
40 (on the “bilinear” HK bases), 41 (on the invariant biquadratic curve for (p3, p̃3)), and 42 (on
the invariant measure) hold literally true for the map dK.

14. CLEBSCH CASE OF THE RIGID BODY MOTION IN AN IDEAL FLUID

Another famous integrable case of the Kirchhoff equations was discovered by Clebsch [22] and
is characterized by the Hamilton function H = H1/2, where

H1 = 〈m,Am〉+ 〈p,Bp〉 =
1
2

3∑

k=1

(akm
2
k + bkp

2
k),

where A = diag(a1, a2, a3) and B = diag(b1, b2, b3) satisfy the condition

b1 − b2

a3
+

b2 − b3

a1
+

b3 − b1

a2
= 0. (14.1)
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This condition is also equivalent to saying that the quantity

θ =
bj − bk

ai(aj − ak)
(14.2)

takes one and the same value for all permutations (i, j, k) of the indices (1, 2, 3).

For an embedding of this system into the modern theory of integrable systems see [23, 24]. Note
that the Kirchhoff case (a1 = a2 and b1 = b2) can be considered as a particular case of the Clebsch
case, but is special in many respects (the symmetry resulting in the existence of the Noether integral
m3, solvability in elliptic functions, in contrast to the general Clebsch system being solvable in terms
of theta-functions of genus 2, etc.). Equations of motion of the Clebsch case are:





ṁ = m×Am + p×Bp ,

ṗ = p×Am,
(14.3)

or in components




ṁ1 = (a3 − a2)m2m3 + (b3 − b2)p2p3,

ṁ2 = (a1 − a3)m3m1 + (b1 − b3)p3p1,

ṁ3 = (a2 − a1)m1m2 + (b2 − b1)p1p2,

ṗ1 = a3m3p2 − a2m2p3,

ṗ2 = a1m1p3 − a3m3p1,

ṗ3 = a2m2p1 − a1m1p2.

(14.4)

Condition (14.1) can be resolved for ai as

a1 =
b2 − b3

ω2 − ω3
, a2 =

b3 − b1

ω3 − ω1
, a3 =

b1 − b2

ω1 − ω2
.

For fixed values of ωi and varying values of bi, equations of motion of the Clebsch case share the
integrals of motion: the Casimirs C1, C2, cf. Eq. (12.2), and the Hamiltonians

Ii = p2
i +

m2
j

ωi − ωk
+

m2
k

ωi − ωj
.

There are four independent functions among Ci, Ii, because of C1 = I1 + I2 + I3. Note that
H1 = b1I1 + b2I2 + b3I3. One can denote all models with the same ωi as a hierarchy, single flows
of which are characterized by the parameters bi. Usually, one denotes as “the first flow” of this
hierarchy the one corresponding to the choice bi = ωi, so that ai = 1. Thus, the first flow is
characterized by the value θ = ∞ of the constant (14.2).

14.1. First Flow of the Clebsch System

The first flow of the Clebsch hierarchy is generated by the Hamilton function H = H1/2, where

H1 = m2
1 + m2

2 + m2
3 + ω1p

2
1 + ω2p

2
2 + ω3p

2
3.

The corresponding equations of motion read:




ṁ = p× Ωp,

ṗ = p×m,
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where Ω = diag(ω1, ω2, ω3) is the matrix of parameters, or in components:




ṁ1 = (ω3 − ω2)p2p3,

ṁ2 = (ω1 − ω3)p3p1,

ṁ3 = (ω2 − ω1)p1p2,

ṗ1 = m3p2 −m2p3,

ṗ2 = m1p3 −m3p1,

ṗ3 = m2p1 −m1p2.

The fourth independent quadratic integral can be chosen as

H2 = ω1m
2
1 + ω2m

2
2 + ω3m

2
3 − ω2ω3p

2
1 − ω3ω1p

2
2 − ω1ω2p

2
3.

Note that H1 = ω1I1 + ω2I2 + ω3I3, H1 = −ω2ω3I1 − ω3ω1I2 − ω1ω2I3.
We mention the following Wronskian relation:

(ṁ1p1 −m1ṗ1) + (ṁ2p2 −m2ṗ2) + (ṁ3p3 −m3ṗ3) = 0, (14.5)

which holds true for the first Clebsch flow.
The HK discretization of the first Clebsch flow (proposed in [25]) is:





m̃1 −m1 = ε(ω3 − ω2)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(ω1 − ω3)(p̃3p1 + p3p̃1),

m̃3 −m3 = ε(ω2 − ω1)(p̃1p2 + p1p̃2),

p̃1 − p1 = ε(m̃3p2 + m3p̃2)− ε(m̃2p3 + m2p̃3),

p̃2 − p2 = ε(m̃1p3 + m1p̃3)− ε(m̃3p1 + m3p̃1),

p̃3 − p3 = ε(m̃2p1 + m2p̃1)− ε(m̃1p2 + m1p̃2).

As usual, it leads to a reversible birational map x̃ = f(x, ε), x = (m, p)T, given by f(x, ε) =
A−1(x, ε)x with

A(m, p, ε) =




1 0 0 0 εω23p3 εω23p2

0 1 0 εω31p3 0 εω31p1

0 0 1 εω12p2 εω12p1 0

0 εp3 −εp2 1 −εm3 εm2

−εp3 0 εp1 εm3 1 −εm1

εp2 −εp1 0 −εm2 εm1 1




,

where the abbreviation ωij = ωi − ωj is used. This map will be referred to as dC.
A “simple” conserved quantity can be found from the following natural discretization of the

Wronskian relation (14.5).

Proposition 46. The set Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3) is a HK basis for the
map dC with dimKΓ(x) = 1. At each point x ∈ R6 we have: KΓ(x) = [e1 : e2 : e3], where

ei = 1 + ε2(ωi − ωj)p2
j + ε2(ωi − ωk)p2

k. (14.6)
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The conserved quantities ei/ej can be put as ei/ej = (1 + ε2ωiJ)/(1 + ε2ωjJ), where J is a nice
and symmetric integral,

J =
p2
1 + p2

2 + p2
3

1− ε2(ω1p2
1 + ω2p2

2 + ω3p2
3)

.

Remarkably, it can be obtained also from a different (monomial) HK basis, see part b) of the
following statement.

Proposition 47 ([2]).
(a) The set of functions Φ = (p2

1, p2
2, p2

3, m2
1, m2

2, m2
3, m1p1, m2p2, m3p3, 1) is a HK basis for

the map dC with dimKΦ(m, p) = 4. Thus, any orbit of the map dC lies on an intersection of four
quadrics in R6.

(b) The set of functions Φ0 = (p2
1, p

2
2, p

2
3, 1) is a HK basis for the map dC with dimKΦ0(m, p) = 1.

At each point (m, p) ∈ R6 there holds:

KΦ0(m, p) = [e1 : e2 : e3 : −(p2
1 + p2

2 + p2
3)]

=
[

1
J

+ ε2ω1 :
1
J

+ ε2ω2 :
1
J

+ ε2ω3 : −1
]

,

with the quantities ei given in (14.6).

(c) The sets of functions

Φ1 = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, m1p1), (14.7)

Φ2 = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, m2p2), (14.8)

Φ3 = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, m3p3), (14.9)

are HK bases for the map dC with dimKΦ1(m, p) = dimKΦ2(m, p) = dimKΦ3(m, p) = 1. At each
point (m, p) ∈ R6 there holds:

KΦ1(m, p) = [α1 : α2 : α3 : α4 : α5 : α6 : −1],
KΦ2(m, p) = [β1 : β2 : β3 : β4 : β5 : β6 : −1],
KΦ3(m, p) = [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : −1],

where αj,βj, and γj are rational functions of (m, p), even with respect to ε. They are conserved
quantities of the map dCS. For j = 1, 2, 3, they are of the form

h =
h(2) + ε2h(4) + ε4h(6) + ε6h(8) + ε8h(10) + ε10h(12)

2ε2(p2
1 + p2

2 + p2
3)∆

,

where h stands for any of the functions αj , βj , γj, j = 1, 2, 3,

∆ = m1p1 + m2p2 + m3p3 + ε2∆(4) + ε4∆(6) + ε6∆(8),

and the corresponding h(2q), ∆(2q) are homogeneous polynomials in phase variables of degree 2q.
For instance,

α
(2)
1 = C1 − I1, α

(2)
2 = −I1, α

(2)
3 = −I1,

β
(2)
1 = −I2, β

(2)
2 = C1 − I2, β

(2)
3 = −I2,

γ
(2)
1 = −I3, γ

(2)
2 = −I3, γ

(2)
3 = C1 − I3.

For j = 4, 5, 6, the functions αj , βj , γj are given by



α4 α5 α6

β4 β5 β6

γ4 γ5 γ6


 =




D A1/(ω1 − ω3) A1/(ω1 − ω2)

A2/(ω2 − ω3) D A2/(ω2 − ω1)

A3/(ω3 − ω2) A3/(ω3 − ω1) D


 ,
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where

Ak =
1 + ε2A

(2)
k + ε4A

(4)
k + ε6A

(6)
k + ε8A

(8)
k

2ε2∆
,

D =
p2
1 + p2

2 + p2
3 + ε2D(4) + ε4D(6) + ε6D(8)

2∆
,

and A
(2q)
k , D(2q) are homogeneous polynomials of degree 2q in phase variables, for instance,

A
(2)
k = m2

1 + m2
2 + m2

3 + (ω2 + ω3 − 2ω1)p2
1 + (ω3 + ω1 − 2ω2)p2

2 + (ω1 + ω2 − 2ω3)p2
3.

The four conserved quantities J , α1, β1 and γ1 are functionally independent.

Our paper [2] contains a much more detailed information about the HK bases of the map dC, for
instance, the further basis with a one-dimensional null-space: Θ = (p2

1, p2
2, p2

3, m1p1, m2p2, m3p3).
However, the following finding about the “bilinear” versions of the above bases is new.

Proposition 48. Each of the sets of functions

Ψ0 = (p̃1p1, p̃2p2, p̃3p3, 1), (14.10)
Ψ1 = (p̃1p1, p̃2p2, p̃3p3, m̃1m1, m̃2m2, m̃3m3, m̃1p1 + m1p̃1), (14.11)
Ψ2 = (p̃1p1, p̃2p2, p̃3p3, m̃1m1, m̃2m2, m̃3m3, m̃2p2 + m2p̃2), (14.12)
Ψ3 = (p̃1p1, p̃2p2, p̃3p3, m̃1m1, m̃2m2, m̃3m3, m̃3p3 + m3p̃3), (14.13)

is a HK basis for the map dC with a one-dimensional null-space.

14.2. General Flow of the Clebsch System

The HK discretization of the flow (14.3) reads




m̃−m = ε(m̃×Am + m×Am̃ + p̃×Bp + p×Bp̃ ),

p̃− p = ε (p̃×Am + p×Am̃) ,

in components:




m̃1 −m1 = ε(a3 − a2)(m̃2m3 + m2m̃3) + ε(b3 − b2)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(a1 − a3)(m̃3m1 + m3m̃1) + ε(b1 − b3)(p̃3p1 + p3p̃1),

m̃3 −m3 = ε(a2 − a1)(m̃1m2 + m1m̃2) + ε(b2 − b1)(p̃1p2 + p1p̃2),

p̃1 − p1 = εa3(m̃3p2 + m3p̃2)− εa2(m̃2p3 + m2p̃3),

p̃2 − p2 = εa1(m̃1p3 + m1p̃3)− εa3(m̃3p1 + m3p̃1),

p̃3 − p3 = εa2(m̃2p1 + m2p̃1)− εa1(m̃1p2 + m1p̃2).

(14.14)

In what follows, we will use the abbreviations bij = bi − bj and aij = ai − aj . The linear system
(14.14) defines an explicit, birational map f : R6 → R6,


m̃

p̃


 = f(m, p, ε) = M−1(m, p, ε)


m

p


 ,
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where

M(m, p, ε) =




1 εa23m3 εa23m2 0 εb23p3 εb23p2

εa31m3 1 εa31m1 εb31p3 0 εb31p1

εa12m2 εa12m1 1 εb12p2 εb12p1 0

0 εa2p3 −εa3p2 1 −εa3m3 εa2m2

−εa1p3 0 εa3p1 εa3m3 1 −εa1m1

εa1p2 −εa2p1 0 −εa2m2 εa1m1 1




.

This map will be denoted dGC in what follows.
A “simple” integral of the map dGC can be obtained by discretizing the following Wronskian

relation with constant coefficients, which holds for the general flow of the Clebsch system (14.4):

A1(ṁ1p1 −m1ṗ1) + A2(ṁ2p2 −m2ṗ2) + A3(ṁ3p3 −m3ṗ3) = 0,

with
Ai = aiaj + aiak − ajak.

Proposition 49. The set Γ = (m̃1p1 −m1p̃1, m̃2p2 −m2p̃2, m̃3p3 −m3p̃3) is a HK basis for the
map dGC with dimKΓ(x) = 1. At each point x ∈ R6 we have: KΓ(x) = [e1 : e2 : e3], where, for
(i, j, k) = c.p.(1, 2, 3),

ei = Ai + ε2ai(bi − bj)AkΘj + ε2ai(bi − bk)AjΘk,

with

Θi = p2
i +

ai

θajak
m2

i .

(Recall that θ is defined by Eq. (14.2); we assume here that θ 6= ∞.)

As in the case of the first flow, the integrals ei/ej can be expressed through one symmetric
integral: ei/ej = (Ai − θaiL)/(Aj − θajL), where

L =
a2a3A1Θ1 + a3a1A2Θ2 + a1a2A3Θ3

1 + ε2θa1a2a3(Θ1 + Θ2 + Θ3)
.

The quantities ei and the integral L can be also obtained from a different (monomial) HK basis,
given in part b) of the following Proposition.

Proposition 50.
(a) The set Φ = (p2

1, p2
2, p2

3, m2
1, m2

2, m2
3, m1p1, m2p2, m3p3, 1) is a HK basis for the map dGC

with dimKΦ(m, p) = 4. Thus, any orbit of the map dGC lies on an intersection of four quadrics
in R6.

(b) The set of functions Φ0 = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, 1) is a HK basis for the map dGC with
dimKΦ0(m, p) = 1. At each point (m, p) ∈ R6 there holds:

KΦ0(m, p) = [a2a3e1 : a3a1e2 : a1a2e3 : (a1/θ)e1 : (a2/θ)e2 : (a3/θ)e3 : −e0],

where
e0 = a2a3A1Θ1 + a3a1A2Θ2 + a1a2A3Θ3

is an integral of motion of the continuous time flow (14.4).
(c) The sets of functions (14.7)–(14.9) are HK bases for the map dGC with one-dimensional

null-spaces.
(d) Each of the sets of functions Ψ0 = (p̃1p1, p̃2p2, p̃3p3, m̃1m1, m̃2m2, m̃3m3, 1) and (14.11)–

(14.13) is a HK basis for the map dGC with a one-dimensional null-space.
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15. su(2) RATIONAL GAUDIN SYSTEM WITH N = 2 SPINS
The Gaudin system [26] describes an interaction of N quantum spins yi, i = 1, . . . , N , with

a homogeneous constant external field p. Its classical version is given by the following quadratic
system of differential equations [27]:

ẏi =


λi p +

N∑

j=1

yj


× yi, 1 6 i 6 N, (15.1)

where yi ∈ su(2) ' R3, p ∈ su(2) ' R3 is a constant vector, and pairwise distinct numbers λi are
parameters of the model. The flow (15.1) is Hamiltonian with respect to the Lie-Poisson bracket
of the direct sum of N copies of su(2), admits 2N independent conserved quantities in involution:
the N Casimir functions

Ck = 〈yk, yk〉,
and the following N Hamiltonians:

Hk = 〈p, yk〉+
N∑

j=1
j 6=k

〈yk, yj〉
λk − λj

,

where 〈·, ·〉 denotes the scalar product in su(2) ' R3. Note that the Hamilton function of the flow
(15.1) is

H =
N∑

k=1

λk Hk =
1
2

N∑

i,j=1
i6=j

〈yi, yj〉+
N∑

i=1

λi〈p, yi〉.

In [27, 28] it has been proved that a contraction of N simple poles to one pole of order N
provides the integrable flow of the so called one-body rational su(2) tower, whose simplest instance
with N = 2 describes the dynamics of the three-dimensional Lagrange top in the rest frame.

We consider here the HK discretization of this flow (15.1) with N = 2. We set y1 = (x1, x2, x3)T,
y2 = (z1, z2, z3)T, and choose the constant gravity vector p = (0, 0, 1)T. We thus obtain the following
system of differential equations:





ẋ1 = x2z3 − x3z2 + λ1x2,

ẋ2 = x3z1 − x1z3 − λ1x1,

ẋ3 = x1z2 − x2z1,

ż1 = z2x3 − z3x2 + λ2z2,

ż2 = z3x1 − z1x3 − λ2z1,

ż3 = z1x2 − z2x1,

(15.2)

with λ1, λ2 being real parameters. The system (15.2) has the following four independent integrals
of motion:

C1 = x2
2 + x2

2 + x2
3, C2 = z2

1 + z2
2 + z2

3 ,

H1 = x3 +
x1z1 + x2z2 + x3z3

λ1 − λ2
, H2 = z3 +

x1z1 + x2z2 + x3z3

λ2 − λ1
.

Note that the quantity H1 + H2 = x3 + z3 is a linear integral of motion. We mention also the
following Wronskian relation with constant coefficients:

(x3 + z3)(ẋ1z1 − x1ż1 + ẋ2z2 − x2ż2) + (λ1 + λ2 + x3 + z3)(ẋ3z3 − x3ż3) = 0. (15.3)
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The HK discretization of (15.2) reads:




x̃1 − x1 = ε(x̃2z3 + x2z̃3 − x̃3z2 − x3z̃2) + ελ1(x̃2 + x2),

x̃2 − x2 = ε(x̃3z1 + x3z̃1 − x̃1z3 − x1z̃3)− ελ1(x̃1 + x1),

x̃3 − x3 = ε(x̃1z2 + x1z̃2 − x̃2z1 − x2z̃1),

z̃1 − z1 = ε(z̃2x3 + x2x̃3 − z̃3x2 − z3x̃2) + ελ2(z̃2 + z2),

z̃2 − z2 = ε(z̃3x1 + z3x̃1 − z̃1x3 − z1x̃3)− ελ2(z̃1 + z1),

z̃3 − z3 = ε(z̃1x2 + z1x̃2 − z̃2x1 − z2x̃1).

(15.4)

The map f : x 7→ x̃ obtained by solving (15.4) for x̃ is given by:

x̃ = f(x, ε) = A−1(x, ε)(1+ εB)x,

where x = (x1, x2, x3, z1, z2, z3)T, and

A(x, ε) =




1 −εz3 εz2 0 εx3 −εx2

−εz3 1 −εz1 −εx3 0 εx1

−εz2 εz1 1 εx2 −εx1 0

0 εz3 −εz2 1 −εx3 εx2

−εz3 0 εz1 εx3 1 −εx1

εz2 −εz1 0 −εx2 εx1 1




− εB,

B =




0 λ1 0 0 0 0

−λ1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 λ2 0

0 0 0 −λ2 0 0

0 0 0 0 0 0




.

This map will be called dG in the sequel. The quantity x3 + z3 is obviously preserved by the
map dG. Other conserved quantities may now be found using the HK bases approach. A “simple”
integral follows, as in the previous sections, by discretizing the Wronskian relation (15.3).

Proposition 51. The set of functions Γ = (x̃1z1 − x1z̃1, x̃2z2 − x2z̃2, x̃3z3 − x3z̃3) is a HK basis
for the map dG with the one-dimensional null-space KΓ(x, z) = [x3 + z3 : x3 + z3 : I], with

I(x, z) =
λ1 + λ2 + x3 + z3 + ε2λ1(x2

1 + x2
2) + ε2λ2(z2

1 + z2
2) + ε2(λ1 + λ2)(x1z1 + x2z2)

1− ε2(λ1x3 + λ2z3 + λ1λ2)
.

A full set of integrals is found in the following Proposition. The roles of the variables xi and zi
are not quite symmetric there, and interchanging them is of course admissible but does not lead to
new integrals of motion.

Proposition 52.
(a) The set Φ = (x2

1 + x2
2, z2

1 + z2
2 , z2

3 , x1z1 + x2z2, z3, 1) is a HK basis for the map dG with
dimKΦ(x) = 3.
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(b) The set Φ1 = (1, z3, z2
3 , x2

1 + x2
2) is a HK basis for the map dG with a one-dimensional null-

space. At each point (x, z) ∈ R6 we have: KΦ1(x, z) = [c0 : c1 : c2 : −1]. The functions c0, c1, c2 are
conserved quantities of the map dG, given by

c0 =
x2

1 + x2
2 − 2x3z3 − z2

3 + ε2c
(4)
0 + ε4c

(6)
0 + ε6c

(8)
0 + ε8c

(10)
0

∆1∆2
,

c1 =
2(x3 + z3)

(
1 + ε2c

(3)
1 + ε4c

(5)
1 + ε6c

(7)
1 + ε8c

(9)
1

)

∆1∆2
,

c2 = −

(
1 + ε2c

(2)
2 + ε4c

(4)
2 + ε6c

(6)
2 + ε8c

(10)
2

)

∆1∆2
,

where

∆1 = 1− ε2(λ1x3 + λ2z3 + λ1λ2), ∆2 = 1 + ε2∆(2)
2 + ε4∆(4)

2 + ε6∆(6)
2 .

Here ∆(q) and c
(q)
k are polynomials of degree q in the phase variables. In particular:

c
(2)
2 = −(x2

1 + x2
2 + x2

3)− (z2
1 + z2

2 + z2
3)− 2(x1z1 + x2z2 + x3z3)− 2(λ2x3 + λ1z3)− (λ2

1 + λ2
2),

and ∆(2)
2 = c

(2)
2 + λ1x3 + λ2z3 + λ1λ2.

(c) The set Φ2 = (1, z3, z
2
3 , x1z1 + x2z2) is a HK basis for the map dG with a one-dimensional

null-space. At each point (x, z) ∈ R6 we have: KΦ2(x, z) = [d0 : d1 : d2 : −1]. The functions d0, d1, d2

are conserved quantities of the map dG, given by

d0 =
x1z1 + x2z2 + x3z3 + (λ2 − λ1)z3 + ε2d

(4)
0 + ε4d

(6)
0 + ε6d

(8)
0 + ε8d

(10)
0

∆1∆2
,

d1 =
λ1 − λ2 − x3 − z3 + ε2d

(3)
1 + ε4d

(5)
1 + ε6d

(7)
1 + ε8d

(9)
1

∆1∆2
,

d2 = −1 + ε2c
(2)
2 + ε4c

(4)
2 + ε6c

(6)
2 + ε8c

(8)
2

∆1∆2
,

where d
(q)
k are polynomials of degree q in the phase variables.

(d) The set Φ3 = (1, z3, z2
3 , z2

1 + z2
2) is a HK basis for the map dG with a one-dimensional null-

space. At each point (x, z) ∈ R6 we have: KΦ3(x, z) = [e0 : e1 : e2 : −1]. The functions e0, e1, e2 are
conserved quantities of the map dG, given by

e0 =
z2
1 + z2

2 + z2
3 + ε2e

(4)
0 + ε4e

(6)
0 + ε6e

(8)
0 + ε8e

(10)
0

∆1∆2
,

e1 =
2ε2

(
e
(2)
1 + ε2e

(4)
1 + ε4e

(6)
1 + ε6e

(8)
1

)

∆1∆2
,

e2 = −1 + ε2e
(2)
2 + ε4e

(4)
2 + ε6e

(6)
2 + ε8e

(8)
2

∆1∆2
,

where e
(q)
k are polynomials of degree q in the phase variables.

It can be shown that each of the sets {c0, c1, c2, x3 + z3}, {d0, d1, d2, x3 + z3} and {e0, e1, e2, x3 + z3}
contains four independent integrals.

Analogously to the situation for the map dLT, it is possible to obtain a polynomial integral and
an invariant volume form for the map dG.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



288 PETRERA et al.

Proposition 53. The function

G =
1
2
(x1 + z1)2 +

1
2
(x2 + z2)2 + λ1x3 + λ2z3 − ε2

2
(
(λ1x1 + λ2z1)2 + (λ1x2 + λ2z2)2

)
,

is a conserved quantity for the map dG.

Proposition 54. The map dG possesses an invariant volume form:

det
∂(x̃, z̃)
∂(x, z)

=
φ(x̃, z̃)
φ(x, z)

⇔ f∗ω = ω, ω =
dx1 ∧ dx2 ∧ dx3 ∧ dz1 ∧ dz2 ∧ dz3

φ(x, z)
,

where φ(x, z)) = ∆2(x, z).

Explicit integration of the map dG could be based on the following claim.

Proposition 55. The component x3 of the solution of the dG map satisfies a relation of the type

Q(x3, x̃3) = q0x
2
3x̃

2
3 + q1x3x̃3(x3 + x̃3) + q2(x2

3 + x̃2
3) + q3x3x̃3 + q4(x3 + x̃3) + q5 = 0,

coefficients of the biquadratic polynomial Q being conserved quantities of dG. Thus, x3(t) is an
elliptic function of degree 2. An analogous statement holds for the component z3.

16. CONCLUSIONS

The initial motivation for this study was the hope that HK discretization would preserve the
integrability for all algebraically integrable systems. This was formulated as a conjecture in [2].
The list of integrable discretizations given in the present overview contains more than a dozen
issues and is rather impressive. It includes systems integrable in terms of elliptic functions as well
as those integrable in terms of theta-functions of genus g = 2 (Clebsch system). This list might
look like a convincing argument in favor of the integrability conjecture. However, at present we
have also found examples which indicate that this conjecture might be wrong (e.g., the Zhukovski–
Volterra system with all βk 6= 0, or integrable chains, Volterra and dressing ones, with a big number
of particles, say N > 5). We do not have rigorous proofs of the non-integrability in these cases,
but the numerical evidence is rather strong. Since HK discretizations are (probably) not always
integrable, the big number of integrable cases becomes still more intriguing: it is hard to imagine
that all their common features come as a pure coincidence. We are after a theory which would
clarify the problem of integrability of HK discretizations, but at present such a theory seems to
remain a rather remote goal. Still, even without a general framework, HK discretizations represent
a new fascinating chapter in the theory of integrable systems: we are now in a possession of a big
and potentially growing stock of birational maps, integrable in terms of Abelian functions, highly
non-trivial from the point of view of algebraic geometry and very different in nature from anything
known before. The immediate goal of this review will be achieved if HK discretizations will attract
attention of experts in the theory of integrable systems and in algebraic geometry.
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Université Lille Nord de France F 59000, France
UArtois Laboratoire de Mathématique de Lens EA2462,
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Faculté des Sciences Jean Perrin

Rue Jean Souvraz, S.P. 18,
F, 62300 Lens, France

Investigador PEDECIBA
Centro de Matemática
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Abstract—This paper is a further contribution to the study of exact solutions to KP, KdV,
sine-Gordon, 1D Toda and nonlinear Schrodinger equations. We will be uniquely concerned
with algebro-geometric solutions, doubly periodic in one variable. According to (so-called) Its-
Matveev’s formulae, the Jacobians of the corresponding spectral curves must contain an elliptic
curve X, satisfying suitable geometric properties. It turns out that the latter curves are in fact
contained in a particular algebraic surface S ⊥, projecting onto a rational surface S̃. Moreover,
all spectral curves project onto a rational curve inside S̃. We are thus led to study all rational
curves of S̃, having suitable numerical equivalence classes. At last we obtain d - 1-dimensional
of spectral curves, of arbitrary high genus, giving rise to KdV solutions doubly periodic with
respect to the d-th KdV flow (d ≥ 1). Analogous results are presented, without proof, for the
1D Toda, NL Schrodinger an sine-Gordon equation.
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exceptional curve, elliptic soliton.

1. INTRODUCTION

1.1. A huge variety of nonlinear integrable processes and phenomena in physics and mathematics
can be described by a few nonlinear partial derivative equations (e.g., Korteweg–de Vries and
Kadomtsev–Petviashvili, 1D and 2D Toda, sine-Gordon, nonlinear Schrödinger equations). For
almost 40 years a full range of methods coming from distinct areas were developed in order to
deal and present exact solutions of the latter equations (e.g., [1–37] and references therein). Zero-
curvature equations, Lax pair’s presentation and inverse scattering methods revolutionized the
whole domain ([21, 37]). Rational and trigonometric exact solutions ([1, 6, 13]) were followed by
quasi-periodic ones, also called finite-gap, given in terms of the theta function of an arbitrary
hyperelliptic curve, via the Its–Matveev formula or its variants ([7, 14]). A few years later
I.M. Krichever made a major contribution in [17], extending the latter results to finite-gap
solutions of the KP equation associated to an arbitrary compact Riemann surface. M. Sato’s infinite
dimensional approach, developed in the beginning of the 1980s ([15, 25, 26]), further generalized
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Krichever’s dictionary as well as the classical theta and Baker–Akhiezer function. From then on,
all previously studied nonlinear evolution equations were reconsidered, and considerable effort was
made in order to find doubly periodic solutions to each one of them. The starting point to this
new trend was Krichevers’s seminal article [18]. The first doubly periodic solutions to the KdV
equation and a remarkable connection with the elliptic Calogero–Moser integrable system had
already been found (e.g., [1] and [8], as well as [6] for the rational/trigonometric case), but [18]
generalizes to an equivalence between the elliptic C-M integrable system and the KP solutions,
doubly periodic in x. More precisely, given n > 1 and the lattice L ⊂ C, the corresponding elliptic
Calogero–Moser integrable system is solved. Its (2n-dimensional) phase space is cut out by the
Jacobian Varieties of an n-dimensional family of genus n marked compact Riemann surfaces, each
one of which (is effectively constructed and) gives rise to KP solutions L-periodic in x ∈ C. The
analogous problems for the KdV, 1D Toda, NL Schrödinger, sine-Gordon equations and related
problems ([22–24]) amount to finding hyperelliptic curves equipped with a projection onto X,
satisfying specific geometrical properties, as briefly explained hereafter.

Let indeed π : (Γ, p) → (X, q) be an arbitrary ramified cover, where π(p) = q and (X, q) is the
elliptic curve (C/L, 0). Up to a translation, there exist canonical copies of Γ and X inside JacΓ,
the Jacobian variety of Γ. Consider the flag {0} ( V 1

Γ,p . . . ( V g
Γ,p, of hyperosculating spaces to Γ

at p, and ToX the tangent line to (the copy of ) X, inside JacΓ.

The d-th case of the KP equation: 3
4uyy + ∂

∂x

(
ut + 1

4(6uux − uxxx)
)
.

We will call π : (Γ, p) → (X, q) a d-osculating cover if ToX ⊂ V d
Γ,p\V d−1

Γ,p . Such covers, studied
and constructed for any d > 1, give rise to KP solutions L-periodic with respect to the d-th KP
flow (cf. [35] for d = 1 and [33] for any other d).

The d-th case of the KdV equation: ut + 1
4(6uux − uxxx).

Recall that p ∈ Γ is a Weierstrass point of the hyperelliptic curve Γ, if and only if there exists
a degree-2 projection Γ → P1, ramified at p. Or in other words, if and only if there exists an
involution, say τΓ : Γ → Γ, fixing p and such that the quotient curve Γ/τΓ is isomorphic to P1.
Let π : (Γ, p) → (X, q) be a d-osculating cover such that Γ is hyperelliptic and p ∈ Γ a Weierstrass
point. Then, all KdV solutions classically associated to (Γ, p) are L-periodic with respect to the
d-th KdV flow.

The nonlinear Schrödinger: ipy + pxx ∓ 8|p|2p = 0

and the 1D Toda case: ∂2

∂t2
ϕn = exp(ϕn − ϕn-1)− exp(ϕn+1 − ϕn).

Let π : (Γ, p+) → (X, q) be a 1-osculating cover (i.e., also called a tangential cover in [32]) such
that Γ is hyperelliptic and p+ ∈ Γ is not a Weierstrass point. Then, all nonlinear Schrödinger and
1D Toda solutions classically associated to (Γ, p+, τΓ(p+)), are L-periodic in x and in t, respectively.

The sine-Gordon case: uxx − utt = sinu.

Let Γ be a hyperelliptic curve, equipped with a projection π : Γ → X and two Weierstrass points,
say p, p′ ∈ Γ, such that the tangent line ToX is contained in the plane V 1

Γ,p + V 1
Γ,p′ , generated by

the tangents to Γ at p and p′ (inside Jac Γ). Then, up to choosing suitable local coordinates of Γ
at p and p′, the sine-Gordon solutions classically associated to (Γ, p, p′) are L-periodic in x.

The KP case being rather well understood, we will focus on the three other cases, and in
particular, on ramified projections π : Γ → X, of a hyperelliptic curve onto the fixed elliptic one,
marked at, either one or two Weierstrass points KdV and sine-Gordon cases), or two points
exchanged by the hyperelliptic involution. Studying the tangent and osculating spaces at the marked
points (in Jac Γ) is an interesting geometric problem which, I believe, does not need any further
motivation. It was first considered, however, through its links with L-periodic solutions of the
Korteweg–de Vries equation (e.g., [1, 8, 14, 18, 27, 35] for d = 1 and [2, 10, 11, 29] for d = 2),
as well as the Toda, sine-Gordon and nonlinear Schrödinger equations (e.g., [5, 28, 30]). Studying
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their general properties (such as the relations between the genus and the degree of the cover), and
constructing examples in any genus, will be the main issues of this article.

After fixing a lattice L ⊂ C defining the marked elliptic curve (X, q) := (C/L, 0), we will develop
in Section 3 a well suited algebraic-surface approach, for studying the structure of all ramified covers
of X we are interested in, and their canonical factorization through a particular algebraic surface.
Natural numerical invariants will then be defined, in terms of which we will characterize the latter
covers and, ultimately, construct arbitrarily high genus examples to each case.

1.2. We sketch hereafter the structure and main results of our article.

1. We start Section 2 defining the Abel rational embedding of a curve Γ, of positive genus
g, into its generalized Jacobian, JacΓ, and construct the flag of hyperosculating spaces
{0} ( V1,p . . . ( Vg,p = H1(Γ, OΓ), at the image of any smooth point p ∈ Γ. From then on,
we restrict to Jacobians of hyperelliptic curves such that JacΓ contains the elliptic curve
(X, q) = (C/L, 0), or equivalently, to any hyperelliptic cover π : (Γ, p) → (X, q). Dualizing
such a cover π, we obtain a homomorphism ιπ : X → JacΓ, with image an elliptic curve
isogeneous to X. Let d be the smallest positive integer, called the osculating order of π, such
that the tangent line defined by ιπ(X) is contained in Vd,p ⊂ H1(Γ, OΓ). Whenever p ∈ Γ
is a Weierstrass point, π is called a hyperelliptic d-osculating cover, and gives rise to KdV
solutions, L-periodic with respect to the d-th KdV flow. Such covers are characterized by the
existence of a particular projection κ : Γ → P1 (2.6). Given any hyperelliptic cover π, marked
at, either two points exchanged by the hyperelliptic involution, or two Weierstrass points,
we also find analogous characterizations for π to solve, the NL Schrödinger and 1D Toda or
the sine-Gordon case (2.9, 2.10).

2. The characterizations 2.6 pave the way to the algebraic surface approach developed in
the remaining sections. The main characters are played by three projective surfaces and
corresponding morphisms, canonically associated to X:
¦ πS : S → X: a particular ruled surface;

¦ e : S⊥ → S: the blow-up of S, at the 8 fixed points of its involution;

¦ ϕ : S⊥ → S̃: a projection onto an anticanonical rational surface.

3. We construct in Section 3 the projective surfaces S and S⊥, equipped with natural involutions
τ and τ⊥, as well as S̃, the quotient of S⊥ by τ⊥. We then prove that any hyperelliptic
d-osculating cover π : (Γ, p) → (X, q) factors through S⊥, and projects onto a rational
irreducible curve in S̃ (3.7 and 3.8). An analogous characterization is in order, for π to
solve the NL Schrödinger and 1D Toda or the sine-Gordon case (3.9).

4. In Section 4 we fix a complex elliptic curve (X, q) = (C/L, 0), and give the original motivation
for studying hyperelliptic d-osculating covers of X. We start recalling the definition of the
Baker–Akhiezer function ψD, associated to the data (Γ, p, λ, D), where Γ is a smooth complex
projective curve of positive genus g, λ a local parameter at p ∈ Γ and D a non-special effective
divisor of Γ. In case (Γ, p) is a hyperelliptic curve marked at a Weierstrass point, we give the
Its–Matveev (I-M) exact formula for the KdV solution associated to ψD, as a function of
infinitely many variables {t2j−1, j ∈ N∗}. We end up Section 4 proving that any hyperelliptic
d-osculating cover of C/L, gives rise to KdV solutions L-periodic in t2d−1.

5. In Section 5 we take up again the algebraic surface set up developed in Section 3, recalling
that any hyperelliptic d-osculating cover π : (Γ, p) → (X, q) factors through an equivariant
morphism ι⊥ : Γ → ι⊥(Γ) ⊂ S⊥, before projecting onto the rational irreducible curve Γ̃ :=
ϕ
(
ι⊥(Γ)

) ⊂ S̃. The ramification index of π at p and the degree of ι⊥ : Γ → ι⊥(Γ) ⊂ S⊥,
say ρ and m, are natural numerical invariants attached to π. We also define its type,
γ = (γi) ∈ N4, by intersecting ι⊥∗ (Γ) with four suitably chosen exceptional divisors (5.2).
We assume henceforth that m = 1 and calculate the linear equivalence class of Γ⊥ ⊂ S⊥.
Basic congruences and inequalities for the latter invariants follow (5.4 and 5.5). For example,
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the genus of Γ satisfies (2g + 1)2 6 (2d− 1)
(
8n + 2d− 1

)
. Any hyperelliptic cover solving the

other three cases also factors through S⊥ and projects onto a rational irreducible curve in S̃.
Similar congruences and inequalities for their invariants follow as well (5.6, 5.7 and 5.8)

6. At last, in Section 6 we focus on MHX(n, d, 1, 1, γ), the set of of degree-n hyperelliptic
d-osculating covers, of type γ, not ramified at the marked point and birational to their
natural images in S⊥ (i.e., such that ρ = m = 1). For any given (n, d) ∈ N∗ × N∗, we find
explicit types γ ∈ N4 satisfying γ(2) = (2d− 1)(2n− 2) + 3, for which we give an effective
construction (leading ultimately to explicit equations) of the corresponding covers. We thus
obtain (d− 1)-dimensional families of arbitrarily high genus marked curves, solving the d-th
KdV case. A completely analogous constructive approach can be worked out for the other
three cases.

2. JACOBIANS OF CURVES AND HYPERELLIPTIC d-OSCULATING COVERS
2.1. Let P1 denote the projective line over C and (X, q) the elliptic curve (C/L, 0), where L

is a fixed lattice of C. By a curve we will mean hereafter a complete integral curve over C, say
Γ, of positive arithmetic genus g > 0. If Γ is smooth, its Jacobian variety is a complete connected
commutative algebraic group of dimension g. For a singular irreducible curve of arithmetic genus
g instead, the analogous picture decouples into canonically related pieces, as briefly explained
hereafter. We have, on the one hand, the moduli space of degree-0 invertible sheaves over Γ, still
denoted by JacΓ and called the generalized Jacobian of Jac Γ. It is a connected commutative
algebraic group, canonically identified to H1(Γ, O∗

Γ), with tangent space at its origin equal to
H1(Γ, OΓ). In particular, it is g-dimensional, although not a complete variety any more.

The latter is related to the Jacobian variety of the smooth model of Γ. More generally, let
j : Γ̂ → Γ be any partial desingularization and consider the natural injection OΓ → j∗(O∗

Γ̂
), with

quotient Nj , a finite support sheaf of abelian groups. From the corresponding exact cohomology
sequence we can then extract

0 → H0(Γ, Nj) → H1(Γ, O∗
Γ)

j∗→ H1(Γ̂, O∗
Γ̂
) → 0

or

0 → H0(Γ, Nj) → JacΓ
j∗→ Jac Γ̂ → 0.

Hence, the homomorphism j∗ : JacΓ → Jac Γ̂,L 7→ j∗(L), is surjective, with kernel the affine
algebraic group H0(Γ, Nj).

On the other hand, we have the moduli space W (Γ), of torsionless, zero Euler characteristic,
coherent sheaves over Γ, also called compactified Jacobian of Γ, on which JacΓ acts by tensor
product. Taking direct images by any partial desingularization j : Γ̂ → Γ, defines an equivariant
embedding j∗ : W (Γ̂) → W (Γ), such that ∀F̂ ∈ W (Γ̂), ∀L ∈ JacΓ, we have the projection formula
j∗(F̂ ⊗ j∗(L)) = j∗(F̂ )⊗ L. Hence, a JacΓ-invariant stratification of W (Γ), encoding the web of
different partial desingularizations between Γ and its smooth model. Let me stress that, up to
choosing the marked points, any singular irreducible hyperelliptic curves gives rise to KdV, 1D Toda
and NL Schrödinger solutions, parameterized by the compactified Jacobian W (Γ) (cf. [26]).

For any curve Γ, let Γ0 and JacΓ denote, respectively, the open subset of smooth points of
Γ and its generalized Jacobian. Recall that for any smooth point p ∈ Γ0, the Abel morphism,
Ap : Γ0 → JacΓ, p′ 7→ OΓ(p′ − p), is an embedding and Ap(Γ0) generates the whole jacobian. For
any marked curve (Γ, p) as above, and any positive integer j, let us consider the exact sequence of
OΓ-modules 0 → OΓ → OΓ(jp) → Ojp(jp) → 0, as well as the corresponding long exact cohomology
sequence:

0 → H0(Γ, OΓ) → H0
(
Γ, OΓ(jp)

) → H0
(
Γ, Ojp(jp)

) δ→ H1(Γ, OΓ) → . . . ,

where δ : H0
(
Γ, Ojp(jp)

) → H1(Γ, OΓ) is the cobord morphism and H1(Γ, OΓ) is canonically
identified with the tangent space to JacΓ at 0.
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According to the Weierstrass gap Theorem, for any d = 1, . . . , g := genus(Γ), there exists

0 < j < 2g such that δ
(
H0

(
Γ, Ojp(jp)

))
is a d-dimensional subpace, denoted hereafter by Vd,p.

For a generic point p of Γ we have Vd,p = δ
(
H0

(
Γ, Odp(dp)

))
(i.e. : j = d).

In any case, the above filtration {0} ( V1,p . . . ( Vg,p = H1(Γ, OΓ) is the, so-called, flag of

hyperosculating spaces to Ap(Γ) at 0. For example, V1,p is equal to δ
(
H0

(
Γ, Op(p)

))
, the tangent

to Ap(Γ) at 0.

Proposition 2.2. ([33]1.6.) Let (Γ, p, λ) be a hyperelliptic curve, equipped with a local parameter
λ at a smooth Weierstrass point p ∈ Γ0, and consider, for any odd integer j = 2d− 1 > 1, the exact
sequence of OΓ-modules:

0 → OΓ → OΓ(jp) → Ojp(jp) → 0,

as well as its long exact cohomology sequence

0 → H0(Γ, OΓ) → H0
(
Γ, OΓ(jp)

) → H0
(
Γ, Ojp(jp)

) δ→ H1(Γ, OΓ) → . . . ,

δ being the cobord morphism.
For any, m > 1, we also let [λ−m] denote the class of λ−m in H0

(
Γ, Omp(mp)

)
. Then Vd,p is

generated by
{

δ
(
[λ2l−1]

)
, l = 1, . . . , d

}
. In other words, the d-th osculating subspace to Ap(Γ) at 0

is equal to δ
(
H0

(
Γ, Ojp(jp)

))
, for j = 2d− 1.

Definition 2.3. A finite marked morphism π : (Γ, p) → (X, q), such that Γ is a hyperelliptic
curve and p ∈ Γ a smooth Weierstrass point, will be called a hyperelliptic cover. Let [−1] : (X, q) →
(X, q) denote the canonical symmetry, fixing the origin q ∈ X, as well as the three other half-periods
{ωj , j = 1, 2, 3}, and τΓ : (Γ, p) → (Γ, p) the hyperelliptic involution. Let us recall that the quotient
curve Γ/τΓ is isomorphic to P1 and [−1] ◦ π = π ◦ τΓ.

Definition 2.5. Let π : (Γ, p) → (X, q) be a finite marked morphism and let ιπ : X → JacΓ
denote the group homomorphism q′ 7→ Ap

(
π∗(q′ − q)

)
. We will say that π has osculating order d,

or equivalently, that it is a d-osculating cover, if ToX ⊂ H1(Γ, OΓ), the tangent to ιπ(X) at 0 is
contained in Vd,p\Vd−1,p. If π also happens to be a hyperelliptic cover, we will simply say that it is
a hyperelliptic d-osculating cover.

The osculating order of π is a geometrical invariant, bounded by the arithmetic genus of Γ, which
we may want to know. The following hyperelliptic d-osculating criterion, analog to Krichever’s
tangential one (cf. [18, p. 289]), will be instrumental for its calculation, as well as for further
development in Section 5.

Theorem 2.6.
Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover of arithmetic genus g. Then its osculating
order d ∈ {1, . . . , g} is characterized by the existence of a projection κ : Γ → P1 such that:

(1) the poles of κ lie along π−1(q);

(2) κ + π∗(z−1) has a pole of order 2d− 1 at p, and no other pole along π−1(q).

Furthermore, if τΓ : Γ → Γ denotes the hyperelliptic involution of Γ, there exists a unique projection
κ : Γ → P1 satisfying properties (1) & (2) above, as well as:

(3) τ∗Γ(κ) = −κ.
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Proof. According to 2.2, ∀k ∈ {1, . . . , g} the k-th osculating subspace Vk,p is generated by{
δ
(
[λ−(2l−1)]

)
, l = 1, . . . , k

}
. On the other hand, the tangent to ιπ(X) ⊂ JacΓ at 0 is equal to

π∗
(
H1(X, OX)

)
and generated by δ

(
[π∗(z−1)]

)
. In other words, the osculating order d is the smallest

positive integer such that δ
(
[π∗(z−1)]

)
is a linear combination

∑d
l=1 alδ

(
[λ−(2l−1)]

)
, with ad 6= 0.

Or equivalently, thanks to the Mittag–Leffler Theorem, if and only if there exists a projection
κ : Γ → P1, with polar parts equal to π∗(z−1)−∑d

l=1 alλ
−(2l−1). The latter conditions on κ are

equivalent to 2.6. (1) and (2). Moreover, up to replacing κ by 1
2

(
κ− τ∗Γ(κ)

)
, we can assume κ is τΓ-

anti-invariant. Now, the difference of two such functions should be τΓ-anti-invariant, while having
a unique pole at p, of order strictly smaller than 2d− 1 6 2g − 1. But the latter functions are all
τΓ-invariant, implying that the projection κ (satisfying conditions 2.6 (1)–(3)) is unique. ¤

Definition 2.7. The pair of marked projections (π, κ), satisfying 2.6 (1)–(3), will be called a
hyperelliptic d-osculating pair, and κ the hyperelliptic d-osculating function associated to π. In the
latter case, π gives rise to solutions of the KdV hierarchy, L periodic in the d-th KdV flow, as will
be proved in Section 4.

The following Proposition calculates the tangent at any point of the curve Ap(Γ) ⊂ JacΓ, and
leads to a useful characterization of the hyperelliptic covers solving the other cases. Its proof follows
along the same lines as 2.2’s proof.

Proposition 2.8. Let (Γ, r, λ) be a hyperelliptic curve equipped with a local parameter at
an arbitrary smooth point r ∈ Γ. Then V 1

Γ,r ⊂ H1(Γ, OΓ), the tangent line to Ap(Γ) at Ap(r), is
generated by δ

(
[λ−1]

)
.

Corollary 2.9. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover, p+ ∈ Γ a non-
Weierstrass point, p− := τΓ(p+), and let ToX ⊂ H1(Γ, OΓ) denote the tangent line defined by the
elliptic curve ιπ(X) ⊂ JacΓ. Then, the data (π, p+, p−) solves the NL Schrödinger and 1D Toda
case (i.e., ToX = V 1

Γ,p+ = V 1
Γ,p−), if and only if there exists a projection κ : Γ → P1 such that:

(1) the poles of κ lie in π−1(q) ∪ {p+, p−}.

(2) κ + π∗(z−1) has simple poles at {p+, p−}, and no other pole along π−1(q).

(3) τ∗Γ(κ) = −κ.

Corollary 2.10. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover equipped with two
Weierstrass points po, p1, and let ToX ⊂ H1(Γ, OΓ) denote the tangent line defined by the elliptic
curve ιπ(X) ⊂ JacΓ. Then, the data (π, po, p1) solves the sine-Gordon case (i.e., ToX ⊂ V 1

Γ,po
+

V 1
Γ,p1

), if and only if there exists a projection κ : Γ → P1 such that:

(1) the poles of κ lie in π−1(q) ∪ {po, p1}.

(2) κ + π∗(z−1) has simple poles at {p1, p2}, and no other pole along π−1(q).

(3) τ∗Γ(κ) = −κ.
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3. THE ALGEBRAIC SURFACE SET UP

3.1. We will construct hereafter a ruled surface πS : S → X, as well as a blowing-up e :
S⊥ → S, having a natural involution τ⊥ : S⊥ → S⊥, such that any hyperelliptic osculating cover
π : (Γ, p) → (X, q) factors through πS⊥ , via an equivariant morphism ι⊥ : Γ → Γ⊥ := ι⊥(Γ) ⊂ S⊥

(i.e., ι⊥ ◦ τΓ = τ⊥ ◦ ι⊥). We will also prove that Γ̃ := ϕ(Γ⊥), its image in the quotient surface
S̃ := S⊥/τ⊥, is an irreducible rational curve. Generally speaking, our main strategy, fully developed
in Section 5, will consist in translating numerical invariants of π : (Γ, p) → (X, q), in terms of the
numerical equivalence class of the corresponding rational irreducible curve Γ̃ ⊂ S̃ and its geometric
properties.

The whole relationship is sketched in the diagram below.

Γ⊥ ⊂ S⊥

π
S⊥

!!

e

%%KKKKKKKKKKK
ϕ // Γ̃ ⊂ S̃

p ∈ Γ
π

**UUUUUUUUUUUUUUUUUUUUU

ι⊥
99ssssssssss

S

πS

²²
q ∈ X

Definition 3.3.

1. Besides the origin ωo := q ∈ X, there are three other half-periods, say {ω1, ω2, ω3} ⊂ X, fixed
by the canonical symmetry [−1] : (X, q) → (X, q).

2. Consider the open affine subsets Uo := X \ {q} and U1 := X \ {ω1} and fix an odd mero-
morphic function ζ : X → P1, with divisor of poles equal to (ζ) = q + ω1 − ω2 − ω3. Let
πS : S → X denote the ruled surface obtained by identifying P1 × Uo with P1 × U1 over
X \ {q, ω1} as follows:

∀q′ 6= q, ω1, (To , q′) ∈ P1 × Uo is glued with (T1 +
1

ζ(q′)
, q′) ∈ P1 × U1.

In other words, we glue the fibers of P1 × U0 and P1 × U1 , over any q′ 6= q, ω1, by means of
a translation. In particular the constant sections q′ ∈ Ui 7→ (∞, q′) ∈ P1 × Ui, for i ∈ {0, 1},
get glued together, defining a particular one of zero self-intersection, denoted by Co ⊂ S.

3. The meromorphic differentials dTo and dT1 get also glued together, implying that KS, the
canonical divisor of S is represented by -2Co. Any section of πS : S → X, other than Co,
is given by two non-constant morphisms fi : Ui → P1 (i = 1, 2), such that fo = f1 − 1

ζ

outside {q, ω1}. A straightforward calculation shows that any such a section intersects Co,
while having self-intersection number greater or equal to 2. It follows from the general Theory
of Ruled Surfaces (cf. [12, V. 2]) that Co must be the unique section with zero self-intersection.

4. The only irreducible curve linearly equivalent to a multiple of Co is Co itself (cf.[35, 3.2(1)]).

5. The involutions P1 × Ui → P1 × Ui, (Ti, q
′) 7→ (− Ti, [−1](q′)

)
(i = 0, 1), get glued under

the above identification and define the involution τ : S → S, such that πS ◦ τ = [−1] ◦ πS,
already mentioned in 3.1. In particular, τ has two fixed points over each half-period ωi, one
in Co, denoted by si, and the other one denoted by ri (i = 0, . . . , 3).

6. Let e : S⊥ → S denote hereafter the blow-up of S at {si, ri, i = 0, . . . , 3}, the eight fixed
points of τ , and τ⊥ : S⊥ → S⊥ its lift to an involution fixing the corresponding exceptional
divisors

{
s⊥i := e−1(si), r⊥i := e−1(ri), i = 0, . . . , 3

}
. Taking the quotient of S⊥ with respect

to τ⊥, we obtain a degree-2 projection ϕ : S⊥ → S̃ onto a smooth rational surface S̃, ramified
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along the exceptional curves {s⊥i , r⊥i , i = 0, . . . , 3}. Let C⊥
o and C̃o denote, respectively, the

strict transform in S⊥ of Co ⊂ S (respectively: the corresponding projections in S̃). For
any i = 0, . . . , 3, let also s̃i and r̃i denote the projections in S̃ of s⊥i and r⊥i , respectively.
The canonical divisor of S̃, say K̃, satisfies ϕ∗(K̃) = e∗(−2Co) and is linearly equivalent to
−2C̃o −

∑3
i=0 s̃i.

The lemma and propositions hereafter, proved in [33, see 2.3, 2.4 and 2.5], will be instrumental
in constructing the equivariant factorization ι⊥ : Γ → S⊥ (3.1).

Lemma 3.6. There exists a unique, τ -anti-invariant, rational morphism κs : S → P1, with
poles over Co+π−1

S (q), such that over a suitable neighborhood U of q ∈ X, the divisor of poles
of κs+ π∗S(z−1) is reduced and equal to Co ∩ π−1

S (U).

Proposition 3.7. For any hyperelliptic cover π : (Γ, p) → (X, q), the following conditions are
equivalent:

1. there is a projection κ : Γ → P1, satisfying properties 2.6 (1), (2) and (3);

2. there is a morphism ι : Γ → S such that π = πS ◦ ι , ι ◦ τΓ = τ ◦ ι and ι∗(Co) = (2d− 1)p.

In the latter case, π is a hyperelliptic d-osculating morphism (2.5) and solves the d-th KdV case.
Proposition 3.8. For any hyperelliptic d-osculating pair (π, κ), the above morphism ι : Γ → S

lifts to a unique equivariant morphism ι⊥ : Γ → S⊥ (i.e., τ⊥ ◦ ι⊥ = ι⊥ ◦ τΓ). In particular, (π, κ) is
the pullback of (πS⊥ , κs⊥) = (πS ◦ e, κs ◦ e), and Γ lifts to a τ⊥-invariant curve, Γ⊥ := ι⊥(Γ) ⊂ S⊥,
which projects onto the rational irreducible curve Γ̃ := ϕ

(
Γ⊥

) ⊂ S̃.

Γ⊥ ⊂ S⊥ ϕ //

e

²²
π

S⊥
99

99
99

99

¿¿9
99

99
99

9

Γ̃ ⊂ S̃

Γ ι //

ι⊥wwwww

;;wwww

π
UUUUUUUUUUU

**UUUUUUUUUUU

ι(Γ) ⊂ S

πS
LLL

L

%%LLLLL

X

Proof. The blow-up e : S⊥ → S, as well as ι : Γ → S, can be pushed down to the corresponding
quotients, making up the following diagram:

Γ

2:1
²²

ι

""FF
FF

FF
FF

FF S⊥

ϕ

²²

e

}}{{
{{

{{
{{

{

Γ/τΓ

ι/

""EE
EE

EE
EE

S

2:1
²²

S̃
ee

}}{{{{{{{{

S/τ

Moreover, since ẽ : S̃ → S/τ is a birational morphism and Γ/τΓ is a smooth curve (in fact
isomorphic to P1 ), we can lift ι/ : Γ/τΓ → S/τ to S̃, obtaining a morphism ι̃ : Γ → S̃, fitting in the
diagram:

S̃

ee
@@

@@

ÃÃ@
@@

Γ

eι££££

@@££££

ι
===

=

ÁÁ=
===

S/τ

S

2:1||||

>>|||
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Recall now that S⊥ is the fibre product of ẽ : S̃ → S/τ and S → S/τ (cf. [35, 4.1]). Hence, ι and
ι̃ lift to a unique equivariant morphism ι⊥ : Γ → S⊥, fitting in

S̃

ee
@@

@@

ÃÃ@
@@

Γ

eιoooooooo

77oooooooo

ι
PPPPPPPP

''PPPPPPPP

ι⊥ // S⊥

ϕÄÄÄ

??ÄÄÄÄ

e
@@

@

ÃÃ@
@@

@

S/τ

S

2:1||||

>>|||

Furthermore, since ι̃ : Γ → S̃ factors through Γ → Γ/τΓ
∼= P1, its image Γ̃ := ϕ

(
ι⊥(Γ)

)
= ι̃(Γ) ⊂

S̃ is a rational irreducible curve as claimed. ¤

Analogously to the KdV case, any data (π, p+, p−) or (π, p1, p2), solving the NL Schrödinger and
1D Toda or the sine-Gordon case, factors through an equivariant morphism ι⊥ : Γ → S⊥, and its
image Γ⊥ := ι⊥(Γ) projects onto a rational irreducible curve in S̃.

Proposition 3.9. Let π : (Γ, p) → (X, q) be an arbitrary hyperelliptic cover equipped with two
points p′ 6= p′′ ∈ Γ such that the (divisor) sum p′ + p′′ is τΓ-invariant. Then, the following conditions
are equivalent:

1. there is a projection κ : Γ → P1, satisfying properties 2.9 (1), (2) and (3) or 2.10 (1)–(3);

2. there is a morphism ι : Γ → S such that π = πS ◦ ι , ι ◦ τΓ = τ ◦ ι and ι∗(Co) = p′ + p′′.

In the latter case, (π, p′, p′′) solves, either the NL Schrödinger and 1D Toda case, if τΓ(p′) = p′′, or
the sine-Gordon case, if p′ and p′′ are Weierstrass points.

Proposition 3.10. For any data (π, p′, p′′, κ) as in 3.9, the morphism ι : Γ → S lifts to a unique
equivariant morphism ι⊥ : Γ → S⊥ (i.e., τ⊥ ◦ ι⊥ = ι⊥ ◦ τΓ). In particular, (π, κ) is the pullback of
(πS⊥ , κs⊥) = (πS ◦ e, κs ◦ e), and Γ lifts to a τ⊥-invariant curve, Γ⊥ := ι⊥(Γ) ⊂ S⊥, which projects
onto the rational irreducible curve Γ̃ := ϕ

(
Γ⊥

) ⊂ S̃.

4. COMPLEX HYPERELLIPTIC CURVES AND ELLIPTIC KDV SOLITONS

4.1. Let Γ be a smooth complex projective curve of positive genus g, equipped with a local
coordinate at p ∈ Γ, say λ, as well as a non-special degree-g effective divisor D with support disjoint
from p. Then the so-called Baker–Akhiezer function associated to the spectral data (Γ, p, λ, D)
and denoted by ψD, is the unique meromorphic function on C∞ × (Γ\{p}) such that for any
~t = (t1, t2, . . . ) ∈ C∞:

1. the divisor of poles of ψD(~t, ), on Γ\{p}, is bounded by D;

2. in a neighbourhood of p, ψD(~t, λ) has an essential singularity of type:

ψD(~t, λ) = exp
( ∞∑

0<i

tiλ
−i

)(
1+

∞∑

0<i

ξD
i (~t)λi

)
.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



NONLINEAR EVOLUTION EQUATIONS 299

For any i > 1, differentiating ψD, either with respect to ti, or i times with respect to x := t1, we
obtain a meromorphic function with divisor of poles D + ip and same type of essential singularity
at p as ψD. We can therefore construct a differential polynomial of degree i in ∂

∂x , with functions
of ~t as coefficients, say Pi( ∂

∂x), such that ∂
∂ti

ψD − Pi( ∂
∂x)ψD has the same properties as ψD. The

uniqueness of the latter BA function implies that ψD(~t, λ) satisfies the (so-called KP) hierarchy of
partial derivatives equations ∂

∂ti
ψD = Pi( ∂

∂x)ψD, i ∈ N∗.

4.2. Let us suppose in the sequel that (Γ, p) is a hyperelliptic curve, marked at a Weierstrass
point, and λ an odd local parameter at p ∈ Γ. Or in other words, that there exists a degree-2
projection f : Γ → P1, with a double pole at p, and f(λ) = 1

λ2 + O(λ2). It is classically known then
that the BA function ψD(~t, λ), corresponding to any non-special degree-g effective divisor D of Γ,
does not depend, up to an exponential, on the even variables {t2j , j ∈ N∗}.

For example, choosing λ such that f(λ) = 1
λ2 , we will have ψD = exp

(∑
j t2jf

j
)
ψ

D
∣∣{t2j=0}.

It then follows that ψ
D
∣∣{t2j=0} solves the KdV hierarchy and u := −2 ∂

∂xξD
1 the Korteweg–de Vries

equation:

ut3 =
1
4
(6u · ux + uxxx) (x := t1).

A more concrete formula, (due to A. Its and V. Matveev, cf. [14]), is in order:

(I −M) u(t1, t3, t5, . . . ) = 2
∂2

∂x2

(
log θΓ(Z −

∞∑

0<j

t2j−1Uj )
)

+ c,

where
i) θΓ : Cg → C denotes the Riemann theta-function of Γ;

ii) Z ∈ Cg projects onto Ap(D) and c ∈ C;

iii) ∀j > 1, (2j)! · Uj = A
(2j−1)
p (λ)∣∣λ=0

, the (2j − 1)-th derivative of Ap(λ) at λ = 0.

Remark 4.3.

1. The vectors {Uk, 1 6 k 6 j} generate Vj,p, the j -th hyperosculating space to Ap(Γ) at Ap(p)
(see 2.1).

2. The above construction of KdV solutions can be generalized to any singular marked hyperel-
liptic curve (Γ, p), as recalled in [26]. The corresponding solutions are then parameterized by
W (Γ), the compactified jacobian of Γ. Roughly speaking, any L ∈ W (Γ), in the complement
of the theta divisor, corresponds to a non-special degree-g effective divisor, with support at
the smooth points of Γ. Working in the frame of Sato’s Grassmannian (cf. [25, 26]),one can
still define an analogous BA function, as well as a KdV solution. Hence, the highest the
arithmetic genus, the biggest the family of KdV solutions. We are thus naturally led to allow
singular marked hyperelliptic curves.

3. According to the (I-M) formula, the KdV solution u = −2 ∂
∂xξD

1 is a t2d−1-elliptic KdV soliton
(i.e., doubly periodic in t2d−1), if and only if Ud generates an elliptic curve X ⊂ Jac Γ. Or in
other words, if (Γ, p) → (X, q) is a smooth hyperelliptic d-osculating cover.

4. We will actually prove that any KdV solution associated to a hyperelliptic d-osculating cover,
is doubly periodic in t2d−1, without assuming the above (I-M) formula, or that Γ is a smooth
curve (see 4.5). The original idea goes back to [18, pp. 288–289].
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Notations 4.4. Choose a lattice L ⊂ C, equipped with a Z-basis (2ω1, 2ω2), such that the
elliptic curve (X, q) is isomorphic to the complex torus (C/L, 0), and let ζ(z) : C→ P1, denote the
ζ-Weierstrass meromorphic function. Recall (cf. [18, p. 283]) that ζ is holomorphic outside L and
characterized by the following properties:

∀z ∈ C \ L





ζ(z) = z−1 + O(z), in a neighborhood of 0 ∈ C,

ζ(z + 2ωj) = ζ(z)+ ηj , j = 1, 2,

for some η1, η2 ∈ C, satisfying Legendre’s relation: η1 2ω2 − η2 2ω1 = 2π
√−1.

Proposition 4.5. Let π : (Γ, p) → (X, q) be a genus-g, hyperelliptic d-osculating cover, κ the
unique hyperelliptic d-osculating function associated to π, and choose λ, an odd local parameter at
p, such that κ+π∗(z−1) = λ−(2d−1). Then, for any non-special degree-g effective divisor D, with
support disjoint from p, the KdV solution u = −2 ∂

∂xξD
1 associated to (Γ, p, λ, D) (see 4.2), is L-

periodic in t2d−1.

Proof. Denote again by ψD(~t, λ) the BA function associated to D. Recall (see 2.4) that κ has poles
only over π−1(q), and

κ + π∗
(
ζ(z)

)
= κ + π∗

(
z−1 + O(z)

)
= λ−(2d−1) + O(λ)

has a pole of order 2d− 1 at p. We then prove, coupling the properties of ζ and κ, that for j = 1, 2,
the function

φj(p′) = exp

(
2ωj

(
κ(p′)+ ζ

(
π(p′)

))− ηjπ(p′)
)

is well defined and holomorphic all over Γ \ {p}, thanks to Legendre’s relations, and has an essential
singularity at p of the following type:

φj(p′) = exp
(
2ωjλ

−(2d−1) + O(π(p′)
))

= exp
(
2ωjλ

−(2d−1)
)(

1 + O(λ)
)
.

The main final argument run as follows. The uniqueness of the BA function ψD(~t, λ) implies that

ψD(~t+2ωj~e2d−1, λ) = φj(λ) · ψD(~t, λ) ,

where ~e2d−1 = (0, . . . 0, 1, 0 . . . ) ∈ C∞ is the vector having a 1 at the (2d− 1)-th place and 0
everywhere else. At last, comparing their developments around p we obtain the following equality:

∂

∂x
ξD
1 (~t+2ωj~e2d−1) =

∂

∂x
ξD
1 (~t) , j = 1, 2.

In other words, the KdV solution u = −2 ∂
∂xξD

1 associated to the data (Γ, p, λ, D), is L-periodic
in t2d−1. ¤

5. THE HYPERELLIPTIC d-OSCULATING COVERS AS DIVISORS OF A SURFACE
5.1. Let us consider again the algebraic surface set up constructed in Section 3, with the

equivariant factorization of any hyperelliptic d-osculating cover through S⊥, and its projection
onto a rational irreducible curve Γ̃ ⊂ S̃. The corresponding diagram of morphisms, given hereafter,
will also be useful for the NL Schrödinger and 1D Toda and sine-Gordon cases.

Γ⊥ ⊂ S⊥
e

%%KKKKKKKKKKK
ϕ // Γ̃ ⊂ S̃

p ∈ Γ
π

**UUUUUUUUUUUUUUUUUUUUU

ι⊥
99ssssssssss

ι // S

πS

²²
q ∈ X
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Definition 5.2. For any i = 0, . . . , 3, the intersection number between the divisors ι⊥∗ (Γ) and r⊥i
will be denoted by γi, and the corresponding vector γ = (γi) ∈ N4 called the type of π. Furthermore,
γ(1) and γ(2) will denote, respectively, the sums

γ(1) :=
3∑

i=0

γi and γ(2) :=
3∑

i=0

γ2
i .

Remark 5.3. The next step concerns studying the above rational irreducible curves Γ̃ ⊂ S̃. We
will characterize their linear equivalence classes, and dress the basic relations between them and the
numerical invariants of the corresponding hyperelliptic d-osculating covers. These results, already
known for d = 1 ([35]) and d = 2 ([10]), can be proven within the same framework for any other
d > 2.

Lemma 5.4. Let π : (Γ, p) → (X, q) be a degree-n hyperelliptic d-osculating cover, ι⊥ : Γ → Γ⊥

its unique equivariant factorization through S⊥ and ι := e ◦ ι⊥. We let again γ denote the type of
π, ρ its ramification index at p and m the degree of ι⊥ : Γ → ι⊥(Γ). Then

1. ι∗(Γ) is equal to m.ι(Γ) and linearly equivalent to nCo+(2d− 1)So;

2. ι∗(Γ) is unibranch, and transverse to the fiber So := π∗S(q) at so = ι(p);

3. ρ is odd, bounded by 2d− 1 and equal to the multiplicity of ι∗(Γ) at so;

4. the degree m divides n, 2d− 1 and ρ, as well as γi, ∀i = 0, . . . , 3;

5. γo + 1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2);

6. ι⊥∗ (Γ) is linearly equivalent to e∗
(
nCo+(2d− 1)So

)− ρ s⊥o -
∑3

i=0 γi r
⊥
i .

Proof. (1) Checking that ι∗(Γ) is numerically equivalent to nCo + (2d− 1)So amounts to proving
that the intersections numbers ι∗(Γ) ·So and ι∗(Γ) ·Co are equal to n and 2d− 1. The latter numbers
are equal, respectively, to the degree of π : Γ → X and the degree of ι∗(Co) = (2d− 1)p, hence the
result. Finally, since ι∗(Γ) and Co only intersect at so ∈ So, we also obtain their linear equivalence.

(2) and (3) Let κ : Γ → P1 be the hyperelliptic d-osculating function associated to π, uniquely
characterized by properties 2.6 (1)–(3), and U ⊂ X a symmetric neighborhood of q := π(p). Recall
that κ + π∗(z−1) is τΓ-anti-invariant and well defined over π−1(U), and has a (unique) pole of order
2d− 1 at p. Studying its trace with respect to π we can deduce that ρ must be odd and bounded
by 2d− 1.

On the other hand, let
(
ι∗(Γ), So

)
so

and
(
ι∗(Γ), Co

)
so

denote the intersection multiplicities at
so, between ι∗(Γ) and the curves So and Co. They are respectively equal, via the projection formula
for ι , to ρ and 2d− 1. At last, since ι∗(Γ) is unibranch at so and

(
ι∗(Γ), So

)
so

= ρ 6 2d− 1 =(
ι∗(Γ), Co

)
so

, we immediately deduce that ρ is the multiplicity of ι∗(Γ) at so (and So is transverse
to ι∗(Γ) at so).

(4) By definition of m, we clearly have ι∗(Γ) = m.ι(Γ), while {ρ, γi, i = 0, . . . , 3} are the
multiplicities of ι∗(Γ) at different points of S. Hence, m divides n and 2d− 1, as well as all integers
{ρ, γi, i = 0, . . . , 3}.

(5) For any i = 0, . . . , 3, the strict transform of the fiber Si := π−1
S (ωi), by the blow-up

e : S⊥ → S, is a τ⊥-invariant curve, equal to S⊥i := e∗(Si)− s⊥i − r⊥i , but also to ϕ∗(S̃i), where
S̃i := ϕ(S⊥i ). Hence, the intersection number ι⊥∗ (Γ) · S⊥i is equal to the even integer

ι⊥∗ (Γ) · S⊥i = ι⊥∗ (Γ) · ϕ∗(S̃i) = ϕ∗(ι⊥∗
(
Γ)

) · S̃i = 2Γ̃ · S̃i,
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implying that n = ι⊥∗ (Γ) · e∗(Si) is congruent mod.2 to

ι⊥∗ (Γ) · S⊥i + ι⊥∗ (Γ) · (s⊥i + r⊥i ) ≡ ι⊥∗ (Γ) · (s⊥i + r⊥i )(mod.2).

We also know, by definition, that γi := ι⊥∗ (Γ) · r⊥i , while ι⊥∗ (Γ) · s⊥o = ρ, the multiplicity of ι∗(Γ)
at so, and ι⊥∗ (Γ) · s⊥i = 0 if i 6= 0, because si /∈ ι(Γ). Hence, n is congruent mod.2, to ρ + γo ≡
1 + γo (mod.2), as well as to γi, if i 6= 0.

(6) The Picard group Pic(S⊥) is the direct sum of e∗(Pic(S)) and the rank-8 lattice generated by
the exceptional curves {s⊥i , r⊥i , i = 0, . . . , 3}. In particular, knowing that ι∗(Γ) is linearly equivalent
to nCo + (2d− 1)So, and having already calculated ι⊥∗ (Γ) · s⊥i and ι⊥∗ (Γ) · r⊥i , for any i = 0, . . . , 3,
we can finally check that ι⊥∗ (Γ) is linearly equivalent to e∗

(
nCo + (2d− 1)So

)− ρ s⊥o −
∑3

0 γi r
⊥
i . ¤

We are now ready to deduce the basic inequalities relating the numerical invariants, associated
so far to any such cover π (i.e.,

{
n, d, g, ρ, m, γ

}
). The arithmetic genus of the irreducible curve

Γ̃ := ϕ(Γ⊥) ⊂ S̃, say g̃, can be deduced from 5.4 (6) via the projection formula for ϕ : S⊥ → S̃. We
start proving the inequality 2g + 1 6 γ(1), before deducing the main one (5.5 (4)) from g̃ > 0.

Theorem 5.5. Consider any hyperelliptic d-osculating cover π : (Γ, p) → (X, q), of degree n,
type γ, arithmetic genus g and ramification index ρ at p, and let m denote the degree of its canonical
equivariant factorization ι⊥ : Γ → ι⊥(Γ) ⊂ S⊥. Then the numerical invariants {n, d, g, ρ,m, γ}
satisfy the following inequalities:

1. 2g + 1 6 γ(1);

2. ρ = 1 implies m = 1;

3. γ(2) 6 2(2d− 1)(n−m) + 4m2 − ρ2;

4. (2g + 1)2 6 8(2d− 1)(n−m) + 13 m2 − 4ρ2 6 8(2d− 1)n + (2d− 1)2.
Hence, if π is not ramified at p, we must have m = 1, as well as:

5. (2g + 1)2 6 8(2d− 1)(n− 1) + 9.

Proof. (1) For any i = 0, . . . , 3, the fiber of πS⊥ := πS ◦ e : S⊥ → X over the half-period ωi,
decomposes as s⊥i + r⊥i + S⊥i , where S⊥i is a τ⊥-invariant divisor and s⊥i is disjoint with ι⊥∗ (Γ),
if i 6= 0, while ι⊥∗(s⊥i ) = ρ p, by 5.4 (2). Hence, the divisor Ri := ι⊥∗(r⊥i ) of Γ is linearly equivalent
to Ri ≡ π−1(ωi)− (n− γi) p (and also 2Ri ≡ 2γi p ). Recalling at last, that

∑3
j=1 ωj ≡ 3 ωo, and

taking inverse image by π, we finally obtain that
∑3

i=0 Ri ≡ γ(1) p . In other words, there exists a
well defined meromorphic function, (i.e., a morphism), from Γ to P1, with a pole of (odd!) degree
γ(1) at the Weierstrass point p. The latter can only happen (by the Riemann–Roch Theorem) if
2g + 1 6 γ(1), as asserted.

(2) According to 5.4 (4), m divides ρ. Hence, ρ = 1 implies m = 1.

(3) The curve ι⊥(Γ) is τ⊥-invariant and linearly equivalent (5.4 (4)–(6)) to:

ι⊥(Γ) ∼ 1
m

(
e∗

(
nCo + (2d− 1)So

)− ρs⊥o −
3∑

i=0

γi r
⊥
i

)
.

Recall also that ϕ∗(K̃), the inverse image by ϕ of the canonical divisor of S̃, is linearly equivalent
to ϕ∗(K̃) ∼ e∗(−2C0). Applying the projection formula for ϕ : S⊥ → S̃, to the divisor ι⊥(Γ), we
calculate g(Γ̃), the arithmetic genus of Γ̃ := ϕ

(
ι⊥(Γ)

) ⊂ S̃:

0 6 g(Γ̃) =
1

4m2

(
(2d− 1)(2n− 2m) + 4m2 − ρ2 − γ(2)

)
,

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



NONLINEAR EVOLUTION EQUATIONS 303

implying

γ(2) 6 (2d− 1)(2n− 2m) + 4m2 − ρ2,

as claimed.

(4) and (5) We start remarking that, for any j = 1, 2, 3, (γo − γj) is a non-zero multiple of m.
Hence,

∑
i<j(γi − γj)2 > 3m2, and replacing in 5.5 (1) we get:

(2g+1)2 6 (γ(1))2 = 4γ(2) −
∑

i<j

(γi − γj)2 6 4γ(2) − 3m2.

Taking into account 5.5 (3), we obtain the inequality 5.5 (4), as well as 5.5 (5), which corresponds
to the particular case ρ = m = 1. ¤

Lemma 5.6. Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperelliptic cover, equipped with
two points p′ 6= p′′ ∈ Γ such that the (divisor) sum p′ + p′′ is τΓ-invariant. Assume the data
(π, p′, p′′) solves the NL Schrödinger and 1D Toda or the sine-Gordon case, i.e., ToX = V 1

Γ,p′ + V 1
Γ,p′′

(2.9 and 2.10.) We let again ι : Γ → S denote the corresponding morphism (3.10), Γ⊥ the image of
its lift ι⊥ : Γ → S⊥, and γ = (γi) ∈ N4 its type, obtained by intersecting Γ⊥ with the curves {r⊥i }.
Then

1. ι(Γ) is birational to Γ and numerically equivalent to nCo + 2So;

2. ι(Γ) intersects Co at {ι(p′), ι(p′′)}, with multiplicity 1 at each point, if π(p′) 6= π(p′′), and
with multiplicity 2 if π(p′) = π(p′′);

3. if π(p′) = π(p′′), then γo ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2), π(p′) = ωio is a half-period and ι⊥∗ (Γ)
is linearly equivalent to e∗

(
nCo + 2So

)− 2s⊥io -
∑3

i=0 γi r
⊥
i ;

4. if π(p′) 6= π(p′′) /∈ {ωi}, then γo ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2) and ι⊥∗ (Γ) is linearly equivalent
to e∗

(
nCo + 2So

)−∑3
i=0 γi r

⊥
i ;

5. if π(p′) 6= π(p′′) are two half-periods of (X, q), say {ωk, ωj}, for some k 6= j, then γk + 1 ≡
γj + 1 ≡ γi ≡ γl ≡ n(mod.2), where {j, k, i, l} = {0, 1, 2, 3} and ι⊥∗ (Γ) is linearly equivalent to
e∗

(
nCo + Sk + Sj

)− s⊥k - s⊥j −
∑3

i=0 γi r
⊥
i .

Analogously to what we proved for the d-th KdV case (5.5), we obtain the following relations
between the degree and arithmetic genus of the other cases.

Theorem 5.7 (NL Schrödinger and 1D Toda case). Let π : (Γ, p) → (X, q) be an arbitrary
degree-n hyperelliptic cover of arithmetic genus g, equipped with two points p+ 6= p− ∈ Γ exchanged
by the hyperelliptic involution τΓ. Assume (π, p+, p−) solves the NL Schrödinger and 1D Toda case
and let γ ∈ N4 denote its type (5.6). Then, γi ≡ n(mod.2), for any i, and

1. 2g + 2 6 γ(1);

2. π(p+) 6= π(p−) implies γ(2) 6 4n, as well as (g + 1)2 6 4n;

3. π(p+) = π(p−) and n ≡ 0(mod.2) imply γ(2) 6 4n− 4 and (g + 1)2 6 4n− 4;

4. π(p+) = π(p−) and n ≡ 1(mod.2) imply γ(2) 6 4n− 8 and (g + 1)2 6 4n− 8.

Theorem 5.8 (sine-Gordon case). Let π : (Γ, p) → (X, q) be an arbitrary degree-n hyperellip-
tic cover of arithmetic genus g, equipped with two Weierstrass points p1, p2 ∈ Γ. Assume (π, p1, p2)
solves the sine-Gordon case and let γ ∈ N4 denote its type (5.6). Then
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1. 2g 6 γ(1);

2. π(p1) 6= π(p2) implies γ(2) 6 4n, as well as g2 6 4n;

3. π(p1) = π(p2) and n ≡ 0(mod.2) imply γ(2) 6 4n− 4 and g2 6 4n− 4;

4. π(p+) = π(p−) and n ≡ 1(mod.2) imply γ(2) 6 4n− 8 and g2 6 4n− 8.

6. ON HYPERELLIPTIC d-OSCULATING COVERS OF ARBITRARY HIGH GENUS
6.1. Let C⊥

o denote the strict transform of Co in S⊥, C̃o := ϕ(C⊥
o ) its projection in S̃ and

consider an arbitrary degree-n hyperelliptic d-osculating cover of type γ, say π : (Γ, p) → (X, q),
with ramification index ρ at p. We will let ι⊥ : Γ → S⊥ denote its unique equivariant factorization
through πS⊥ : S⊥ → X (5.1), Γ⊥ := ι⊥(Γ) its image in S⊥ and Γ̃ the corresponding projection into
S̃. Recall (5.4 and 5.5) that the above numerical invariants must satisfy the following restrictions

1. ρ is an odd integer bounded by 2d− 1;

2. γo + 1 ≡ γ1 ≡ γ2 ≡ γ3 ≡ n(mod.2).

Furthermore, whenever m := deg(ι⊥ : Γ → Γ⊥) is equal to 1 (i.e., Γ is birational to Γ⊥), π

can be canonically recovered from Γ̃ := ϕ(Γ⊥), and they all satisfy the following properties:

3. Γ̃ is an irreducible rational curve of non-negative arithmetic genus equal to g̃ := 1
4((2d−

1)(2n− 2) + 4 − ρ2 − γ(2)) > 0;

4. Γ⊥ is linearly equivalent to e∗(nCo + (2d− 1)So)− ρso
⊥ −∑3

i=0 γiri
⊥;

5. Γ̃ intersects s̃o := ϕ(so
⊥) at a unique point, where it is unibranch and has multiplicity ρ;

6. Γ̃ intersects C̃o (at most) at p̃o := C̃o ∩ s̃o (i.e., Γ̃ ∩ C̃o ⊂ C̃o ∩ s̃o), with multiplicity 1
2(2d−

1− ρ). In particular, if ρ = 2d− 1, Γ̃ and C̃o are disjoint curves.

Definition 6.2. For any (n, d, ρ, γ) ∈ N7 satisfying the above restrictions, we let Λ(n, d, ρ, γ) de-
note the unique element of Pic(S̃) such that ϕ∗(Λ(n, d, ρ, γ)) is linearly equivalent to e∗

(
nCo + (2d -

1)So

)− ρso
⊥ −∑3

i=0 γiri
⊥, and MHX(n, d, ρ, 1, γ) denote the moduli space of degree-n hyperelliptic

d-osculating covers of type γ, ramification index ρ at their marked point, and birational to their
canonical images in S⊥.

Remark 6.3. We will restrict to the simpler case where ρ = 1, Γ is isomorphic to Γ⊥ and Γ̃
is isomorphic to P1. In other words, we will focus on degree-n hyperelliptic d-osculating covers
with ρ = m = 1, and of type γ satisfying γ(2) = (2d− 1)(2n− 2) + 3. We will actually choose
γ = (2d− 1)µ + 2ε, where µ is an arbitrary µ ∈ N4 satisfying µo + 1 ≡ µ1 ≡ µ2 ≡ µ3(mod.2) and
ε ∈ Z4 is equal to ε = (d− 1, d− 1, d− 1, 0). Given such triplet (n, d, γ) we give a straightforward
construction of MHX(n, d, 1, 1, γ) as a (d− 1)-dimensional family of curves, embedded in S⊥ (6.9).
Moreover, it can also be proved that any π ∈ MHX(n, d, 1, 1, γ) has a unique birational model in
P1 ×X, as a linear combination of d specific polynomials with elliptic coefficients. The same can
be done for 2ε = (d + 1, d− 1, d− 1, d− 1) if d is odd, or for 2ε = (d− 2, d, d, d) if d is even; or
when permuting and/or changing the signs of their coefficients.

We will need the following existence and irreducibility criteria.

Proposition 6.4. ([33, see 3.4]). Any curve Γ ⊂ S intersecting Co at a unique smooth point
p ∈ Γ is irreducible.

Proposition 6.5. Let Γ⊥ ⊂ S⊥ be a curve with no irreducible component in {r⊥i , i = 0, . . . , 3},
and intersecting C⊥

o (at most) at a unique smooth point p⊥ ∈ Γ⊥. Then Γ⊥ is an irreducible curve.
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Proof. The properties satisfied by Γ⊥ assure us that it is the strict transform of its direct image
by e : S⊥ → S, Γ := e∗(Γ⊥), and that the latter does not contain Co. We can also check, that Γ is
smooth at p := e(p⊥) and Γ ∩ Co = {p}. It follows, by 6.4, that (Γ, as well as its strict transform)
Γ⊥ is an irreducible curve. ¤

Proposition 6.6. ([35, see 6.2]). Any α = (αi) ∈ N4 such that α(2) = 2n + 1 is odd gives
rise to an exceptional curve of the first kind Γ̃α ⊂ S̃. More precisely, let k ∈ {0, 1, 2, 3} denote
the index satisfying αk + 1 ≡ αj(mod.2), for any j 6= k, and Sk := π−1

S (sk), then Γ̃α has self-
intersection - 1 and ϕ∗(Γ̃α) ⊂ S⊥ is the unique τ⊥-invariant irreducible curve linearly equivalent to
e∗(nCo + Sk)− s⊥k −

∑3
i=0 αir

⊥
i .

Proof. Let Λ denote the unique numerical equivalence class of S̃ satisfying ϕ∗(Λ) = e∗(nCo +
Sk)− s⊥k −

∑3
i=0 αir

⊥
i . It has self-intersection Λ · Λ = −1, and Λ · K̃ = −1 as well. It follows that

ho(S̃, OeS(Λ)) > χ(OeS(Λ)) = 1, hence there exists an effective divisor Γ̃ ∈ ∣∣Λ∣∣. Such a divisor is
known to be unique and irreducible ([35] 6.2.). ¤

Corollary 6.7. ([35]). Let α ∈ N4 be such that αo + 1 ≡ αj(mod.2), Γ̃α the corresponding
exceptional curve (see 6.6), and Γ⊥α := ϕ∗(Γ̃α) its inverse image in S⊥, marked at its Weierstrass
point pα := Γ⊥α ∩ s⊥o . Then, (Γ⊥α , pα) gives rise to KdV solutions, L-periodic in x = t1 (the first
KdV flow).

The latter corollary will be generalized as follows: given any n, d ∈ N∗, we will construct types
γ = (2d− 1)µ + 2ε ∈ N4, such that γo + 1 ≡ γ1 ≡ γ2 ≡ γ3(mod.2) and γ(2) = (2n− 2)(2d− 1) + 3,
for which the linear system |Λ(n, d, 1, γ)| (see 6.2) has dimension d− 1 and a generic element
isomorphic to P1. Hence, they will give rise to (d− 1)-dimensional families of marked curves solving
the d-th KdV case.

Theorem 6.8. Let us fix d > 2 , k ∈ {0, 1, 2, 3} , and µ ∈ N4 such that µo + 1 ≡ µj(mod.2) (for
j = 1, 2, 3). Pick any vector 2ε = (2εi) ∈ 2Z4 , satisfying (∀i = 0, . . . , 3) , either

|2εi| = (2d− 2)(1− δi,k),

or




|2εi| = d− (−1)δi,k if d is odd,

|2εi| = d− 2δi,k if d is even,

as long as γ := (2d− 1)µ +2ε ∈ N4, and let n satisfy γ(2) = (2d− 1)(2n− 2)+ 3. Then |ϕ∗(Λ(n, d, 1, γ))|
contains a (d− 1)-dimensional subspace such that its generic element, say Γ⊥, satisfies the following
properties:

1. Γ⊥ is a τ⊥-invariant smooth irreducible curve of genus g : = 1
2(−1 + γ(1));

2. Γ⊥ can only intersect C⊥
o at p⊥o := C⊥

o ∩ s⊥o ;

3. ϕ(Γ⊥) ⊂ S̃ is isomorphic to P1.

Corollary 6.9. Given (n, d, γ) ∈ N∗ × N∗ × N4 as above, the moduli space MHX(n, d, 1, 1, γ)
(6.2) has dimension d− 1, and a smooth generic element of genus g : = 1

2(−1+ γ(1)).
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Proof of Theorem 6.8. We will only work out the case γ := (2d− 1)µ + 2ε, with ε = (0, d− 1, d−
1, d− 1). For any other choice of ε, the corresponding proof runs along the same lines and will be
skipped. In our case, the arithmetic genus g and the degree n satisfy:

2g + 1 = (2d− 1)µ(1) + 6(d− 1) and 2n = (2d− 1)µ(2)+4(d− 1)(µ1+µ2+µ3)+ 6d− 7.

Consider µ : = µ + (1, 1, 1, 1), µ′ : = µ + (0, 2, 1, 1), µ′′ = µ + (0, 0, 1, 1), and let Z
⊥
, Z ′⊥, Z ′′⊥ ⊂

S⊥ denote the unique τ⊥-invariant curves linearly equivalent to:

1) Z
⊥ ∼ e∗(mCo + So)− s⊥o −

∑
i µir

⊥
i , where 2m + 1 = µ (2);

2) Z ′⊥ ∼ e∗(m′Co + S1)− s⊥1 −
∑

i µ
′
ir
⊥
i , where 2m′ + 1 = µ′(2);

3) Z ′′⊥ ∼ e∗(m′′Co + S1)− s⊥1 −
∑

i µ
′′
i r
⊥
i , where 2m′′ + 1 = µ′′(2).

Moreover, if µo 6= 0 we choose µ = µ + (−1, 1, 1, 1) and 2m + 1 = µ(2), and let Z⊥ ⊂ S⊥ denote
the unique τ⊥-invariant curve Z⊥ ∼ e∗(mCo + So)− s⊥o −

∑
i µi

r⊥i .

However, if µo = 0 we will simply put Z⊥ : = Z
⊥ + 2r⊥o , so that in both cases, the divisors

D⊥
0 := Z

⊥ + Z⊥ + 2s⊥0 and D⊥
1 := Z ′⊥ + Z ′′⊥ + 2s⊥1 will be linearly equivalent. Let us also define,

µ(1) : = µ′′ = µ + (0, 0, 1, 1),

µ(2) : = µ + (0, 1, 0, 1),

µ(3) : = µ + (0, 1, 1, 0),

and let Z⊥(k)(k = 1, 2, 3) be the τ⊥-invariant curve of S⊥, linearly equivalent to e∗(m(k)Co + Sk)−
s⊥k −

∑
i µ(k)ir

⊥
i , where 2m(k) + 1 =

∑
i µ

2
(k)i.

At last, consider Z⊥ ∼ e∗(mCo + So)− s⊥o −
∑

i µir
⊥
i , where 2m + 1 =

∑
i µ

2
i (6.2). The (d− 1)-

dimensional subspace of
∣∣ϕ∗(Λ(n, d, 1, γ))

∣∣ we are looking for, will be made of all above curves. We
first remark the following facts:

a) we can check, via the adjunction formula, that any τ⊥-invariant element of |ϕ∗(Λ(n, d, 1, γ))|
has arithmetic genus g : = 1

2(−1 + γ(1)), and is the pull-back by ϕ : S⊥ → S̃, of a divisor of zero
arithmetic genus of S̃;

b) the following d− 1 divisors

{
F⊥

j := C⊥
o +

3∑

k=1

(Z⊥(k)+2s⊥k )+jD⊥
o +(d− 2− j)D⊥

1 , j = 0, . . . , d− 2
}

,

as well as

G⊥ := Z⊥+(d− 1)D⊥
o ,

are τ⊥-invariant, belong to |ϕ∗(Λ(n, d, 1, γ))| and have p⊥o := C⊥
o ∩ s⊥o as their unique common

point;

c) the curve F⊥
o is smooth at p⊥o , while any other F⊥

j has multiplicity 1 < 2j + 1 < 2d at p⊥o . In
particular, they span a (d− 2)-subspace of |ϕ∗(Λ(n, d, 1, γ))|, having a generic element smooth and
transverse to s⊥o at p⊥o ;

d) the curve G⊥ has multiplicity 2d at p⊥o , and no common irreducible component with any
F⊥

j (∀j = 0, . . . , d− 2), implying that 〈G⊥, F⊥
j , j = 0, . . . , d− 2 〉 ⊂ ∣∣ϕ∗(Λ)

∣∣, the (d− 1)-subspace
they span, is fixed component-free;
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e) any irreducible curve Γ⊥ ∈ 〈G⊥, F⊥
j , j = 0, . . . , d− 2 〉 projects onto a smooth irreducible curve

(isomorphic to P1). In particular Γ⊥ must be smooth outside ∪3
i=0r

⊥
i .

f) the curves G⊥ and F⊥
o have no common point on any r⊥i (i = 0, . . . , 3), implying that Γ⊥, the

generic element of 〈G⊥, F⊥
j , j = 0, . . . , d− 2 〉, is smooth at any point of ∪3

i=0r
⊥
i and satisfies the

announced properties, i.e.,

(1) Γ⊥ is τ⊥-invariant, smooth and satisfies the irreducibility criterion 6.5;

(2) p⊥o is the unique base point of the linear system and Γ⊥ ∩ C⊥
o = {p⊥o };

(3) its image ϕ(Γ⊥) ⊂ S̃ is irreducible, linearly equivalent to Λ(n, d, 1, γ) and of arithmetic genus
1
4

(
(2d− 1)(2n− 2) + 3− γ(2)

)
= 0; hence, isomorphic to P1. ¤

Proof of Corollary 6.9. The degree-2 projection ϕ : Γ⊥ → ϕ(Γ⊥) is ramified at p⊥o and ϕ(Γ⊥) is iso-
morphic to P1. Moreover, Γ⊥ is a smooth irreducible curve linearly equivalent to |ϕ∗(Λ(n, d, 1, γ))|,
of arithmetic genus g := 1

2(γ(1) − 1).

In other words, the natural projection (Γ⊥, p⊥o ) ⊂ (S⊥, p⊥o )
π

S⊥−→ (X, q) is a smooth degree-n
hyperelliptic d-osculating cover of type γ, and genus g, such that (2n− 2)(2d− 1) + 3 = γ(2) and
2g + 1 = γ(1). ¤

Remark 6.10.

1. The irreducible components of the d generators 〈G⊥, F⊥
j , j = 0, . . . , d− 2 〉 are well known

curves, for which one can provide explicit equations in P1 ×X. Hence, any element of
MHX(n, d, 1, 1, γ) is birational to the zero set of a linear combination of d specific degree-n
polynomials with coefficients in K(X), the field of meromorphic functions on X.

2. Effective solutions to the NL Schrödinger and 1D Toda and sine-Gordon cases can also been
found through an analogous method. Roughly speaking, we construct infinitely many 1-
dimensional families of solutions (for both cases), having arbitrary degree n, and arbitrary
genus g. As we shall see, the results differ on whether the pair of marked points have same
projection in X or not (and depend on the parity of n as well). The main results are given
below (detailed proofs will be given elsewhere).

Proposition 6.11 (NL Schrödinger and 1D Toda restrictions). Let π : (Γ, p) → (X, q)
be an arbitrary hyperelliptic cover, equipped with two non-Weierstrass points p+, p− ∈ Γ, such that
(π, p+, p−) solves the NL Schrödinger and 1D Toda case. Then, the arithmetic genus of Γ and the
degree of π, say g and n, satisfy :

1. (g + 1)2 6 4n− 4, if π(p+) = π(p−) and n ≡ 0 (mod 2);

2. (g + 1)2 6 4n− 8, if π(p+) = π(p−) and n ≡ 1 (mod 2);

3. (g + 1)2 6 4n, if π(p+) 6= π(p−).

Proposition 6.12 (sine-Gordon restrictions). Let π : (Γ, p) → (X, q) be an arbitrary hy-
perelliptic cover, equipped with two Weierstrass points po, p1 ∈ Γ, such that (π, po, p1) solves the
sine-Gordon case. Then, the arithmetic genus of Γ and the degree of π, say g and n, satisfy :

1. g2 6 4n− 4, if π(po) = π(p1) and n ≡ 0 (mod 2);

2. g2 6 4n− 8, if π(po) = π(p1) and n ≡ 1 (mod 2);

3. g2 6 4n− 3, if π(po) 6= π(p1).
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Along with the latter restrictions we have the following effective results.

Theorem 6.13 (odd degree NL Schrödinger and 1D Toda case). For any α ∈ N4 and
a ∈ X there exists a hyperelliptic cover π : (Γ, p) → (X, q), equipped with two non-Weierstrass points
p+, p− ∈ Γ such that:

1. π(p+) = a, p+ = τΓ(p−) and (π, p+, p−) solves the NL Schrödinger case;

2. Γ has arithmetic genus g := α(1) + 1;
3. deg(π) = α(2) + α(1) + 1 if a /∈ {ωi}, hence π(p+) 6= π(p−);

4. deg(π) = α(2) + α(1) + 3 if a ∈ {ωi}, hence π(p+) = π(p−).

Theorem 6.14 (even degree NL Schrödinger and 1D Toda case). For any α ∈ N4 \ {0}
and a ∈ X such that, either α(1) ≡ 0(mod 2) and a /∈ {ωi}, or α(1) ≡ 1(mod 2) and a ∈ {ωi}, there
exists a hyperelliptic cover π : (Γ, p) → (X, q), equipped with two non-Weierstrass points p+, p− ∈ Γ
such that:

1. π(p+) = a, p+ = τΓ(p−) and (π, p+, p−) solves the NL Schrödinger case;

2. Γ has arithmetic genus g := α(1) − 1;
3. deg(π) = α(2) if a /∈ {ωi}, and deg(π) = α(2) + 1 otherwise.
For a better presentation of our sine-Gordon’s results, we must also take in account the

projections of (po, p1), the pair of Weierstrass points (see 2.10). They either project onto the
same point, which can be chosen equal to π(po) = π(p1) = ωo, or their projections differ by a non-
zero half-period, say π(po) = ωo and π(p1) = ω1. In all four cases we find 1-dimensional families
of solutions. Additional properties, such as the existence of a fixed point free involution or a real
structure can also be found. For example, if (X, q) has a real structure, we can extract from the first
three sine-Gordon cases a real 1-dimensional family having a real structure fixing the Weierstrass
points.

Theorem 6.15 (even degree sine-Gordon with distinct projections). Pick any α ∈ N4

satisfying α2 + α3 ≡ 1(mod 2). Then, there exists a 1-dimensional family of hyperelliptic covers
π : (Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points {po, p1} ∈ Γ, such that:

1. π(pj) = ωj , for j = 0, 1 and (π, po, p1) solves the sine-Gordon case;

2. Γ has arithmetic genus g := α(1) + 1 and deg(π) = α(2) + αo + α1 + 1.

Theorem 6.16 (odd degree sine-Gordon with distinct projections). Pick any α ∈ N4

satisfying αo + α1 ≡ 0(mod 2). Then, there exists a 1-dimensional family of hyperelliptic covers
π : (Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points {po, p1} ∈ Γ, such that:

1. π(pj) = ωj , for j = 0, 1 and (π, po, p1) solves the sine-Gordon case;

2. Γ has arithmetic genus g := α(1) + 1 and deg(π) = α(2) + α2 + α3 + 1.

Theorem 6.17 (even degree sine-Gordon with same projection). Fix jo ∈ {1, 2, 3} and
pick any α ∈ N4 satisfying αjo + 1 ≡ αi(mod 2) for any i 6= jo. Then, there exists a 1-dimensional
family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of distinct Weierstrass points
{po, p1} ∈ Γ, such that:

1. π(po) = π(p1) = ωo and (π, po, p1) solves the sine-Gordon case;

2. Γ has arithmetic genus g := α(1) and deg(π) = α(2) + 1.

Theorem 6.18 (odd degree sine-Gordon with same projection). For any α ∈ N4 there
exists a 1-dimensional family of hyperelliptic covers π : (Γ, p) → (X, q), equipped with a pair of
distinct Weierstrass points {po, p1} ∈ Γ, such that:

1. π(po) = π(p1) = ωo and (π, po, p1) solves the sine-Gordon case;

2. Γ has arithmetic genus g := α(1) + 2 and deg(π) = α(2) + α(1) + 3.
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Abstract—We examine a class of Lotka–Volterra equations in three dimensions which satisfy
the Kowalevski–Painlevé property. We restrict our attention to Lotka–Volterra systems defined
by a skew symmetric matrix. We obtain a complete classification of such systems. The
classification is obtained using Painlevé analysis and more specifically by the use of Kowalevski
exponents. The imposition of certain integrality conditions on the Kowalevski exponents gives
necessary conditions. We also show that the conditions are sufficient.
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1. INTRODUCTION

The Lotka–Volterra model is a basic model of predator-prey interactions. The model was
developed independently by Alfred Lotka (1925), and Vito Volterra (1926). It forms the basis for
many models used today in the analysis of population dynamics. In three dimensions it describes
the dynamics of a biological system where three species interact.

The most general form of Lotka–Volterra equations is

ẋi = εixi +
n∑

j=1

aijxixj , i = 1, 2, . . . , n. (1.1)

We consider Lotka–Volterra equations without linear terms (εi = 0), and where the matrix of
interaction coefficients A = (aij) is skew-symmetric. This is a natural assumption related to the
principle that crowding inhibits growth. The special case of Kac–van Moerbeke system (KM-system)
was used to describe population evolution in a hierarchical system of competing individuals. The
KM-system has close connection with the Toda lattice. The Lotka–Volterra equations were studied
by many authors in its various aspects, e.g. complete integrability [1] Poisson and bi-Hamiltonian
formulation ([2–5]), stability of solutions and Darboux polynomials ([6, 7]).

In this paper we examine such Lotka–Volterra equations in three dimensions satisfying the
Kowalevski–Painlevé property. The basic tools for the required classification are, the use of Painlevé
analysis, the examination of the eigenvalues of the Kowalevski matrix and other standard Lax pair
and Poisson techniques. The Kowalevski exponents are useful in establishing integrability or non-
integrability of Hamiltonian systems; see [8–14]. The first step is to impose certain conditions on
the exponents, i.e., we require that all the Kowalevski exponents be integers for every solution of
the indicial equation. This gives a finite list of values of the parameters satisfying such conditions.
This step requires some elementary number theoretic techniques as is usual with such type of
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classification. In the three-dimensional case the general expressions for the Kowalevski exponents
are rational and therefore the number theoretic analysis is manageable.

The second step is to check that the leading behavior of the Laurent series solutions agrees
with the weights of the corresponding homogeneous vector field defining the dynamical system.
In our case the weights are all equal to one and therefore we must exclude the possibility that
some of the Laurent series have leading terms with poles of order greater than one. This is a
step usually omitted by some authors due to its complexity, but in this paper we analyze this in
detail. To accomplish this step we use the old-fashioned Painlevé Analysis, i.e., Laurent series. The
application of Painlevé analysis and especially of the ARS algorithm (see [1, 12, 15–18]) is useful
in calculating the Laurent solution of a system and check if there are (n− 1) free parameters.

In performing Painlevé analysis we use the fact that the sum of the variables is always a first
integral. Surprisingly the Painlevé analysis does not reveal any additional cases besides the ones
already found by using the Kowalevski exponents. In this classification of Lotka–Volterra systems
we discover, as expected, some well known integrable systems like the open and periodic Kac–
van Moerbeke systems.
To make sure that our conditions are not only necessary but also sufficient we verify that the
systems obtained indeed satisfy the Kowalevski–Painlevé property by checking the number of free
parameters. It is shown in this paper that all the solutions to the indicial equations extend to full
convergent Laurent solutions depending on two free parameters; moreover it is shown that there
are no other Laurent solutions (except for Taylor solutions) so the description is complete.

We also have to point out that our classification is up to isomorphism. In other words, if one
system is obtained from another by an invertible linear change of variables, we do not consider
them as different. Modulo this identification we obtain only six classes of solutions.

The Lotka–Volterra system can be expressed in hamiltonian form as follows: Define a quadratic
Poisson bracket by the formula

{xi, xj} = aijxixj , i, j = 1, 2, . . . , n. (1.2)

Then the system can be written in the form ẋi = {xi,H}, where H =
∑n

i=1 xi. The Louville
integrability in the three-dimensional case can be easily established. In addition to the Hamiltonian
function H, there exists a second integral, in fact a Casimir F . The formula for this Casimir is given
afterwards.

In this paper we restrict our attention to the three dimensional case. For n = 3 the system is
defined by the matrix

A =




0 a b

−a 0 c

−b −c 0


 ,

where a, b, c are constants. We use the notation (a, b, c) to denote this system. It turns out that
the Lotka–Volterra systems which possess the Kowalevski–Painlevé property fall either into two
infinite families or four exceptional cases:

Theorem 1. The Lotka–Volterra equations in three dimensions satisfy the Kowalevski–Painlevé
property if and only if (a, b, c) is in the class of

(l2) (1, 0, 1)

(l3) (1,−1, 1)

(l4) (1,−1, 2)

(l6) (1,−2, 3)

(lλ) (1, 1, λ) λ ∈ Z \ 0.

(l0) (1, 1 + µ, µ) µ ∈ R.

We use the notation lj to indicate that the system has an invariant of degree j.
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In Section 2 we give the basic definitions of weight-homogeneous vector fields and the Kowalevski
matrix. The definition of Kowalevski exponents and relevant results follow the recent book [9].
See also the review article of Goriely [11] where one can find many more properties of these
exponents. In Section 3 we give some related properties of the Kowalevski exponents. In Section 4 we
define the three dimensional Lotka–Volterra systems and find necessary conditions for ensuring the
Kowalevski–Painlevé property by analyzing the corresponding Kowalevski exponents. In Section 5
we show that our classification is complete. Finally, in Section 6 we exclude any cases that may
exist due to higher order poles.

2. BASIC DEFINITIONS
We begin by defining what is a weight homogeneous polynomial. We follow the notation from [9].

Definition 1. A polynomial f ∈ C [x1, x2, . . . , xn] is called a weight-homogeneous polynomial of
weight k with respect to a vector v = (v1, v2, . . . , vn) if

f(tv1x1, . . . , t
vnxn) = tkf(x1, x2, . . . , xn).

The vector v is called the weight vector. The vi are all positive integers without a common divisor.
The weight k is denoted by $(f).

Definition 2. A polynomial vector field on Cn,

ẋ1 = f1(x1, x2, . . . , xn)
...

ẋn = fn(x1, x2, . . . , xn)

(2.1)

is called a weight-homogeneous vector field of weight k (with respect to a weight vector v), if
$(fi) = vi + k = $(xi) + k for i = 1, 2, . . . , n. A weight-homogeneous vector field of weight 1 is
called weight-homogeneous vector field. Furthermore, when all the weights are equal to 1, this is
simply called a homogeneous vector field.

Example 1. We consider the periodic 5-particle Kac–van Moerbeke lattice that is given by the
quadratic vector field

ẋi = xi(xi−1 − xi+1), i = 1, . . . , 5, (2.2)
with xi = xi+5. This system has three independent constants of motion,

F1 = x1 + x2 + x3 + x4 + x5,

F2 = x1x3 + x2x4 + x3x5 + x4x1 + x5x2,

F3 = x1x2x3x4x5.

(2.3)

Taking v = (1, 1, 1, 1, 1), (2.2) becomes a homogeneous vector field and the weights of the
integrals of motion are $(F1)=1, $(F2) = 2 and $(F3) = 5.

Definition 3. Consider a homogeneous vector field of the form (2.1). Then a Laurent solution
to (2.1) of the form

xi(t) =
1
tvi

∞∑

k=0

x
(k)
i tk, i = 1, 2, . . . , n,

with x(0) 6= 0, is called a homogeneous Laurent solution. The homogeneous vector field (2.1) is said
to satisfy the Kowalevski–Painlevé property if to each non trivial solution to the indicial equations
there corresponds a homogeneous Laurent series solution depending on n− 1 free parameters.

In our case since the n = 3 we impose the requirement that the Laurent solutions should involve
two free parameters.
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2.1. Kowalevski Exponents

The following proposition is important for two reasons. First, it gives an induction formula for
finding the Laurent solution of a weight-homogeneous vector field and second it defines the
Kowalevski exponents which is an important tool for our classification.

Proposition 1. Suppose that we have a weight-homogeneous vector field on Cn given by

ẋi = fi(x1, . . . , xn), i = 1, 2, . . . , n,

and suppose that

xi(t) =
1
tvi

∞∑

k=0

x
(k)
i tk, i = 1, 2, . . . , n (2.4)

is a weight-homogeneous Laurent solution for this vector field. Then the leading coefficients, x
(0)
i ,

satisfy the non linear algebraic equations

v1x
(0)
1 + f1(x

(0)
1 , . . . , x

(0)
n ) = 0,

...

vnx
(0)
n + fn(x(0)

1 , . . . , x
(0)
n ) = 0,

(2.5)

while the subsequent terms x
(k)
i satisfy

(
kIdn −K

(
x(0)

))
x(k) = R(k), (2.6)

where x(k) =




x
(k)
1
...

x
(k)
n


 and R(k) =




R
(k)
1
...

R
(k)
n


. R(k) is a polynomial, which depends on the variables

x
(l)
1 , . . . , x

(l)
n with 0 6 l < k only. The elements of the n× n matrix K are given by

Ki,j :=
∂fi

∂xj
+ viδij , (2.7)

where δ is the Kronecker delta.

Remark 1. The number, vi, is not necessarily the pole order of xi because some of the x
(0)
i that

can be calculated solving (2.5) may be equal to zero.

Definition 4.
The system (2.5) is called the indicial equation and its solution set is called the indicial locus and
it is denoted by I. The n× n matrix K, defined by (2.7), is called the Kowalevski matrix and its
eigenvalues are called Kowalevski exponents (a terminology due to Yoshida).

A necessary condition for a vector field to satisfy the Kowalevski–Painlevé property is that n− 1
eigenvalues of K should be integers for every solution of the indicial equation. It turns out that the
last eigenvalue is always −1. The eigenvector that corresponds to −1 is also known. We have the
following Proposition which can be found in [9].

Proposition 2.
For any m which belongs to the indicial locus I, except for the trivial element, the Kowalevski matrix
K(m) of a weight homogeneous vector field always has −1 as an eigenvalue. The corresponding
eigenspace contains (v1m1, . . . , vnmn)T as an eigenvector.
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3. PROPERTIES OF KOWALEVSKI EXPONENTS

In this section we state some properties of Kowalevski exponents clarifying the connection with
the degrees of the first integrals. We also give a necessary condition for a system to posses the
Kowalevski–Painlevé property. The following results can be found in [11, 13, 14, 19, 20].

Theorem 2. If the weight-homogeneous system ẋ = f(x) has k independent algebraic first integrals
I1, . . . , Ik of weighted degrees d1, . . . , dk and Kowalevski exponents ρ2, . . . , ρn, then there exists a
k × (n− 1) matrix N with integer entries, such that

n∑

j=2

Nij ρj = di, i = 1, . . . , k.

From this theorem we have the two following corollaries:

Corollary 1.
If the Kowalevski exponents are Z-independent, then there is no rational first integrals.

Corollary 2. If the Kowalevski exponents are N-independent, then there is no polynomial first
integrals.

We also have the following theorem, see [11, 19, 21].

Theorem 3. Suppose that the system (1.1) possesses a homogeneous first integral Fm of degree m.
Then there exists a set of non-negative integers k2, . . . , kn such that

n∑

j=2

kjρj = m k2 + k3 + · · ·+ kn 6 m.

The next theorem which can be found in [9] gives us a necessary condition for a system to satisfy
the Kowalevski–Painlevé property. This criterion can be checked easily simply by computing the
Kowalevski exponents.

Theorem 4.
Let ρ1 = −1. A necessary condition for a system of the form (2.1) to satisfy the Kowalevski–Painlevé
property is that all the Kowalevski exponents ρ2, . . . , ρn should be integers for every solution of the
indicial equation.

4. LOTKA–VOLTERRA SYSTEMS

4.1. Hamiltonian Formulation

Consider a Lotka–Volterra system of the form

ẋj =
n∑

k=1

ajkxjxk, for j = 1, 2, . . . , n, (4.1)

where the matrix A = (aij) is constant and skew symmetric.
There is a symplectic realization of the system which goes back to Volterra. In other words

a projection from R2n 7→ Rn from a symplectic space to a Poisson space. Volterra defined the
variables

qi(t) =
∫ t

0
ui(s)ds

and

pi(t) = ln(q̇i)− 1
2

n∑

k=1

aikqk,
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for i = 1, 2, . . . , n. Now the number of variables is doubled and Volterra’s transformation is given
explicitly by

xi = epi+
1
2

Pn
k=1 aikqk for i = 1, 2, . . . , n.

The Hamiltonian in these coordinates becomes

H =
n∑

i=1

xi =
n∑

i=1

q̇i =
n∑

i=1

epi+
1
2

Pn
k=1 aikqk .

The equations (4.1) can be written in Hamiltonian form

q̇i = ∂H
∂pi

= {qi,H},
ṗi = −∂H

∂qi
= {pi,H},

i = 1, 2, . . . , n, and the bracket {·, ·} is the standard symplectic bracket on R2n:

{qi, pj} = δij =





1, if i = j

0, if i 6= j
, i, j = 1, 2, . . . , n ;

all other brackets are zero. The corresponding Poisson bracket in x coordinates is quadratic

{xi, xj} = aijxixj , i, j = 1, 2, . . . , n .

This argument shows that the bracket (1.2) is Poisson.

Equations (4.1) in x coordinates are obtained by using this Poisson bracket and the Hamiltonian,
H = x1 + x2 + · · ·+ xn.

4.2. The Three-dimensional Case

In this paper we restrict our attention to the three dimensional case. For n = 3 the system is
defined by the matrix

A =




0 a b

−a 0 c

−b −c 0


 , (4.2)

where a, b, c are real constants.
Using equations (2.7) we obtain the Kowalevski matrix




ax
(0)
2 + bx

(0)
3 + 1 ax

(0)
1 bx

(0)
1

−ax
(0)
2 −ax

(0)
1 + cx

(0)
3 + 1 cx

(0)
2

−bx
(0)
3 −cx

(0)
3 −bx

(0)
1 − cx

(0)
2 + 1


 , (4.3)

where x(0) =
(
x

(0)
1 , x

(0)
2 , x

(0)
3

)
is an element of the indicial locus, i.e., a solution of the simultaneous

equation (2.5), which in this case is written as

x
(0)
1 + ax

(0)
1 x

(0)
2 + bx

(0)
1 x

(0)
3 = 0,

x
(0)
2 − ax

(0)
1 x

(0)
2 + cx

(0)
2 x

(0)
3 = 0,

x
(0)
3 − bx

(0)
1 x

(0)
3 − cx

(0)
2 x

(0)
3 = 0.

(4.4)
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The system is equivalent to

x
(0)
1

(
1 + ax

(0)
2 + bx

(0)
3

)
= 0,

x
(0)
2

(
1− ax

(0)
1 + cx

(0)
3

)
= 0,

x
(0)
3

(
1− bx

(0)
1 − cx

(0)
2

)
= 0.

One solution is

x
(0)
1 = x

(0)
2 = x

(0)
3 = 0.

This a trivial solution and the eigenvalues are all equal to 1.
If x

(0)
i 6= 0 for i = 1, 2, 3. Then the system has a solution only if b = a + c. In this case the

eigenvalues are −1, 0, 1. We will comment on this case at the end and for now we assume b 6= a + c.
If x

(0)
1 = 0, x

(0)
2 6= 0, x

(0)
3 6= 0 then we easily find that x

(0)
2 = 1

c , x
(0)
3 = −1

c and the eigenvalues of
the Kovalevski matrix are

−1, 1,
a− b + c

c
.

We have two other similar cases corresponding to x
(0)
2 = 0 and x

(0)
3 = 0 which are summarized

in Table 1. In the Table we list the corresponding Kowalevski exponents for each element of the
indicial locus.

Table 1. Kowalevski exponents of 3x3 Lotka–Volterra equations

Vector x(0) Kowalevski Vector x(0) Kowalevski

exponents exponents

(0,0,0) 1,1,1 (0, 1c ,- 1
c ) -1,1,a−b+c

c

( 1
b ,0,- 1

b ) -1,1,-a−b+c
b ( 1

a ,- 1
a ,0) -1,1,a−b+c

a

A necessary condition for the system to have the Kowalevski–Painlevé property is that all the
Kowalevski exponents must be integers for every solution of the indicial equation. So we have to
solve the simultaneous Diophantine equations

a− b + c

a
= k1,

a− b + c

c
= k2, −a− b + c

b
= k3, (4.5)

where k1, k2, k3 ∈ Z. The case b = a + c for which k1 = k2 = k3 = 0 is investigated below. Solving
(4.5) we find that

k3 =
k1k2

k1k2 − k1 − k2
,





c = k1
k2

a, b = k1+k2−k1k2
k2

a

a = k2
k1

c, b = k1+k2−k1k2
k1

c
(4.6)

k2 =
k1k3

k1k3 − k1 − k3
,





b = −k1
k3

a, c = k1+k3−k1k3
k3

a

a = −k3
k1

b, c = k1+k3−k1k3
k1

b
(4.7)
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k1 =
k2k3

k2k3 − k2 − k3
,





b = −k2
k3

c, a = k2k3−k2−k3
k3

c

c = −k3
k2

b, a = k2+k3−k2k3
k2

b
(4.8)

We assume first, that the Kowalevski exponents are not zero. We examine the solution

k3 =
k1k2

k1k2 − k1 − k2
, b =

k1 + k2 − k1k2

k2
a, c =

k1

k2
a.

We determine the values of k1 and k2 so that the fraction,

k3 =
k1k2

k1k2 − k1 − k2
, (4.9)

is an integer. We first consider the case k1k2 − k1 − k2 6= 0.

Case I. Assume positive values for both k1 and k2.
Since

k1k2
k1k2−k1−k2

= 1 + k1+k2
k1k2−k1−k2

it is enough to to solve the Diophantine equation
x + y

xy − x− y
= z

for x, y positive integers and z ∈ Z.

Lemma 1. Let x, y ∈ Z+ with x 6 y. Then
x + y

xy − x− y
∈ Z

if and only if (x, y) is one of the following: (1, λ), λ ∈ Z+, (2, 3), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4).

Proof. Since
xy − x− y 6 x + y

we have
xy 6 2(x + y) 6 4y.

Since y 6= 0 we get x 6 4. Therefore x = 1, 2, 3, 4. We examine each case separately.

• If x = 1
x + y

xy − x− y
=

1 + y

−1
= −1− y ∈ Z.

Therefore (1, λ), λ ∈ Z+ is always a solution.

• Suppose x = 2. Then
x + y

xy − x− y
=

2 + y

y − 2
= 1 +

4
y − 2

should be an integer. Therefore y − 2 = ±1,±2,±4. We obtain the solutions (2, 3), (2, 4) and
(2, 6).

• Suppose x = 3. Then
x + y

xy − x− y
=

y + 3
2y − 3

should be an integer. Therefore
2y − 3 6 y + 3

and we obtain y 6 6. We obtain the solutions (3, 3) and (3, 6).
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• Suppose x = 4. Then
x + y

xy − x− y
=

y + 4
4y − 4

should be an integer. Therefore
3y − 4 6 y + 4

and we obtain y 6 4. We obtain the solution (4, 4).

Of course, since the fraction
x + y

xy − x− y

is symmetric with respect to x and y, we easily obtain all solutions in positive integers.
We summarize:

For 1 6 k1 6 k2





k1 = 1 =⇒ k2 = λ ∈ Z+

k1 = 2 =⇒ k2 ∈ {3, 4, 6}
k1 = 3 =⇒ k2 ∈ {3, 6}
k1 = 4 =⇒ k2 = 4.

(4.10)

Note that the case k1 = 3, k2 = 3 implies k3 = 3 and we obtain the periodic KM-system (1,−1, 1).

Case II.
Suppose one of them, say k1, is positive while the other, k2, is negative. Let k2 = −x, x > 0. Then

k3 =
−k1x

−k1x− k1 + x
=

k1x

k1x + k1 − x
= 1 +

x− k1

k1x + k1 − x

It is enough to to solve the Diophantine equation
x− y

xy + y − x
= z

for x, y positive integers and z ∈ Z.

Lemma 2. Let x, y ∈ Z+. Then
x− y

xy + y − x
∈ Z

if and only if (x, y) is of the form (λ, 1) or (λ, λ) with λ ∈ Z+.

Proof. If y = 1 then
x− y

xy + y − x
= x ∈ Z.

Therefore a pair of the form (λ, 1) is always a solution.
Assume y > 1. We note that

xy

xy + y − x
= 1 +

x− y

xy + y − x

and therefore xy + y − x 6 xy implies y 6 x. If x = y then our fraction is clearly an integer. On
the other hand, if y < x, then the fraction

x− y

xy + y − x
/∈ Z

since
(y − 1)x + y > x + y > x− y.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



320 CONSTANDINIDES, DAMIANOU

If k1 = 1 then k2 = −λ and k3 = λ. Similarly, if k1 = λ then k2 = −λ and k3 = 1. The two cases
are isomorphic and correspond to Case 5 in Table 3.

Case III.
If we take negative values for both k1 and k2, then

k3 =
xy

xy + x + y
= 1− x + y

xy + x + y
,

where k1 = −x and k2 = −y with x, y > 0. We have that xy > 0 and xy + x + y > 0 so that the
Kowalevski exponent is an integer if

xy + x + y 6 x + y

which implies xy 6 0, a contradiction. Therefore, in this case k3 cannot be an integer.
This completes the analysis of the case k1k2 − k1 − k2 6= 0.
Now suppose k1k2 − k1 − k2 = 0.
In this case we have k1 + k2 = k1k2 and obviously (since we assume non-zero Kowalevski

exponents) we must have k1 = k2 = 2. We easily obtain a = c and b = 0. This system is equivalent
to the open KM-system (also known as the Volterra lattice). This is Case 1 in Table 3.

This concludes our analysis. The results are summarized in Table 2. In Table 3 we also include
the case of a zero exponent i.e. b = a + c. Note that the case b = a + c which is equivalent to
(1, 1 + µ, µ) for µ ∈ R was also considered in [1] from a different point of view.

4.3. Equivalence

In order to have a more compact classification, we define an equivalence between two Lotka–
Volterra systems. To begin with, common factors can be removed. In other words, suppose that
matrix A = (aij) in (4.1) has a common factor a. Precisely, if

aij = Cija, where Cij ∈ R, i, j = 1, 2, . . . , n,

then the Lotka–Volterra system (4.1) can be simplified to

u̇i =
n∑

j=1

Cijuiuj , i = 1, 2 . . . , n,

using the transformation

ui = axi, i = 1, 2 . . . , n.

More generally, we consider two systems to be isomorphic if there exists an invertible linear
transformation mapping one to the other. Special cases of isomorphic systems are those that are
obtained from a given system by applying a permutation of the coordinates. Let σ ∈ Sn, and define
a transformation

Xi 7−→ xσ(i), i = 1, 2, . . . , n.

The transformed system is then considered equivalent to the original system. We illustrate with
an example for n = 3.

Example 2. We prove that the system

ẋ1 = ax1x2 − a
3x1x3 ẋ1 = 3x1x2 − x1x3

ẋ2 = −ax1x2 + 2a
3 x2x3

−−−−−−−−→ui = axi ẋ2 = −3x1x2 + 2x2x3

ẋ3 = a
3x1x3 − 2a

3 x2x3 ẋ3 = x1x3 − 2x2x3
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is isomorphic to the system

ẋ1 = ax1x2 − 2ax1x3 ẋ1 = x1x2 − 2x1x3

ẋ2 = −ax1x2 + 3ax2x3
−−−−−−−−→ui = axi ẋ2 = −x1x2 + 3x2x3

ẋ3 = 2ax1x3 − 3ax2x3 ẋ3 = 2x1x3 − 3x2x3

Applying σ = (1 3 2) we have that

Ẋ1 = ẋσ(1) = ẋ3 = x1x3 − 2x2x3 = X2X1 − 2X3X1

Ẋ2 = ẋσ(2) = ẋ1 = 3x1x2 − x1x3 = 3X2X3 −X2X1

Ẋ3 = ẋσ(3) = ẋ2 = −3x1x2 + 2x2x3 = −3X2X3 + 2X3X1,

which is the second vector field.

Example 3. Note that the system

ẋ1 = −x2x3

ẋ2 = x2x3

ẋ3 = x1x3 − x2x3 − x2
3

is equivalent to the open KM-system (1, 0, 1) under the transformation

(x1, x2, x3) → (x2 + x3, x1, x2)

but it is not a Lotka–Volterra system.

In Table 2 we display the different values of (a, b, c) of the solutions (4.6), (4.7) and (4.8) of the
simultaneous equations (4.5) which ensure integer Kowalevski exponents for the Lotka–Volterra
system in three dimensions. We also list the elements of the symmetric group S3 which realize the
isomorphism. Note that λ ∈ Z \ 0. The final six non-isomorphic systems are displayed in Table 3.

Example 4. The periodic KM system ([22]) in three dimensions is the system

ẋi =
3∑

i=1

aijxixj , i = 1, 2, 3,

where A is the 3× 3 skew-symmetric matrix

A =




0 −1 1

1 0 −1

−1 1 0


 .

This system is a special case of the system (4.1) where (a, b, c) = (−1, 1,−1). This is Case 2 in
Table 3. The Kowalevski exponents of this system are −1, 1, 3. The system can be written in the
Lax-pair form L̇ = [L,B], where

L =




0 x1 1

1 0 x2

x3 1 0


 , B =




0 0 x1x2

x2x3 0 0

0 x1x3 0


 .

We have the constants of motion

Hk = trace
(
Lk

)
, k = 1, 2, . . .
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Table 2. Systems with integer Kowalevski exponents

Vector (a, b, c) Kowalevski exponents σ
(
a, a

λ , a
λ

) −1, 1, 1

(a, a, λa) −1, 1, λ σ = (1 3)

(a, λa,−a) −1, 1,−λ σ = (2 3)
(
a,−a

2 , a
2

) −1, 1, 2

(a,−a, 2a) −1, 1, 4 σ = (1 3)

(a,−2a, a) σ = (1 3 2)

(a,−a, a) −1, 1, 3
(
a,−a

3 , 2a
3

)
σ = (1 3 2)

(
a,− 2a

3 , a
3

) −1, 1, 2 σ = (1 3)
(
a,− 3a

2 , a
2

) −1, 1, 3 σ = (1 2 3)
(
a,−a

2 , 3a
2

) −1, 1, 6 σ = (2 3)

(a,−2a, 3a)

(a,−3a, 2a) σ = (1 2)

(a, 0, a)

(a,−a, 0) −1, 1, 2 σ = (1 3 2)

(0, b,−b) σ = (1 2 3)

The functions

H2 = x1 + x2 + x3

H3 = 1 + x1x2x3

are independent constants of motion in involution with respect to the Poisson bracket

π =




0 −x1x2 x1x3

x1x2 0 −x2x3

−x1x3 x2x3 0


 .

We note that the positive Kowalevski exponents, 1 and 3, correspond to the degrees of the constants
of motion.

We have to point out that all Lotka–Volterra systems in three dimensions are integrable in the
sense of Liouville since there exist two constants of motion which are independent and in involution.
The function

H = x1 + x2 + x3

is the Hamiltonian for these systems using the quadratic Poisson bracket

π =




0 ax1x2 bx1x3

−ax1x2 0 cx2x3

−bx1x3 −cx2x3 0


 .
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Table 3. Free parameters of Lotka–Volterra systems

Vector Kowalevski Free parameters Degree of

exponents invariant

(a, 0, a) −1, 1, 2 x
(1)
3 , x

(2)
3 2

(a,−a, a) −1, 1, 3 x
(1)
3 , x

(3)
3 3

(
a,−a

2 , a
2

) −1, 1, 2 x
(1)
3 , x

(2)
3 4

−1, 1, 4

−1, 1, 2

(a,−2a, 3a) −1, 1, 3 x
(1)
3 , x

(2)
3 6

−1, 1, 6

−1, 1, 1
(
a, a

λ , a
λ

) −1, 1, λ x
(1)
1 , x

(1)
2 λ

−1, 1,−λ

(a, a + c, c) −1, 1, 0 x
(1)
1 , x

(0)
3 0

The equations of motion can be written in Hamiltonian form

ẋi = {xi,H}, i = 1, 2, 3.

The second constant of motion, independent of H always exists. It is straightforward to check
that the function

F = xc
1x
−b
2 xa

3

is always a Casimir. Therefore the system is Liouville integrable for any value of a, b, c. This is not
the case if n > 4.

5. FREE PARAMETERS

We would like to classify the Lotka–Volterra equations in three dimensions which satisfy the
Kowalevski–Painlevé property. In order to use Proposition 1 we have to assume Laurent solutions
of the form

xi(t) =
1
tvi

∞∑

k=0

x
(k)
i tk, i = 1, 2, 3 (5.1)

where vi are the components of the weight vector v that makes the vector field

ẋi = fi(x1, x2, x3), i = 1, 2, 3,

to be weight homogeneous. In our case the weight vector is v = (1, 1, 1).
To make sure that our classification is complete we must check that each system obtained satisfies

the Kowalevski–Painlevé property. This means that the Laurent series of the solutions x1, x2 and x3

must have n− 1 = 2 free parameters. Using the results in [9], the free parameters appear in a finite
number of steps of calculation. The first thing to do is to substitute (5.1) into equations (4.1). After
that we equate the coefficients of tk. We have already equated the coefficients of t−vi−1 by solving
the indicial equation to find x

(0)
i . Then we call Step m (m ∈ N) when we equate the coefficients of
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t−vi−1+m to find x
(m)
i . According to [9] all the free parameters appear in the first kp Steps, where

kp is the largest (positive) Kowalevski exponent of the system. The calculations are straightforward
and we omit the details.

All the systems that we have obtained turn out to satisfy the Kowalevski–Painlevé property.
We summarize the results in Table 3 where we display the 2 free parameters in each case. We note
that the six Cases of Theorem 1 are non-isomorphic by examining the degree of the Casimir.

6. HIGHER ORDER POLES

In our classification, using the Kowalevski exponents, we assume that the order of the poles
agrees with the components of the weight vector, in our case all equal to 1. We have to exclude the
possibility of missing some cases due to solutions with higher order poles. We show that no such
new cases appear.

Suppose that the Laurent solution of the system is

x1(t) =
1

tν1

∞∑

k=0

x
(k)
1 tk, with x

(0)
1 6= 0,

x2(t) =
1

tν2

∞∑

k=0

x
(k)
2 tk, with x

(0)
2 6= 0,

x3(t) =
1

tν3

∞∑

k=0

x
(k)
3 tk, with x

(0)
3 6= 0.

(6.1)

If ν1, ν2, ν3 6 1, then these systems have been already investigated using Proposition 1. On the
other hand, keeping in mind that H = x1 + x2 + x3 is always a constant of motion, we end-up with
the following four cases to consider:

(i) ν1 = ν2 = ν > 1 and ν3 < ν, or

(ii) ν1 = ν3 = ν > 1 and ν2 < ν, or

(iii) ν2 = ν3 = ν > 1 and ν1 < ν, or

(iv) ν1 = ν2 = ν3 = ν > 1.

Recall that equations (4.1) in three dimensions are:

ẋ1 = ax1x2 + bx1x3, (6.2)

ẋ2 = −ax1x2 + cx2x3, (6.3)

ẋ3 = −bx1x3 − cx2x3. (6.4)

We examine each of the four cases:

(i) ν1 = ν2 = ν > 1 and ν3 < ν Since ν1 = ν2 = ν and using the fact that H = x1 + x2 + x3

is a constant of motion we have that

x
(0)
1 = −x

(0)
2 = α 6= 0.

We also note that ν + ν3 < 2ν and x
(0)
1 x

(0)
2 6= 0. Equating the coefficients of t2ν of the LHS

and RHS of (6.2) or (6.3), we are led to a x
(0)
1 x

(0)
2 = 0. Therefore a = 0.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



LOTKA–VOLTERRA EQUATIONS IN THREE DIMENSIONS 325

As we know that ν3 + 1 < ν + ν3, the coefficient of tν+ν3 of the RHS of (6.4) must be equal
to zero. So

x
(0)
3

(
−bx

(0)
1 − cx

(0)
2

)
= 0,

but x
(0)
3 6= 0 and x

(0)
2 = −x

(0)
1 6= 0; therefore b = c.

If b = 0, then from (6.2) and (6.3) we have that

ẋ1 = ẋ2 = 0 =⇒ x1, x2 are constant functions,

that is a contradiction because ν1 = ν2 = ν > 1.
If b and c are non-zero, then the equations (6.2) and (6.3) become

ẋ1 = bx1x3, (6.5)

ẋ2 = bx2x3. (6.6)

Using equation (6.2) we obtain

ν + 1 = ν + ν3

therefore ν3 = 1, since x
(0)
1 x

(0)
3 6= 0 and x

(0)
2 x

(0)
3 6= 0.

It follows from (6.5) and (6.6) that

ẋ1

x1
=

ẋ2

x2
= bx3 =⇒ x1 = κx2, κ is a constant.

However, we know that

x
(0)
1 = −x

(0)
2 =⇒ κ = −1 ⇒ x1 = −x2.

Equation (6.4) becomes

ẋ3 = −b(−x2)x3 − bx2x3 = 0 =⇒ x3 = c, c is a constant.

This is a contradiction since ν3 = 1 and x
(0)
3 6= 0.

(ii) ν1 = ν3 = ν > 1 and ν2 < ν

It leads to a contradiction, as in case (i).

(iii) ν2 = ν3 = ν > 1 and ν1 < ν

It leads to a contradiction, as in case (i).

(iv) ν1 = ν2 = ν3 = ν > 1

In this case, for i = 1, 2, 3,

xi(t) =
1
tν

∞∑

k=0

x
(k)
i tk,

we have that the degrees of the leading term of the LHS of the equations (6.2), (6.3) and
(6.4) are equal to ν + 1, but the degrees of the leading term RHS of these equations are

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



326 CONSTANDINIDES, DAMIANOU

equal to 2ν and so the coefficients of 1
tν+k of the RHS of these equations must be zero for

k = 2, 3, . . . , ν.

The coefficients of 1
tν+k , k = 1, 2, . . . , ν, are given by the sums

Si,k =
ν−k∑

λ=0

x
(λ)
i u

(λ)
i,k , for i = 1, 2, 3, (6.7)

where

u
(λ)
1,k = ax

(ν−k−λ)
2 + bx

(ν−k−λ)
3 ,

u
(λ)
2,k = −ax

(ν−k−λ)
1 + cx

(ν−k−λ)
3 ,

u
(λ)
3,k = −bx

(ν−k−λ)
2 − cx

(ν−k−λ)
3 .

Note that

u
(λ)
i,k = u

(m)
i,j , if k + λ = j + m. (6.8)

In addition

Si,k = 0, for i = 1, 2, 3 and k = 2, 3, . . . , ν.

For k = n sum (6.7) becomes

Si,ν = x
(0)
i u

(0)
i,ν = 0 =⇒ u

(0)
i,ν = 0

since x
(0)
i 6= 0.

For k = ν − 1 we have that

Si,ν−1 = x
(0)
i u

(0)
i,ν−1 + x

(1)
i u

(1)
i,ν−1 = 0

(6.8) ⇒ x
(0)
i u

(0)
i,ν−1 + x

(1)
i u

(0)
i,ν = x

(0)
i u

(0)
i,ν−1 = 0

⇒ u
(0)
i,ν−1 = 0 because x

(0)
i 6= 0.

Let m ∈ {1, 2, . . . , ν − 1} and assume that u
(0)
i,k = 0 for k > m.

For k = m we have that

Si,m =
ν−m∑

λ=0

x
(λ)
i u

(λ)
i,m = x

(0)
i u

(0)
i,m +

ν−m∑

λ=1

x
(λ)
i u

(λ)
i,m

= x
(0)
i u

(0)
i,m +

ν−m∑

λ=1

x
(λ)
i u

(0)
i,m+λ = x

(0)
i u

(0)
i,m.

Since Si,m = 0 for m > 1 and, since x
(0)
i 6= 0, then u

(0)
i,m = 0.

Now we equate the coefficients of 1
tν+1 on both sides of the equations (6.2)–(6.4) to obtain

Si,1 = x
(0)
i u

(0)
i,1 = −νx

(0)
i .

Therefore, ν + u
(0)
i,1 = 0.
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Therefore we have that

ax
(ν−1)
2 + bx

(ν−1)
3 = −ν,

−ax
(ν−1)
1 + cx

(ν−1)
3 = −ν,

−bx
(ν−1)
2 − cx

(ν−1)
3 = −ν.

(6.9)

These simultaneous equations have solutions only if

b = a + c.

If a = 0, Then b = c (obviously b = c 6= 0). Then the system is isomorphic to the following
(0, 1, 1) system:

ẋ1 = x1x3

ẋ2 = x2x3

ẋ3 = −x1x3 − x2x3

Equating the coefficients of t−2ν (ν > 1) in the first and second equations we have that

x
(0)
1 x

(0)
3 = x

(0)
2 x

(0)
3 = 0.

This is impossible because x
(0)
i 6= 0, for i = 1, 2, 3.

The same happens if bc = 0. So in the following calculations we assume that abc 6= 0.

We will show that there exists no such solution with ν > 2. Since b = a + c and the function
H = x1 + x2 + x3 is a constant of motion, the Lotka–Volterra equations in three dimensions
can be written in the form

ẋ1 = akx1 − ax2
1 + cx1x3,

ẋ2 = −ẋ1 − ẋ3,

ẋ3 = −ckx3 + cx2
3 − ax1x3,

(6.10)

where k is the constant value of the function H. It is straightforward to see that if k 6= 0,
then the solution is

x1 =
kC1eakt

C1eakt + ae−ckt − C2
, x3 =

kae−ckt

C1eakt + ae−ckt − C2
,

x2 = k − x1 − x3 = − kC2

C1eakt + ae−ckt − C2
. (6.11)

Obviously C2 6= 0. The pole t∗ satisfies

C1eakt∗ + ae−ckt∗ − C2 = 0 ⇒ C2 = C1eakt∗ + ae−ckt∗ 6= 0

Hence using De l’ Hôpital Rule we are led to the fact that

lim
t→t∗

(t− t∗)x2(t) =
C2

aC1eakt∗ − ace−ckt∗
.

Since the pole order is greater than 1, we have that

lim
t→t∗

(t− t∗)x2(t) = ∞.

Therefore

C1 = ce−(a+c)kt = ce−bkt
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The solution (6.11) possesses only one arbitrary constant k, but we need 2.

Now if k = 0 the solutions of (6.10) are

x3(t) = 0, x1(t) =
1

at + C1
,

or

x1(t) =
C1 − c

a(C1t + C2)
, x3(t) = − 1

C1t + C2
.

Both solutions lead to a contradiction since the pole order of x1 and x3 is assumed to be
greater than 1.
Therefore the case ν1 = ν2 = ν3 = ν > 1 does not give us any new cases. The conclusion is
that the case b = a + c gives a system satisfying the Kowalevski–Painlevé property only when
ν1 = ν2 = ν3 = 1.
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Abstract—In this paper, we consider the Toda lattice associated to the twisted affine Lie
algebra d
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between these systems, leading to a new Poisson structure for the Mumford system. Finally,
we give a new Lax equation with spectral parameter for this Toda lattice and we construct an
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1. INTRODUCTION

The classical Toda lattice is a system of particles of unit mass, connected by exponential springs.
It is a fundamental example of a finite-dimensional integrable Hamiltonian system. It has various
connections with other parts of mathematics and physics [1]. Its equations of motion are derived
from the Hamiltonian

H =
1
2

n∑

j=1

p2
j +

n−1∑

j=1

exp(qj − qj+1), (1.1)

where qj is the position of the j-th particle and pj is its momentum. This type of Hamiltonian
was considered first by Morikazu Toda [2]. The equation (1.1) is known as the classical finite non-
periodic Toda lattice to distinguish the system from various other versions. The periodic version of
(1.1) is given by

H =
1
2

n∑

j=1

p2
j +

n∑

j=1

exp(qj − qj+1), qn+1 = q1, (1.2)

whose equations of motion are given by

q̇j =
∂H

∂pj
= pj ,

ṗj = −∂H

∂qj
= exp(qj−1 − qj)− exp(qj − qj+1),

1 6 j 6 n.

The integrability of the periodic Toda lattice was established by Hénon [3] and Flaschka [4] using the
method of Lax pairs. The equations of motion were solved by quadratures by Kac and van Moerbeke
[5] and latter integrated by Krichever [6] in terms of theta functions by using algebro-geometric
methods. There now exists an extensive literature on the problem. Properties of eigenvectors of
Lax pairs over their associated spectral curve were studied in classical papers by Adler and van
Moerbeke [7–9] and Mumford and van Moerbeke [10]. In 1976, Bogoyavlensky [11] introduced a
generalization of the classical periodic Toda lattice to arbitrary affine Lie algebras. Adler and van
Moerbeke [12], after some changes of variables, have shown that the Hamiltonian vector field XH

associated to the general form of the Hamiltonian H corresponding to an affine Lie algebra g of
rank l, takes the simple form

{
ẋ = x · y,

ẏ = Ax,
(1.3)

where x, y ∈ Cl+1, x · y = (x0y0, . . . , xlyl) and A is the Cartan matrix of g.
A main tool in the study of the integrable systems is the use of formal Laurent solutions of

the differential equations that describe the vector fields. Thus, S. Kowalevski discovered her top
by searching families of Laurent solutions depending on a maximal number of free parameters.
This technique was further developed by Adler and Moerbeke who applied it to discover several
other cases of interest. At the same time, they introduced the notion of algebraic integrability.
We recall that an Abelian variety is a complex torus Cn/Λ, where Λ is a lattice in Cn, that is
algebraic, which means that it admits an embedding in some projective space PN . An integrable
system (Cn, {· , ·} ,F), where F = (F1, . . . , Fs), will be called algebraic completely integrable (a.c.i.)
if for generic c = (c1, . . . , cs) in Cs the invariant manifold

Ac =
s⋂

i=1

{m ∈ Cn : Fi(m) = ci},

thought of as a (non-compact) affine variety in Cn, can be completed into a complex algebraic torus
Tn

c as follows Ac = Tn
c\Dc, where Dc is a divisor (one or several hypersurfaces) in Tn

c . Moreover,
the Hamiltonian vector fields XFi are translation invariant when restricted to these tori. It turns
out that many (most) of integrable systems that were known classically, turn out to be a.c.i., when
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complexified. This means that the powerful tools of the theory of Abelian varieties can be used to
solve and study these systems.

Adler, van Moerbeke and Vanhaecke in [12] have shown that every a.c.i. system admits Laurent
solutions depending on a maximal number of free parameters; which justifies the criterion used by
Kowalevski to find her top. In this line, they have developped a method (algorithm) [12], based
on the formal Laurent solutions, to prove the algebraic integrability of an integrable system. This
algorithm is based on the Complex Liouville Theorem (see Theorem 1 below). They used it to show
that a number of well-known systems are a.c.i., like the geodesic flow on SO(4), the Henon-Heiles
system and the famous Kowalevski top. We will use also later this algorithm to show that the Toda
lattice which we consider in this paper, is an a.c.i. system. Finally, the Laurent solutions are used
to further explore the geometry of the invariant manifolds.

A charaterization of periodic Toda lattices is given in [12]. Indeed, Adler and van Moerbeke have
shown that if the vector field XH in (1.3) is a vector field of an a.c.i. system, then A is the Cartan
matrix of a (twisted) affine Lie algebra. Conversely, if A is a such matrix, XH is a vector field of
a Liouville integrable system. It is conjectured that all these integrable systems are a.c.i. Indeed,
these systems satisfy the Linearising Criterion [12, Theorem 6.41]. The fact that the system (1.3) is
a.c.i. was shown for particular cases of Lie algebras, but not in general. Thus, we can find the proof
of the algebraic integrability of all a

(1)
l , for l > 1, in [10]. For the periodic Toda lattice with two

degrees of freedom, there exist six cases where the system (1.3) could be a.c.i. for which the Cartan
matrix correspond to the (possibly twisted) affine Lie algebras a

(1)
2 , d

(2)
3 , c

(1)
2 , a

(2)
4 , g

(1)
2 and d

(2)
4 . As

said above, the a
(1)
2 Toda lattice is a.c.i.; see [12] for an alternative proof.

This paper deals with the study of the algebraic integrability and the geometry of the
Toda lattice associated to the twisted affine Lie algebra d

(2)
3 . We briefly describe the d

(2)
3 Toda

lattice. The differential equations of this lattice are given on the five dimensional hyperplane
H =

{
(x0, x1, x2, y0, y1, y2) ∈ C6 | y0 + y1 + y2 = 0

}
of C6 by

{
ẋ = x · y,

ẏ = Ax,
(1.4)

where x = (x0, x1, x2)>, y = (y0, y1, y2)>, and A is the Cartan matrix of the twisted affine Lie
algebra d

(2)
3 given by

A =




2 −1 0

−2 2 −2

0 −1 2


 , (1.5)

and three independent constants of motion are given by

F1 = y2
0 + y2

2 − 4x0 − 2x1 − 4x2,

F2 = (y2
0 − 4x0)(y2

2 − 4x2)− x1(2y0y2 − 4x0 − x1 − 4x2),
F3 = x0x1x2.

(1.6)

For c = (c1, c2, c3) ∈ C3, let Fc be the complex affine variety defined by the intersection of the
constants of motion

Fc =
3⋂

i=1

{m ∈ H | Fi(m) = ci},

and
Ω := {c = (c1, c2, c3) ∈ C3 | c3 6= 0, c2

1 − 4c2 6= 0 and

6912c2
3 + 288c1c2c3 + 4c3

2 − c2
1c

2
2 − 64c3

1c3 6= 0}. (1.7)
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The main result of this paper (see Section 4) is the following.

Theorem. Let (H, {·, ·},F) denote the integrable system that describes the d
(2)
3 Toda lattice,

where F = (F1, F2, F3) is given by (1.6).

1. (H, {·, ·},F) is an algebraic completely integrable system;

2. For c = (c1, c2, c3) ∈ Ω, the invariant surface Fc is isomorphic to T2
c\Dc, where

(a) T2
c is the Jacobian of the hyperelliptic curve (of genus two) Γ(0)

c , defined by

a4e2 − (c1e + 8c3)a2e− 4e3 + c2e
2 + 4c1c3e + 16c2

3 = 0;

(b) Dc is a divisor on T2
c, and consists of three irreducible components D(0)

c , D(1)
c and D(2)

c

where D(0)
c and D(2)

c are both smooth curves, isomorphic to Γ(0)
c , while D(1)

c is a curve
of genus three, with two singular points, defined by

32αβ2 + (16α4 − 8c1α
2 + c2

1 − 4c2)β − 32c3α = 0.

(c) The curves D(0)
c and D(2)

c intersect each other transversally in two points, and each of
them intersects the curve D(1)

c at one singular point of the latter.

In this paper, we also establish a link between the d
(2)
3 -Toda lattice and the Mumford system

[13]. By using a method due to Vanhaecke [14], we construct an explicit morphism between these
two systems. Thus, we obtain a new Poisson structure (see Section 6) for the Mumford system and
then derive a new Lax equation with spectral parameter for the d

(2)
3 Toda lattice. These results

lead to an explicit linearization of the Toda lattice considered.

This paper is organized as follows. In Section 2 we verify that the d
(2)
3 Toda lattice is Liouville

integrable. In Section 3 we do the Painlevé analysis of the system. This analysis shows that our
integrable system admits three principal balances i.e. three families of Laurent solutions depending
on the maximal number of free parameters, to wit four in our case. Thus, by confining each family
of Laurent solutions to the invariant manifolds we calculate the Painlevé divisors associated to
these principal balances and, for c ∈ Ω, we give an explicit embedding of the invariant manifold Fc

in the projective space P15,

ϕc : Fc → P15

(x0, x1, x2, y0, y1, y2) 7→ (1 : z1 : · · · : z15),
(1.8)

where the functions zi behave like 1
t at worst when any of the principal balances is substituted in

them.

In the Section 4, which is the main part of the paper, we prove the above theorem. Section 5 deals
with other elements of the geometry of the system. We determine the positions of the half-periods
on the Abelian surface and the tangency locus of the holomorphic vector fields on this surface.
Finally in Section 6 we study the connection of our system with the Mumford system and give a
morphism between the two. Moreover, we give a new 2 by 2 Lax pair for the system. We finish by
giving an explicit linearization of the Toda lattice.
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The equations of motion d
(2)
3 periodic Toda lattice take the following form

ẋ0 = x0y0, ẏ0 = 2x0 − x1,

ẋ1 = x1y1, ẏ1 = −2x0 + 2x1 − 2x2,

ẋ2 = x2y2, ẏ2 = 2x2 − x1.

(2.1)

on the five dimension hyperplane H. These differential equations come from (1.3), where A is the
Cartan matrix of the twisted affine Lie algebra d

(2)
3 given in (1.5). We denote by V1 the vector field

defined by the above differential equations (2.1). The field V1 is the Hamiltonian vector field, with
Hamiltonian function

F1 = y2
0 + y2

2 − 4x0 − 2x1 − 4x2,

with respect to the Poisson structure {·, ·} defined by the following skew-symmetric matrix

M :=
1
2




0 0 0 x0 −x0 0

0 0 0 −x1 2x1 −x1

0 0 0 0 −x2 x2

−x0 x1 0 0 0 0

x0 −2x1 x2 0 0 0

0 x1 −x2 0 0 0




. (2.2)

This Poisson structure is given on C6; the function y0 + y1 + y2 is a Casimir, so that the hyperplane
H is a Poisson subvariety. The rank of the Poisson structure {·, ·} is 0 on the three-dimensional
subspace {x0 = x1 = x2 = 0}; the rank is 2 on the three four-dimensional subspaces: {x0 = x1 = 0},
{x0 = x2 = 0} and {x1 = x2 = 0}. Thus, for all points of H except the four subspaces above the
rank is 4. The vector field V1 admits also the two constants of motion, to wit

F2 = (y2
0 − 4x0)(y2

2 − 4x2)− x1(2y0y2 − 4x0 − x1 − 4x2),
F3 = x0x1x2.

(2.3)

It is easy to check that F3 is a Casimir for {· , ·}, and that the function F2 generates a second
Hamiltonian vector field V2, which commutes with V1, given by the differential equations

x′0 = x0y2(y0y2 − x1)− 4x0x2y0,

x′1 = x1(y0 + y2)(x1 − y0y2) + 4x1(x2y0 + x0y2),

x′2 = x2y0(y0y2 − x1)− 4x0x2y2,

y′0 = 2(x1x2 + x0y
2
2)− 8x0x2 + x1(x1 − y0y2),

y′1 = 2x1(y0y2 − x0 − x2)− 2(x0y
2
2 + x2y

2
0)− 2(x2

1 − 8x0x2),

y′2 = 2(x1x0 + x2y
2
0)− 8x0x2 + x1(x1 − y0y2),

(2.4)

having the same constants of motion. Let us write F = (F1, F2, F3) : H → C3 for the momentum
map. It is clear that F is involutive. Moreover, F is independent on a dense open subset of H, hence
(H, {·, ·},F) is Liouville integrable.

We finish this section by determining the set of regular values of the map F. To do this, let Π
be the set of critical values of the momentum map F

Π := {c ∈ C3 | ∃m ∈ F−1(c) with dF1(m) ∧ dF2(m) ∧ dF3(m) = 0}.
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Let us determine Π. The jacobian matrix of F is given by

JF :=




−4 −2 −4 2y0 2y2

4(4x2 + x1 − y2
2) ? 4(4x0 + x1 − y2

0) 2y0(y2
2 − 4x2)− 2x1y2 ?′

x1x2 x0x2 x0x1 0 0


 ,

where ? := 2(2x0 + x1 + 2x2 − y0y2) and ?′ := 2y2(y2
0 − 4x0)− 2x1y0. Let S be the set of points in

H where the determinants of all 3× 3 minors of the matrix JF cancel. By direct computation, we
find that S is the union of following subvarieties

S1 := {x0 = x1 = 0}, S2 := {x0 = x2 = 0}, S3 := {x1 = x2 = 0}, S4 := {x1 = 0, x0 = x2 +
1
4
(y2

0 − y2
2)},

S5 := {x0 = x2, y0 = y2}, S6 := {y0 = y2 = 0, 4x0x2 = x1(x0 + x2)},

S7 := {4x2y0 = −4x0y2 = (y2 − y0)(y0y2 − x1)}.

We see that the images under F of S1, S2, S3 and S4 are contained in the subset c3 = 0; by
substituting x2 = x0 and y2 = y0 in Fi = ci (i = 1, 2, 3), one obtains the equality c2

1 − 4c2 = 0.
Also, we verify that a substitution of

y0 = y2 = 0, x1 =
4x0x1

x0 + x2

and

x0 = − 1
4y2

(y2 − y0)(y0y2 − x1), x2 =
1

4y0
(y2 − y0)(y0y2 − x1),

respectively in the equalities Fi = ci leads, after a direct computation, to

6912c2
3 + 288c1c2c3 + 4c3

2 − c2
1c

2
2 − 64c3

1c3 = 0.

Thus,

Π = {c = (c1, c2, c3) ∈ C3 | c3 = 0 or c2
1 − 4c2 = 0 or

6912c2
3 + 288c1c2c3 + 4c3

2 − c2
1c

2
2 − 64c3

1c3 = 0}.
Conversely, it can be shown that each point of Ω is a critical value of the momentum map F. Hence,
the set of regular values of the momentum map F is the Zariski open subset Ω given by

Ω := {c = (c1, c2, c3) ∈ C3 | c3 6= 0, c2
1 − 4c2 6= 0 and

6912c2
3 + 288c1c2c3 + 4c3

2 − c2
1c

2
2 − 64c3

1c3 6= 0}. (2.5)

For c ∈ Ω, we denote by Fc the fiber over c,

Fc := F−1(c) =
3⋂

i=1

{m ∈ H : Fi(m) = ci}.

In conclusion, we have shown

Proposition 1. For c ∈ Ω, the fiber Fc over c of the momentum F is a smooth affine variety of
dimension 2 and the rank of the Poisson structure de Poisson (2.2) is maximal, equal to 4 at each
point of Fc ; moreover the vector fields V1 and V2 are independent at each point of the fiber Fc.
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On C6 there are two involutions π and τ which preserve the constants of motion F1, F2 and
F3, hence leave the fibers of the momentum map F invariant. These involutions restrict to the
hyperplane H and are given by

π(x0, x1, x2, y0, y1, y2) = (x2, x1, x0, y2, y1, y0),
τ(x0, x1, x2, y0, y1, y2) = (x0, x1, x2,−y0,−y1,−y2).

(3.1)

The involution π preserves the vectors fields V1 et V2 while the involution τ changes their sign. Both
involutions will have strong implications on the geometry of our integrable system. Notice that if
we assign the weight 2 to the variables x0, x1 and x2 and the weight 1 to the variables y0, y1 and
y2 then the constants of motion F1, F2 and F3 are all weight homogeneous, with weights 2, 4 and 8
respectively. If we give time weight −1 then the vector field V1 also becomes weight homogeneous.
Such a vector field is called weight homogeneous vector field. It is shown in [12] that for a such
vector field it is easy to find the Laurent solutions and to do the Painlevé analysis of the system.

3.1. Laurent Solutions

The system of differential equations (2.1) has Laurent solutions of the form

x(t) =
1
t2

∞∑

k=0

x(k)tk, y(t) =
1
t

∞∑

k=0

y(k)tk, (3.2)

i.e. the variables x = (x0, x1, x2) have at most a double pole and the variables y = (y0, y1, y2) have
at most a simple pole. In fact, it is shown that all Laurent solutions have this form. By substituting
(3.2) in the differential equations (2.1), at the 0-th step, the coefficients of t−2 for x(t) and t−1 for
y(t) lead to a non-linear system, to wit

0 = x
(0)
0 (2 + y

(0)
0 ),

0 = x
(0)
1 (2 + y

(0)
1 ),

0 = x
(0)
2 (2 + y

(0)
2 ),

0 = y
(0)
0 + 2x

(0)
0 − x

(0)
1 ,

0 = y
(0)
1 − 2x

(0)
0 + 2x

(0)
1 − 2x

(0)
2 ,

0 = y
(0)
2 + 2x

(0)
2 − x

(0)
1 ,

(3.3)

and at the k-th step (k > 1), the coefficients lead to system of linear equations in x(k) =
(x(k)

0 , x
(k)
1 , x

(k)
2 ) and y(k) = (y(k)

0 , y
(k)
1 , y

(k)
2 ). The solution of the system (3.3) consists of six points

(x(0)
0 , x

(0)
1 , x

(0)
2 , y

(0)
0 , y

(0)
1 , y

(0)
2 ) =





(0, 0, 1, 0, 2,−2),
(0, 1, 0, 1,−2, 1),
(1, 0, 0,−2, 2, 0),
(0, 4, 3, 4,−2,−2),
(1, 0, 1,−2, 4,−2),
(3, 4, 0,−2,−2, 4).

We show that the points m0 := (0, 0, 1, 0, 2,−2) leads to a Laurent solution depending on four free
parameters, whose the five leading terms (going with steps 1, 2, 2, 4 respectively, are denoted by
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a, c, d, e) are given by

x0(t; m0) = c + act +
1
2
c(2c + a2)t2 + O(t3),

x1(t; m0) = et2 + O(t3),

x2(t; m0) =
1
t2

+ d +
1
10

(6d2 − e)t2 + O(t3),

y0(t; m0) = a + 2ct + act2 +
1
3
(2c2 + a2c− e)t3 + O(t4),

y1(t; m0) =
2
t
− a− 2(c + d)t− act2 +

1
15

(11e− 10c2 − 6d2 − 5a2c)t3 + O(t4),

y2(t; m0) = −2
t

+ 2dt− 2
5
(e− d2)t3 + O(t4).

(3.4)

The point m2 := (1, 0, 0,−2, 2, 0) = π(m0), so that the Laurent solution x(t;m2) is obtained from
the above formulas for x(t; m0) by applying the involution π. The point m1 := (0, 1, 0, 1,−2, 1),
which is a fixed point of the involution π, leads to the following Laurent solution (with four leading
terms)

x0(t;m1) = βt + O(t2),

x1(t;m1) =
1
t2

+ γ − 1
2
(β + δ)t + O(t2),

x2(t;m1) = δt + O(t2),

y0(t;m1) =
1
t

+ α− γt +
1
4
(5β + δ)t2 + O(t3),

y1(t;m1) = −2
t

+ 2γt− 3
2
(β + δ)t2 + O(t3),

y2(t;m1) =
1
t
− α− γt +

1
4
(5δ + β)t2 + O(t3),

(3.5)

where the four free parameters are denoted by α, β, γ, δ. The involution τ acts, according to (3.1),
on these parameters in the following way

τ : (t, α, β, γ, δ) 7→ (−t,−α,−β, γ,−δ).

Notice that, the above Laurent solutions are weight homogeneous hence by using majoration
method, one shows that they are actually convergent. The other points, solutions of the system
(3.3), lead to Laurent solutions that depend on only three parameters; they are not used in what
follows. Consequently, we have

Lemma 1. The system of differential equations (2.1) possesses three Laurent solutions depending
on 4 (= dimH− 1) free parameters, with leading terms given by (3.4), π applied to (3.4) and (3.5).

3.2. Painlevé Divisors

We now search the formal Painlevé divisors i.e. the algebraic curves defined by the three different
principal balances x(t) = (x0(t), . . . , y2(t)), confined to a fixed affine invariant surface Fc, c ∈ Ω.
We have

Proposition 2. For c ∈ Ω, the Painlevé divisors Γ(0)
c and Γ(2)

c of the balances x(t; m0) and x(t; m2)
respectively, restricted to the surface Fc, are smooth affine curves. Their equations are given by

a4e2 − (c1e + 8c3)a2e− 4e3 + c2e
2 + 4c1c3e + 16c2

3 = 0. (3.6)

They can be completed into Riemann surfaces of genus 2, which are double covers of P1, ramified
at six points.
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Proof. By substituting (3.4) in the equations Fi(x0(t), . . . , y2(t)) = ci (i = 1, 2, 3) where the Fi are
the constants of motion and (c1, c2, c3) ∈ C3, we find three algebraic equations in terms of the four
free parameters a, c, d, e defining an affine curve in C4, to wit

c1 = a2 − 4c− 12d, c2 = −12a2d + 48cd + 4e, c3 = ce.

For c ∈ Ω, the parameters c, e are different from zero since c3 6= 0. The first and the last equations
are linear in c and d; one expresses these latters in terms of regular values of the constants of
motion, giving

c =
c3

e
, d =

1
12

(
a2 − 4c3

e
− c1

)
. (3.7)

Then the second equation is reduced, for c1, c2, c3, to the following equation of an affine curve Γ(0)
c

in C2, to wit

Γ(0)
c : a4e2 − (c1e + 8c3)a2e− 4e3 + c2e

2 + 4c1c3e + 16c2
3 = 0. (3.8)

We claim that this affine curve is smooth. Indeed, let us pose

f(a, e) := a4e2 − (c1e + 8c3)a2e− 4e3 + c2e
2 + 4c1c3e + 16c2

3,

we easily have
∂f

∂a
(a, e) = 2ae(2ea2 − c1e− 8c3),

∂f

∂e
(a, e) = 2a4e− 2(c1e + 4c3)a2 − 12e2 + 2c2e + 4c1c3.

A point (a, e) is a singular point of the affine curve Γ(0)
c if

f(a, e) =
∂f

∂a
(a, e) =

∂f

∂e
(a, e) = 0.

Since e 6= 0, this leads to

a = 0, or a2 =
8c3 + c1e

2e
.

If a2 =
8c3 + c1e

2e
, after substitution in the equations

f(a, e) = 0 and
∂f

∂e
(a, e) = 0,

we respectively obtain
1
4
e2(c2

1 − 4c2 + 16e) = 0, and − 1
2
e(c2

1 − 4c2 + 24e) = 0.

But e 6= 0, so that c2
1 − 4c2 = −16e = −24e. This implies that e = 0; contradiction!

If a = 0, this leads to the following system
{
− 12e2 + 2c2e + 4c1c3 = 0

− 4e3 + c2e
2 + 4c1c3e + 16c2

3 = 0.

By computing the resultant of the two polynomials forming this system, we obtain

−64c3(6912c2
3 + 288c1c2c3 + 4c3

2 − c2
1c

2
2 − 64c3

1c3).

This expression is different from zero for c ∈ Ω; so that Γ(0)
c is a smooth affine curve if c ∈ Ω. In

order to compactify Γ(0)
c , for c ∈ Ω, into a compact Riemann surface, denoted by Γ(0)

c , we need to
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add three points at infinity to it, denoted by ∞ε, ∞ where ε = ±1. A local parameter ς at each of
these points is given as follows

∞ε : a = ς−1, e = 4c3ς
2 + 2(c1 + εη)c3ς

4 + O(ς6), (3.9)

∞ : a = ς−1, e =
1
4
(ς−4 − c1ς

−2 + c2 − 32c3ς
2 − 16c1c3ς

4 + O(ς6)), (3.10)

where η is a fixed square root of c2
1 − 4c2, which is non-zero for c ∈ Ω.

By rewriting (3.8) as follows
(

a2 − 4c3

e

) (
a2 − 4c3

e
− c1

)
= 4e− c2,

we see that Γ(0)
c is a double cover of a rational affine curve defined by

Ec : u(u− c1)− 4e + c2 = 0.

The covering map is given by

ψ : Γ′c → Ec
(a, e) 7→ (u, e) =

(
a2 − 4c3

e
, e

)
.

A parametrization of Ec is given by

Ec =
{

(u, e) =
(
−t,

t2 + c1t + c2

4

)
, t ∈ C

}
.

Thus, if ψ(a, e) = (u, e), we have

a = ±
√
− t3 + c1t2 + c2t− 16c3

t2 + c1t + c2
, e =

1
4
(t2 + c1t + c2). (3.11)

The cover ψ : Γ(0)
c → Ec has three branch points : the points (u, e) on the curve Ec for which a = 0

i.e. where u is a root of the polynomial P (t) = t3 + c1t
2 + c2t− 16c3. This leads to three ramification

points on Γ(0)
c . This map is also ramified at infinity. Indeed, writing t in terms of a local parameter ς,

we find from (3.11) that

(a, e) =
(

ς−1 + 8c3ς
5 + O(ς7),

ς−4

4
(1− c1ς

2 + c2ς
4)

)
,

where t = −1/ς2. This shows that the map is ramified at this point. Let t± = 1
2(c1 ±

√
c2
1 − 4c2) be

the two roots of t2 + c1t + c2. By letting t = t+ + ς2 be a local parametrization around t+, we have

a =
1
ς

(√
16c3

η
+ O(ς2)

)
, e = ς2

(
1
4
η + O(ς2)

)
where η =

√
c2
1 − 4c2;

thus we find a point (a, e) on Γ(0)
c which is a ramification point. Also, if we write t = t− + ς2, we

have

a =
1
ς

(√−16c3

η
+ O(ς2)

)
, e = −ς2

(
1
4
η + O(ς2)

)
;

which leads to an another ramification point, showing that the Riemann surface Γ(0)
c is a double

cover of a rational curve E(0)
c closure of the curve E(0)

c with six ramification points, so that its genus
is 2 by the Riemann–Hurwitz formula. These six points are Weierstrass points of the Riemann
surface Γ(0)

c . Upon computing the Painlevé divisor which corresponds to the principal balance
x(t; m2), we find the same equation (3.8), since the involution π preserves the constants of motion.
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Proposition 3. For c ∈ Ω, the Painlevé divisor Γ(1)
c which corresponds to the principal balance

x(t; m1) is a smooth hyperelliptic curve of genus 3. It may be completed into a Riemann surface

Γ(1)
c by adding four points at infinity.

Proof. By substituting the principal balance x(t; m1) in the equations Fi = ci, i = 1, . . . , 3, where
c = (c1, c2, c3) ∈ Ω, the resulting expressions are independent of t. This leads to three algebraic
equations in terms of the four free parameters α, β, γ, δ, to wit

c1 = 2α2 − 6γ, c2 = α4 + 6α2γ + 8α(β − δ) + 9γ2, c3 = βδ. (3.12)

It is clear that, for c ∈ Ω, the parameters β and δ are non-zero since c3 6= 0. If we eliminate the two
parameters γ, δ in (3.12), we obtain an algebraic relation between α and β, which is the equation
of an affine curve in C2, defined by

Γ(1)
c : 32αβ2 + (16α4 − 8c1α

2 + c2
1 − 4c2)β − 32c3α = 0. (3.13)

Let us set

g(α, β) := 32αβ2 + (16α4 − 8c1α
2 + c2

1 − 4c2)β − 32c3α. (3.14)

We have
∂g

∂α
(α, β) = 32β2 + (64α3 − 16c1α)β − 32c3, (3.15)

∂g

∂β
(α, β) = 64αβ + 16α4 − 8c1α

2 + c2
1 − 4c2. (3.16)

Let us suppose that

g(α, β) =
∂g

∂α
(α, β) =

∂g

∂β
(α, β) = 0,

i.e. (α, β) is a singular point of the curve Γ(1)
c . As α et β are non-zero, (3.16) implies

β = −16α4 − 8c1α
2 + c2

1 − 4c2

64α
.

A substitution of β in terms of α in the equations

(3.14)− α(3.15) = 0 and (3.14) + α(3.15) = 0,

leads respectively to

H1(α)H2(α) = 0 and
1
4
αH3(α) = 0,

where
H1(α) = 16α4 − 8c1α

2 + c2
1 − 4c2,

H2(α) = 48α4 − 8c1α
2 − c2

1 + 4c2,

H3(α) = 64α6 − 48c1α
4 + 4(3c2

1 − 4c2)α2 − c3
1 + 4c1c2 + 256c3.

The resultant of polynomials H1 et H3 give the square of 228c2
3 and the resultant of H2 et H3 the

square of

220(6912c2
3 + 288c1c2c3 + 4c3

2 − c2
1c

2
2 − 64c3

1c3),

thus for c ∈ Ω, the affine curve Γ(1)
c is smooth, hence it can be compactified into a Riemann surface,

denoted by Γ(1)
c , by adding four points at infinity ∞1, . . . ,∞4 which are given in terms of a local

parameter ς by

∞1 : β = ς, α =
1

32c3
(c2

1 − 4c2)ς + O(ς3), (3.17)
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∞2 : α = ς−1, β = 2c3ς
3 + c1c3ς

5 +
(

3
8
c3c

2
1 +

1
2
c2c3

)
ς7 + O(ς9), (3.18)

∞3 : α = ς−1, β =
1
32

(−16ς−3 + 8c1ς
−1 + (4c2 − c2

1)ς − 64c1ς
3 + O(ς5), (3.19)

∞4 : β = ς−1, α = − 1
32

(c2
1 − 4c2)ς + O(ς3). (3.20)

By the change of variable ξ = 64αβ + 16α4 − 8c1α
2 + c2

1 − 4c2, the curve Γ(1)
c is birational to the

hyperelliptic curve

E(1)
c : ξ2 = (16α4 − 8c1α

2 + c2
1 − 4c2)2 + 4096c3α

2,

so that Γ(1)
c is a genus three curve.

The invariant manifold Fc can be embedded explicitly in a projective space i.e. we can construct
an embedding ϕ : Fc → PN . The idea of the construction is based on the following fact. If the d

(2)
3

Toda lattice is an irreducible a.c.i. system, then as we have seen above a divisor D can be added
to a Zariski open subset of the H, having the effect of compactifying all fibers Fc, where c ∈ Ω.
The divisor that is added to Fc will be denoted by Dc and the resulting torus by T2

c. The vector
fields V1 and V2 extend to linear (hence holomorphic) vector fields on this partial compactification
of H, hence we may consider the integral curves of V1, starting from any component D(i)

c . This
gives a Laurent solution depending on four parameters, hence it must coincide with one of the
Laurent solution x(t; mi). Let f be a polynomial function on H. Since V1 is transversal to the
divisor D, the pole order of the Laurent series f(t; mi), obtained by substituting the series x(t; mi)
in the function f , equals the order of f|Tr

c
along the divisor D(i)

c , where f|T2
c

is by definition f|Fc ,
viewed as a meromorphic function on T2

c. Since the third power of an ample divisor on an Abelian
variety is very ample, we look for all polynomials which have a simple pole at most when any of
the three principal balances are substituted in them. Precisely, we look for a maximal independent
set of functions which are independent when restricted to Fc. By direct computation, one finds the
sixteen weight homogeneous polynomials of weight at most 8.

z0 = 1, z7 = x1x0,

z1 = y0, z8 = x1x2,

z2 = y0 + y2, z9 = y0y2z4 + x1(y0 − y2)z2,

z3 = x1 − y0y2, z10 = x1x0(y0 − y2),
z4 = 4(x0 − x2)− (y0 − y2)z2, z11 = x1x2(y2 − y0),

z5 = x1y0 + y2(4x0 − y2
0), z12 = x1x0z3,

z6 = x1y2 + y0(4x2 − y2
2), z13 = x1x2z3,

(3.21)

z14 = x1x0((y2 − y0)z3 − 4x0y2),
z15 = x1x2((y0 − y2)z3 − 4x2y0).

The involution π acts, according to (3.1), on the independent polynomials zi as follows

π(z0, z1, . . . , z15) = (z0, z2 − z1, z2, z3,−z4, z6, z5, z8, z7,−z9, z11, z10, z13, z12, z15, z14). (3.22)

We consider the regular map,

ϕc : Fc → P15

(x0, x1, x2, y0, y1, y2) 7→ (1 : z1 : · · · : z15),
(3.23)

For c ∈ Ω, the map ϕc is an embedding of Fc in the projective space P15. We will see that this
embedding extends to Γ(i)

c , i = 1, 2, 3.
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In order to show that the d
(2)
3 Toda lattice is algebraic completely integrable (a.c.i.), we show

that, for c ∈ Ω, the fiber

Fc = F−1(c) =
3⋂

i=1

{m ∈ H : Fi(m) = ci}

is an affine part of Abelian surface, on which the vector fields V1 and V2 restrict to linear vector
fields. To do this, we must check that Fc satisfies the conditions of the following theorem.

Theorem 1 (Complex Liouville Theorem [12]). Let A ⊂ Cs be non singular affine variety of
dimension r with r holomorphic fields V1, . . . ,Vr and let ϕ : A → CN ⊂ PN an embedding. We
define ∆ := ϕ(A)\ϕ(A) and denote by D the union of all irreducible components of ∆ of dimension
r − 1. Suppose the following
(1) [Vi,Vj ] = 0 for 1 6 i, j 6 r;
(2) At every point m ∈ A the vector fields V1, . . . ,Vr are independent;
(3) The vector field ϕ∗V1 extends to a vector field V1 holomorphic on a neighborhood of D in PN ;
(4) The integral curves of V1 that start at points m ∈ D go immediately into ϕ(A).
Then ϕ(A) is a Abelian variety Tr of dimension r and the fields ϕ∗V1, . . . , ϕ∗Vr extend to
holomorphic on ϕ(A). Moreover ϕ(A) = ϕ(A) ∪∆, i.e. D = ∆.

For our case, we take for A the surface Fc, c ∈ Ω. According to Theorem 1, Fc is smooth and
the conditions (1) and (2) of the theorem are satisfied. To conclude that the fiber Fc sastifies the
conditions (3) and (4), we use the embedding ϕc given in (3.23). This embedding induces three maps
of each curve Γ(i)

c to P15. Indeed, by substituting the three principal balances in this embedding and
letting t → 0 we find an embedding of each of the three curves Γ(0)

c ,Γ(1)
c and Γ(2)

c in P15, denoted
respectively by ϕ

(0)
c , ϕ

(1)
c and ϕ

(2)
c . Explicitely, we have

ϕ
(0)
c : (a, e) 7→ (0 : 0 : −2 : 2a : 0 : 2a2 − 8c : 0 : 0 : 0 : 2a(a2 − 4c + 12d) :

0 : −2e : 0 : 2ae : 0 : 2a2e), (4.1)

ϕ
(1)
c : (α, β) 7→ (0 : 1 : 2 : 0 : −4α : α2 + 3γ : α2 + 3γ : β : δ : 4(α3 + 3αγ + β − δ) : 2αβ :

− 2αδ : β(α2 + 3γ) : δ(α2 + 3γ) : −2β(α3 + 3αγ + 2β) : 2δ(α3 + 3αγ − 2δ)),
(4.2)

ϕ
(2)
c : (a, e) 7→ (0 : −2 : −2 : 2a : 0 : 0 : 2a2 − 8c : 0 : 0 : −2a(a2 − 4c + 12d) :

− 2e : 0 : 2ae : 0 : 2a2e : 0). (4.3)

We recall that in (4.1) and (4.3) c = c3/e, d = (a2e− 4c3− c1e)/12e while in (4.2) γ = (2α2− c1)/6,
δ = c3/β. We see that ϕ

(0)
c , ϕ

(1)
c and ϕ

(2)
c are indeed embeddings of the affine curve since a and e

(resp. α and β) appear linearly in (4.1) and (4.3) (resp. (4.2)). It is clear by seeing the three leadings
coordinates of each embedding that the image curves are disjoint. However, they are not complete.

We denote by D(i)
c := ϕ

(i)
c (Γ(i)

c ) the projective closures of the images of these embeddings. These
give us three divisors on the (possibly singular) surface ϕc(Fc). Let Dc := ∪2

i=0D(i)
c . In order to

study the singularities of Dc, we use a local parameter ς around each of the points at infinity in
the corresponding map and we let ς → 0. Thus, by substituting (3.9) and (3.10) in (4.1), we find
the following leading terms, where ε = ±1.

ϕ
(0)
c (∞ε) ∼ (0 : 0 : ς : 1 : 0 :

1
2
(c1 + εη)ς : 0 : 0 : 0 : εη : 0 : 0 : 0 : 0 : 0 : 4c3ς),

ϕ
(0)
c (∞) ∼ (0 : · · · : 0 : −ς2 : 0 : ς : 0 : 1− c1ς

2),
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Letting ς → 0, we find the following image points in P15:
Pε : = (0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : εη : 0 : · · · : 0),

S′ : = (0 : · · · : 0 : 0 : 1) .

We see at once that these three points are different, so that ϕ
(0)
c is injective, and since the linear

terms in ς are non-vanishing we conclude that the image curve D(0)
c is non-singular and isomorphic

to Γ(0)
c . Applying the involution π which acts on the functions zi according to (3.22), we find

ϕ
(2)
c (∞ε) ∼ (0 : −ς : ς : 1 : 0 : 0 :

1
2
(c1 + εη)ς : 0 : 0 : −εη : 0 : 0 : 0 : 0 : 4c3ς : 0),

ϕ
(2)
c (∞) ∼ (0 : · · · : −ς2 : 0 : ς : 0 : 1− c1ς

2 : 0),

leading to the following three different points in P15:

P ′
ε : = (0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : −εη : 0 : · · · : 0),

S′′ : = (0 : · · · : 0 : 1 : 0) .

One verifies also that D(2)
c is a non-singular curve and isomorphic to Γ(2)

c . We have Pε = P ′−ε, which

leads to two intersection points of D(0)
c and D(2)

c . Comparing the term in ς of ϕ
(0)
c (∞ε) with the

term in ς of ϕ
(2)
c (∞−ε), we conclude that the image curves D(0)

c and D(2)
c intersect tranversally at

these two points Pε. Finally, by substituting (3.17) to (3.20) in (4.2), we have the following leading
terms:

ϕ
(1)
c (∞1) ∼ (0 : · · · : −2ς : 8ς : 0 : 0 : 0 : c1ς : 0 : 8c3),

ϕ
(1)
c (∞2) ∼ (0 : · · · : 0 : −ς2 : 0 : ς : 0 : 1− c1ς

2),

ϕ
(1)
c (∞3) ∼ (0 : · · · : −ς2 : 0 : −ς : 0 : 1− c1ς

2 : 0),

ϕ
(1)
c (∞4) ∼ (0 : · · · : −2ς : 0 : −8ς : 0 : 0 : c1ς : 0 : 8 : 0).

We find the two image points in P15, to wit

lim
ς→0

ϕ
(1)
c (∞1) = lim

ς→0
ϕ

(1)
c (∞2) = (0 : · · · : 0 : 0 : 1) = S′,

lim
ς→0

ϕ
(1)
c (∞3) = lim

ς→0
ϕ

(1)
c (∞4) = (0 : · · · : 0 : 1 : 0) = S′′.

(4.4)

We see that the curve D(1)
c is singular at the points S′ and S′′. Computing an extra term in the

series, it follows easily that these points are ordinary double points, i.e., the two branches of D(1)
c

meet transversally at the points, as indicated in Figure 1. Comparing the terms in ς and ς2 of
ϕ

(0)
c (p), for p close to ∞ with the terms in ς and ς2 of ϕ

(1)
c (p), for p close to ∞3 it follows that D(0)

c

and D(1)
c are tangent at S′, and the tangency is double. Similary, we show that D(0)

c and D(2)
c are

tangent at S′′, and the tangency is double.

Summarizing, the Painlevé divisor Dc consists of three curves D(0)
c , D(1)

c and D(2)
c of genus 2,

3 and 2 respectively. The curves D(0)
c and D(2)

c are non-singular, intersect transversally in the two
points Pε. The curve D(1)

c is singular, admits two double points S′ and S′′, its intersections with
D(0)

c and D(2)
c respectively. The precise correspondence between the seven points at infinity ∞, ∞+,

∞−, ∞i (i = 1, . . . , 4) and the four points P+, P−, S′ and S′′ under the three embeddings ϕ
(i)
c is

given in Table 1.
We now need to show that the vector field (ϕc)∗V1 extends to a holomorphic vector field on a

neighborhood of Dc in P15 (condition (3) of Theorem 1). We will be able to show that (ϕc)∗V1

extends to a holomorphic vector field on all P15, which implies in particular holomorphicity in a
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Fig. 1. Curves completing the d
(2)
3 -Toda invariant surfaces into Abelian surfaces, where Di := D(i)

c .

neighborhood of Dc. The construction of the extension is based on the following theorem, which
says that, in appropriate projective coordinates, any holomorphic vector field on an Abelian variety
is a quadratic vector field, hence it is globally defined and holomorphic.

Theorem 2 ([12]). Let L be an ample line on an irreducible Abelian variety Tr and let V be a
holomorphic vector field on Tr. Denoting by ϕ : Tr → PN the Kodaira embedding that corresponds
to L⊗3

there exists a quadratic vector field V on PN such that ϕ∗V = V.

Thus, in view of Hartog’s theorem we must show that the vector field (ϕc)∗V1 can be written as
quadratic vector fields in two charts Z0 6= 0 and Z1 6= 0. In the chart Z0 6= 0 we just use the zi

as coordinates. It is easily to check that the quadratic equations of (ϕc)∗V1 can be written in this
chart in the following form

ż1 = −1
4
(c1 + 6z3 − z4 − 2z1(−4z1 + 3z2)),

ż2 = −1
2
(c1 + 6z3 − z2

2) + 4z1(z1 − z2),

ż3 =
1
2
(z2z3 − z5 − z6),

Table 1. Correspondence between singular points

∞− ∞+ ∞

D(0)
c P+ P− S′

D(2)
c P− P+ S′′

∞1 ∞2 ∞3 ∞4

D(1)
c S′ S′ S′′ S′′
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ż4 = −z1(c1 + z4)− 2z6,

ż5 = −4(z7 − z8) +
1
4
(2c2 + 3z3(c1 + z4)− 2(z2 − z1)(3z6 − z5)),

ż6 = 4(z7 − z8) +
1
4
(2c2 + 3z3(c1 + z4)− 2z1(3z5 − z6)),

ż7 = z7(z1 − z2),
ż8 = −z1z8,

ż9 = 12z10 − 8z1(z7 − z8)− z3(z5 + z6) + z1(z9 − 2c2) +
1
2
(z4(z5 + 3z6)− c1z2z3),

ż10 =
1
2
(z4z7 + z10(−z2 + 2z1)),

ż11 = −1
2
(z4z8 + z11(−z2 + 2z1)),

ż12 = −1
2
(−z3z10 + z7(z5 + z6)),

ż13 = −1
2
(−z3z11 + z8(z5 + z6)),

ż14 = c3(4z3 − z4 + c1) +
1
2
(z14(3z1 − 2z2) + z5z10 + 4z2

7),

ż15 = c3(4z3 + z4 + c1) +
1
2
(z15(z2 − 3z1) + z6z11 + 4z2

8).

This establishes the fact that (ϕc)∗V1 extends to a holomorphic vector field in the chart Z0 6= 0.
In the same way, one finds, after some computation, the quadratic differential equations [15] in
the chart Z1 6= 0. According to Hartog’s theorem, this shows that the field (ϕc)∗V1 extends to a
holomorphic vector field on P15, which we denote by V1. Thus, we have verified that ϕc satisfies
condition (3) in the Theorem 1.

The final thing to be shown is that the integral curves of the holomorphic vector field V that
start at any point m ∈ ∆c go immediately into ϕc(Fc) i.e.

{Φt(m) | 0 < |t| < ε} ⊂ ϕc(Fc),

where Φt is the flow of V1 on P15. This leads to show that zj(m), 1 6 j 6 15, are finite. There are
three types of points m ∈ ∆c that need to consider.

(1) the points in the images ϕ
(i)
c (Γ(i)

c ), for i, i = 1, 2, 3;

(2) the points in K(i) = D(i)
c \ ϕ

(i)
c (Γ(i)

c ), for i, i = 1, 2, 3;

(3) the points in ∆c \ ∪3
i=1D(i)

c .

For points of (1): let P0 be any point in ϕ
(i)
c (Γ(i)

c ) and p ∈ Γ(i)
c be such that ϕ

(i)
c (p0) = P0. Since the

embedding functions zi are polynomials in the phase variables x0, . . . , y2 and that the Laurent series
xj(t; Γ

(i)
c ) are convergent, we may pick ε > 0 such that zj(t; Γ

(i)
c ) is finite for j = 1, . . . , 15 and for t

such that 0 < |t| < ε; hence Φt(P ) does not belong to the hyperplane (z0 = 0) i.e. Φt(P ) ⊂ ϕc(Fc).

The points for (2) are the points Pε, S′ and S′′. Let Q0 be any of these points and q0 ∈ Γ(i)
c such

that ϕ
(i)
c (q0) = Q0. If zα 6= 0 is a chart around the point Q0, we must show that

lim
q→q0

y0(t; q) = lim
q→q0

1
zα

(t; q) 6= 0.

Indeed, if it is the case, all zj(t; q0) are finite for |t| small and non-zero because zj = yj/y0 where
yj = zj/zα for j = 1, . . . , 15. Let us consider the two intersection points Pε of D(0)

c and D(2)
c . We
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read from (3.9) and (4.1) that the leading coefficient of z3(t; Γ
(0)
c ) has a pole for ς = 0, that is

maximal with the leading coefficient of z9(t; Γ
(0)
c ), and thus the function z3 defines a chart about

these two points. By substituting (3.4) in the function z3, we have

z3(t; Γ
(0)
c ) =

2a

t
+ 4c + 2a(c− d)t +

1
3
(2a2c + e + 4c(c− 3d))t2 + O(t3).

The first few terms of the inverse of this series are given by
1

z3(t; Γ
(0)
c )

=
t

2a
− c

a2
t2 + O(t3), (4.5)

by substituting (3.7) in the second term of (4.5) and by rewriting the coefficients in terms of local

parameter ς around ∞ε ∈ Γ(0)
c , by using (3.9), one finds :

lim
ς→0

1
z3

(t; ς) = −1
4
t2 + O(t3) 6= 0.

which shows that the flow of V1, that starts from the two points Pε, goes immediately into affine.

For the point S′, one considers the series 1/z15(t; Γ
(1)
c ); the choice of z15 is based on the fact

that z15 6= 0 defines a chart in a neighborhood of ∞1, as can be read off from (4.4). The calculation
needs six others terms in the principal balance (3.5). By rewriting the coefficients of the series
1/z15(t; Γ

(1)
c ) in terms of a local parameter ς around S′ by using (3.17), the result is that

lim
p→∞1

1
z15

(t; Γ(1)
c ) =

1
288

t7 + O(t8).

Also, by considering the principal balance (3.4) with six others terms and by using (3.9), we find

lim
p→∞1

1
z15

(t; Γ(0)
c ) =

1
288

t7 + O(t8),

and so the series are not identically zero and it follows that the integral curves of V1 starting at S′
go immediately into ϕc(Fc). For the points S′′, the only non-zero entry corresponds to the function
z14; so the function z14 defines a chart around S′′. We show that the flow of V1, that start from the
point S′′, goes into affine immediately by checking that the following limits are different from zero.

lim
p→∞

1
z14

(t; Γ(0)
c ) = lim

p→∞3

1
z14

(t; Γ(1)
c ) =

1
288

t7 + O(t8).

Thus, the integral curves of the holomorphic vector field V1 starting from all points of Dc go
immediately into the affine ϕc(Fc).

Finally, we turn to the points (3). We must show that there are no such points. Since Fc is
irreducible and ϕc is regular the divisorDc is connected. Thus, ifDc contains irreducible components
that are different from D(0)

c , D(1)
c and D(2)

c then at least one of the former ones must intersect one
of the latter ones; moreover this must happen at the points (2). Therefore, we must verify that no
other divisor passes through each of these points. To do this, we compute the degree of Dc at the
four points Pε, S′ and S′′ and we show that it coincides with the sum of the multiplicities of each
divisor passing through these points.

For the two points Pε, we consider the function 1/z3, which is a defining function for the divisor
Dc around Pε. Thereby we know that the vector field V1 is tranversal to D(0)

c and D(2)
c at these

points. By rewriting the coefficients of the second term of (4.5) we have, in terms of a local parameter

ς in a neighborhood of the points ∞ε ∈ Γ(0)
c , that

1

z3(t; Γ
(0)
c )

=
1
4
(2ςt− t2) + O(t3, ςt2),

it follows that the multiplicity of Dc at each of the two points Pε is 2, which coincides with the
sum of the order of 1/z3 on each of the two intersecting branches.
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For the points S′, we use the series 1/z15(t; Γ
(1)
c ). We need the seven leading terms of this series.

We rewrite the free parameters in terms of a local parameter ς around∞1 (3.9). The resulting series
in t and ς should start at degree 3 since the point S′ has multiplicity 2 and 1 on the divisor D(0)

c

and D(1)
c respectively and the function z15 has a simple pole over each of these divisors. Indeed, we

have
1

z15(t; Γ
(1)
c )

= − 1
4c2

3

ς2t + O(t3).

For the point S′′, we have in terms of a local parameter ς in a neighborhood of ∞4 ∈ Γ(1)
c that

1

z14(t; Γ
(1)
c )

= −1
4
ς2t + O(t3),

which shows that there are no others divisors passing through S′′. Notice that, since the vector
field V1 is only tangent to one of the branches of D(1)

c which cross at the points S′ and S′′, we have
taken the series expansion along the non-tangent branch.

The conditions of the Complex Liouville Theorem being satisfied, it follows that, for c ∈ Ω the
projective variety ϕc(Fc) = ϕc(Fc) ∪Dc is an Abelian surface and that the restriction of the vector
fields V1 and V2 to these Abelian surfaces is linear. Since ϕc(Fc) contains a smooth curve of genus 2,
it is the Jacobian of this curve. We have therefore proved the following theorem.

Theorem 3. Let (H, {·, ·},F) denote the integrable system that describes the d
(2)
3 -Toda lattice,

where F = (F1, F2, F3) and {·, ·} are given respectively by (2.3) and (2.2), with commuting vector
fields (2.1) and (2.4). The weights of the space variables are given by $(x0, x1, x2, y0, y1, y2) =
(2, 2, 2, 1, 1, 1).

1. (H, {·, ·},F) is a weight homogeneous algebraic completely integrable system;

2. For c = (c1, c2, c3) ∈ Ω, the invariant surface Fc is isomorphic to T2
c\Dc, where

(a) T2
c is the Jacobian of the hyperelliptic curve (of genus two) Γ(0)

c , defined by

a4e2 − (c1e + 8c3)a2e− 4e3 + c2e
2 + 4c1c3e + 16c2

3 = 0;

(b) Dc is a divisor on T2
c, and consists of three irreducible components D(0)

c , D(1)
c and D(2)

c

where D(0)
c and D(2)

c are both smooth curves, isomorphic to Γ(0)
c , while D(1)

c is a curve
of genus three, with two singular points, defined by

32αβ2 + (16α4 − 8c1α
2 + c2

1 − 4c2)β − 32c3α = 0.

3. For c = (c1, c2, c3) ∈ Ω, the curves D(0)
c and D(2)

c intersect each other transversally in two
points, and each of them intersects the curve D(1)

c at one singular point of the latter.

5. GEOMETRY OF THE d
(2)
3 TODA LATTICE

Several elements of the geometry of our integrable system have been established in Theorem 3.
In this section, we give other of them.
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5.1. Half-periods on T2
c

Proposition 4. For c ∈ Ω, the Abelian surface T2
c admits ten half-periods at infinity : the

Weierstrass points on D(0)
c and D(2)

c (in particular the four singular points of the divisor Dc)
and six half-periods on the affine part Fc.

Proof. Recall that the involution τ flips the sign of the vector fields V1 and V2, so that it is the
(−1)-involution on the Abelian surface T2

c. The half-periods on T2
c are given by the fixed points of

this involution. It acts on the parameters a, b et t of the principal balance x(t; m0) and x(t; m2) as
follows

τ(t, a, e) = (−t,−a, e),

therefore the half-periods of T2
c that lie on D(0)

c and D(2)
c are given by the 10 points corresponding

to a = 0 and a = ∞, six points on on each curve with two common points : the points P+ et P−
(See Figure 1). The involution τ fixing 16 points on T2

c, there remain 6 others. By substituting
y0 = y1 = y2 = 0 in the equations

Fi = ci, (i = 1, 2, 3),

where the Fi are the constants of motion, we obtain the system




x0x1x2 = c3,

− 4(x0 + x2)− 2x1 = c1,

16x0x2 + x1(4x0 + x1 + 4x2) = c2.

(5.1)

If we solve the second equation in terms of x1 and by substituting in the others equations, this
leads to 




(x0 − x2)2 =
c2
1 − 4c2

16
,

x0x2(4x0 + 4x2 + c1) + c3 = 0.

(5.2)

Let us pose ∆2 = c2
1 − 4c2; in this case, we have x2 = x0 ± ∆

4
. Then the system (5.2) leads to the

two equations

x0(4x0 ±∆)(8x0 ±∆ + c1) + 8c3 = 0. (5.3)

In both cases, the discriminant of the left member is equal to

6912c2
3 + 288c1c2c3 + 4c3

2 − c2
1c

2
2 − 64c3

1c3,

so that there are no double roots for c ∈ Ω. For c ∈ Ω, if there exists a common root x0 for both
equations (5.3), the corresponding values of x2 would be different since c2

1 − 4c2 6= 0. Hence, we
have verified by direct computation that for c ∈ Ω, the (−1)-involution admits precisely six fixed
points (half-periods) on the affine part Fc of Abelian surface T2

c.

5.2. The Holomorphic Differentials on Dc and Tangency Locus of V1

In order to determine the tangency locus of the vector field V1 on the divisor Dc, we compute
the holomorphic differentials ω1 and ω2 on the three irreducible components of Dc that come from
the differentials dt1 and dt2 on the Abelian surface T2

c. We know that all irreducible components
have multiplicity 1. Let D′ be one of these components. Let us choose the functions y0 and y among
the functions z0, . . . , z15 defined in (3.21) such that y0 has a simple pole on D′ and such that 1/y0

and y/y0 define a holomorphic chart around a generic point of D′. We write the Laurent series of
the functions y0 and y with respect to the component D′ as follows

y0(t;D′) =
y

(0)
0

t
+ y

(1)
0 + O(t), y(t;D′) =

y(0)

t
+ y(1) + O(t).
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Because of the above condition on y0, we have that y
(0)
0 6= 0. We have (see [16])




d
(

1
y0

)

d
(

y
y0

)


 =




V1

[
1
y0

]
V2

[
1
y0

]

V1

[
y
y0

]
V2

[
y
y0

]







dt1

dt2




(5.4)

which we solve for dt1 and dt2, and which we restrict to D′, to find



ω2

ω1


 =

1
δ




V2 [y/y0]|D′ −V2 [1/y0]|D′

−V1 [y/y0]|D′ 1/y
(0)
0







0

d
(
y(0)/y

(0)
0

)


 ,

where δ is the determinant of the matrix in (5.4), restricted to D′,

δ =
1

(y(0)
0 )2

∣∣∣∣∣∣
y

(0)
0 V2 [1/y0]|D′

y
(0)
0 y(1) − y(0)y

(1)
0 V2 [y/y0]|D′

∣∣∣∣∣∣
,

which is non-zero by the above assumptions on y(0) and y. It follows that the holomorphic
differentials ω1 = dt2|D′ and ω2 = dt1|D′ are given by

ω1 =
1

δy
(0)
0

d

(
y(0)

y
(0)
0

)
,

ω2 = −1
δ
V2

[
1
y0

]

|D′
d

(
y(0)

y
(0)
0

)
.

(5.5)

The zeros of ω1 and ω2 provide the points of tangency of the vector fields V1 and V2 respectively.
Notice that since the degree on the canonical bundle on a divisor of genus g is 2g − 2, the tangency
locus of V1 (resp. V2) consists of 2g − 2 points, including multiplicities.

Having explained the method, which is an idea due to Luc Haine (see [16]), we now turn to the
holomorphic differentials on the divisor Dc. In the above notations, we choose y0 := z2 and y := z4

so that, restricted to D(1)
c , we have

y
(0)
0 = 2, y

(1)
0 = 0,

y(0) = −4α, y(1) = 0,

and using (2.4) and (3.5),

V2

[
1
z2

]

|D(1)
c

= −α2 + 3γ

2
, V2

[
z4

z2

]

|D(1)
c

= 4α(β +
c3

β
).

It follows that

δ =
1
4

∣∣∣∣∣∣∣

2 −α2 + 3γ

2
0 4α(β +

c3

β
)

∣∣∣∣∣∣∣
= 2α(β +

c3

β
).

The holomorphic differentials dt1 and dt2, restricted to D(1)
c , are therefore given by

ω1 = − βdα

2α(β2 + c3)
, ω2 = −β(4α2 + c1)

4α(β2 + c3)
dα. (5.6)
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For the computation of the holomorphic differentials on the divisorsD(0)
c and D(2)

c , let us consider
the functions y0 = z2 and y = z3; these functions restricted to D(0)

c and D(2)
c , lead to

y
(0)
0 = −2, y

(1)
0 = a,

y(0) = 2a, y(1) = 4c,

and using (2.4) and (3.4) we have

V2

[
1
z2

]

|D(0)
c

= −a2 − 4c

2
, V2

[
z3

z2

]

|D(0)
c

= −a4

2
− 2(e− 2a2c− 12cd).

We find that

δ =
1
4

∣∣∣∣∣∣∣

2
a2 − 4c

2
2a2 + 8c

a4

2
+ 2(e− 2a2c− 12cd)

∣∣∣∣∣∣∣
= e− c(a2 − 4c + 12d).

Thus, the holomorphic differentials ω1 and ω2 on D(0)
c are given by

ω1 =
2da

δ
, ω2 = −a2 + 3c

2δ
da.

Proposition 5. The vector field V1 is

(i) doubly tangent to one of branches of D(1)
c passing through the point S′ (resp. S′′) and

transversal to the other branch;

(ii) transversal to D(0)
c and D(2)

c at their intersection points Pε;

(iii) doubly tangent to D(0)
c (resp. D(2)

c ) at the point S′ (resp. S′′).

Proof. (i) In a neighborhood of the point S′ we have, in terms of a local parameter ς, that
ω1 = (−ς2 + O(ς3))dς, as follows by substituting (3.18) in the differential ω1 (5.6), which shows
that ω1 has double zero at the point S′. Also, by rewriting ω1 in terms of a local parameter ς
around the point ∞1 by using (3.17), we have that ω1 = (−1/(2c3))dς is non-zero. It follows that
the vector field V1 is only doubly tangent to one of the branches of D(1)

c which cross at the point
S′ and tranversal to the other branch. This is done similary at the point S′′ by using the involution
π which preserves V1.

(ii) and (iii): If we write ω1, restricted to D(0)
c , in terms of a local parameter ς in a neighborhood

of the two points ∞ε, by using (3.7) and (3.9), then we find

ω1 = −2ε

η
dς,

where ε = ±1 and η is a fixed square root of c2
1 − 4c2. This shows that ω1 does not vanish, so that

the vector field V1 is tranversal to D(0)
c at these two points Pε. Using the involution π, it follows

that V1 is also transversal to D(2)
c at these points. Finally, in a neighborhood of the point ∞, by

using (3.10), we have

ω1 = −4ς2dς,

whence the vector field V1 is doubly tangent to D(0)
c at S′; by the involution π, it is also doubly

tangent to D(2)
c at S′′.
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6. MORPHISM TO MUMFORD SYSTEM, LAX EQUATION AND LINEARIZATION

In this section, we show the link between the d
(2)
3 -Toda lattice and the Mumford system [13] by

using a method developed by Vanhaecke [17]. We give an explicit morphism of integrable systems
between this systems. We finish the section by given a new Lax equation and a explicit linearization
of our integrable system.

The (−1)-involution sur T2
c leads to a singular quotient T2

c/(−1) which is called the Kummer
surface of T2

c. In order to use Vanhaecke’s method, it is necessary to find an equation of this
surface. Since one of the components of Dc is isomorphic to a smooth curve, say Γc, of genus two,
the sections of the line bundle

[
2D(0)

c

]
embeds the Kummer surface of T2

c in the projective space P3.

To construct this map ψ, we consider the meromorphic functions on Jac(Γc) which have at worst
a double pole along Dc, isomorphic to Γc. In others terms, we look for a basis of polynomials on
H which have a double pole in t when the principal balance (3.4) is substituted into them and no
poles when the other principal balances are substituted. It is easily shown that the space of such
polynomials is spanned by

θ0 := 1, θ2 := (y2
0 − x1 − 4x0)x2,

θ1 := x2, θ3 := x1x
2
2.

(6.1)

Let us consider the Kodaira map corresponding of these functions

ψc : Jac(Γc) → P3

(x0, . . . , y2) 7→ (θ0 : θ1 : θ2 : θ3).

This latter maps the surface Jac(Γc) to its Kummer surface, which is a singular quartic in P3. The
map ψc induces on Γc the map ψ

(0)
c : (a, e) 7→ (0 : 1 : (a2e− 4c3)/e : e) by taking the coefficients of

t−2 in the Laurent series θi(t; m0) obtained by substituting the principal balance x(t; m0) in the
funtions θi, i = 0, . . . , 3. Let ∞ be the Weierstrass point (3.10) on Γc, we have

ψ
(0)
c (∞) = lim

ς→0
(0 : 4ς4 : 4ς2 + O(ς6) : 1− c1ς

2 + O(ς4))

= (0 : 0 : 0 : 1),

so the basis (θ0, θ1, θ2, θ3) is suitably selected (see [17, Theorem 9]). An equation for this quartic
surface can be computed by eliminating the variables x0, x1, x2, y0, y2 from (6.1) and from the
equations

x0x1x2 = c3,

y2
0 + y2

2 − 4x0 − 2x1 − 4x2 = c1,

(y2
0 − 4x0)(y2

2 − 4x2)− x1(2y0y2 − 4x0 − x1 − 4x2) = c2,

(6.2)

where the first members are the constants of motion F1, F2 and F3. From (6.1) we have

x0 =
c3θ1

θ3
, x1 =

θ3

θ2
1

, x2 = θ1. (6.3)

Consequently from the second equation of (6.1), after from the second equation de (6.2) one draws
respectively

y2
0 =

1
θ2
1θ3

(θ1θ2θ3 + θ2
3 + 4c3θ

3
1) et y2

2 =
1
θ2
1

(θ3 + c1θ
2
1 − θ1θ2 + θ3

1). (6.4)

Let us rewrite the last equation of (6.2) as follows

2x1y0y2 =
(
(y2

0 − 4x0)(y2
2 − 4x2)− c2

)
+ x1(4x0 + x1 + 4x2).
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Upon taking the square of each member, and upon subtituting (6.3), (6.4) into it, we obtain the
equation of the Kummer surface of Jac(Γc); it can put in the form

((4θ1 + c1)2 − 4(4θ2 + c2))θ2
3 + 2f3(θ1, θ2)θ3 + f4(θ1, θ2) = 0, (6.5)

where f3 (respectively f4) is a polynomial of degree three (respectively four) in θ1 and θ2, given by

f3(θ1, θ2) = (4θ1 + c1)(θ2(c1θ1 − θ2)− θ1(c2θ1 + 4c3)) + 8c3θ2,

f4(θ1, θ2) = (c2θ
2
1 + θ2

2 − 4c3θ1 − c1θ1θ2)2.

6.1. Morphism to Mumford System and Lax Equation

Let us consider the coefficient of θ2
3 in the equation (6.5) in terms of initial variables xi et yi, to

wit

∆ = (4x2 + c2)2 − 4(4x2(y2
0 − 4x0 − x1y0) + c3).

Let u(λ) be a monic polynomial in λ whose discriminant is ∆, we have

u(λ) = λ2 + (4x2 + c1)λ + 4x2(y2
0 − 4x0 − x1) + c2

= λ2 + (y2
0 + y2

2 − 4x0 − 2x1)λ + (x1 − y0y2)2 − 4x0(y2
2 − x1).

Let s1 ant s2 be the roots of the polynomial u(λ), we have

s1 + s2 = −4x2 − c1, s1s2 = 4x2(y2
0 − 4x0 − x1) + c2. (6.6)

which imply,with respect to the vector field V1 (2.1) that

ṡ1 + ṡ2 = −4x2y2, s2ṡ1 + s1ṡ2 = 4x2(y2(y2
0 − 4x0)− x1y0). (6.7)

Let v(λ) be the polynomial defined (up to a multiplicative constant) as being the derivative of the
polynomial u(λ) with respect to the vector field V1, we have

v(λ) = i[4x2y2λ + 4x2(y2(y2
0 − 4x0)− x1y0)],

one verifies, by a direct computation, that the expression f(λ)− v2(λ) is divisible by u(λ) where

f(λ) = (λ3 + c1λ
2 + c2λ− 16c3)(λ2 + c1λ + c2).

Notice that the affine curve y2 = f(λ) is (birational to) the affine curve Γc, by adding the three
Weierstrass points at infinity (see (3.11)).

We now define a morphism φ : H → C7 from the d
(2)
3 -Toda lattice to the genus 2 odd Mumford

system, where C7 is the phase space of the Mumford system. The homomorphism φ is explicitly
given by the map

(x0, x1, x2, y0, y2) 7→





u(λ) = λ2 + u1λ + u0,

v(λ) = v1λ + v0,

w(λ) = λ3 + w2λ
2 + w1λ + w0,

(6.8)

where
u1 = y2

0 + y2
2 − 4x0 − 2x1, v1 = 4ix2y2,

u0 = (x1 − y0y2)2 − 4x0(y2
2 − x1), v0 = 4ix2(y2(y2

0 − 4x0)− x1y0),

w2 = y2
0 + y2

2 − 4x0 − 8x2 − 2x1 = u1 − 8x2,

w1 = (x1 − y0y2)2 + 8(4x0 + x1 + 2x2 − y2
0)x2 − 4x0(y2

2 − x1),

w0 = −16x2(x0x1 − x2(y2
0 − 4x0)).

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



ALGEBRAIC INTEGRABILITY AND GEOMETRY OF THE d
(2)
3 TODA LATTICE 353

The polynomial w(λ) is the polynomial of degree 2 defined by w(λ) = (f(λ)− v2(λ))/u(λ). Of
course this map is regular; moreover it is birational to its image. Next it is easy to check that

φ∗(H0) = φ∗(u0w0 + v2
0) = −16F2F3,

φ∗(H1) = φ∗(u1w0 + u0w1 + 2v1v0) = −16F1F3 + F 2
2 ,

φ∗(H2) = φ∗(u0w2 + u1w1 + w0 + v2
1) = 2F1F2 − 16F3,

φ∗(H3) = φ∗(u0 + w1 + u1w2) = 2F2 + F 2
1 ,

φ∗(H4) = φ∗(u1 + w2) = 2F1,

where H0, . . . ,H4 are the constants of motion of the Mumford system. We obtain a new Poisson
structure on C7 for the Mumford system, given by skew-symmetric matrix X := M −M> where

M :=




0 0 {u1, v1} {u1, v0} {u1, w2} {u1, w1} {u1, w0}
0 0 {u0, v1} {u0, v0} {u0, w2} {u0, w1} {u0, w0}
0 0 0 0 {v1, w2} {v1, w1} {v1, w0}
0 0 0 0 {v0, w2} {v0, w1} {v0, w0}
0 0 0 0 0 {w2, w1} {w2, w0}
0 0 0 0 0 0 {w1, w0}
0 0 0 0 0 0 0




.

The Poisson brackets of this matrix are given by

{u1, v1} =
i

8
((u1 + w2)2 − 4(u2

1 − u0 + w1)), {u1, w0} = i(u1 − w2)v0,

{u1, v0} = − i

16
[(u1 − w2)(u2

1 − w2
2 + 4u0 + 4w1) + 8(v2

1 + w0)], {u0, v1} = {u1, v0} ,

{u1, w2} = −2iv1, {u0, v0} = ?,

{u1, w1} = i(u1 − w2)v1 − 2iv0, {u0, w2} = −2iv0,

{u0, w1} = −i(u1 + w2)v0 − 2iu0v1,

{u0, w0} =
i

8
[
(u1 − w2)2(v1(u1 + w2) + 2v0) + 4(u0 − w1)(v1(w2 − u1) + 2v0))

+ 8v1(v2
1 + w0)

]
,

{v1, w2} =
i

8
((3u1 − w2)2 − 4(u2

1 + u0 − w1)),

{v1, w1} = − i

16
[(u1 − w2)(3u2

1 + w2
2 + 4u1w2 + 4w1 − 12u0) + 8(v2

1 − w0)],

{v1, w0} =
i

16
(u1 − w2)

[
(u1 + w2)(u2

1 − w2
2 − 4(u0 − w1)) + 8v2

1

]
,

{v0, w2} = − i

16
[(u1 − w2)(u2

1 − w2
2 + 4w1 − 12u0) + 8(v2

1 − w0)],

{v0, w1} = ∗,
{v0, w0} =

i

16
(
(u1 − w2)2(u1 + w2)(u0 − w1)− 2w0(u2

1 + w2
2)− 4(u1 − w2)(u0 − w1)2

+ 8v2
1(u0 − w1) + 4u1w0w2

)
,

{w2, w1} = i(u1 − w2)v1,

{w2, w0} = i(u1 − w2)v0,
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{w1, w0} = − i

8
[
(u1 − w2)2(v1(u1 + w2) + 2v0)− 4(u0 − w1)(v1(u1 − w2) + 2v0)

− 8v1(w0 − v2
1)

]
,

where

{u0, v0} = − i

16
[(u1 − w2)(((u1 + w2)(u1(u1 − w2)− 2u0) + 4u1w1)

+ 8(u0(u0 − w1) + u1(w0 + v2
1))],

{v0, w1} = − i

16
[(u1 − w2)(w2(u2

1 − w2
2)− 2u0(3w2 − u1) + 4w1w2)

+ 8(w2v
2
1 − w0u1 − u0(u0 + w1))].

One easily verifies that the functions H0, . . . ,H4 are in involution for this Poisson structure
and that the functions H4 and H5 = 4H3 −H2

4 generate the two commutating vector fields of the
odd Mumford system on C7. Since the Poisson brackets are weight homogeneous, it is clear that
this new structure is not a linear combinaison of the three linear Poisson structures known [14] ;
moreover this Poisson structure is not compatible with them.

Theorem 4. A Lax representation of the vector field V1 = XF1 is given by

d

dt


v(λ) u(λ)

w(λ) −v(λ)


 = −

√−1
2





v(λ) u(λ)

w(λ) −v(λ)


 ,


 0 1

b(λ) 0







where b(λ) = λ− 8x2 is the polynomial part of the rational function w(λ)/u(λ).

6.2. Linearization and Integration

We now proceed to the linearization of the integrable system, by using the method developed
by Vanhaecke. Since in a one hand we have f(x)− v2(x) = u(x)w(x), and in an other hand the
variables s1 and s2 are roots of the polynomial u(x), we have from (6.6)

√
f(sk) = v(sk),

= 4ix2y2sk + 4ix2(y2(y2
0 − 4x0)− x1y0), k = 1, 2

= −i(ṡ1 + ṡ2)sk + i(s2ṡ1 + s1ṡ2).

So that
√

f(s1) = −i(s1 − s2)ṡ1, et
√

f(s2) = i(s1 − s2)ṡ2.

It follows that, in terms of the variables s1 and s2 the differential equations (2.1) of the vector V1

can be written in the form 



ds1√
f(s1)

+
ds2√
f(s2)

= 0,

s1ds1√
f(s1)

+
s2ds2√
f(s2)

= idt,

(6.9)

where f(x) = (x3 + c1x
2 + c2x− 16c3)(x2 + c1x + c2). The form (6.9) is equivalent to

d

dt

(
2∑

k=1

∫ Qk

0k

−→ω
)

=




0

i


 ,
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where −→ω =
(

dx√
f(x)

, xdx√
f(x)

)>
is a basis for holomorphic differentials on Γc, Q1 :=

(
s1,

√
f(s1)

)
,

Q2 :=
(
s2,

√
f(s2)

)
two points of Γc and Q1 + Q2 =

(
s1,

√
f(s1)

)
+

(
s2,

√
f(s2)

)
viewed as a

divisor on the genus 2 hyperelliptic curve Γc. Thus, by integrating (6.9), we see that the flow of
V1 is linear on the Jacobian of this curve Γc. By using [13, Theorem 5.3], one shows that the
symmetric functions s1 and s2, and hence the original phase variables can be written in terms of
theta functions.
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Abstract—We investigate geometric properties of the (Sato–Segal–Wilson) Grassmannian and
its submanifolds, with special attention to the orbits of the KP flows. We use a coherent-
states model, by which Spera and Wurzbacher gave equations for the image of a product of
Grassmannians using the Powers–Størmer purification procedure. We extend to this product
Sato’s idea of turning equations that define the projective embedding of a homogeneous space
into a hierarchy of partial differential equations. We recover the BKP equations from the classical
Segre embedding by specializing the equations to finite-dimensional submanifolds.
We revisit the calculation of Calabi’s diastasis function given by Spera and Valli again in the
context of C∗-algebras, using the τ -function to give an expression of the diastasis on the infinite-
dimensional Grassmannian; this expression can be applied to the image of the Krichever map
to give a proof of Weil’s reciprocity based on the fact that the distance of two points on the
Grassmannian is symmetric. Another application is the fact that each (isometric) automorphism
of the Grassmannian is induced by a projective transformation in the Plücker embedding.

MSC2010 numbers: 37K20, 22R67, 47L90, 53C24

DOI: 10.1134/S1560354711030099

Keywords: Calabi’s diastasis function, Canonical Anticommutation Relations, Universal Grass-
mann Manifold, Weil reciprocity, τ -function

INTRODUCTION

The connection between infinite-dimensional Grassmannians and KdV- or, more generally, KP-
type equations is by now classical (see, e.g., [1, 2] and references therein). Sato’s interpretation of
the KP hierarchy as the Plücker equations for the Grassmannian motivated the discovery of new
links between finite-dimensional representation theory and quantized, C∗-algebra, versions [3, 4].

This note focuses on applications of integrability to the geometric and metric properties of the
infinite-dimensional Grassmann manifold. Sato’s formal setting is the simplest to describe, and it
will be used; but the functional-theoretic setting, particularly the one introduced by Spera et al.
[4–7] in which a C∗-algebra acts on the Grassmannian, allows us to obtain new results.

We review the construction [4] of the Determinant and Pfaffian bundles over the Grassmannian,
and the “boson-fermion” correspondence, comparing the approach in [7] and the “Sato approach”
[1]. Through this correspondence, the defining equations of the embedded manifolds have been
related to various integrable hierarchies. In the framework of [1], the (representation-theoretic)
description of an orbit translates into PDEs via the τ -function expression of the Plücker coordinates,
which turn out to be derivatives of the τ -function. But there is a different approach (“baby-KP”),
that uses the embedding algebraically to characterize polynomial tau functions of the KP hierarchy.
We derive the BKP hierarchy (see e.g. [8]) in each approach, from the Pfaffian line bundle, via the
Segre map introduced in [4].

*E-mail: ep@bu.edu
**E-mail: mauro.spera@univr.it
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One metric property that the Spera–Valli theory introduced is the local invariant defined for a
Kähler manifold by Calabi [9], who called it “diastasis” because of its relation with the geodesic
distance. Calabi’s study of the diastasis was motivated by the problem of complex-isometric
embeddings: specifically, he generalized a result of L. Bieberbach (1932) who produced a model of
nonsingular, complete surface in a separable Hilbert space, isomorphic to the hyperbolic disc, and
proved that the whole group of Möbius isometries can be induced by affine isometries of the ambient
Hilbert space. More recently, algebraic invariants of subvarieties of projective space were used to
express their (Fubini–Study) curvature [10, 11]. On the other hand, work on geometric quantization
[12] reintroduced the diastasis in the context of a “coherent-states map”, which embeds a Kähler
manifold in the projectivized space of sections of a given holomorphic bundle. This is ideally suited
to Sato’s Plücker embedding. Starting with the expression of the diastasis in unitary coordinates,
Spera and Valli show the rigidity of the embedding [7, Th. 4.1], also observed by Calabi, which
we reinterpret algebro-geometrically, for the Grassmannian and Segre manifolds; it seems to us
surprising that isomorphisms of these manifolds which were produced by differential algebra are
in fact restrictions of projective maps. Our methods thus differ from the loop-group-theoretic ones
used by Dorfmeister et al. (cf. [13], e.g.) to study (iso)metric and homogeneous properties of the
Segal–Wilson Grassmannian.

We review the construction of Sato’s Grassmannian, as well as the coherent-states approach,
Determinant and Pfaffian bundles, and boson-fermion correspondence in both settings, in Section 1.
Section 2 contains the results on the diastasis, and Section 3 the applications.

1. DETERMINANTS

1.1. Sato’s Universal Grassmann Manifold (UGM)

The geometry and representation theory of Sato’s infinite-dimensional Grassmannian (UGM)
was importantly related to PDEs (Partial Differential Equations) by Sato’s result [2]. We recall
that setting vis-à-vis the finite-dimensional theory so as to extend it below.

First we define the UGM. The Grassmannian can be studied in two categories: formal, or
analytic. Both approaches are used below; the former is appropriate in the model of projective
geometry, Plücker and Segre embeddings; the latter is needed to use results that hold for C∗
algebras. The type used will be clear from the context. The field of coefficients will be the complex
numbers C, unless specified to be the reals R.

Let V be a C-vector space, dimV = m + n = N ; we recall the Plücker embedding of the
Grassmann manifold Gr(m,V ) of m-dimensional subspaces of V , also abbreviated Gr(m,N),

Gr(m,V ) = {m−frames in V }/GL(m) ↪→ P(∧mV ),

π(0), . . . , π(m−1) 7→ π(0) ∧ . . . ∧ π(m−1).

If we fix a basis e0, . . . , eN−1 of V , and write π(i) = π0,ie0 + . . . + πN−1,ieN−1, then π(0) ∧ . . . ∧
π(m−1) =

∑

06`0<...<`m−1<N

π`0...`m−1e`0 ∧ . . . ∧ e`m−1 with π`0...`m−1 =det(π`i,j)i,j=0,...,m−1.

Fact I. A point in the ambient P(∧mV ) lies in the embedded Gr(m,V ) ⇔ its projective coordinates
π`0...`m−1 (0 6 `i < N) satisfy the Plücker relations (PR):

m∑

i=0

(−1)iπk0...km−2`iπ`0...ˆ̀i...`m
= 0. (PR)

Therefore,

Gr(m,V ) = (G̃r(m, V )\{0})/GL(1)

where:
G̃r(m,V ) = {(πY )Y⊂∆mN

satisfying the Plücker relations} is a line bundle over Gr(m,V ), Y is a
Young diagram consisting of rows of length (`m−1 − (m− 1), . . . , `1 − 1, `0), so it is contained in
the rectangle ∆mN .
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Fact II. Let m 6 m′, n 6 n′, N ′ = m′ + n′

(i) If (π′Y )Y⊂∆m′N′ satisfies (PR), so does its restriction to Y ’s within ∆mN

(ii) If (πY )Y⊂∆mN
satisfies (PR), so does (π′Y )Y⊂∆m′N′ where π′Y = 0 unless Y ⊂ ∆mN , yielding

the commutative diagram:

G̃r(m′, N ′) project−→ G̃r(m,N)

↓ identity ↓ identity

G̃r(m′, N ′)
embed←↩ G̃r(m,N)

Define: Gr = (G̃r\{0})/GL(1) where G̃r = {(πY )Y all Young diagrams satisfy all Plücker relations}:

G̃r
project−→ G̃r(m,N)

↑ dense ↓ identity

G̃r
fin embed←↩ G̃r(m,N)

where G̃r
fin

= {(ξ) ∈ G̃r : ξY = 0 for almost all Y } =
⋃

m,N G̃r(m,N).
Time deformations can be defined by:
πY (t) :=

∑

all Y ′
χY ′/Y (t)πY ′ where χY ′/Y (t) := det(p`′i−j(t))

p0(t) = 1, pn(t) :=
∑

ν1+2ν2+3ν3+...=n

tν1
1 tν2

2 . . . /(ν1!ν2! . . .).

Write χY/∅ as χY , χY (t) = det(p`i−j(t)) are the Schur functions.

To connect with the KP hierarchy, let wn(x, t) := (−1)n π∆n,1
(x+t)

π∅(x+t) where x + t = (x + t1, t2, . . .)
and S := 1 + w1(x, t)∂−1 + . . . a formal pseudodifferential operator.

Note. The Plücker coordinate

π∅(t) =
∑

all Y

χY (t)πY = τ(π, t)

is a ‘generating function’ for Plücker coordinates,

πY (t) = χY (∂t)π∅(t) ∂t := (
∂

∂t1
,
1
2

∂

∂t2
,
1
3

∂

∂t3
, . . .)

By reducing to Gr(m,N) and checking, we see that every πY (t) satisfies the Plücker relations,
so we have a dynamical system on G̃r, which satisfies the KP hierarchy: if

L = S∂S−1

then ∂tnS = BnS−S∂n ⇐⇒ [∂tn −Bn, ∂tk −Bk] = 0 ⇐⇒ ∂tnL = [(Ln)+,L], where Bn := (S∂nS−1)+.
Lastly, introducing Hirota’s bilinear operator:

∂tnF · F =
(

∂

∂t′n
− ∂

∂tn

)
F (t)F (t′)

∣∣∣
t=t′

, t = (t1, t2, . . .), t′ = (t′1, t
′
2, . . .),

Conclusion [2]:
Although any f(t) ∈ C[[t1, t2, . . .]] admits a formal expression of the form f(t) =

∑
Y cY χY (t),

where the coefficients are

cY = χY (∂t)f(t)|t=0,
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it represents the τ - function for some π ∈ G̃r ⇐⇒ its coefficients satisfy the differential Plücker
relations (dPR),

m∑

i=0

(−1)iχk0...km−1`i

(
∂t

2

)
χ`0...ˆ̀i...`m

(
−∂t

2

)
τ · τ = 0 (dPR)

which is the KP hierarchy in Hirota bilinear form.

Now we recall the Borel–Weil theorem which classifies the irreducible representations of a (real)
compact Lie group (whose complexification we call G for short, though in [14] the notation is
GC) in the finite-dimensional setting: we refer to [14, Ch. 2, Ch. 11] for details as well as the
infinite-dimensional extension of the theory.

Viewing the (complex) Grassmannian as a homogeneous space, with the [14] notations for the
unitary groups, U(k) (complex-entry matrices which equal the inverse of their complex-conjugate
transpose) and

Gr(k, n) ∼= GLn(C)/U(k)× U(n− k),

the theorem says that the representation spaces in question are the spaces of holomorphic sections
of Lλ, the line bundle associated to λ, the opposite of a dominant weight.

The consequence that most matters to us pertains to the embedding of Gr(k, n) in projective
space given by the dual Det∗ of the determinant line bundle: The space of sections of Det∗ on
Gr(k, V ) is naturally isomorphic to ∧k(V ∗), where V is an n-dimensional space containing the
elements of the Grassmannian.

In this finite-dimensional setting, the Plücker relations give quadrics whose intersection defines
the image of the Grassmannian in the embedding by Det∗.

The tau function τ defined above as π∅(t) is the section of the dual of the (tautological)
determinant bundle of Sato’s infinite-dimensional Grassmann manifold [1], [15]. Over the “big
cell”, it is possible to normalize the coordinates on the Grassmannian and view τ as a function (of
the Plücker coordinates) — this is our tacit assumption throughout the paper — and express it via
Schur functions.

1.2. Canonical Anticommutation Relations (CAR)-algebra Model

The Sato Grassmannian Gr will be thought of as embedded into the Hilbert-space (or restricted)
Grassmannian of Segal–Wilson (analytic approach). We briefly recall the main points of the
C∗-algebraic approach to Hilbert space Grassmannians and Determinant line bundles developed
in [3, 4, 16]. As general references on the C∗-algebra theory employed here one may consult,
e.g. [17, 18].

We list some basic definitions and properties for the reader’s convenience. A C∗-algebra A is a
Banach algebra equipped with an isometric antilinear involution (or ∗-operation) x 7→ x∗ such that
(xy)∗ = y∗x∗ and ‖x∗x‖=‖x‖2 (the latter property characterizes C∗-algebras within involutive
Banach algebras). Specifically, a C∗-algebra can always be realized as a norm-closed involutive
subalgebra of B(H) (bounded linear operators of a Hilbert space H). A state ω on A is a positive
linear functional over A of norm one (namely ω(x∗x) > 0 ∀x ∈ A and ‖ ω ‖:= sup‖x‖=1 ω(x) = 1).
A cornerstone of the theory is the Gelfand–Naimark–Segal(GNS)-construction, which associates to
any state ω a representation ρω of A by bounded linear operators on a Hilbert space Hω, such that
ω(x) = 〈ρω(x)ξω, ξω〉, with ξω ∈ Hω being a (unit norm) cyclic vector (namely, ρω(A)ξω is dense in
Hω). As a simple yet fundamental example consider C0(Ω), the C∗-algebra of continuous functions
on a compact space Ω, acting naturally, via multiplication, on L2(Ω, µ), where µ is any positive
normalized Borel measure on Ω (a state on C0(Ω)). Applying C0(Ω) to the function 1 one gets a
dense set in L2(Ω, µ) (Riesz-Fisher): thus we have a GNS-triple (ρµ,Hµ = L2(Ω, µ), ξµ = 1).

We are now going to apply the above to Grassmannians.
For definitess, one can think of the standard Fourier decomposition of the Hilbert space

H = L2(S1, dθ) = H+ ⊕H−. We first recall the definition of CAR-algebra and gauge-invariant
quasi-free states upon it.
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Given a complex, separable Hilbert space K (called the one-particle space), the CAR (Canonical
Anticommutation Relations) algebra A(K) is the universal unital C∗-algebra generated by creation
operators a∗(f) (depending linearly on f ∈ K) and their adjoints a(f), annihilation operators
(depending antilinearly on f ∈ K), fulfilling the following relations:

a∗(f)a(g) + a(g)a∗(f) = 〈f, g〉 · 1 a(f)a(g) + a(g)a(f) = 0

with f , g ∈ K, 〈, 〉 denoting the scalar product in K, depending linearly on the first factor, and
1 being the identity element of A(K) (slightly different conventions are often used in the general
references given above). The unitary group U(K), which is the natural symmetry group of K, acts
on A(K) through C∗-automorphisms αU defined by αU (a(f)) := a(Uf) for U ∈ U(K) and f ∈ K.

Next, we briefly review the definition of gauge-invariant quasi-free state of the CAR algebra. For
the C∗-algebra A(K), consider the state ωE associated to a hermitian projection operator E on K
(that is, E = E∗ = E2, where A∗ denotes the adjoint of a (bounded) operator A) via its n-point
functions

ωE(a∗(f1) . . . a∗(fn)a(g1) . . . a(gm)) = δn,m det(〈fi, Egj〉)
for fi, gj ∈ K. In fact, these are determined by the 2-point functions, the non-trivial ones reading:

ωE(a∗(f)a(g)) = 〈f, Eg〉
for f , g ∈ K. These states are called gauge-invariant since they are invariant under the U(1)-
action given by the multiplication by unit-norm complex numbers on K and quasi-free since they
relate to free fermionic quantum fields. The GNS construction now associates to every state ωE a
representation ρE of A(K) by bounded operators on a complex Hilbert space (HE , 〈 , 〉HE

) and a
cyclic unit vector ξE (unique up to a phase) such that

ωE(A) = 〈ρE(A)ξE , ξE〉HE

for all A in A(K). Since the state ωE is pure, the GNS-theory tells us in addition that ρE is an
irreducible representation of A(K). The cases E = 0 and E = I, respectively, yield representations
called Fock and anti-Fock, respectively.

The GNS vector ξE is characterized (up to a phase) by the property:

ρE(a∗(f))ξE = 0 ∀f ∈ EK, ρE(a(g))ξE = 0∀g ∈ (I − E)K.

Let K ′ denote the dual of K; we have 〈f ′, g′〉K′ = 〈g, f〉K (f 7→ f ′ denotes the natural antilinear
duality operator). We introduce (in a special case) what is known as the Powers–Størmer purification
map: the state ωE on A(K) = A(K ⊕ 0) is the restriction of the state ωE⊕F ′ on A(K ⊕K ′), where
F = I − E, and F ′ is the corresponding adjoint operator on K ′. The space (E ⊕ F ′)(K ⊕K ′)
is the isotropic subspace in K ⊕K ′ corresponding to EK (with respect to the complex bilinear
form induced by the scalar product in K ⊕K ′, given by evaluation). This will have a natural
counterpart in terms of Grassmannians. Recall the crucial Fock-anti-Fock (FaF) correspondence,
i.e. the canonical complex linear C∗-algebra isomorphism χ : A(K) → A(K ′) induced by the map
a(f) 7→ a∗(f ′). One has ωF ′ ◦ χ = ωE and χ induces a map (denoted by the same symbol) which
intertwines the representations (ρE ,HE , ξE) and (ρF ′ ,HF ′ , ξF ′) of A(K) and A(K ′), respectively.
In particular, χ intertwines the corresponding Fock and anti-Fock representations.

A special case of a theorem of Powers and Størmer states that two quasi-free representations of
A(K), (ρE ,HE , ξE) and (ρF ,HF , ξF ), say (corresponding to hermitian projections E and F ), are
unitarily equivalent if and only if E − F is a Hilbert–Schmidt operator).

We consider the following “restricted” Grassmannians (see [14, §6.2] for the original definition)

Gr = Gr(H, H+), GR := Gr(HC, H+ ⊕H−)

(the second one coming from an obvious purification); as shown in [3], [4], points W in Gr (say,
for definiteness), identified first with orthogonal projections EW onto the respective subspaces,
correspond to gauge-invariant quasi-free states ωEW

≡ ωW of the CAR-algebra A(H) yielding
(irreducible) GNS-representations (of A(H)), ρW , unitarily equivalent to the (anti)-Fock one (ρH+).
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By virtue of the theorem of Powers and Størmer recalled above, one has ultimately the following
simple characterization ([3]):

Gr = Gr(H, H+) = {W < H |EW − E+ is Hilbert–Schmidt}
Thus, points in Gr are concretely realized as rays 〈ξW 〉, ξW being the (unique up to phase) GNS
cyclic vector realizing the state ωW (·) = 〈ρW (·)ξW , ξW 〉 in the (anti)-Fock GNS-representation space
H+, i.e. as points in P (H+); these rays yield, in turn, the fibres of the Determinant line bundle Det
(pull-back of the tautological bundle O(−1) → P(H+)); this is the standard Plücker embedding

Pl : Gr ↪→ P(H+).

The whole setting is Ures(H)-equivariant. Recall that the restricted unitary group Ures(H) consists
of the unitaries in H commuting with the polarization operator E+ −E− up to a Hilbert–Schmidt
operator, and that one has the homogeneous Kähler manifold description

Gr = Gr(H,H+) = Ures(H)/ U(H+)×U(H−)

By virtue of [3] and [15], we connect two theories:
Fact. The determinant bundle Det coincides with the natural determinant bundle over Sato’s

UGM, in the analytic context [15] (which will be reviewed in subsection 3.2).
For comparison, we present the objects more specifically. Let us fix the GNS-representation

(ρ+,H+, ξ+). We drop the suffix + for ease of notation. Any other GNS-representation correspond-
ing to Y ∈ Gr(K, K+) is unitarily equivalent to it and can thus be realized on H. The GNS state
becomes a vector state and gives rise to a complex line in H, which will be denoted by DetY where
Y = UK+, U ∈ Ures(K, K+). In view of Ures(K, K+)-equivariance, one has:

DetY = DetUK+ = ŨDetK+

where Ũ denotes the (linear) unitary operator that corresponds to U up to a phase on H. There is
a natural central extension of Ures(K, K+) by U(1) denoted by U∼

res(K, K+). By equivariance, this
gives rise to a holomorphic hermitian line bundle Det → Gr(K, K+):

i) Det → Gr(K, K+) is a holomorphic hermitian line bundle and U∼
res(K, K+) acts equivariantly

on the total space; specifically we have DetUH+ = C · Ũξ+, where Ũ in U∼
res(K, K+) lies over U in

Ures(K,K+).
ii) H∗ is canonically realized inside ΓO(Gr(K,K+), Det∗).
iii) The bundle Det is isomorphic to the Determinant bundle of [14].
An explicit description is

Det = {(Y, ξ) ∈ Gr(K)×H | a∗(y)ξ = 0 ∀y ∈ Y and a(y⊥)ξ = 0 ∀y⊥ ∈ Y ⊥}
(operators are meant to act on the fixed representation space). Informally, ξ can be viewed as an
infinite wedge product ξ = y1 ∧ y2 ∧ . . . manufactured from an (admissible, in a suitable technical
sense) orthonormal basis of Y . In quantum-field theoretic terms DetY corresponds to the Dirac
vacuum filled with the antiparticles relative to Y (Dirac sea). The upshot is the following [4,
Corollary 8.2]: The Hilbert-Space Grassmannian Gr(H,H+) is diffeomorphic, via the Plücker map
and the GNS construction, to the (projective) Ures(H, H+)-orbit of the GNS-vector ξ+ associated
to the reference quasi-free state ω+ in H+, the latter group acting via the projectively unitarily
implemented automorphism group α associated to U .

The Plücker equations for the embedding were given in [3] in the concise form

a∗(w)ξW = 0 ∀w ∈ W

where a∗(w) = a(w)∗ is the creation operator pertaining to w (this is, in turn, a manifestation of
the Pauli Exclusion Principle in quantum physics).

Let S denote the set of subsets S of the integers for which both S \ N and N \ S are finite (cf.
[15] or [14, § 7.1]). Let S′ denote the set of all S′ = Z \ S with S in S. Then [3], [4], one finds the
following geometric expression for the Plücker coordinates

πS(W ) = 〈W,HN〉`2(S) = 〈W,HS〉
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where HN = H+, and HS is manufactured in the following way (it is useful to keep the infinite
wedge product description in mind): one takes the standard orthonormal basis in H = L2(S1, dθ),
and replaces the standard orthonormal basis in H+ by the basis vectors labelled by S. In fact, what
should be taken are scalar products between GNS-vectors.

1.3. The Pfaffian Line Bundle

Let (H, g = (, )) be a real Hilbert space and HC = H ⊗R C its complexification, endowed
with the C-linear extension B = gC of the metric and the canonical hermitian structure 〈u, v〉 =
B(u, v), where h⊗ λ = h⊗ λ denotes the canonical conjugation of HC. The Clifford algebra is
the real (universal) Banach algebra with unit 1 generated by operators γ(u), u ∈ H fulfilling the
anticommutation relation (u,v ∈ H)

γ(u)γ(v) + γ(v)γ(u) = g(u, v) · 1.

(the present convention adheres to quantum-field theorists’ usage). The complex Clifford algebra
C(HC, B) is then by definition

C(HC, B) = C(H, g)⊗R C
and turns out to be a unital C∗-algebra isomorphic to A(W ), where W is any B-isotropic subspace
of HC such that W = W⊥. Any such W gives rise to a complex structure J on H, that is J ∈ J (H),
where

J (H) = {J : H → H | J is a g isometric and J2 = −1}
(the Siegel manifold, or isotropic Grassmannian). Indeed J yields W = Eig(JC, +i), the eigenspace
of eigenvalue +i of the complexification JC of J , and conversely the operator

JC = i · (EW −EW⊥)

preserves H and yields a J ≡ JW :

J = i · (EW − EW⊥)|H , (1.1)

denoting the orthoprojector onto a subspace Y ⊂ HC by EY . In analogy to the unitary group case,
O in O(HC, B), the orthogonal group associated with B, acts on C(HC, B) by a C∗-automorphism
group αO, extending αO(γ(v)) = γ(Ov). The same holds, of course, for A(W ). These particular
automorphisms are called Bogolubov automorphisms (or transformations, see, e.g., [17–21]).

Remark. If H is a complex Hilbert space, regarded as vector space over the reals, the relationship
between A(H) and C(H) is displayed by the formula

γ(f) = 2−
1
2 (a(f) + a∗(f))

The assignment f 7→ γ(f) is called Majorana field in quantum field theory.

The automorphism-group implementation problem can be posed for the orthogonal group in the
Clifford algebra context as well.

Consider the anti-Fock state ωI on A(W ) and its corresponding GNS-representation (ρI ,HI , ξI).
Each U in U(W ) obviously preserves the projector I, so by Powers–Størmer it is implemented, but
in fact we have a larger symmetry group O(HC, B) coming from the Clifford point of view. Since
these automorphisms αO (for O in O(HC, B)) of A(W ) are not induced from operators on W in
general, we need the Shale–Stinespring theorem to decide when O is implemented, which we can
formulate in the following guise:

For O in O(HC, B) there exists Õ ∈ U(HI) such that ρI ◦αO(a) = Õ ◦ ρI(a) ◦ Õ−1 for all a ∈ A(W )
if and only if O ∈ Ores(HC, B) := O(HC, B) ∩ Ures(HC, H+).

Now, in close analogy to the previous case, the Ores(HC, B)-orbit of the projector onto W in HC
yields by definition the (restricted) isotropic Grassmannian, or restricted Siegel manifold Jres(H).
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Equivalently, it is easy to see that Jres(H) describes all isometric complex structures on H differing
from JW by a Hilbert–Schmidt operator. In conclusion,

Jres(H) ∼= Ores(HC, B)/U(W ) ∼= {J ∈ J (H) | J − JW is Hilbert–Schmidt}.

It follows that there is an Ores(HC, B)-equivariant embedding

i : Jres(H) ↪→ Gr(HC,W )

sending J in Jres(H) to Y = Eig(JC, i) and having as its diffeomorphic image {Y ∈ Gr(HC, W ) | Y is
B-isotropic and Y ⊥ = Y }. Also, Jres(H) parametrizes all anti-Fock states ω := ωI ◦ αO yielding
GNS representations of the CAR algebra A(W ) unitarily equivalent to the reference one ρI . Working
in the reference GNS space HI , the complex lines generated by their GNS vectors will realize the
fibres of the Pfaffian line bundle, defined below. We also recall how a Bogolubov automorphism
αO associated to O in Ores(HC, B) acts on A(W ): an element u of HC considered as γ(u) in
C(HC, B) ∼= A(W ) is mapped, up to a factor, to a∗(EW Ou) + a(EW Ou) (cf. [20]).

The FaF correspondence has a geometrical counterpart which will be also relevant in our
discussion of the Segre embedding. Let us take a complex polarized Hilbert space H = H+ ⊕H−,
which we regard as a real one. Let us set H− := H− and, correspondingly, denote its projector
by E−.

Upon complexification, any subspace W1 ∈ Gr(H, H+) goes to an isotropic subspace Y =
W1 ⊕W⊥

1 ∈ Jres(H) ⊂ Gr(HC,W ), where W = H+ ⊕H−: this is a geometric version of Powers–
Størmer purification. The above map is equivariant with respect to the natural embedding
Ures(H, H+) ↪→ Ores(HC, B). Let us notice that, for Y ∈ Jres(H), A(Y ) and A(Y ) are canonically
isomorphic by the FaF correspondence, since Y can be identified C-linearly, via B, with the dual Y ′.
Let HE+ respectively HE− denote the GNS-spaces carrying the GNS representations of A(H),

respectively A(H), induced by ωE+ , respectively ωE− . We have the following (notation of [14]
and [3]):

i) The following isomorphisms hold:HE+
∼= `2(S),HE−

∼= `2(S′), andHE+⊕E−
∼= `2(S)⊗̂`2(S′) ∼=

HE+⊗̂HE− .

ii) The FaF correspondence reads as follows, in terms of the natural orthonormal bases in HE+

and HE− (with a slight abuse of notation)

χ : HS 7→ H⊥
S = HS′ .

iii) The correspondence also gives rise to a Kähler isometry

Gr(H, H+) ∼= Gr(H,H−)

(which allows identification of the two manifolds).

iv) The embedding Gr(H,H+) ↪→ Gr(HC, W ) reads, in terms of Plücker coordinates:

π(S,T ′)(Y ) = 〈W1 ⊕W⊥
1 ,HS ⊕H⊥

T ′〉 = 〈W1,HS〉〈W1,HT 〉 = πS(W1)πT (W1).

In particular,

π(S,S′)(W1 ⊕W⊥
1 ) = πS(W1)2.

We briefly recall the infinite-dimensional version of the spin representation. Let S be the GNS
representation space HA(W )

IW
of the CAR algebra A(W ) and O∼

res(HC, B) the central U(1)-extension
of Ores(HC, B) implementing the Bogolubov transformations αO as unitary endomorphisms of S.
This linear action of O∼

res(HC, B) on S is called the Spinc-representation of Ores(HC, B).
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We recall that in contrast with the finite-dimensional case, one cannot render it two-valued only.
We shall realize this representation in a Borel–Weil fashion by resorting to the Pfaffian line bundle.
The latter is given as

Pf = {(Y, ξ) ∈ Jres(H)×HA(W )
I | (a∗(yW ) + a(yW⊥))ξ = 0 ∀y = yW + yW⊥ ∈ Y },

where yW and yW⊥ are the projections onto W and W⊥respectively; if we denote by ρI the GNS-
representation of A(W ) associated to the anti-Fock state ωIW

, the operators act in the anti-Fock
representation ρI := ρIW

. More precisely, we have the following result (Theorem 9.2 of [4]):
i) Pf → Jres(H) is a holomorphic hermitian line bundle.
ii) O∼

res(HC, B) acts equivariantly on Pf.

iii) S∗ = (HA(W )
I )∗ is canonically realized inside the holomorphic-section module of Pf∗, i.e. we

have a Borel–Weil description of the infinite-dimensional spinor module.
iv) Using the embedding i : Jres(H) ↪→ Gr(HC,W ) given above we have i∗Det = Pf⊗2.

The crucial point of the proof is that, at the level of GNS vectors, one has:

PfW ⊗ PfW ∼= CξIW⊕0W
= CξEW

⊂ HA(HC)
EW

which is the line DetW . The whole construction enjoys Ores(HC, B)-equivariance.

Let Pf denote the projective embedding of Jres(H) into P(S) by means of the vector space
of sections S∗ of the line bundle Pf∗. Then the restricted isotropic Grassmannian Jres(H) is
diffeomorphic, via the map Pf , to the (projective) Ores(HC, B)-orbit in P(S) of the anti-Fock
state vector ξIW

. Furthermore, for a product of Grassmannians, the upshot is [4, Theorem 10.1]:
i) Upon restriction to the “small” Grassmannian Gr(H) = Gr(H,H+), Pf|Gr(H) = Det.
ii) There exists a natural Segre embedding Seg : Gr(H)×Gr(H) → Gr(HC) = Gr(HC,W )

defined by: Seg((W1,W2)) = W1 ⊕ (W2
⊥) (projective embeddings understood). The embedding

is realized via the bundle Det∗Gr(H)
× Det∗Gr(H) (“box” product).

The reader of [14, Proposition (12.3.1)] may note that the second factor of the box product is
missing for the map sq from their diagram.

In subsection 3.1, we will write the analog of the (PR) for this product. The classical
interpretation of the KP hierarchy as Plücker equations for the τ -function [2] uses a vertex operator
exp(xΛ) (more generally, exp(xΛ + yΛ2 + tΛ3), e.g.),

Λ :=




0 1 0 . . .

0 0 1 0 . . .
. . . . . . . . .


 , an ∞×∞ matrix;

evolutions are defined on Gr(2,∞) by multiplication exp(xΛ) · F , using a frame F = (∂i−1
x fj)∞×2,

where f1, f2 is a fundamental solution of the equation f ′′(x) + a(x, y, t)f ′(x) + b(x, y, t)f(x) = 0 (a
boson-fermion correspondence, cf. subsection 1.4); the (PR) for this frame are the KP equation in
Hirota’s bilinear form [22].

Instead, we will use directly the geometry of the finite-dimensional space of soliton τ -functions.
Again, we review this technique for the KP case, where the equations define a Grassmannian.

The subspaces of the Sato Grassmannian in question have Baker functions

ψ
(n)
λ =

∂n

∂zn
exz+yz2+tz3

∣∣∣∣
z=λ

,

and the Plücker equations hold for the coefficients ci1...ik of

τ(x, y, t) =
∑

16i1<i2<...<ik6n

ci1...ikωi1...ik(x, u, t),
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where ωi1...ik =Wronskian(φi1 , . . . , φik) for any basis φi1 , . . . , φik of the Grassmannian subspace.
The statement is: τ satisfies

−3τ2
y + 3τ2

xx + 3ττyy + 4τtτx − 4ττxt − 4τxτxxxx + ττxxxx = 0

if and only if the coefficients satisfy the Plücker relations:
k+1∑

i=1

(−1)ica1...ak−1bicb1...bi−1bi+1...bk+1
= 0,

for all subsets A = {a1, . . . , ak−1} and B = {b1, . . . , bk+1} of {1, 2, . . . , n}, for any possible choice of
k. Using this formulation one can check the strikingly simple:

Remark. Every function τ that satisfies τxx = τy and τxxx = τt is a solution of the bilinear KP
equation.

1.4. Boson-fermion Correspondence

A correspondence between bosons and fermions is an important tool in physics and represen-
tation theory; we do not delve on its significance, but rather, identify it in our setting so as to
transliterate objects and formulas used below.

In the conventional Sato formalism (cf. e.g. [1]), the correspondence can be used to take the
Grassmannian of subspaces of analytic functions on the disc to formal pseudodifferential operators;
in two-dimensional quantum-field theory, as explained in [14, introduction to Ch. 9 and § 10.7], it
is a correspondence between an exterior algebra and a sum of symmetric algebras.

Let ψn, ψ∗n, n ∈ 2Z+ 1, be elements of a Lie algebra that acts on a Hilbert space, and satisfy
the relations

[ψm, ψn]+ = [ψ∗m, ψ∗n]+ = 0, [ψ∗m, ψn]+ = δm,n,

where [X, Y ]+ = XY + Y X. The vacua 〈m|, |m〉, m ∈ 2Z+ 1 are defined by the conditions

〈m|ψn = 0 for n 6 m, 〈m|ψ∗n = 0 for n > m,

ψn|m〉 = 0 for n > m, ψ∗n|m〉 = 0 for n 6 m.

They are related by

ψ∗m|m− 2〉 = |m〉, 〈m− 2|ψm = 〈m|.
The Fock spaces Hm, H∗

m are constructed from |m〉 and 〈m| respectively by the action of an equal
number of ψk and ψ∗l . The pairing between Hm and H∗

m is defined by normalizing

〈m|m〉 = 1.

Let us set

h−2k =
∑

n∈2Z+1

ψnψ∗n+2k,

T = exp(−
∞∑

k=1

1
k
J2kh−2k),

where J2k are commutative variables. Notice that 〈m|T = 〈m| for any m. The boson-fermion
correspondence gives the isomorphism of bosonic and fermionic Fock spaces, H∗

2m−1 ' C[J2, J4, . . .],

〈2m− 1|a 7→ 〈2m− 1|aT |2m− 1〉. (b− f)rep

The above boson-fermion correspondence may be understood geometrically in the setting of
subsection 1.2 as follows [3, 5, 7]: in view of the above algebraic construction of Det, one has
[15] a natural holomorphic section τW of the dual Det∗ of the Determinant line bundle, naturally
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associated to W , hence to the CAR-algebra state ωW , with cyclic vector ξW ∈ H+. It can by given
explicitly by

τW ((W ′, v)) = 〈v, ξW 〉, v ∈ DetW ′ .

The assignment

H+ 3 ξW 7→ τW ∈ ΓL2(Det∗ → Gr) (b− f)geo

is precisely the boson-fermion correspondence, in the language of [3], [4]. Note here that we are in
the analytic, not formal, category, and what is meant as L2-holomorphic sections over an infinite-
dimensional space, denoted by ΓL2 above, are actually hyperplane sections in [4] (we also note that
the relevant measure-theoretic framework is developed in [23]); their use is legitimate thanks to
the fact that the sums converge over “admissible bases” [14, Prop. 7.5.2], [15, Section 10]; in [9,
Lemma 1], the holomorphicity of the embedding is checked locally. In physics, τW is an example of
coherent state [24]. We shall give a more concrete description of τ in the following sections; here we
only observe that in representation-theoretic terms τW can be identified with the Sato τ -function:

τ(x, g) = 〈Ω | eH(t)g Ω〉 =
∑

Y

cY (g)χY (t)

where Ω is an admissible basis corresponding to the diagram ∅, g = e
P

tiz
i

acts on Gr (the action
is reviewed in some technical detail in subsection 3.2), H(t) =

∑
(1/i)(∂/∂ti) and the (projective)

Plücker coordinates cY (g) (Y a Young (or Maya) diagram) [1]) are given by

cY (g) = χY (∂t)τ(t, g)|t=0

({χY } denoting the corresponding Schur functions), cf. subsection 1.1. This notation shows the
analogy between the formulas (b−f)rep and (b−f)geo; we do not review more extensive definitions
of the notation because we do not make specific use of this formula.

2. DIASTASIS

2.1. Determinant Formula

The Calabi diastasis function D on a Kähler manifold is manufactured through the choice of a
local Kähler potential f ; in local complex coordinates,

D(z, w) = f(z, z) + f(w,w)− f(z, w)− f(w, z)

(where a sesquiholomorphic local extension of the Kähler potential is understood), and is
coordinate-independent, yielding a metric invariant. In [7], the Calabi diastasis function of Gr
(or GR) was calculated, as the pull-back under the Plücker embedding of the natural projective-
space diastasis (induced by the Fubini–Study metric by the polarizing line bundle Det∗). The
formula reads as follows, where a point of the embedded Grassmannian is identified by its Plücker
coordinates (subsection 1.1) and denoted by [τ ], and we modify a notation by ′ to denote a second
object in the same set:

D([τ ], [τ ′]) = log
∑

Y |cY |2 ·
∑

Y |c′Y |2
|∑Y cY c̄′Y |2

written compactly as

D([τ ], [τ ′]) = log
‖τ ‖2 · ‖τ ′ ‖2

|〈τ, τ ′〉|2 ·

In particular we get the canonical Fubini–Study Kähler potential:

D([τ = 1], [τ ]) = log
∑

Y

|cY |2 = log ‖τ ‖2 .
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For the Kähler form of Gr one has the standard formula

ω =
i

2
∂∂ log ‖τ ‖2 .

From Calabi’s global-rigidity theorem [9, Th. 7] we deduce that any isometric automorphism of
the Grassmannian is projectively induced.

We already mentioned the fact that τ is a holomorphic section of Det∗ (“coherent state”, in
physical terms [24]). It can also be represented by projectively induced coherent-state functions via

τ ↪→ ψ[cY ] : [c′Y ] 7→
∑

Y c′Y c̄Y∑
Y |cY |2

τ ↪→ ψτ : [τ ′] 7→ 〈τ ′, τ〉
‖τ ‖2

(here the symbol [ξ] denotes the projectivization of the vector ξ). Also notice that the boson-
fermion correspondence yields the following equality between “boson” and “fermion” transition
probabilities ([3, 7])

|〈ξW1 , ξW2〉|2 = |〈τW1 , τW2〉|2 = exp(−D(W1,W2)).

In fact, one has performed geometric quantization on Gr (and GR).

Remark. The formal expression of the Baker function can be interpreted in terms of the general
remark that

τ ′ =
τ ′

τ
· τ

as holomorphic sections of the same line bundle: the Baker function arises as a suitable quotient of
τ ’s and is an ordinary function. This will be used below.

2.2. Diastasis and Weil Reciprocity

We make use of a formula, derived in [6, Prop. 4.1] using basic potential theory, that connects
the diastasis DP (Q) for two points P,Q on a (compact) Riemann surface with the Green’s function:

GP (Q) = log |f(Q)|2 −DP (Q), (D)

where f(Q) is a local meromorphic function having a simple zero at P . Since the Green’s function
is symmetric, one can use this fact to give a proof of Weil’s reciprocity. Stated in the setting of [25,
II.3], the reciprocity says:

Theorem 1. Let f, g be meromorphic functions on the compact Riemann surface S, with disjont
divisors of zeros and poles; then,

∏

P∈S

fordP (g)(P ) =
∏

P∈S

gordP (f)(P ).

Proof. The products can be calculated using GP (Q) = log |f(Q)|2−DP (Q), GQ(P ) = log |g(P )|2−
DQ(P ) by (D). Since DP (Q) = DQ(P ) as follows from the definition, and GP (Q) = GQ(P ), we
deduce |f(Q)|2 = |g(P )|2, i.e. f and g differ by an a priori variable phase factor; to obtain the
reciprocity formula, observe that in relating the diastasis and the Green’s function [6, Prop. 4.1]
the local “Bochner coordinate” f(Q) at P (g(P ) at Q, resp.) is appropriately normalized and so
the phase factor is equal to 1 by holomorphicity.
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2.3. Automorphisms of Projective Subvarieties

In subsection 3.2 we will give an application of the following result of Calabi’s [9, Th. 2]:
Let M be a Kähler manifold, and assume that (. . . ) M can be isometrically and complex

analytically embedded in a unitary space CN of dimension N (N 6 ∞), so that it does not lie in
any proper complex analytic linear subspace of CN . Then (. . . ) the embedding is determined up to
within the group of motions in CN .

The question of comparing the group of automorphisms induced on an algebraic subvariety X
from automorphisms of the ambient space, with the ‘intrinsic’ group AutX of the variety itself
is significant. By viewing the embedding as a polarization, this area investigates “linearizable
group actions”; in the complex-analytic category cf., e.g., [26] and [27]. We restrict the question
to projective subvarieties, and automorphisms induced by linear transformations of the projective
space where the variety is embedded.

To recall basic examples, the plane cubic, which intrinsically is an elliptic curve once an origin
is chosen, has more automorphisms than those induced by linear projectivities (for example,
collineations that fix the curve will have to permute the inflexion points, hence are a finite group,
whereas the automorphism group of the curve includes all translations on the curve), whereas for
any smooth plane quartic X, AutX is linearly induced because the embedding is canonical.

A lesser-known example (although deduced from first principles) which has to do with moduli
spaces was given by Newstead [28]: The moduli space of (fixed) odd-determinant, rank-2 vector
bundles over a hyperelliptic curve of genus two can be identified with Klein’s quadratic complex,
Q ⊂ P5. Newstead’s result is that any automorphism of the moduli space is induced by a projective
transformation. The first step of the proof consists in the observation, the one relevant to us in terms
of Fubini–Study diastatic rigidity, that every automorphism of a non-singular quadratic complex
in P5 is a projective equivalence. This again (as for the example of curves we gave) follows from
the fact that Q has a ‘canonical’ line-bundle, with Chern class equal to that of the restriction H of
the hyperplane bundle, since H1(Q) = 0, and from dimH0(Q,H) = 6.

For current work on the case of hypersurfaces, cf. [29].

3. APPLICATIONS

3.1. Baby-KP, Giant-KP

Victor G. Kac in a seminar talk (U.C. Berkeley, 1992) called the defining equations of the
finite-dimensional Grassmannian under the Plücker embedding “baby KP”.

A key point of the Sato theory was that the KP hierarchy describes the GL∞-orbit of the highest
weight vector in a fundamental representation; here GL∞ is used to denote the suitable subgroup
of the general linear group in infinite dimension that acts on admissible frames [15], but the present
section can be read formally, or locally, and we give the action explicitly in coordinates below.

When V is a finite-dimensional vector space and F := ⊕j>0 ∧j V , the operators v(u) = v ∧ u and
v∗(u1 ∧ . . . ∧ uk) =

∑k
i=1(−1)i−1v∗(ui)u2 ∧ . . . ∧ ui−1 ∧ ui+1 ∧ . . . ∧ uk give a representation of the

Clifford algebra C(V ⊕ V ∗) on F . Choosing a basis {e1, . . . , en} of V , |j〉 := ej ∧ ej−1 ∧ . . . ∧ e1 is a
highest-weight vector for the action of G := GL(n); the orbit G̃rj of |j〉 under G gives a C∗-bundle:
G̃rj → Gr(k, n); the operator S =

∑
ej ⊗ e∗j commutes with G and,

Baby-KP: An element τ ∈ ∧jV, τ 6= 0 is in the orbit G|j〉 if and only if S(τ ⊗ τ) = 0.
However, the original way of setting up ‘Giant-KP’, namely a hierarchy of PDEs following from

the Hirota bilinear equation for the τ function (cf. subsection 1.1) is based of the boson-fermion
correspondence. We recall that process briefly, but in a rather different approach [30], also yielding
PDEs of the KP hierarchy. It is the latter that we extend to Pfaffian bundles in this paper. In what
follows we use the setting and notation of [15].

The finite-dimensional geometry is recovered by defining Hirota’s equations on the subgrass-
mannian Gr0 = ∪kz

−kH+/zkH+.
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There are two key ideas [30]. One is the identification λ⊗ λ with L := C[t1i ]⊗ C[t2i ], where
λ ∼= ∪kVk, Vk := {z−k, z−k+1, . . . , zk}; to write the infinite-dimensional analog of the Plücker
relations one defines the action of the group GL+ ⊂ GLres given on C[ti] by differentiation in
ti and multiplication by 2ti (2 is the twist that gives the central extension of the group that acts
on the infinite-dimensional frames).

Now the Heisenberg algebra (with basis {pi, qi, 2}, i > 1 and relations [pi, qi] = 2) acts on Lhigh,
the submodule generated by Ω⊗Ω where Ω ∈ C[ti], each of the two factors of the tensor product, is
the highest-weight vector and on Llow = L⊥high, with inner product on C[ti] under the isomorphism
resulting in:

〈P, Q〉 = P

(
1
j

∂

∂tj

)
Q(ti)|t=0

(we resort to the indices i and j to signify the two sets of variables, but the functions are intended
to depend on the whole sequence of variables, as in the τ(t) of previous sections; no specific i or j is
fixed in these formulas). Lastly, with the change of variables xi = t1i + t2i , yi = t1i − t2i , the Plücker
relations for v ⊗ v ∈ Lhigh, v ⊗ v = τ(t1i )τ(t2i ) = τ(xi + yi)τ(xi − yi) (where τ is a polynomial)
become:

P

(
1
j

∂

∂xj

)
Q

(
1
j

∂

∂yj

)
τ(xi + yi)τ(xi − yi)|x=0,y=0 = 0,

Hirota’s bilinear expression of the KP hierarchy.
For example: the Plücker relation for Gr(2, 4) ⊂ Gr0, namely π12π34 − π13π24 + π14π23 = 0,

becomes
e−2,−1 ⊗ e0,1 − e−2,0 ⊗ e−1,1 − e−2,1 ⊗ e−1,0 + e0,1 ⊗ e−2,−1 − e−1,1 ⊗ e−2,0 + e−1,0 ⊗ e−2,1 ∈ Llow,

then using the isomorphism (via Schur functions), y4
1 − 12y1y3 + 12y2

2 ∈ Llow, namely
((

∂

∂y1

)4

− 4
(

∂

∂y1

)(
∂

∂y3

)
+ 3

(
∂

∂y2

)2
)

τ(x + y)τ(x− y)|y=0 = 0,

the KP equation in Hirota form.
Our contribution is to apply this algebraic setting to the Segre embedding identified by Spera

and Wurzbacher [4, Th. 10.1]:

Theorem 2. Under the Segre embedding Seg : Gr×Gr → Gr(H, W ) defined (projectively) by:

Seg((W1,W2)) = W1 ⊕W2
⊥
,

the τ function, which is the normalized section of the embedding line bundle Det∗Gr
×Det∗Gr, satisfies

the Segre hierarchy, τ(xi + yi)τ(xi − yi) ∈ Lhigh.

The PDEs are obtained by replacing the (PR) by the Segre equations [31, (2.9) c)], namely the Segre
quadrics and, separately, the (PR) of Gr(n/2, n) and Gr(m/2,m) in the two sets of bi-homogeneous
coordinates in Pn × Pm; the boson-fermion counterpart of the algebraic equations is applied to
any polynomial τ -functions associated to W1,W2 ∈ Gr0, with zn/2H+ ⊂ W1 ⊂ z−n/2H+, zm/2H+ ⊂
W2 ⊂ z−m/2H+.

We now also derive the equations in general Hirota form using the boson-fermion correspondence.
From subsections 1.2, 1.3 and 1.4 we have, in terms of τ (as sections of the appropriate line

bundles)

τ2
Gr = τGR |Gr .

We already observed that τGR is actually Sato’s τ related to the KP-hierarchy, after specializing
to finite dimensional subspaces, and we write simply τGR ≡ τKP . The BKP-hierarchy, see e.g. [8]),
can be defined by the property

τ2
BKP = τKP |x2=x4=...=0
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(formula (6.7) in [8]). One has, accordingly,

τGr = τBKP ,

using the Pfaffian line bundle construction. Thus one gets, in Sato’s setting, a Segre hierarchy:

τS := τGr ⊗ τGr = τGR |Gr×Gr .

The BKP-hierarchy issues from the spin representation of the orthogonal affine Lie subalgebra
B∞ of A∞ = gl(∞) ([8]), so our derivation gives the geometric counterpart of the representation-
theoretic approach.

3.2. Dualities

There are different types of dualities on Sato’s Grassmannian. The geometric version of the
finite-dimensional duality, in which the dual of a vector space V is the space of linear maps on
V , V ∗ := HomC(V,C), can be viewed as acting on Gr via the identification given by Sato’s non-
degenerate bilinear map,

〈ψW , ψW ′〉 =
∮

ψW ψW ′dζ.

For a quick review of the symbols, letting H = H− ⊕H+ be the Hilbert space decomposition as in
[15], H+ = {(∑∞

i=0 aiz
i) s.t.

∑ |ai|2 < ∞, ai ∈ C}, H− = {(∑−1
i=−∞ aiz

i) s.t.
∑ |ai|2 < ∞, ai ∈ C},

we consider the Grassmannian Gr of closed subspaces W of H whose projection π+ : W → H/H− ∼=
H+, is Fredholm of index 0, and whose projection π− : W → H− is Hilbert–Schmidt.

The fiber of the dual determinant bundle over W is:
Det∗|W = Λtopcoker(π+ : W → H/H−)⊗ (Λtopker(π+ : W → H/H−))⊗−1. The bundle Det∗ is
equipped with a canonical section σ = det(π+) (for analytic justifications of the statements
we refer to proofs in [14, Ch. 7]). If W + H− = H, then σ(W ) = 1 ∈ Λtop0⊗ (Λtop0)⊗−1 = C.
If W + H− 6= H, then σ(W ) = 0. The fiber Det∗|W = Λtop(coker(π+))⊗ (Λtopker(π+))⊗−1 =
Λtop(H/(H− + W ))⊗ (Λtop(H− ∩W ))⊗−1.

Consider the subgroup GLres(H) of GL(H) = GL(H− ⊕H+) whose elements have off-diagonal
blocks of Hilbert–Schmidt class. Its identity component GLres(H)0 acts on Gr. This action lifts
projectively to the dual determinant bundle Det∗ on Gr. This provides us with a central extension
G of GLres(H)0. Thus an element g ∈ G which covers an h ∈ GLres(H) is an ordered pair (h, α),
where α is an (holomorphic) isomorphism α : h∗Det∗ → Det∗. We denote the composite map α ◦ h∗
by g∗ : Det∗ → Det∗. Since the only global holomorphic functions on Gr are the constant functions,
G is an extension of GLres(H)0 by C∗.

Given W ∈ Gr we choose 0 6= δ ∈ Det∗|W , and define τW (g) = (((g−1)∗σ)/δ)(W ) [15]. This is
well-defined as a function of g only up to a constant. For W ∈ U0,0, where we denote by UM,n, for
any finite-dimensional subspace M of H, the following subset of Gr: {W |W ∩ (M + z−nH−) = 0},
we may normalize so that τW (g) = ((g−1)∗σ/σ)(W ), g ∈ G.

Denote by Γ+,N the subgroup of GLres(H)0 consisting of holomorphic nonvanishing functions
on N which take the value 1 at 0, N a neighborhood of the unit disc D0 around 0, N ⊃ D0 ={
z

∣∣ |z| 6 1
}
. Γ+,N acts on H by multiplication. Γ+ :=

⋃
N Γ+,N is contained in a parabolic

subgroup P ⊂ GLres(H)0, such that Gr = GLres(H)0/P . The central extension G of GLres(H)0
splits over P . We choose such a splitting and henceforth use the notation Γ+,N to describe the
subgroup of G: Γ+ ⊂ P ⊂ G. Γ+ can conveniently be coordinatized: all g ∈ Γ+ can be written as
g = exp(

∑∞
i=1 tiz

i), ti ∈ C.
Define qζ = 1− (z/ζ) ∈ Γ+, |ζ| > 1, ζ ∈ C ∪∞ by qζ = 1− (z/ζ).
Given a W ∈ Gr, we introduce the Baker–Akhiezer wave function ψW : GW → W defined on the

subset GW = {g ∈ G|g−1W + H− = H}, by requiring that g−1ψW (g) ≡ 1⊗ (dz)1/2 mod H−. The
image of ψW is W . By definition, the expression g−1ψW (g)⊗ (dz)−1/2 extends to a holomorphic
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function ψ̃W (g) on the disc around ∞, D∞ :=
{
z ∈ P1

∣∣ |z| > 1
}
, whose boundary value on the unit

circle S1 is in L2(S1). It is easy to see that ψW (Γ+ ∩GW ) generates W as a Hilbert space.
To recall the formula describing ψW in terms of τ , we think of ψ̃W (g) as a complex valued

function of g and z, analytic in z: ψ̃W (g, z), g ∈ GW , |z| > 1. Then we have

ψ̃W (g, z)|z=ζ = τW (gqζ)/τW (g),

where qζ = 1− (z/ζ) ∈ Γ+, and also g ∈ Γ+ ∩GW [15, (5.14)]. Here, qζ is in Γ+ provided |ζ| > 1.
For a g ∈ Γ+,N we may think of ψW (g)⊗ (dz)−1/2 as holomorphic function on N ∩D∞ with L2

boundary value on the unit circle S1.
The boson-fermion correspondence (cf. subsection 1.4) in this notation associates to an element

of the Grassmannian (big cell) via its Baker function, the pseudodifferential operator L such that
Lψ = zψ, and the duality given by taking orthogonal spaces becomes: L =

∑
uk(x)∂k 7→ L∗ =∑

(−1)k∂kuk(x) with the abbreviation ∂ = ∂/∂t1.
Our result, translating the projective rigidity proved by diastasis, is that the duality is induced

on the Plücker embedding by a projective transformation. Note first that our Plücker and Segre
embeddings are holomorphic, hence preserve the diastasis that we induced from the Fubini–Study
metric (using holomorphic bundles to pull it back). Next, we use the following result (Wigner’s
theorem, see e.g. [32, Th. 51], and Appendix D, ibid. for a proof): any transformation φ preserving
(in absolute value) transition amplitudes, i.e. |〈φ(x), φ(y)〉| = |〈x, y〉| when x, y are any two unit
vectors in the space, is induced by a unitary or anti-unitary transformation Tφ of the space, unique
up to a phase.
Lemma. The Plücker (Segre) embedding is an isometry. Consequently any (isometric) automor-
phism of the Grassmannian is induced by a linear transformation of the vector space underlying the
target projective space, i.e. it is projectively induced.
Proof. To show that the Plücker embedding is an isometry (the proof is the same for the Segre
embedding), we have to compare the metric on the Grassmannian with that on the target projective
space. We recalled above that on the Grassmannian the metric is given by the pairing

〈ψW , ψW ′〉 =
∮

ψW ψW ′dζ.

If we abbreviate the notation by ψW = eαψ̃W where eα = g = exp(
∑∞

i=1 tiz
i) and ψ̃W is analytic

and normalized, then the expression for the metric in the target linear space, given in terms of the
diastasis, is:

D(v, w) = −2 log
||v||2 · ||w||2
|〈v, w〉|2 = −2 log |〈ψ̃W , ψ̃W ′〉|

and the map is an isometry (up to a scalar which does not affect projective coordinates or
the statement about linearity). Therefore, upon passing to the corresponding coherent states
(W 7→ τW ), we can resort to Wigner’s theorem above, achieving the conclusion (cf. [7])

There is a third involution of great importance in integrable-equation theory (the “bispectral
involution”), namely the interchange of the spectral parameter z and the evolution parameter
t1 = x. While it can be defined on the formal Grassmannian, on the Hilbert-space Grassmannian
the definition has to be restricted to the “adelic” [33] part Grad. We remark that, since its effect on
the Baker–Akhiezer function ψW defined above is simply to interchance the t1 and the z variables,
it is a holomorphic map, as well as an isometry, again using the expression for the diastasis. By
Calabi’s result, we can only say that this involution is induced from a projective transformation of
the linear span of the adelic Grassmannian under the Plücker embedding; however, one can always
extend this projective transformation to the whole projective space, so the result holds for this
involution as well. In conclusion, we have the following:
Theorem 3. An automorphism of the Grassmannian as well as the Segre variety given by the
Pfaffian embedding, in particular the dualities induced by Hirota’s bilinear form and by the bispectral
involution, are induced by projective transformations of the projective space into which they are
Plücker-, resp. Segre-, embedded.
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Abstract—The paper revises the explicit integration of the classical Steklov–Lyapunov systems
via separation of variables, which had been first made by F. Kötter in 1900, but was not
well understood until recently. We give a geometric interpretation of the separating variables
and then, applying the Weierstrass hyperelliptic root functions, obtain explicit theta-function
solution to the problem. We also analyze the structure of poles of the solution on the Jacobian
on the corresponding hyperelliptic curve. This enables us to obtain a solution for an alternative
set of phase variables of the systems that has a specific compact form.
In conclusion we discuss the problem of integration of the Rubanovsky gyroscopic generaliza-
tions of the above systems.
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1. INTRODUCTION
The motion of a rigid body in the ideal incompressible fluid is described by the classical Kirchhoff

equations

K̇ = K × ∂H

∂K
+ p× ∂H

∂p
, ṗ = p× ∂H

∂K
,

where K, p ∈ R3 are the vectors of the total angular momentum and the momentum, respectively,
and H = H(K, p) is the Hamiltonian, which is quadratic in K, p. Note that this system always
possesses two trivial integrals (Casimir functions of the coalgebra e∗(3)) 〈K, p〉, 〈p, p〉 and the
Hamiltonian itself is also a first integral.

Steklov [1] noticed that the classical Kirchhoff equations are integrable under certain conditions
i.e., when the Hamiltonian has the form

H1 =
1
2

3∑

α=1

(
bαK2

α + 2νbβbγKαpα + ν2bα(bβ − bγ)2p2
α

)
, (α, β, γ) = (1, 2, 3) , (1.1)

b1, b2, b3 and ν being arbitrary parameters. Under the Steklov condition, the equations possess
fourth additional integral

H2 =
1
2

3∑

α=1

(
K2

α − 2νbαKαpα + ν2(bβ − bγ)2p2
α

)
. (1.2)
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Later Lyapunov [2] discovered an integrable case of the Kirchhoff equations whose Hamiltonian
was a linear combination of the additional integral (1.2) and the two trivial integrals. Thus, the
Steklov and Lyapunov integrable systems actually define different trajectories on the same invariant
manifolds, two-dimensional tori. This fact was first noticed in [3].

In the sequel, without loss of generality, we assume ν = 1 (this can always be made by an
appropriate rescaling p → p/ν).

The Kirchhoff equations with the Hamiltonians (1.1), (1.2) were first solved explicitly by
Kötter [4], who used the change of variables (K, p) → (z, p):

2zα = Kα − (bβ + bγ)pα , α = 1, 2, 3 , (α, β, γ) = (1, 2, 3), (1.3)

which transforms the Steklov–Lyapunov systems to the form

ż = z ×Bz −Bp×Bz , ṗ = p×Bz , B = diag (b1, b2, b3) (1.4)

and, respectively,

ż = p×Bz , ṗ = p× (z −Bp) . (1.5)

In [4], Kötter implicitly showed that the above systems admit the following Lax representation
with 3× 3 skew-symmetric matrices and a spectral parameter

L̇(s) = [L(s), A(s) ] , L(s), A(s) ∈ so(3), s ∈ C ,

L(s)αβ = εαβγ

(√
s− bγ (zγ + spγ)

)
,

(1.6)

where εαβγ is the Levi-Civita tensor. Equations (1.4) and (1.5) are generated by the operators

A(s)αβ =
εαβγ

s

√
(s− bα)(s− bβ) bγzγ , resp. A(s)αβ = εαβγ

√
(s− bα)(s− bβ) pγ . (1.7)

The radicals in (1.6)–(1.7) are single-valued functions on the elliptic curve Ê , the 4-sheeted
unramified covering of the plane curve E = {w2 = (s− b1)(s− b2)(s− b3)}. For this reason, the
Lax representation has an elliptic spectral parameter.

Writing out the characteristic equation for L(s), we arrive at the following family of quadratic
integrals

F(s) =
3∑

γ=1

(s− bγ)(zγ + spγ)2 ≡ J1s
3 + J2s

2 + 2sH2 − 2H1 , (1.8)

where

H1 =
1
2
〈z, Bz〉 , H2 =

1
2
〈z, z〉 − 〈Bz, p〉 , J2 = 2〈z, p〉 − 〈Bp, p〉 , J1 = 〈p, p〉 . (1.9)

It is seen that under the Kötter substitution (1.3) the functions J1, J2 transform into invariants
of the coalgebra e∗(3), whereas the integrals H1(z, p), H2(z, p) (up to a linear combination of the
invariants) become the Hamiltonians (1.1), (1.2).

An analog of the elliptic Lax pair (1.6) was later rediscovered in [5] and was used to obtain
theta-function solution of the systems by using the method of Baker–Akhieser functions (see [6]).
However, the resulting formulas appeared to be quite tedious, and it was not clear how to compare
or identify them with the theta-function solution of Kötter.

Note that the latter was obtained in the classical manner, i.e., by a separation of variables and
reduction of the equations of motion to quadratures, which have the form of the Abel–Jacobi map
associated to a genus 2 hyperelliptic curve. The phase variables of the Kirchhoff equations have
been expressed in terms of the separating variables in a quite symmetric but complicated way. Until
recently, various attempts to check these expressions, as well as the reduction to quadratures made
by Kötter, even using packages of modern computer algebra, were not successful. This even led to
an opinion among some specialists that the results of [4] are not reliable, hence useless.

One of the first steps in verification of Kötters’ calculations was made in [7], where the
Steklov–Lyapunov systems on e∗(3), as well as their higher-dimensional generalizations, have been
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considered as Poisson reductions of certain Hamiltonian systems in a bigger phase space. The latter
systems were shown to possess 2× 2 matrix Lax representations in a generalized Gaudin form with
a rational spectral parameter. This fact easily allowed separating variables to be found, which
coincided with those suggested by Kötter, and, as a byproduct, to prove their commutativity with
respect to the Lie–Poisson bracket on e∗(3). A similar approach to the separation of variables was
made in [8].

The main aim of the present paper is to reconstruct the rest of the results of Kötter’s paper [4]1).
We shall use the original notation of [4], when possible.

2. SEPARATION OF VARIABLES BY F. KÖTTER.
The explicit solution of the Steklov–Lyapunov systems in the generic case was given by Kötter

in the brief communication [4], where he presented the following scheme.
Let us fix the constants of motion in (1.9), then the invariant polynomial (1.8) can be written

as

F(s) =
3∑

γ=1

(s− bγ)(zγ + spγ)2 = c0(s− c1)(s− c2)(s− c3), c0, c1, c2, c3 = const. (2.1)

Assume that all bα are distinct and that no one of cα coincides with b1, b2, b3. Then the real level
variety of the four first integrals of the problem (given by the coefficients at s3, s2, s, s0) is a union
of two-dimensional tori in R6 = (z, p). We restrict ourselves to this generic situation, excluding the
other cases, which correspond to periodic or asymptotic motions of the body.

Let now λ1, λ2 be the roots of the equation

f(λ) =
3∑

i=1

(zjpk − zkpj)2

λ− bi
= 0 , (i, j, k) = (1, 2, 3) . (2.2)

Then for fixed c0, c1, c2, c3 the variables z, p can be expressed in terms of λ1, λ2 in such a way that
for any s ∈ C the following relation holds (see formula (7) in [4])

zi + spi =
√

c0

xi

3∑
α=1

(s− cα)
√
−(λ1−cα)(λ2−cα)

(cα−cβ)(cα−cγ)

( √
Φ(λ1)ψ(λ2)

(λ1−bi)(λ2−cα) −
√

Φ(λ2)ψ(λ1)

(λ2−bi)(λ1−cα)

)

(λ1 − λ2)
3∑

α=1

√
−(λ1−cα)(λ2−cα)

(cα−cβ)(cα−cγ)

, (2.3)

where
Φ(λ) = (λ− b1)(λ− b2)(λ− b3) , ψ(λ) = (λ− c1)(λ− c2)(λ− c3) , (2.4)

xi =
zjpk − zkpj

|z × p| =

√
(λ1 − bi)(λ2 − bi)√
(bi − bj)(bi − bk)

, (2.5)

(i, j, k) = (1, 2, 3) , (α, β, γ) = (1, 2, 3) .

Setting in the above expression s →∞ and s = 0, one obtains the corresponding formulas for pi, zi.
As was mentioned in [4], for any α = 1, 2, 3, the branches of

√
−(λ1 − cα)(λ2 − cα) in the

numerator and the denominator of (2.3) must be the same.
Next, the evolution of λ1, λ2 is described by the quadratures

dλ1√
R(λ1)

+
dλ2√
R(λ2)

= δ1 dt ,

λ1 dλ1√
R(λ1)

+
λ2 dλ2√
R(λ2)

= δ2 dt,

(2.6)

1)Note that apart from the solutions of the Kirchhoff equations, Kötter also provided (although in an extremely
brief form) the theta-solutions describing the motion of the group E(3), that is, the components of the rotation
matrix of the body and the trajectory of its center in space. We were unable to reconstruct these solutions.
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R(λ) = −Φ(λ)ψ(λ)

with certain constants δ1, δ2 depending on the choice of the Hamiltonian only. In other words, in
the variables λ1, λ2 the systems separate.

Note that the paper [4] does not describe explicitly how to find δ1, δ2. They were calculated in
[7–9].

The above quadratures rewritten in the integral form∫ λ1

λ0

dλ

2
√

R(λ)
+

∫ λ2

λ0

dλ

2
√

R(λ)
= u1,

∫ λ1

λ0

λ dλ

2
√

R(λ)
+

∫ λ1

λ0

λ dλ

2
√

R(λ)
= u2 ,

(2.7)

u1 = δ1t + u10, u2 = δ2t + u20, (2.8)

contain two holomorphic differentials on the genus 2 hyperelliptic curve µ2 = −Φ(λ)ψ(λ) and
represent the Abel–Jacobi map from the symmetric product Γ× Γ to the Jacobian variety of Γ.

Inverting the map (2.7) and substituting symmetric functions of λ1, λ2, µ1, µ2 into (2.3), one
finally finds z, p as functions of u1, u2 and, therefore, of time t (see Theorem 2 below).

Everyone who had read paper [4] might be surprised by how Kötter managed to invent the
intricate substitution (z, p) → (λ1, λ2, c0, c1, c2, c3) and to represent the result in the symmetric
form (2.3). Unfortunately, the author of the paper gave no explanations of his computations.
Nevertheless, it is clear that behind the striking formulas there must be a certain geometric idea,
which we try to reconstruct in the next section.

The real case. Assume, without loss of generality, that b1 < b2 < b3 and that zi, pi are all
real and correspond to generic constants of motion cα in (2.1). Then one has
Proposition 1.

1) The constants c1, c2, c3 are either all real or 2 of them are complex conjugated. If any cα is
real, then it belongs to the segment [b1, b3].

2) The separating variables λ1, λ2 are also real and, if λ1 6 λ2, they vary in subsets of [b1, b2]
and [b2, b3] respectively.

Proof. 1) The polynomial F(s) in (2.1) has real coefficients, hence its roots are either real or
complex conjugated. Next, setting in (2.1) s = cα (real), we obtain

3∑

γ=1

(cα − bγ)(zγ + cαpγ)2 = 0.

Since zi, pi are real and generic, then (zγ + cαpγ)2 are all non-negative. Moreover, since zγ + cαpγ

are not integrals of the motion, at certain time their squares are all positive. Hence, the above sum
can be zero iff b1 6 cα 6 b3. This holds for any real cα.

2) In view of (2.5), x1, x2, x3 are all real and x2
1 + x2

2 + x2
3 = 1. This is possible only when

the coordinates λ1, λ2 are real (and not complex conjugated), and λ1 ∈ [b1, b2], λ2 ∈ [b2, b3]. More
precisely, in view of the quadratures (2.7), the coordinates can vary only in subsets of these segments,
for which R(λ1) > 0, R(λ2) > 0. ¤

Notice that if zi, pi are not generic as was assumed above, it is possible that z + cαp ≡ 0 and item
(1) of the Proposition does not hold. This corresponds to the case of particular periodic solutions,
which we do not treat here.
Remark 1. There is a natural conjecture that the fibers of the momentum map M : R6 =
(z, p) −→ R4 = (J1, J2, h1, h2) are singular if and only if the corresponding curve µ2 = −Φ(λ)ψ(λ)
is singular. This happens when either one of the roots cα (or more) coincides with bi or two roots
cα, cβ collide inside the segment [b1, b3].

Then Proposition 1 provides sufficient tools to construct the bifurcation diagram of the
momentum map M, which was first presented in [10] by using different techniques.
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Alternative variables. For our purposes we shall also use another set of phase variables which
depend linearly on z, p. Namely, putting in the family (1.8) successively s = b1, s = b2, s = b3 we
obtain three independent quadratic integrals defining rank 3 quadrics in P6:

(b1 − b2)(z2 + b1p2)2 + (b1 − b3)(z3 + b1p3)2 = F(b1) ,

(b2 − b1)(z1 + b2p1)2 + (b2 − b3)(z3 + b2p3)2 = F(b2) ,

(b3 − b1)(z1 + b3p1)2 + (b3 − b2)(z2 + b3p2)2 = F(b3) .

(2.9)

Then it is natural to introduce new variables

v1 =
√

(b2 − b3)(b1 − b2) (z2 + b1p2) ,

v2 =
√

(b2 − b3)(b3 − b1) (z3 + b1p3) ,

v3 =
√

(b3 − b1)(b1 − b2) (z1 + b2p1) ,

v4 =
√

(b2 − b3)(b3 − b1) (z3 + b2p3) ,

v5 =
√

(b3 − b1)(b1 − b2) (z1 + b3p1) ,

v6 =
√

(b2 − b3)(b1 − b2) (z2 + b3p2) ,

(2.10)

which imply

p1 =
v3 − v5√S√b2 − b3

, p2 =
v1 − v6√S√b3 − b1

, p3 =
v2 − v4√S√b1 − b2

, (2.11)

z1 =
b3v3 − b2v5√S√b2 − b3

, z2 =
b3v1 − b1v6√S√b3 − b1

, z3 =
b2v2 − b1v4√S√b1 − b2

, (2.12)

S = (b1 − b2)(b2 − b3)(b3 − b1).

Then the integrals (2.9) and (p, p) = J1 take the following compact form

v2
1 − v2

2 = ψ(b1) / (b2 − b3) ,

v2
3 − v2

4 = ψ(b2) / (b3 − b1) ,

v2
5 − v2

6 = ψ(b3) / (b1 − b2) ,

(2.13)

(v3 − v5)2

b2 − b3
+

(v1 − v6)2

b3 − b1
+

(v2 − v4)2

b1 − b2
= J1(b1 − b2)(b2 − b3)(b3 − b1) .

The Steklov–Lyapunov systems written in terms of v1, . . . , v6, as well as the integrals (2.13), are
quite similar to those describing the reduction of the integrable geodesic flow on the group SO(4)
with the diagonal metric II to the algebra so(4), which was considered in detail in [11, 12]. In fact,
as was shown by several authors (see e.g., [5]), there is a linear isomorphism connecting the above
systems2). In Section 5 we shall use this property and the results of [12] to obtain theta function
expressions for the sums and differences of vi, which have an especially simple form.

3. A GEOMETRIC BACKGROUND OF KÖTTER’S SOLUTION

Let (x1 : x2 : x3) be homogeneous coordinates in P2 defined up to multiplication by the same
non-zero factor. Consider a line l in P2 = (x1 : x2 : x3) defined by equation

y1x1 + y2x2 + y3x3 = 0.

Following Plücker (see e.g., [13]), the coefficients y1, y2, y3 can be regarded as homogeneous
coordinates of a point in the dual projective space

(
P2

)∗. Now let l1, l2 be two lines in P2 with

the Plücker coordinates (y(1)
1 , y

(1)
2 , y

(1)
3 ), (y(2)

1 , y
(2)
2 , y

(2)
3 ).

2)On the other hand, one of the Steklov–Lyapunov systems on e∗(3) can also be regarded as a limit of the system
on so(4).
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Then, for any constants λ, µ ∈ C not vanishing simultaneously, the linear combination λy
(1)
α +

µy
(2)
α also gives Plücker coordinates of a line lλ,µ ∈ P2. Hence, we arrive at an important geometric

object, a pencil of lines in P2, i.e., the one-parameter family lλ,µ. It is remarkable that all the lines
of a pencil intersect at the same point P ∈ P2. The point P is called the focus of the pencil.

Theorem 1. ([13]) Let lλ,µ be a pencil of lines in P2 defined by Plücker coordinates λy
(1)
α +

µy
(2)
α , (λ : µ) ∈ P. Then the homogeneous coordinates of the focus are

P =
(
y

(1)
2 y

(2)
3 − y

(1)
3 y

(2)
2 : y

(1)
1 y

(2)
3 − y

(1)
3 y

(2)
1 : y

(1)
1 y

(2)
2 − y

(1)
2 y

(2)
1

)
.

Next, consider the family of confocal quadrics in P2

Q(s) =
{

x2
1

s− b1
+

x2
2

s− b2
+

x2
3

s− b3
= 0

}
(3.1)

and a fixed point P = (X1 : X2 : X3). Then one defines the spheroconical coordinates λ1, λ2 of this
point (with respect to Q(s)) as the roots of the equation

X2
1

λ− b1
+

X2
2

λ− b2
+

X2
3

λ− b3
= 0.

Now, going back to the Steklov–Lyapunov systems, we make the following observation.

Proposition 2. Let P be the focus of the pencil of lines in P2 with the Plücker coordinates

z + sp = (z1 + sp1 : z2 + sp2 : z3 + sp3), s ∈ P.

Then the separating variables λ1, λ2 defined by formula (2.2) are spheroconical coordinates of P
with respect to the family of quadrics (3.1).

Proof. According to Theorem 1, the homogeneous coordinates of the focus P are

(z2p3 − z3p2 : z3p1 − z1p3 : z1p2 − z2p1) , (3.2)

hence, the spheroconical coordinates of P with respect to the family (3.1) are precisely the roots
of equation (2.2), i.e., λ1, λ2. ¤

Let a solution z(t), p(t) correspond to constants of motion c1, c2, c3. Then there is also the
following property: for α = 1, 2, 3, the line `α(t) with the Plücker coordinates z(t) + cαp(t) remains
tangent to the quadric Qα = Q(cα). Indeed, setting in the right-hand side of (1.8) s = cα, we obtain

3∑

i=1

(cα − bi)(zi + cαpi)2 = 0 ,

which represents the condition of tangency of the line `α and the quadric Qα.
As a result, the following configuration holds: the three (moving) lines `1, `2, `3 in P2 intersect

at the same (moving) point P and are tangent to the fixed quadrics Q1, Q2, Q3 respectively. An
example of such a configuration is shown in Fig. 1.

This geometric property is reminiscent of the famous Chasles theorem in the Jacobi problem on
geodesics on an ellipsoid Q in R3: the tangent line to a geodesic remains also tangent to a fixed
quadric confocal to Q.

It also follows from the above that a solution z(t), p(t) defines a trajectory of the focus P on
P2 or on S2 = {x2

1 + x2
2 + x2

3 = 1}, and it is natural to suppose that the Steklov–Lyapunov systems
define certain dynamical systems on the sphere. Indeed, some of these systems were studied in [8]
and were shown to be related to a generalization of the classical Neumann system with an additional
quartic potential.

In the sequel our main goal will be to recover the variables z and p as functions of the
spheroconical coordinates of the focus P, that is, to reconstruct the Kötter formula (2.3).

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



380 FEDOROV, BASAK

Fig. 1. A configuration of tangent lines in R2 =
�

x1
x3

, x2
x3

�
for the case b1 < c1 < b2 < c2 < c3 < b3, when the

quadrics Qα are two ellipses and a hyperbola.

Obviously, the solution is not unique: due to the presence of square roots in (2.5), each pair
(λ1, λ2), λk 6= b1, b2, b3 gives 4 points on P2, and for each point P that does not lie on any of the
quadrics Q(cα), there are 23 = 8 different possible configurations of tangent lines `1, `2, `3 (Fig. 1
shows just one of them). Thus, under the above generality conditions, a pair (λ1, λ2) gives 32
different tangent configurations.

Reconstruction of z, p in terms of the separating variables. Let (P2)∗ = (G1 : G2 : G3)
be the dual of P2 = (x1 : x2 : x3) (Gi being the Plücker coordinates of lines in P2). It is convenient
to regard Gi also as Cartesian coordinates in (C3)∗ = (G1, G2, G3). The pencil σ(P) of lines in P2

with the focus (3.2) is represented by a line in (P2)∗ or by plane

π = {(z2p3 − z3p2)G1 + (z3p1 − z1p3)G2 + (z1p2 − z2p1)G3 = 0} ⊂ (C3)∗.

Consider the line σ̄(P) = {z + sp | s ∈ R} ⊂ (C3)∗. Obviously, {z + sp} ⊂ π. Now let us use the
condition for the three lines `1, `2, `3 defined by the points z + c1p, z + c2p, z + c3p in (P2)∗ to be
tangent to the quadrics Q(c1), Q(c2), Q(c3) respectively. Let Vα = (Vα1, Vα2, Vα3) ⊂ π, α = 1, 2, 3
be some vectors in (C3)∗ representing these points, so that `α = {Vα1x1 + Vα2x2 + Vα3x3 = 0}. Then
we have

z + c1p− µ1V1 = 0 , z + c2p− µ2V2 = 0 , z + c3p− µ3V3 = 0 (3.3)

for some indefinite factors µα. This system is equivalent to a homogeneous system of 9 scalar
equations for 9 variables zα, pα, µα, α = 1, 2, 3. Thus the latter can be found up to multiplication
by a common factor. Namely, we obtain

p =
µ

(c1 − c2)(c2 − c3)(c3 − c1)
(c1Σ1V1 + c2Σ2V2 + c3Σ3V3) , (3.4)

z =
µ

(c1 − c2)(c2 − c3)(c3 − c1)
(c2c3Σ1V1 + c1c3Σ2V2 + c1c2Σ3V3) , (3.5)

Σ1 = V22V33 − V32V23 , Σ2 = V32V13 − V33V12 , Σ3 = V12V23 − V13V22 , (3.6)

that is,

z + sp =
µ

(c1 − c2)(c2 − c3)(c3 − c1)

3∑

α=1

(cαs + cβcγ)ΣαVα , (3.7)

µ 6= 0 being an arbitrary factor.
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Now we express the components of Vα in terms of λ1, λ2. Up to an arbitrary nonzero factor,
they can be found from the system of equations

Vα1x1 + Vα2x2 + Vα3x3 = 0 ,
3∑

i=1

(cα − bi)V 2
αi = 0 , α = 1, 2, 3, (3.8)

which represent the conditions for the lines `α to pass through the focus P = (x1 : x2 : x3) and to
touch the quadric Q(cα). In the sequel we apply the normalization x2

1 + x2
2 + x2

3 = 1, which gives
rise to the expressions (2.5).

For P /∈ Q(cα), this system possesses two different solutions, and for P ∈ Q(cα) a single one (the
line touches Q(cα) at the point P). In the latter case we can just put

Vαi = xi / (cα − bi) . (3.9)

Next, it is obvious that under reflection (x1 : x2 : x3) → (−x1 : x2 : x3), a solution (Vα1 : Vα2 :
Vα3) transforms to (−Vα1 : Vα2 : Vα3) (similarly, for the two other reflections). Let us seek solutions
of equations (3.8) in the form of symmetric functions of the complex coordinates λ1, λ2 such that

1) for λ1 = cα or λ2 = cα (i.e., when P ∈ Q(cα)) there is a unique solution proportional to (3.9);

2) if λ1 or λ2 circles around the point λ = cα on the complex plane λ, the two solutions transform
into each other;

3) for λ1 = bi or λ2 = bi (i.e., when xi = 0), Vαi does not vanish.

Using the Jacobi identities

n∑

i=1

ak
i∏

(ai − aj)
=





0, k < n− 1

1, k = n− 1
n∑

i=1
ai, k = n,

(3.10)

one can check that the following expressions satisfy equations (3.8) and the above three conditions:

Vαi = xi

(√
Φ(λ1)(λ2 − cα)

λ1 − bi
+

√
Φ(λ2)(λ1 − cα)

λ2 − bi

)
, xi =

√
(λ1 − bi)(λ2 − bi)√
(bi − bj)(bi − bk)

. (3.11)

Then, using again the identities (3.10), we calculate the scalar products

〈Vα,Vβ〉 ≡ (λ2 − λ1)
(√

(λ2 − cα)(λ2 − cβ)−
√

(λ1 − cα)(λ1 − cβ)
)

(3.12)

and, in particular, 〈Vα,Vα〉 = (λ1 − λ2)2 for α = 1, 2, 3.
Next, substituting (3.11) into (3.6) and applying the symbolic multiplication rule

√
ab
√

ac =
a
√

bc, we find the above factors Σα in the form

Σα = (λ1 − λ2)x1

(√
−(λ1 − cγ)(λ2 − cβ)−

√
−(λ1 − cβ)(λ2 − cγ)

)
, (3.13)

(α, β, γ) = (1, 2, 3) .

Further, putting (3.11), (3.13) into (3.7), we obtain

zi + spi =
µ(λ1 − λ2)x1

(c1 − c2)(c2 − c3)(c3 − c1)
xi ·

3∑

α=1

(cαs + cβcγ)

×
[√

Φ(λ1)ψ(λ2)

λ1−bi

(√
λ1−cγ

λ2−cγ
−

√
λ1−cβ

λ2−cβ

)
+
√

Φ(λ2)ψ(λ1)

λ2−bi

(√
λ2−cγ

λ1−cγ
−

√
λ1−cβ

λ2−cβ

)]
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≡ µ(λ1 − λ2)x1xi

3∑

α=1

(s− cα)
√
−(λ1−cα)(λ2−cα)

(cα−cβ)(cα−cγ)

( √
Φ(λ1)ψ(λ2)

(λ1−bi)(λ2−cα) −
√

Φ(λ2)ψ(λ1)

(λ2−bi)(λ1−cα)

)
, (3.14)

which, up to multiplication by a common factor, coincides with the numerator in Kötter’s
formula (2.3).

To determine the factor µ in (3.7) and in (3.14), we apply the condition 〈p, p〉 = c0 which follows
from (2.1). Then, from (3.4) we get

c0

µ2
=
|c1Σ1V1 + c2Σ2V2 + c3Σ3V3|2
(c1 − c2)2(c2 − c3)2(c3 − c1)2

. (3.15)

Using the expressions (3.12), (3.13), we obtain
∣∣∣∣∣

3∑

α=1

cαΣαVα

∣∣∣∣∣

2

≡
3∑

α=1

[
c2
αΣ2

α〈Vα,Vα〉+ 2cβcγΣβΣγ〈Vβ,Vγ〉
]

= (λ1 − λ2)3x2
1

3∑

α=1

[
c2
α(λ1 − λ2)

(√
−(λ1 − cγ)(λ2 − cβ)−

√
−(λ1 − cβ)(λ2 − cγ)

)2

+ 2cβcγ

(√
−(λ1 − cγ)(λ2 − cβ)−

√
−(λ1 − cβ)(λ2 − cγ)

)

×
(√

−(λ1 − cα)(λ2 − cγ)−
√
−(λ1 − cγ)(λ2 − cα)

)

×
(√

−(λ2 − cβ)(λ2 − cγ)−
√
−(λ1 − cβ)(λ1 − cγ)

)]
.

Simplifying the above expression and again using symbolic multiplication of square roots, one can
verify that it is a full square of a scalar expression:

∣∣∣∣∣
3∑

α=1

cαΣαVα

∣∣∣∣∣

2

= x2
1(λ1 − λ2)4

(
3∑

α=1

(cβ − cγ)
√
−(λ1 − cα)(λ2 − cα)

)2

.

Hence, from (3.15) we find

√
c0

µ
= x1(λ1 − λ2)2

3∑

α=1

√
−(λ1 − cα)(λ2 − cα)
(cα − cβ)(cα − cγ)

.

Combining the latter with (3.14), we finally arrive at (2.3).

Thus, we derived the remarkable Kötter formula by making use of the geometric interpretation
of the variables λ1, λ2. We also note that the expressions (2.3) are symmetric in λ1, λ2.

Remark 2. As noticed above, an unordered generic pair (λ1, λ2) gives 32 different configurations
of tangent lines to the quadrics Q(c1), Q(c2), Q(c3). Since the common factor µ in (3.7) is defined
up to sign flip, we conclude that, according to the formula (2.3), to each generic pair (λ1, λ2) there
correspond 64 different points (z, p) on the invariant manifold (a union of 2-dimensional tori)
defined by the constants c0, c1, c2, c3. This ambiguity corresponds to different signs of the square
roots in the Kötter formula.

In the next section we shall use the expressions (2.3) and the quadratures (2.7) to find explicit
theta-functional solutions for the Steklov–Lyapunov systems.
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4. EXPLICIT THETA-FUNCTION SOLUTION OF THE STEKLOV-LYAPUNOV
SYSTEMS

We first recall some basic formulas describing inversion of the quadratures (2.6), mostly following
the description given in [6, 14, 15]. Consider an even order hyperelliptic Riemann surface of genus
g represented in the standard form

Γ =
{
µ2 = (λ−E1) · · · (λ− E2g+2)

} ∈ C2(λ, µ).

It can be regarded as a 2-fold covering of the complex plane {λ} ramified at E1, . . . , E2g+2. In the
sequel we shall think of Γ as of its compactification obtained by adding two infinite points ∞−,∞+,
at which the coordinate λ equals infinity.

Choose a canonical basis of cycles a1, . . . , ag, b1, . . . , bg on the Γ such that their intersections are

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij , i, j = 1, . . . , g,

γ1 ◦ γ2 denotes the intersection index of the cycles γ1, γ2.

Fig. 2

In the sequel we choose the basis of cycles on Γ as indicated on Fig. 2. The parts of the cycles
on the lower λ-sheet are shown by dashed lines.

Next, let ω̄1, . . . , ω̄g be the conjugated basis of normalized holomorphic differentials on Γ such
that ∮

aj

ω̄i = 2π δij ,  =
√−1.

The g × g matrix of b-periods Bij =
∮
bj

ω̄i is symmetric and has a negative definite real part.

Consider the period lattice Λ0 = {2πZg + BZg} of rank 2g in Cg = (z1, . . . , zg). The complex
torus Jac(Γ) = Cg/Λ0 is called the Jacobi variety (Jacobian) of the curve Γ.

Now consider a generic divisor of points P1 = (λ1, µ1), . . . , Pg = (λg, µg) on it, and the Abel–
Jacobi mapping with a basepoint P0

∫ P1

P0

ω̄ + · · ·+
∫ Pg

P0

ω̄ = z, (4.1)

ω̄ = (ω̄1, . . . , ω̄g)T , z = (z1, . . . , zg)T ∈ Cg.

Under the mapping, functions on SgΓ, i.e., symmetric functions of the coordinates of the points
P1, . . . , Pg are 2g-fold periodic functions of the complex variables z1, . . . , zg with the above period
lattice Λ0.

Explicit expressions of such functions can be obtained by means of theta-functions on the
universal covering Cg = (z1, . . . , zg) of the complex torus. Recall that customary Riemann’s theta-
function θ(z|B) associated with the Riemann matrix B is defined by the series3)

θ(z|B) =
∑

M∈Zg

exp(〈BM, M〉+ 〈M, z〉), (4.2)

3)The expression for θ(z) we use here is different from that chosen in several of books on theta-functions by
multiplication of z by a constant factor.
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〈M, z〉 =
g∑

i=1

Mizi, 〈BM, M〉 =
g∑

i,j=1

BijMiMj .

Equation θ(z|B) = 0 defines a codimension one subvariety Θ ∈ Jac(Γ) (for g > 2 with singularities)
called theta-divisor.

We shall also use theta-functions with characteristics α = (α1, . . . , αg), β = (β1, . . . , βg), αj , βj ∈
R, which are obtained from θ(z|B) by shifting the argument z and multiplying by an exponent4):

θ

[
α

β

]
(z) ≡ θ

[
α1 · · · αg

β1 · · · βg

]
(z) = exp{〈Bα,α〉/2 + 〈z + 2πβ, α〉} θ(z + 2πβ + Bα).

Then for a pair of characteristics one has the following useful relations

θ

[
α + α′

β + β′

]
(z) = exp{(Bα′, α′)/2 + (z + 2πβ + 2πβ′, α′)} θ

[
α

β

]
(z + 2πβ′ + Bα′). (4.3)

All these functions possess the following property of quasi-periodicity:

θ

[
α

β

]
(z + 2πK + BM) = exp(2πε) exp{−〈BM, M〉/2− 〈M, z〉}θ

[
α

β

]
(z), (4.4)

ε = 〈α,K〉 − 〈β,M〉,
An important particular case is represented by theta-functions with half-integer characteristics

∆ =


∆′

∆′′


 , ηi =


η′i

η′′i


 , and ηij = ηi + ηj (mod Z2g/Z2g), ∆′,∆′′, η′i, η

′′
i ∈

1
2
Zg/Zg

such that

2π η′′i + Bη′i =
∫ Ei

E2g+2

ω̄ (mod Λ), (4.5)

2π∆′′ + B∆′ = K (mod Λ),

K ∈ Cg being the vector of the Riemann constants, and Ei briefly denotes the branch point (Ei, 0)
on Γ.

The half-integer characteristic
[

α
β

]
is odd (even) if θ

[
α
β

]
(z) is odd (respectively, even).

For the case g = 2 and for the chosen canonical basis of cycles a1, a2, b1, b2 on Γ the above
characteristics ∆, ηi are

∆ =


1/2 1/2

0 1/2


 , η1 =


1/2 0

0 0


 , η2 =


1/2 0

1/2 0


 ,

η3 =


 0 1/2

1/2 0


 , η4 =


 0 1/2

1/2 1/2


 , η5 =


 0 0

1/2 1/2


 ,

(4.6)

and, by convention, η6 is the zero theta-characteristic. Note also the property

η1 + η3 + η5 = η2 + η4 = ∆ mod Z2g/Z2g. (4.7)

The six functions θ[∆ + ηi](z), i = 1, . . . , 6 are odd, that is, θ[∆ + ηi](0) = 0, whereas the other
10 functions θ[∆ + ηij ](z), i, j 6= 6 are even. In the case g = 2 no one of even theta-functions vanishes
at zero.

4)Here and below we omit B in the theta-functional notation.
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The root functions. To obtain theta-functions solutions to many problems linearized on
Jacobians of hyperelliptic curves, one can apply some remarkable relations between roots of certain
functions on symmetric products of such curves and quotients of theta-functions with half-integer
characteristics, which are historically referred to as root functions. For the case of odd order
hyperelliptic curves such functions were obtained by Weierstrass and Rosenheim [16, 17], see
also [6, 14].

For our purposes it is sufficient to quote only several root functions for the particular case g = 2
and the even-order hyperelliptic curve

Γ = {µ2 = R(λ)}, R(λ) = (λ− E1) · · · (λ− E6).

Let us introduce the polynomial U(λ, s) = (s− λ1)(s− λ2).

Proposition 3. Under the Abel–Jacobi mapping (4.1) with g = 2 and the basepoint P0 = E6 the
following relations hold

U(λ,Ei) ≡ (λ1 − Ei)(λ2 −Ei) = κi
θ2[∆ + ηi](z)

θ[∆](z − q/2) θ[∆](z + q/2)
, (4.8)

q =
∫ ∞+

∞−
ω̄ = 2

∫ ∞+

E6

ω̄, κi = const, i = 1, . . . , 6,

1
λ1 − λ2

( √
R(λ1)

(Ei − λ1)(Ej − λ1)(Es − λ1)
−

√
R(λ2)

(Ei − λ2)(Ej − λ2)(Es − λ2)

)

= κijs
θ[∆ + ηi + ηj + ηs](z) θ[∆](z − q/2) θ[∆](z + q/2)

θ[∆ + ηi](z) θ[∆ + ηj ](z) θ[∆ + ηs](z)
, (4.9)

√
U(λ,Ei)

√
U(λ, Ej)

λ1 − λ2

( √
R(λ1)

(Ei − λ1)(Ej − λ1)(Es − λ1)
−

√
R(λ2)

(Ei − λ2)(Ej − λ2)(Es − λ2)

)

= κ′ijs
θ[∆ + ηi + ηj + ηs](z)

θ[∆ + ηs](z)
, (4.10)

κijs, κ
′
ijs = const, i, j, s = 1, . . . , 6, i 6= j 6= s 6= i,

where, as above, η6 is the zero theta-characteristic and ∞+,∞− are the infinite points of the
compactified curve Γ. The constant factors κi, κijs, κ

′
ijs depend on the moduli of Γ only.

Note that various expressions of symmetric functions of the λ, µ-coordinates on an even
hyperelliptic curve were obtained in [18] on the basis of the Klein–Weierstrass realization of Abelian
functions outlined in [14] and [19].

Sketch of proof of Proposition 3. The left- and right-hand sides of (4.8) are meromorphic functions
on Jac(Γ), which have the same zeros and poles with the same multiplicity. This implies that their
quotient is an analytic function on a compact complex manifold without poles and therefore a
constant.

The root functions (4.9), (4.10) can be deduced from the corresponding root functions for the
case of odd-order hyperelliptic curve, by making a fractionally-linear transformation of λ that sends
the Weierstrass point E2g+2 on Γ to infinity. ¤

The constants κi, κijs, κ
′
ijs can be calculated explicitly in terms of the coordinates E1, . . . , E6

and theta-constants by equating λ1, λ2 to certain Ei and the argument z to the corresponding
half-period in Jac(Γ) (see, e.g., [14]).
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Explicit solution. Now we are able to write explicit solution for the Steklov–Lyapunov
systems by comparing the root functions (4.8), (4.10) with the Kötter expression (2.3).

Namely, let Γ =
{
µ2 = Φ (λ) ψ (λ)

}
, where the polynomials Φ and ψ are defined in (2.4), and

identify (without ordering) the sets

{E1, E2, E3, E4, E5, E6} = {b1, b2, b3, c1, c2, c3}.
By ηbi

, ηcα we denote the half-integer characteristics corresponding to the branch points
(bi, 0), (cα, 0) respectively, according to (4.5).

Theorem 2. For fixed constants of motion c1, c2, c3 the variables z, p can be expressed in terms of
theta-functions of the curve Γ in a such a way that for any s ∈ C

zi + spi =

∑3
α=1 kiα (s− cα) θ

[
∆ + ηcβ

+ ηcγ + ηbi

]
(z)∑3

α=1 k0α θ[∆ + ηcα ](z)
, (α, β, γ) = (1, 2, 3), (4.11)

where kiα, k0α are certain constants depending on the moduli of Γ only. The components of the
argument z are the following linear functions of t:

z1 = C11δ1t + C12δ2t + z10, z2 = C21δ1t + C22δ2t + z20, z10, z20 = const, C = A−1, (4.12)

A being the matrix of a-periods of the differentials dλ/µ, λ dλ/µ on Γ.

Thus, we have recovered the theta-function solution of the systems obtained by Kötter in [4].
The proof of the theorem will be given in the end of the section.

Remark 3. In view of the definition of the theta-function with characteristics, under the argument
shift z → z −K the special characteristic ∆ is killed and the solutions (4.11) are simplified to

zi + spi =

∑3
α=1 k̄iα(s− cα)θ[ηcβ

+ ηcγ + ηbi ](z)∑3
α=1 k̄0α θ[ηcα ](z)

, (α, β, γ) = (1, 2, 3), (4.13)

where the constants k̄iα, k̄0α coincide with kiα, k0α in (4.11) up to multiplication by a quartic
root of unity. In each specific case of relative position of bi, cα, one can also simplify the sums of
characteristics in the numerator of (4.13) by using the relations (4.7).

Remark 4 (Where the solutions are meromorphic). In view of the quasi-periodicity prop-
erty (4.4), when the complex argument z changes by a period vector in Jac(Γ), the theta-functions
in (4.11), (4.13) are multiplied by generally different factors. Hence, the variables zi, pi cannot be
single valued on the Jacobian variety Γ, and a simple accounting shows that they are meromorphic
on J̃ac(Γ), the 16-fold unramified covering of it, obtained by doubling of all the four period vectors
in Jac(Γ). This implies that J̃ac(Γ) is also a principally polarized Abelian variety isomorphic to
Jac(Γ). As it follows from the structure of (4.11), all zi, pi have a common set of simple poles (the
pole divisor), which we denote D ⊂ J̃ac(Γ).

The degree of the covering J̃ac(Γ) → Jac(Γ) can also be found in another way: According to
Remark 2, each generic pair (λ1, λ2) corresponds to 64 different points (z, p) on the invariant
manifold J̃ac(Γ). On the other hand, the same pair gives rise to 4 different points in Jac(Γ) defined
by the divisors {(λ1,±

√
R6(λ1) ), (λ2,±

√
R6(λ2) ) }. Hence a generic point of Jac(Γ) corresponds

to 64/4=16 points in J̃ac(Γ).

Proof of Theorem 2. The summands in the numerator of the Kötter solution (2.3), when divided
by λ1 − λ2, can be written as

s− cα

(cα − cβ)(cα − cγ)

√
−(λ1 − cα)(λ2 − cα)

λ1 − λ2
·
( √

Φ(λ1)ψ(λ2)
(λ1 − bi)(λ2 − cα)

−
√

Φ(λ2)ψ(λ1)
(λ2 − bi)(λ1 − cα)

)

=
s− cα

(cα − cβ)(cα − cγ)

√−(λ1 − cβ)(λ2 − cβ)
√−(λ1 − cγ)(λ2 − cγ)

λ1 − λ2
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×
(

µ1

(λ1 − bi)(λ1 − cβ)(λ1 − cγ)
− µ2

(λ2 − bi)(λ2 − cβ)(λ2 − cγ)

)
,

µ1 =
√

Φ(λ1)ψ(λ1), µ2 =
√

Φ(λ2)ψ(λ2) .

The right-hand sides have the form of the root function (4.10). Hence, up to a constant factor, they
are equal to

(s− cα)
θ
[
∆ + ηcβ

+ ηcγ + ηbi

]
(z)

θ[∆ + ηbi
](z)

.

Next, in view of (4.8), we obtain

xi = κi
θ[∆ + ηbi ](z)√

θ[∆](z − q/2) θ[∆](z + q/2)
,

√
−(λ1 − cα)(λ2 − cα) = κα

θ[∆ + ηcα ](z)√
θ[∆](z − q/2) θ[∆](z + q/2)

, (4.14)

κi,κα = const,
3∑

α=1

√
−(λ1 − cα)(λ2 − cα)
(cα − cβ)(cα − cγ)

=
3∑

α=1

k0αθ[∆ + ηcα ](z)√
θ[∆](z − q/2)θ[∆](z + q/2)

. (4.15)

Combining the above expressions, we rewrite the right-hand side of (2.3) in the form

√
c0

θ[∆ + ηbi ](z)√
θ [∆] (z − q/2)θ[∆](z + q/2)

∑3
α=1

kiα (s− cα) θ
[
∆ + ηcβ

+ ηcγ + ηbi

]
(z)

θ [∆ + ηbi ] (z)
∑3

α=1

k0αθ[∆ + ηcα ](z)√
θ[∆](z − q/2)θ[∆](z + q/2)

,

which, after simplifications, gives (4.11).
Expressions (4.12) follow from the relation (ω̄1, ω̄2)T = C(dλ/µ, λ dλ/µ), where, as above, ω̄j are

the normalized holomorphic differentials on Γ, which implies (ω̄1, ω̄2)T = C(u1, u2)T , where u1, u2

are the right-hand sides of the quadratures (2.8). ¤

5. THE DIVISOR OF POLES AND THE ALTERNATIVE FORM
OF THE THETA-FUNCTION SOLUTION

The nice form of the Kötter solution (4.11) itself tells us a little about the structure of zeros and
poles of zi, pi on the 2-dimensional Abelian variety J̃ac(Γ). It appears however that recent studies
allow to give a quite detailed description of the set of common poles of these variables, called the
divisor of poles D. Obviously, D = {∑3

α=1 k0αθ[∆ + ηcα ](z) = 0} ⊂ J̃ac(Γ).

For each α = 1, 2, 3, the zeros of θ[∆ + ηcα ](z) in Jac(Γ) form a translate Θα of the theta-divisor
Θ by the half-period 2πη′′cα

+ 2Bη′cα
.

Each translate passes via six half-periods, and Θ1,Θ2,Θ3 have a unique common intersection in
the origin (neutral point) O ∈ Jac(Γ). This is depicted in Fig. 3a, where Θα are shown as circles
and the half-periods in Jac(Γ) as black dots. Hence, at z = O the denominator of (4.11) vanishes.
Then, under the covering π : J̃ac(Γ) → Jac(Γ), the preimage of O consists of all the 16 half-periods
in J̃ac(Γ), which therefore belong to the divisor D.

Note that, according to Remark 4, translations in Jac(Γ) by a complete periods V correspond
to translation in J̃ac(Γ) by the half-periods V/2.

Now assume, as above, that b1 < b2 < b3 and that (b3, 0) = E6 ∈ Γ is the basepoint of the Abel
map (4.1) with g = 2. Further information about D is given by
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Proposition 4. The divisor D ⊂ J̃ac(Γ) is invariant under translations by the half-periods gener-
ated by

V1/2 = 2πη′′b1 + 2Bη′b1 , V2/2 = 2πη′′b2 + 2Bη′b2 ,


η′bi

η′′bi


 = ηbi

. (5.1)

Proof. Choose a generic point q ∈ D and let z∗ be its projection onto Jac(Γ), which gives

f(z∗) =
3∑

α=1

k0α θ[∆ + ηcα ](z∗) = 0.

In view of the quasi-periodic property (4.4) and the half-integer characteristics (4.6), under the
translations z∗ → z∗ + MV1 + NV2, M,N ∈ Z all the functions θ[∆ + ηcα ](z∗) are multiplied by
the same factor and therefore f(z∗ + MV1 + NV2) = 0. Hence the points z∗/2 + MV1/2 + NV2/2
in J̃ac(Γ) also belong to D.

One can also show that this does not hold for the translations by the other half-periods. ¤

Next, analytically, we have

Theorem 3. The denominator of the solution (4.11) admits the factorization

3∑

α=1

k0αθ[∆ + ηcα ](z) = exp(χz + ζ) · θ[∆](z/2) θ[∆ + ηb1 ]
(z

2

)
θ[∆ + ηb2 ]

(z

2

)
θ[∆ + ηb1 + ηb2 ]

(z

2

)

(5.2)
with certain constants χ, ζ.

The proof of the theorem is based on the fourth Riemann identity (see, e.g., [14, 15]) and the
theta-formulas of Frobenius and Thomae (see, e.g., [20, 21]). Technically, it is quite tedious and for
this reason we move it into Appendix.

Now note that each of the four sets
D0 = {θ[∆](z/2 |B) = 0}, D1 = {θ[∆ + ηb1 ](z/2 |B) = 0},

D2 = {θ[∆ + ηb2 ](z/2 |B) = 0}, D3 = {θ[∆ + ηb1 + ηb2 ](z/2 |B) = 0}
describes a translate of the theta-divisor, the genus 2 curve Γ embedded into J̃ac(Γ). Then, Theorem
3 says that the pole divisor D is a union of these translates, which are obtained from each other
by shifts by the half-periods V1/2,V2/2, and V3/2 = −V1/2− V2/2 in J̃ac(Γ). The union passes
through all the 16 half-periods in J̃ac(Γ). The action of the translations by V1/2,V2/2,V3/2 in
J̃ac(Γ) on the components (D0,D1,D2,D3) gives respectively

(D1,D0,D3,D2), (D2,D3,D0,D1), (D3,D2,D1,D0). (5.3)

All these properties are in complete correspondence with our previous observations about the
divisor D.

Also, as was shown in [12] by applying the Kovalevskaya–Painlevé analysis, the pole divisor with
the same structure appears in the integrable flow on the algebra so(4) with the diagonal metric
II, already mentioned in Introduction. This result of [12] about D equally holds for our Steklov–
Lyapunov systems due to a linear isomorphism between them and the integrable flow on so(4).

The intersection pattern for D is shown in Fig. 3b, which we borrowed from [12]. Here the circles
represent the translates Dj and the 16 black dots depict the half-periods. Under the projection
π : J̃ac(Γ) → Jac(Γ) all the above half-periods are mapped onto O ∈ Jac(Γ).
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(a) (b)

Fig. 3. (a) Configuration of the translates Θα in Jac(Γ). (b) The 4 translates of Γ in gJac(Γ) forming the pole
divisor D.

Solutions for the variables vk. Let us choose the origin of J̃ac(Γ) at one of the
four triple intersections of Dj and denote for brevity the four theta-functions in (5.2) as
θ0(z/2), θ1(z/2), θ2(z/2), θ3(z/2) respectively.

Now we show that the theta-function solutions for the new phase variables v1, . . . , v6 introduced
in (2.10) have a rather specific and compact form. Namely, as it follows from expressions (4.11) and
(2.10), the functions v1 + v2 and v1 − v2 may have only simple poles at most along the components
of the divisor D. On the other hand, the form of the integrals (2.13) imply the following remarkable
property: the poles (the zeros) of v1 + v2 are the zeros (resp. the poles) of v1 − v2. Since both
functions are meromorphic on J̃ac(Γ), none of then can have simple poles along only one component
Dj . This necessarily implies that v1 + v2 has poles along two certain components Dj1 ,Dj2 and zeros
along the other two components Dj3 ,Dj4 , and vice versa for v1 − v2.

The same observations hold for the pairs (v3 + v4, v3 − v4) and (v5 + v6, v5 − v6). Note also that
functions from different pairs cannot have the same poles, since in that case they would also have
the same zeros and their quotient would be constant, which is not true.

Now let us fix the origin of J̃ac(Γ) at one specific triple intersection of Dj such that the 3
functions v1 + v2, v3 + v4, v5 + v6 have a common pole along the component D0. In this case the
following proposition holds.

Proposition 5. The theta-function solutions for the phase variables vk have the form

v1 + v2 = χ1
θ1(z/2) θ2(z/2)
θ0(z/2) θ3(z/2)

, v1 − v2 = χ2
θ0(z/2) θ3(z/2)
θ1(z/2) θ2(z/2)

,

v3 + v4 = χ3
θ2(z/2) θ3(z/2)
θ0(z/2) θ1(z/2)

, v3 − v4 = χ4
θ0(z/2) θ1(z/2)
θ2(z/2) θ3(z/2)

, (5.4)

v5 + v6 = χ5
θ1(z/2) θ3(z/2)
θ0(z/2) θ2(z/2)

, v5 − v6 = χ6
θ0(z/2) θ2(z/2)
θ1(z/2) θ3(z/2)

,

χ1, χ3, χ5 = const, χ2 =
ψ(b1)

(b2 − b3)χ1
, χ4 =

ψ(b2)
(b3 − b1)χ3

, χ6 =
ψ(b3)

(b1 − b2)χ5
, (5.5)

where z = (z1, z2) depend on t according to (4.12).

Given the solutions (5.4), one can then reconstruct solutions for the original variables z, p by
using the relations (2.11).
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Proof of Proposition 5. First, note that the functions (5.4) have the same structure of zeros and
poles, as prescribed above. Next, as follows from the Kötter formula (2.3) and theta-solutions (4.11),
the translations by the period vectors V1,V2,V1 + V2 in Jac(Γ) generate the involutions

σ1 : (z1, p1, z2, p2, z3, p3) 7→ (z1, p1,−z2,−p2, z3, p3),
σ2 : (z1, p1, z2, p2, z3, p3) 7→ (−z1,−p1,−z2,−p2, z3, p3),

σ3 = σ2 ◦ σ1 : (z1, p1, z2, p2, z3, p3) 7→ (−z1,−p1, z2, p2, z3, p3),

which, in view of (2.10), gives rise to the transformations

σ1 : v2 + v1 ←→ v2 − v1, v4 ± v3 ←→ v4 ± v3, v5 + v6 ←→ v5 − v6,

σ2 : v2 + v1 ←→ v2 − v1, v4 + v3 ←→ v4 − v3, v5 ± v6 ←→ −(v5 ± v6)
σ3 : v2 ± v1 ←→ v2 ± v1, v4 + v3 ←→ v4 − v3, v6 + v5 ←→ v6 − v5.

Now observe that the relations (5.4) are invariant under the action of σi on the left-hand sides and
the corresponding transformation of θ0(z/2), . . . , θ3(z/2) under the action (5.3). Moreover, one can
check that the left- and right-hand sides of (5.4) are multiplied by the same factors under the shift
of z by any period vector of Jac(Γ). This proves (5.4).

The relations (5.5) between the constants χi follow from the first 3 integrals in (2.13). ¤

The constants χ1, χ2, χ3 can be calculated explicitly in terms of bi, cα and theta-constants of Γ.
As follows from the solutions (5.4), the product (v1 + v2)(v3 + v4) and the other two similar

products have double poles along D0 only:

(v1 + v2)(v3 + v4) = ς2
θ2
2(z/2)

θ2
0(z/2)

,

(v3 + v4)(v5 + v6) = ς3
θ2
3(z/2)

θ2
0(z/2)

, (v1 + v2)(v5 + v6) = ς1
θ2
1(z/2)

θ2
0(z/2)

,

ς1, ς2, ς3 = const.

Analogs of some of these expressions were obtained in paper [22] in relation with separation
of variables for the integrable system on so(4) with the diagonal metric II. Due to the linear
isomorphism between this system and the Steklov–Lyapunov systems, the separating variables of
[22] can also be regarded as new separating variables for (1.4), (1.5).

6. CONCLUSIVE REMARKS AND OUTLOOK

In this paper we gave a justification of the separation of variables and the theta-function solution
of the Steklov–Lyapunov systems obtained by F. Kötter [4]. Using some of the results of [11, 12, 22],
we also presented such solutions for an alternative set of variables, which have a much simpler form.

On the other hand, there exist several nontrivial integrable generalizations of the systems: one
of them was discovered by V. Rubanovsky [23] and describes a motion of a gyrostat in an ideal
fluid under the action of the Archimedes torque, which arises when the barycenter of the gyrostat
does not coincide with its volume center. In this generalization the Hamiltonian of the Kirchhoff
equations, apart form quadratic terms, contains linear (gyroscopic) terms in K, p. Under the change
of variables (1.3), the gyroscopic generalizations of the systems (1.4), (1.5) take the form

ż = z × (Bz − g)−Bp× (Bz − g) , ṗ = p× (Bz − g)

and, respectively,

ż = p× (Bz − g) , ṗ = p× (z −Bp) ,

where g = (g1, g2, g3)T is an arbitrary constant vector related to the angular momentum of the
rotor inside the gyrostat.
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These systems has the same trivial integrals J1, J2 given in (1.9), and the following non-
homogeneous extensions of the Hamiltonians H1,H2:

H̃1 =
1
2
〈z,Bz〉 − 〈z, g〉, H̃2 =

1
2
〈z, z〉 − 〈Bz, p〉+ 〈p, g〉 .

As was shown in [24], these systems admit the following generalizations of the Kötter Lax pair (1.6)
with an elliptic spectral parameter:

L̇(s) = [L(s), A(s) ] , L(s), A(s) ∈ so(3), s ∈ C , (6.1)

L(s)αβ = εαβγ

(√
s− bγ (zγ + spγ) + gγ/

√
s− bγ

)
, (α, β, γ) = (1, 2, 3),

A(s)αβ = εαβγ
1
s

√
(s− bα)(s− bβ) (bγzγ − gγ) , resp. A(s)αβ = εαβγ

√
(s− bα)(s− bβ) pγ .

One can observe that the above L-matrix can be written as follows
L(s) =

√
Φ(s) S−1P(s)S−1, Φ(s) = (s− b1)(s− b2)(s− b3),

S = diag(
√

s− b1,
√

s− b2,
√

s− b3),

P(s) =




0 −(z3 + sp3)− g3

s− a3
z2 + sp2 +

g2

s− a2

z3 + sp3 +
g3

s− a3
0 −(z1 + sp1)− g1

s− a1

−(z2 + sp2)− g2

s− a2
z1 + sp1 +

g1

s− a1
0




.

Then, multiplying the Lax equation (6.1) from the left by S−1 and from the right by S, we get
d

dt

(
S−2P (s)

)
=

[
S−2P (s),M(s)

]
(6.2)

with an appropriate matrix M(s) depending on the choice of the Hamiltonian. Equation (6.2) gives
a Lax representation of the Rubanovsky systems with a rational spectral parameter and the 3× 3
(non-skew-symmetric) Lax matrix

L(s) = S−2P(s) =




0 −(z3+sp3)(s−a3)+g3

(s−a1)(s−a3)
(z2+sp2)(s−a2)+g2

(s−a1)(s−a2)
(z3+sp3)(s−a3)+g3

(s−a2)(s−a3)
0 −(z1+sp1)(s−a1)+g1

(s−a2)(s−a1)

−(z2+sp2)(s−a2)+g2

(s−a2)(s−a3)
(z1+sp1)(s−a1)+g1

(s−a1)(s−a3)
0




. (6.3)

The characteristic equation |L(s)Φ(s)− µI| = 0 has the form

µ(µ2 − F6(s)) = 0, F6(s) = Φ(s)

(
J1s

3 + J2s
2 + 2H̃2s− 2H̃1 +

3∑

α=1

gα

s− bα

)
.

Since F6(s) is a polynomial of degree 6, the spectral curve is reduced to hyperelliptic one,
Γ̃ = {µ2 = F6(s)}, which, for g = 0, coincides with the Kötter curve µ2 = Φ(s)ψ(s) in (2.7), as
expected. Note that for g 6= 0, the numbers s = bi are no more s-coordinates of the Weierstrass
(branch) points on Γ̃. Nevertheless, like in the case of the Steklov–Lyapunov systems, generic
complex invariant manifolds of the Rubanovsky systems are affine parts of two-dimensional Jacobian
varieties of Γ̃ or covering of these varieties.

Next, following the methods developed in many publications (see, e.g., [25, 26]), the polynomial
Lax matrix Φ(s)L(s) allows to construct Darboux coordinates s1, s2 (separating variables), and the
conjugated momenta µ1, µ2 on each 4-dimensional phase space obtained by fixing values of J1, J2.
Namely let K(s, µ) be the adjoint matrix of Φ(s)L(s)− µI and v be an eigenvector of the leading
matrix coefficient of Φ(s)L(s). Then the conditions

K(s, µ)v = 0 (6.4)
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define precicely 2 finite points (s1, µ1), (s2, µ2) on Γ̃ that give the separating variables.
Note that, in view of (6.3), one can just take v = p. Then in the Steklov–Lyapunov case (g = 0),

from the set of equations (6.4) one can eliminate the coordinate µ and obtain the following equation
for s

(s− b2)(s− b3)(z2p3 − z3p2)2 + (s− b1)(s− b3)(z3p1 − z1p3)2 + (s− b1)(s− b2)(z1p2 − z2p1)2 = 0,

which is equivalent to equation (2.2) for the separating variables λ1, λ2 of Kötter.

A detailed description of separation of variables and an explicit theta-function solution for the
Rubanovsky gyroscopic generalizations will be given in a forthcoming publication.

APPENDIX. PROOF OF THEOREM 3
The proof is based on the fourth Riemann identity (see, e.g., [14, 15])

θ(y1) θ(y2) θ(y3) θ(y4) =
1
4

∑
θ

[
α

β

]
(w1) θ

[
α

β

]
(w2)θ

[
α

β

]
(w3) θ

[
α

β

]
(w4), (6.5)

where the summation is over all the half-period characteristics
[

α
β

]
and the arguments yj , wj ∈ Cg

(in our case g = 2) are related as follows

(w1 w2 w3 w4) = (y1 y2 y3 y4) T, T =
1
2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




.

Now note that, up to multiplication by a simple exponent of z, the theta-product in (5.2) can
be written as

θ(z′/2) θ(z′/2 + V1) θ(z′/2 + V2) θ(z′/2 + V1 + V2), (6.6)

where z′ = z + 2K, i.e., the translation by the complete period in Jac(Γ), and V1,2 are defined by
(5.1). In view of the identity (6.5), the product (6.6) gives the sum of 16 theta-products, and in
each product the variable z′ enters only once:

1
4

∑

2(α,β)∈(Z2)4

θ

[
α

β

](
z′ +

V1 + V2

2

)
θ

[
α

β

](
V1

2

)
θ

[
α

β

](
V2

2

)
θ

[
α

β

]
(0) ,

Next, in view of the property (4.3), this sum can be written as product of an exponent of z and
the sum

1
4

∑

2(α,β)∈(Z2)4

θ

[
α + α′

β + β′

](
z′

)
θ

[
α + α′

β + β′

](
−V1

2

)
θ

[
α + α′

β + β′

](
−V2

2

)
θ

[
α + α′

β + β′

](
−V1 + V2

2

)
,

2π β′ + Bα′ =
V1 + V2

2
,

which, after the corresponding re-indexation of α, β, reads
1
4

∑

2(α,β)∈(Z2)4

εα,β θ

[
α

β

](
z′

)
θ

[
α

β

](
V1

2

)
θ

[
α

β

](
V2

2

)
θ

[
α

β

](
V1 + V2

2

)

= −1
4

6∑

i=1

θ[∆ + ηi](z′) θ[∆ + ηi]
(

V1

2

)
θ[∆ + ηi]

(
V2

2

)
θ[∆ + ηi]

(
V1 + V2

2

)

+
1
4

∑

16i<j65

θ[∆ + ηij ](z′) θ[∆ + ηij ]
(

V1

2

)
θ[∆ + ηij ]

(
V2

2

)
θ[∆ + ηij ]

(
V1 + V2

2

)
, (6.7)
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where εα,β = −1 if θ[α β](z) is odd and +1 otherwise, and, as above, ηij = ηj + ηj mod Z2/Z2.
In fact, most of the theta-constants in (6.7) are proportional to θ[∆ + ηi](0), i = 1, . . . , 6 and

therefore vanish. Namely, in the first sum in the right-hand side of (6.7) all the theta-constants
are non-zero if and only if ηi is different from ηb1 , ηb2 , and η6 = 0. In the second sum, if ηi or ηj

coincides with ηb1 or ηb2 , then either the first or the second theta-constant is zero. Otherwise, if
{ηi, ηj} ∩ {ηb1 , ηb2} = ∅, then, in view of the relations (4.7), the third theta-constant is proportional
to θ[∆ + ηk](0), for a certain k ∈ {1, . . . , 6} and, therefore, equals zero.

Since for the case of genus 2 there are no even theta-functions which vanish for zero value of the
argument (see [14]), one concludes that the above sum contains only 3 non-zero theta-products:

∑

ηi 6=ηb1
,ηb2

,0

θ[∆ + ηi](z′) θ[∆ + ηi]
(

V1

2

)
θ[∆ + ηi]

(
V2

2

)
θ[∆ + ηi]

(
V1 + V2

2

)
. (6.8)

Now, assume (for the moment) the following ordering of the Weierstrass points:

E1 = b1, E2 = c1, E3 = b2, E4 = c2, E5 = c3, E6 = b3, (6.9)

Then, in view of (4.3) and the identities (4.7), the sum (6.8), up to a constant common factor, can
be written as

ε1θ[∆ + ηc1 ](z
′) θ[ηb1 + ηc2 ](0) θ[ηb2 + ηc2 ](0) θ[ηc1 + ηc3 ](0)

+ε2θ[∆ + ηc2 ](z
′) θ[ηb1 + ηc1 ](0) θ[ηb2 + ηc1 ](0) θ[ηc2 + ηc3 ](0)

+ε3θ[∆ + ηc3 ](z
′) θ[ηb2 ](0) θ[ηb1 ](0) θ[0](0) , (6.10)

where now εα are certain quartic roots of 1.
Now we are going to show that the denominator in the theta-function solution (4.11) coincides

with (6.10) up to multiplication by an exponent of z′.
Namely, in view of (4.15), the sum

∑3
α=1 k0αθ[∆ + ηcα ](z) can be written as a product of

const ·
√

θ[∆](z − q/2)θ[∆](z + q/2)

and the expression

G =

√
−(λ1 − c1)(λ2 − c1)√
(c1 − c2)(c1 − c2)

√
c2 − c3

c1 − c2
+

√
−(λ1 − c2)(λ2 − c2)√
(c2 − c1)(c2 − c3)

√
c3 − c1

c1 − c2
+

√
−(λ1 − c3)(λ2 − c3)√
(c3 − c1)(c3 − c2)

(there is no second radical in the third summand!). Now, make the projective transformation
λ → ν = λ/(λ−E6) = λ/(λ− b3), which sends the Weierstrass points cα, b1, b2, b3 on Γ to c̄α, b̄1, b̄2,
and ∞. The two infinite points over λ = ∞ are mapped to 2 points over ν1. This change leaves the
sum G almost invariant: it becomes the product of const/

√
(ν1 − 1)(ν2 − 1) and the sum

Ḡ =

√
−(ν1 − c̄1)(ν2 − c̄1)√
(c̄1 − c̄2)(c̄1 − c̄2)

√
c̄2 − c̄3

c̄1 − c̄2
+

√
−(ν1 − c̄2)(ν2 − c̄2)√
(c̄2 − c̄1)(c̄2 − c̄3)

√
c̄3 − c̄1

c̄1 − c̄2
+

√
−(ν1 − c̄3)(ν2 − c̄3)√
(c̄3 − c̄1)(c̄3 − c̄2)

.

Under the Abel map (4.1), the radicals in Ḡ can be expressed completely in terms of the theta-
functions and theta-constants of Γ: Applying the theta-formulae of Frobenius and Thomae for the
case when one of the Weierstrass points of the curve lies at infinity (see, e.g., [20, 21]) and keeping
the ordering (6.9), we have

√
(ν1 − c̄α)(ν2 − c̄α)√
(c̄α − c̄β)(c̄α − c̄γ)

= ±%1

θ[∆ + ηcβ
+ ηc̄γ ](0)

θ[∆ + ηc1 + ηc2 + ηc3 ](0)
θ[∆ + ηcα ](z)

θ[∆](z)
, (α, β, γ) = (1, 2, 3),

√
c̄2 − c̄3

c̄1 − c̄2
= %2

θ[ηc2 + ηb2 ](0) θ[ηc2 + ηb1 ](0)
θ[ηc1 + ηc2 + ηc3 + ηb2 ](0) θ[ηc1 + ηc2 + ηc3 + ηb1 ](0)

, (6.11)
√

c̄3 − c̄1

c̄1 − c̄2
= %3

θ[ηc1 + ηb1 ](0) θ[ηc1 + ηb2 ](0)
θ[ηc1 + ηc2 + ηc3 + ηb2 ](0) θ[ηc1 + ηc2 + ηc3 + ηb1 ](0)

,
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where ηcα , ηb1 , ηb2 are the same as above and %i the appropriate quartic roots of 1. Lastly, we have

√
(ν1 − 1)(ν2 − 1) = const

√
θ [∆] (z − q/2) θ[∆](z + q/2)

θ[∆](z)
, (6.12)

where q is the same as in (4.8), or, in terms of the new coordinate ν on Γ, q/2 =
∫ (1,0)
∞ ω̄.

Combining the above expressions, we see that in the quotient G = Ḡ/
√

(ν1 − 1)(ν2 − 1) the
term θ[∆](z) is canceled and in the product G

√
θ[∆](z − q/2)θ[∆](z + q/2) the square root (6.12)

is canceled. Now, simplifying the theta-characteristics in (6.11) by using (4.7) and ignoring common
constant factors, we eventually find

const
3∑

α=1

k0αθ[∆ + ηcα ](z)

= ε̄1θ[∆ + ηc1 ](z) θ[ηc1 + ηc3 ](0) θ[ηc2 + ηb1 ](0) θ[ηc2 + ηb2 ](0)
+ ε̄2θ[∆ + ηc2 ](z) θ[ηc2 + ηc3 ](0) θ[ηc1 + ηb1 ](0) θ[ηc1 + ηb2 ](0)
+ ε̄3θ[∆ + ηc3 ](z) θ[ηb2 ](0) θ[ηb1 ](0) θ(0), (6.13)

ε̄i also being certain quartic roots of 1. The latter expression has the same structure as the sum
(6.10). Lastly, note that under the shift of z by an appropriate complete period in Jac(Γ) the roots
ε̄i can be made proportional to any combination of roots εα in (6.10). (This corresponds to choosing
an appropriate origin in J̃ac(Γ).) Hence, we proved the theorem for the chosen ordering (6.9).

To complete the proof for the other possible orderings of bi, cα it remains to modify the theta-
characteristics in (6.10), (6.13). ¤
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22. Bueken, P. and Vanhaecke, P., The Moduli Problem for Integrable Systems: The Example of a Geodesic
Flow on SO(4), J. London Math. Soc. (2), 2000, vol. 62, no. 2, pp. 357–369.

23. Rubanovsky, V.N., Integrable Cases in the Problem of a Heavy Solid Moving in a Fluid, Dokl. Akad.
Nauk SSSR, 1968, vol. 180, pp. 556–559 [Soviet Phys. Dokl., 1968, vol. 13, pp. 395–397].

24. Fedorov, Yu.N., Integrable Systems, Poisson Pencils, and Hyperelliptic Lax Pairs, Regul. Chaotic Dyn.,
2000, vol. 5, no. 2, pp. 171–180.

25. Krichiver, I. M., Algebraic Curves and Commuting Matricial Differential Operators, Funktsional. Anal.
Prilozh., 1976, vol. 10, no. 2, pp. 75-–76 [Funct. Anal. Appl., 1976, vol. 10, no. 2, pp. 144–146];
Krichiver, I.M., Methods of Algebraic Geometry in the Theory of Non-Linear Equations, Uspehi Mat.
Nauk, 1977, vol. 32, no. 6(198), pp. 183–208 [Russ. Math. Surv., 1977, vol. 32, no. 6, pp. 185–213].

26. Adams, M.R., Harnad, J., and Hurtubise, J., Darboux Coordinates and Liouville–Arnold Integration in
Loop Algebras, Comm. Math. Phys., 1993, vol. 155, no. 2, pp. 385–413.

27. Bolsinov, A.V. and Fedorov, Yu.N., Multidimensional Integrable Generalizations of the Steklov–
Liapunov Systems, Vestnik Moskov. Univ., Ser. 1, Math. Mekh., 1992, no. 6, pp. 53–56 (Russian).

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



ISSN 1560-3547, Regular and Chaotic Dynamics, 2011, Vol. 16, Nos. 3–4, pp. 396–414. c© Pleiades Publishing, Ltd., 2011.

Integrable Systems on the Sphere Associated
with Genus Three Algebraic Curves

Andrey V. Tsiganov* and Vitaly A. Khudobakhshov**

St.Petersburg State University, St.Petersburg, Russia
Received March 14, 2011; accepted April 20, 2011

Abstract—New variables of separation for few integrable systems on the two-dimensional
sphere with higher order integrals of motion are considered in detail. We explicitly describe
canonical transformations of initial physical variables to the variables of separation and
vice versa, calculate the corresponding quadratures and discuss some possible integrable
deformations of initial systems.

MSC2010 numbers: 70H20; 70H06; 37K10

DOI: 10.1134/S1560354711030117

Keywords: integrable systems, separation of variables, Abel equations

1. INTRODUCTION

A fundamental requirement for new developments in mechanics is to unravel the geometry that
underlies different dynamical systems, especially mechanical systems. There are several reasons why
this geometrical understanding is fundamental. First, it is a key tool for reduction by symmetries
and for the geometric characterization of the integrability and stability theories. Second, the
effective use of numerical techniques is often based on the comprehension of the fundamental
structures appearing in the dynamics of mechanical and control systems. In fact, geometric analysis
of such systems reveals what they have in common and indicates the most suitable strategy to obtain
and to analyze their solutions.

Already in 19th century Euler and Lagrange established a mathematically satisfactory founda-
tion of Newtonian mechanics. In [1] Jacobi combined their ideas with the Hamilton optic theory and
with the Abel geometric methods into a new Hamilton–Jacobi formalism. The Hamilton–Jacobi
formalism was a crucial step towards Liouville’s classical definition of the notion of integrability [2]
based on the notion of first integrals of motion.

The Liouville definition of integrable Hamiltonian systems naturally covered many classical
examples. Among them are the Kepler motion solved by Newton, harmonic oscillators solvable by
trigonometric functions, the Euler and Lagrange spinning tops and the Jacobi example of geodesic
motion on an ellipsoid solvable by elliptic functions [3], the Neumann system on the sphere [4]
and Kowalevski top [5] solved terms of hyperelliptic functions, etc. Recently there has been a
great interest in integrable systems prompted by the discovery of a vast class of integrable soliton
nonlinear partial differential equations, that admits this type of integrability when dynamics is
restricted to finite dimensional Liouville tori and the system appears to be completely integrable
in the Liouville–Arnold sense. All of them are more or less connected with the hyperelliptic curves
and with the hyperelliptic functions [1, 6, 7]. Below we show that foregoing development of the
theory detected a number of cases when associated algebraic curve is non hyperelliptic and and its
genus exceeds the number of degrees of freedom [8–10].

Bi-Hamiltonian structures can be seen as a dual formulation of integrability and separability,
in the sense that they replace the hierarchy of compatible Poisson structures with the hierarchy
of functions in involutions, which may be treated either as integrals of motion or as variables
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of separation for some dynamical system [11]. The Eisenhart–Benenti theory was embedded into
the bi-Hamiltonian set-up using the lifting of the conformal Killing tensor that lies at the heart of
Benenti’s construction, which may be realized as a computer algorithm [12]. The concept of natural
Poisson bivectors allows us to generalize this construction and to study systems with quadratic and
higher order integrals of motion in the framework of a single theory [8, 11, 13].

The aim of this note is to discuss separation of variables for integrable natural systems on the
two-dimensional unit sphere S2 from [8, 9, 13–15]. In the above mentioned previous papers we
focused our attention on the bi-Hamiltonian calculations of the variables of separation starting
from the given integrals of motion. This note is devoted to construction of the initial physical
variables in terms of variables of separation, to calculation of the corresponding quadratures and
to discussion of the possible integrable “gyroscopic” deformations of these systems associated with
genus three algebraic curves.

In order to describe integrable systems on the sphere we will use the angular momentum vector
J = (J1, J2, J3) and the Poisson vector x = (x1, x2, x3) in a moving coordinate frame attached to
the principal axes of inertia. The Poisson brackets between these variables

{
Ji , Jj

}
= εijkJk ,

{
Ji , xj

}
= εijkxk ,

{
xi , xj

}
= 0 , (1.1)

may be associated to the Lie–Poisson brackets on the algebra e∗(3). Using the Hamilton function H
and the Lie–Poisson bracket {., .} (1.1) on the Euclidean algebra e∗(3) the customary Euler–Poisson
equations may be rewritten in Hamiltonian form

J̇i = {Ji,H} , ẋi = {xi,H} . (1.2)

Remind that the Lie–Poisson dynamics on e∗(3) can be interpreted as resulting from reduction by
the symmetry Euclidean group E(3) of the full dynamics on the twelve-dimensional phase space
T ∗E(3) [3]. There are two Casimir elements

C1 = |x|2 ≡
3∑

k=1

x2
k, C2 = 〈x, J〉 ≡

3∑

k=1

xkJk, (1.3)

where 〈., .〉 means the inner product. Using canonical transformations x → αx we will always put
C1 = 1 without loss of generality.

If the square integral of motion C2 = 〈x, J〉 is equal to zero, rigid body dynamics may be
restricted to the unit sphere S2 and we can use the standard spherical coordinate system on its
cotangent bundle T ∗S2

x1 = sin φ sin θ, x2 = cosφ sin θ, x3 = cos θ ,

J1 =
sinφ cos θ

sin θ
pφ − cosφ pθ , J2 =

cosφ cos θ

sin θ
pφ + sin φ pθ , J3 = −pφ .

(1.4)

We use these variables in order to determine canonical variables of separation on T ∗S2.
As usual all the results are presented up to the linear canonical transformations, which consist

of rotations

x → α U x , J → U J , (1.5)

where α is an arbitrary parameter and U is an orthogonal constant matrix, and shifts

x → x , J → J + S x , (1.6)

where S is an arbitrary 3×3 skew-symmetric constant matrix.
Of course, any canonical transformation of the spherical variables (1.4) yields automorphism of

e∗(3) too. For instance, trivial canonical transformation

pθ → pθ + f(θ) (1.7)
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gives rise to “generalized” shift depending on arbitrary function f(x3):

J1 → J1 − x2f(x3)√
x2

1 + x2
2

, J2 → J2 +
x1f(x3)√
x2

1 + x2
2

, (1.8)

This and more complicated canonical transformations of e∗(3) are discussed in [3, 16].

2. KOWALEVSKI TOP AND CHAPLYGIN SYSTEM

Following to [8, 14, 15], we determine canonical coordinates q1,2 on T ∗S2 as roots of the following
polynomial

B(λ) = (λ− q1)(λ− q2) = λ2 − p2
θ sin2 θ + p2

φ cos2 θ

sinα θ cos2 θ
λ− a2 − b2

(2.1)

− (a cosαφ− b sinαφ)(p2
θ sin2 θ + p2

φ cos2 θ)
sinα θ cos2 θ

− 2 sin θ(a sinαφ + b cosαφ)pφ pθ

sinα θ cos2 θ
.

Then we can introduce the auxiliary polynomial

A(λ) =
sin θpθ

α cos θ
λ +

a sinαφ + b cosαφ

α
pφ − sin θ(a cosαφ− b sinαφ)

α cos θ
pθ ,

such that

{B(λ), A(µ)} =
1

λ− µ

(
(µ2 − a2 − b2)B(λ)− (λ2 − a2 − b2)B(µ)

)
, {A(λ), A(µ)} = 0 .

It entails that

pj = − 1
u2

j − a2 − b2
A(λ = qj) , j = 1, 2, (2.2)

are canonically conjugated momenta on T ∗S2 with the standard Poisson brackets

{qi, pj} = δij , {q1, q2} = {p1, p2} = 0 .

Below we prove that at α = 1, 2 these variables are variables of separation for the Kowalevski top
and Chaplygin system, respectively.

2.1. Kowalevski Top

Let us consider the Kowalevski top defined by the following integrals of motion

H1 = J2
1 + J2

2 + 2J2
3 + 2bx1 (2.3)

H2 = (J2
1 + J2

2 )2 − 4b
(
x1(J2

1 − J2
2 ) + 2x2J1J2

)
− 4b2x2

3 .

In the original work of Kowalevski [5] the first step in the separation of variables method is the
complexification: she introduces

z1 = J1 + iJ2, z2 = J1 − iJ2

as independent complex variables. Next she makes her famous change of variables

s1,2 =
R(z1, z2)±

√
R(z1, z1)R(z2, z2)

2(z1 − z2)2
.

The fourth degree polynomials R(zi, zk) may be found in [3, 5]. It brings the system (1.2) to the
form

(−1)k (s1 − s2)ṡk =
√

P (sk) , k = 1, 2,
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where

P (s) = 4
(

(s−H1)2 − H2 + 4b2C1

4

)[
s

(
(s−H1)2 + b2C1 − H2 + 4a2C1

4

)
+ b2C2

]
. (2.4)

Consequently, the initial equations of motion can be written as hyperelliptic quadratures

ṡ1√
P (s1)

+
ṡ2√
P (s2)

= 0 ,

s1ṡ1√
P (s1)

+
s2ṡ2√
P (s2)

= i ,

where we can substitute the conjugated momenta psk
for

√
P (sk) in order to get standard Abel–

Jacobi form. So, the problem can be integrated in terms of genus two hyperelliptic functions of
time. Finally, we have to substitute these functions of time sk(t) and psk

(t) into the initial variables
x, J , the corresponding expressions may be found in [5, 17].

Discussion of the other variables of separation for some particular subcases in the Kowalevski
dynamic may be found in [3]. As usual different variables of separation are related to the distinct
integrable deformations of the initial integrals of motion.

2.1.1. New Real Variables of Separation at C2 = 0

According to [8], at α = 1 coordinates q1,2 (2.1) are variables of separation associated with the
Hamilton function

H = J2
1 + J2

2 + 2J2
3 + +2ax2 + 2bx1 ,

which may be reduced to the initial Hamiltonian H1 using rotations (1.5) around the third axis
[16], so we can put a = 0 in (2.1) without loss of generality.

Coordinates q1,2 (2.1) at α = 1 and a = 0 are defined by

B(λ) = (λ− q1)(λ− q2) = λ2 +

√
x2

1 + x2
2 (J2

1 + J2
2 )

x2
3

−
b
(
x1(J2

1 − J2
2 ) + 2x2J1J2

)

x2
3

− b2 .

The conjugated momenta p1,2 are equal to

pk = −A(λ = qk)
q2
k − b2

, A(λ) =
x1J2 − x2J1

x3
λ +

b
√

x2
1 + x2

2J2

x3
.

These variables q1,2 differ by constant terms ±b from variables introduced in [15]. Inverse
transformation reads as

x1 =
b2 − q1q2

b(q1 − q2)2
(
(b2 − q2

1)p
2
1 + (b2 − q2

2)p
2
2

)
− 2(b2 − q2

1)(b
2 − q2

2)
b(q1 − q2)2

p1p2 ,

x2 = −
√

(q2
1 − b2)(b2 − q2

2)
b(q1 − q2)2

(
b2(p1 − p2)2 − (p1q1 − p2q2)2

)
,

x3 =

√
1− (b2 − q2

1)
2p4

1 + (b2 − q2
2)

2p4
2

(q1 − q2)2
+

2(b2 − q2
1)(b

2 − q2
2)p

2
1p

2
2

(q1 − q2)2
,

(2.5)

J1 =

√
(q2

1 − b2)(b2 − q2
2)(p1q1 − p2q2)

(b2 − q2
1)p

2
1 − (b2 − q2

2)p
2
2

x3

b
,

J2 = − q2(b2 − q2
1)p1 − q1(b2 − q2

2)p2

(b2 − q2
1)p

2
1 − (b2 − q2

2)p
2
2

x3

b
,
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J3 = −
√

(q2
1 − b2)(b2 − q2

2)
p1 − p2

q1 − q2
.

Coordinates of separation take values only in the following intervals

q1 > b > q2 ,

similar to the standard elliptic coordinates on the sphere [3].
In these variables integrals of motion H1,2 (2.3) look like

H1 =
(b2 − q2

1)
2p4

1 − (b2 − q2
2)

2p4
2 − (q2

1 − q2
2)

(b2 − q2
1)p

2
1 − (b2 − q2

2)p
2
2

H2 =

(
(b2 − q2

1)p
2
1 − (b2 − q2

2)p
2
2 + q1 + q2

)(
(b2 − q2

1)p
2
1 − (b2 − q2

2)p
2
2 − q1 − q2

)

(b2 − q2
1)p

2
1 − (b2 − q2

2)p
2
2

×
(
(b2 − q2

1)p
2
1 − (b2 − q2

2)p
2
2 + q1 − q2

)(
(b2 − q2

1)p
2
1 − (b2 − q2

2)p
2
2 − q1 + q2

)
.

It is easy to see that integrals of motion and variables of separation are related via the following
separated relations

Φ =
(
2(q2 − b2)p2 + H1 +

√
H2

)(
2(q2 − b2)p2 + H1 −

√
H2

)
− 4q2 = 0, (2.6)

at q = q1,2 and p = p1,2. Equation Φ(q, p) = 0 defines the genus three hyperelliptic curve with the
following base of the holomorphic differentials

Ω1 =
dq

p(b2 − q2)
(
H1 − 2(b2 − q2)p2

) , Ω2 =
qdq

p(b2 − q2)
(
H1 − 2(b2 − q2)p2

)

Ω3 =
pdq

H1 − 2(b2 − q2)p2
, .

In fact equation (2.6) is invariant with respect to involution (q, p) → (−q, p). Factorization with
respect to this involution gives rise to an elliptic curve.

In variables of separation the equations of motion (1.2) have the following form

q̇1

p1(b2 − q2
1)

(
H1 − 2(b2 − q2

1)p
2
1

) +
q̇2

p2(b2 − q2
2)

(
H1 − 2(b2 − q2

2)p
2
2

) = 0 ,

q̇1

H1 − 2(b2 − q2
1)p

2
1

+
q̇2

H1 − 2(b2 − q2
2)p

2
2

= −2 .

The above quadratures in the integral form
∫ q1

q0

Ω1 +
∫ q2

q0

Ω1 = β1 ,

∫ q1

q0

Ω3 +
∫ q2

q0

Ω3 = −2t + β2 , (2.7)

represent the Abel–Jacobi map associated with the genus three hyperelliptic curve defined by
Φ(q, p) = 0. In particular it means that instead of p in Ω1,3 (2.7) we have to substitute the function
on q obtained from the separated relation (2.6).

In order to give an explicit theta-function solution one can apply some remarkable relations
between roots of certain functions on symmetric products of such curves and quotients of theta-
functions with half-integer characteristics, which are historically referred to as root function and
are generalized so-called Wurzelfunktionen that were used by Jacobi for the case of ordinary
hyperelliptic Jacobians [18, 19]. For the case of odd order hyperelliptic curves such functions were
obtained by Weierstrass [20]. Inverting the map (2.7) and substituting symmetric functions of
q1, q2, p1, p2 into (2.5), one finally finds x, J as functions of time.
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2.1.2. Deformations of the Kowalevski Top

According to [8, 15], using separated relations

Φ1 =
(
2(q2 − a2)p2 + Ĥ1 +

√
Ĥ2

)(
2(q2 − a2)p2 + Ĥ1 −

√
Ĥ2

)
− 4cu2 + 4du + e(q2 − a2)p = 0 ,

(2.8)
one gets the Hamilton function of the generalized Kowalevski top

Ĥ1 =
(

1− c− 1
x2

3

)
(J2

1 + J2
2 ) + 2J2

3 + 2bx1 +
d√

x2
1 + x2

2

+
e(x2J1 − x1J2)
4
√

(x2
1 + x2

2x3

. (2.9)

Second integral of motion is equal to

Ĥ2 =
(x2

3 + c− 1)2

x4
3

(J2
1 + J2

2 )2 −
(

4(x1J
2
1 − x1J

2
2 + 2x2J1J2)(x2

3 + c− 1)
x2

3

+
J2

√
x2

1 + x2
2e

x3

)
a

− 4(x2
3 + c− 1)a2 +

(
(2(J2

1 + J2
2 )(c− x2

1 − x2
2)√

x2
1 + x2

2 x2
3

+
(x2J1 − x1J2)e
2(x2

1 + x2
2)x3

)
d +

d2

x2
1 + x2

2

+
(J2

1 + J2
2 )(x2J1 − x1J2)(c− x2

1 − x2
2)e

2
√

x2
1 + x2

2x33
+

(x2J1 − x1J2)2e2

16(x2
1 + x2

2)x
2
3

(2.10)

According to [8, 16] canonical transformation (1.8) reduces the Hamilton function (2.9) to the
natural form

Ĥ1 =
(

1− c− 1
x2

3

)
(J2

1 + J2
2 ) + 2J2

3 + 2ax1 +
d√

x2
1 + x2

2

− e2

64(x2
3 + c− 1)

, (2.11)

at

f(x3) =
ex3

8(x2
3 + c− 1)

.

At c = 1 this system coincides with that of the deformations discussed in [21]. Below we will show
only the final form (2.11) of the deformed Hamiltonians and will omit the intermediate form (2.9)
for the brevity.

It is easy to calculate the corresponding equations of motion

q̇1

(b2 − q2
1)

(
8Ĥ1p1 + e− 16p3

1(b2 − q2
1)

) +
q̇2

p2(b2 − q2
2)

(
8Ĥ1p2 + e− 16p3

2(b2 − q2
2)

) = 0 ,

q̇1

8Ĥ1p1 + e− 16p3
1(b2 − q2

1)
+

q̇2

8Ĥ1p2 + e− 16p3
2(b2 − q2

2)
= −1

4
,

and prove that the Abel–Jacobi map on the genus three hyperelliptic curve has the same form (2.7)
∫ q1

q0

Ω1 +
∫ q2

q0

Ω1 = β1 ,

∫ q1

q0

Ω3 +
∫ q2

q0

Ω3 = −2t + β2 ,

where p have to be solution of the separated relation (2.8) and

Ω1 =
dq

(b2 − q2)(8Ĥ1p + e− 16p3(b2 − q2))
, Ω3 =

dq

8Ĥ1p + e− 16p3(b2 − q2)
.

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



402 TSIGANOV, KHUDOBAKHSHOV

2.2. Chaplygin System

Let us consider the Chaplygin system defined by the following Hamilton function

H1 = J2
1 + J2

2 + 2J2
3 − 2a(x2

1 − x2
2)− 2bx1x2 − c

x2
3

. (2.12)

At c = 0 this system and the corresponding variables of separation have been investigated by
Chaplygin [22]. The singular term has been added by Goryachev in [23].

Using rotations (1.5) around the third axis [16] we can put b = 0 without loss of generality. In
this case the second integral of motion is equal to

H2 =
(

J2
1 + J2

2 −
c

x2
3

)2

− 4ax2
3(J

2
1 − J2

2 ) + 4a2x4
3.

According to [8, 14], coordinates q1,2 (2.1) are variables of separation for this integrable system at
α = 2 and b = 0. In this case q1,2 are roots of the following polynomial (2.1)

B(λ) = (λ− q1)(λ− q2) = λ2 − J2
1 + J2

2

x2
3

λ− 2aJ2
2

x2
3

+
a(J2

1 + J2
2 )

x2
3

− a2 ,

whereas momenta p1,2 are values of the other auxiliary polynomial

A(λ) = −x2J1 − x1J2

2x3
λ− ax1x2J3

x2
1 + x2

2

− a(x2
1 − x2

2)(x2J1 − x1J2)
2(x2

1 + x2
2)x3

.

at λ = q1,2 (2.2). Inverse transformation reads as

x1 =

√
2(q1 − a)(a− q2)(p1(q1 + a)− p2(q2 + a))√

a(q1 − q2)
,

x2 =

√
2(q1 + a)(q2 + a)(p1(q1 − a)− p2(q2 − a))√

a(q1 − q2)
,

x3 =

√
1− 4

(q2
1 − a2)p2

1 − (q2
2 − a2)p2

2

q1 − q2
, (2.13)

J1 =

√
(a + q1)(a + q2)

2a
x3 , J2 = −

√
(q1 − a)(a− q2)

2a
x3

J3 = −2
√

(q2
1 − a2)(a2 − q2

2)
p1 − p2

q1 − q2

As usual coordinates of separation take values only in the following intervals

q1 > a > q2 .

These variables q1,2 are related to variables of separation from [14] by the rule qk → qk + a.

In variables of separation the integrals of motion read as

H1 = 4(a2 − q2
1)p

2
1 + 4(a2 − q2

2)p
2
2 + q1 + q2 − c

4(a2 − q2
1)p

2
1 − 4(a2 − q2

2)p
2
2 + q1 − q2

,

H2 =
(
4(a2 − q2

1)p
2
1 − 4(a2 − q2

2)p
2
2 + q1 − q2

)2
+

c2(q1 − q2)2(
4(a2 − q2

1)p
2
1 − 4(a2 − q2

2)p
2
2 + q1 − q2

)2

− 2c(q1 + q2) .

REGULAR AND CHAOTIC DYNAMICS Vol. 16 Nos. 3–4 2011



INTEGRABLE SYSTEMS ON THE SPHERE 403

It is easy to see that integrals of motion and variables of separation are related via the following
separated relations

Φ =
(
8(q2 − a2)p2 − 2q + H1 −

√
H2

)(
8(q2 − a2)p2 − 2q + H1 +

√
H2

)
− 4cq = 0, (2.14)

at q = q1,2 and p = p1,2. Equation Φ(q, p) = 0 defines a genus two algebraic curve with the following
holomorphic differentials

Ω1 =
dq

p(a2 − q2)
(
H1 − 8(a2 − q2)p2 − 2q

) , Ω2 =

(
4(a2 − q2)p2 + q

)
dq

p(a2 − q2)
(
H1 − 8(a2 − q2)p2 − 2q

) .

(2.15)
The corresponding quadratures look like

q̇1

p1(a2 − q2
1)

(
H1 − 8(a2 − q2

1)p
2
1 − 2q1

) +
q̇2

p2(a2 − q2
2)

(
H1 − 8(a2 − q2

2)p
2
2 − 2q2

) = 0

(
4(a2 − q2

1)p
2
1 + q1

)
q̇1

p1(a2 − q2
1)

(
H1 − 8(a2 − q2

1)p
2
1 − 2q1

) +

(
4(a2 − q2

2)p
2
2 + q2

)
q̇2

p2(a2 − q2
2)

(
H1 − 8(a2 − q2

2)p
2
2 − 2q2

) = 8 .

The Abel–Jacobi map on a genus two hyperelliptic curve has the standard form
∫ q1

q0

Ω1 +
∫ q2

q0

Ω1 = β1 ,

∫ q1

q0

Ω2 +
∫ q2

q0

Ω2 = 8t + β2 ,

where p into Ω1,2 have to be a solution of the separated relation (2.14).

2.2.1. Deformations of the Chaplygin System

According to [8, 14], if we substitute these variables of separation onto the following separated
relations

Φ1 =
(
8(q2− a2)p2− 2dq + Ĥ1−

√
Ĥ2

)(
8(q2− a2)p2− 2dq + Ĥ1 +

√
Ĥ2

)
− 4cq + e(q2− a2)p = 0 ,

(2.16)
one gets the Hamilton function of the generalized Chaplygin system

Ĥ1 =
(

1− 1− d

x2
3

)
(J2

1 + J2
2 ) + 2J2

3 − 2a(x2
1 − x2

2)− 2bx1x2 − c

d− 1 + x2
3

+
(x2J1 − x1J2)e

8(d− x2
1 − x2

2)x3
.

(2.17)
As for the Kowalevski top, using canonical transformation (1.8) at

f(x3) =
ex3

√
1− x2

3

16(d− 1 + x2
3)2

we can reduce the Hamilton function (2.17) to the natural Hamiltonian

Ĥ1 =
(

1− 1− d

x2
3

)
(J2

1 + J2
2 ) + 2J2

3 − 2a(x2
1 − x2

2)− 2bx1x2 − c

d− 1 + x2
3

+
e(x2

3 − 1)
256(d− 1 + x2

3)3
.

At d = 1 the additional term is equal to e(x−4
3 − x−6

3 ) and this system coincides with that of the
deformations considered in [21].

In this case we have a genus three hyperelliptic curve with holomorphic differentials

Ω1 =
dq

(a2 − q2)
(
e + 32p

(
Ĥ1 − 8(a2 − q2)p2 − 2dq

)) ,
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Ω2 =
qdq

(a2 − q2)
(
e + 32p

(
Ĥ1 − 8(a2 − q2)p2 − 2dq

)) ,

Ω3 =
p2dq

e + 32p
(
Ĥ1 − 8(a2 − q2)p2 − 2dq

) ,

and the corresponding quadratures involve all these differentials
∫ q1

q0

Ω1 +
∫ q2

q0

Ω1 = β1 ,

∫ q1

q0

(4Ω2 + dΩ3) +
∫ q2

q0

(4Ω2 + dΩ3) = − t

4
+ β2 ,

in contrast to other integrable systems on genus three algebraic curves considered in this note.

3. INTEGRABLE SYSTEMS ASSOCIATED WITH TRIGONAL CURVES

According to [8–10], we introduce other coordinates q1,2 on T 8S2 defined as roots of the following
polynomial

B(λ) = (λ− q1)(λ− q2) = λ2 − i
√

Fλ + Λ , i =
√−1 , (3.1)

with coefficients

F =
(
g(θ)pθ − ih(θ)pφ

)2
, Λ = α exp

(
iφ−

∫
h(θ)
g(θ)

dθ

)
, (3.2)

depending on arbitrary functions g(θ) and h(θ). As usual conjugated momenta p1,2 are equal to

pk = A(λ = qk) , A(λ) = i
∫

dθ

g(θ)
− ipφ

λ
. (3.3)

It is easy to prove that these polynomials satisfy the following relations

{B(λ), A(µ)} =
λ

µ− λ

(
B(λ)

λ
− B(µ)

µ

)
, {A(λ), A(µ)} = {B(λ), B(µ)} = 0 , (3.4)

which give rise to canonical Poisson brackets

{qi, pj} = δij , {q1, q2} = {p1, p2} = 0 .

Substituting variables

x = a q−1
k , z = a0pk , k = 1, 2, a, a0 ∈ R , (3.5)

into the generic equation of the (3,4) algebraic curve

Φ(z, x) = z3 + (a1x + a2)z2 + (H1x
2 + b1x + b2)z + x4 + H2x

3 + c1x
2 + c2x + c3 = 0 , (3.6)

and solving the resulting equations with respect to H1,2, one gets the following Hamilton function

H1 = T + V +
(

c2 + ia0b1w2 − a2
0a1w

2
2

a0aw2
h +

2a0a1w2 − ib1

aw2

)
ipφ − gw2(c2 + ia0b1w2 − a2

0a1w
2
2)

aa0
pθ ,

(3.7)
where geodesic Hamiltonian T and potential V are equal to

T =
(

a2
0(h

2w2
2 − 3hw2 + 3)

a2
− ia0a2(hw2 − 1)2

a2w2
− b2h(hw2 − 1)

a2w2
+

ic3h
2

a0a2w2

)
p2

φ

+
ig

a2w2

((
2a2

0w
3
2 − 2ia0a2w

2
2 − 2b2w2 +

2ic3

a0

)
h− 3a2

0w
2
2 + 2ia0a2w2 + b2

)
pφpθ

+
g2(a0b2w2 + ia2

0a2w
2
2 − a3

0w
3
2 − ic3)

a2a0w2
p2

θ
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V = − ia2e−iφ

αa0w1w2
+

(a0b2w2 + ia2
0a2w

2
2 − a3

0w
3
2 − ic3)αw1eiφ

a0a2w2
+

ic1

a0w2
.

Here

w1 = exp
(
−

∫
h(θ)
g(θ)

dθ

)
, w2 =

∫
dθ

g(θ)
.

The second integral of motion H2 is a cubic polynomial in momenta pφ and pθ.
The resulting Hamiltonian H1 (3.7) has a natural form if and only if

2a0a1w2 − ib1 = 0 , c2 + ia0b1w2 − a2
0a1w

2
2 = 0 .

So, because w2 6= 0, we have to put

a1 = b1 = c2 = 0 .

If we want to obtain diagonal metric, then we have to solve the integral equation

2h(a3
0w

3
2 − ia2

0a2w
2
2 − a0b2w2 + ic3)− 3a3

0w
2
2 + 2ia2

0a2w2 + a0b2 = 0 , (3.8)

with respect to functions h(θ), w2(θ) and parameters a0, a2, b2, c3. If we want to get real potential

V = f1(θ) cos(φ) + f2(θ)

in (3.7), we have to add one more equation to (3.8)

iα2(a3
0w

3
2 − ia2

0a2w
2
2 − a0b2w2 + ic3)w2

1 + a4 = 0 (3.9)

depending also on function w1 and parameters a (3.5) and α (3.2).
Some particular solutions of these equations have been studied in [8, 9, 24] including integrable

systems due to Goryachev, Chaplygin, Dullin, Matveev, etc. For all these systems, we collect a0

and the zero-valued coefficients in (3.8) in the following table.

Goryachev–Chaplygin top a0 = 2ia b2 = c3 = 0

Goryachev system a0 = 2ia/3 a2 = b2 = 0

Case 3 from [24] a0 = ia/3 a2 = b2 = 0

Dullin–Matveev system a0 = ia c3 = 0

Case 5 from [24] a0 = ia/2 a2 = c3 = 0

Integrable systems with the same coefficients in the separated relations (3.6) and with different a0

and a′0 in (3.5) are related by non-canonical transformation of the momenta

z = a0pk → z = a′0pk , k = 1, 2. (3.10)

3.1. Goryachev–Chaplygin top

Let us consider the Gorychev–Chaplygin top with the following integrals of motion

H1 = J2
1 + J2

2 + 4J2
3 + ax1 +

b

x2
3

, H2 = 2J3

(
J2

1 + J2
2 +

b

x2
3

)
+ ax3J1 (3.11)

In this case the variables of separation (3.1,3.3) are determined by

q1 + q2 = −2J3

x2
3

− J1 + iJ2

x3(x1 + ix2)
, q1q2 =

a

2x2
3(x1 + ix2)

, p1,2 =
ix2

3

2
+

iJ3

q1,2
.
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They are related with initial variables by the rule

x1 + ix2 = − ia(q1 − q2)
4q1q1(p1q1 − q2p2)

, x3 =

√
−2i(p1q1 − q2p2)

q1 − q2
,

J1 + iJ2 =
a(q2

1p1 − q2
2p2)

2q1q2(p1q1 − q2p2)
√
−2i(p1q1 − q2p2)

q1 − q2

, J3 =
iq1q2(p1 − p2)

q1 − q2
,

x1 − ix2 =
4q1q2

a(q1 − q2)2
,
(
(i− 2p1)q2

1p1 + (4p1p2 − ip1 − ip2)q1q2 + (i− 2p2)q2
2p2

)
,

J1 − iJ2 = − 8iq1q2

a(q1 − q2)2
√
−2i(p1q1 − q2p2)

q1 − q2

(
q1p1 − q2p2)(i− 2p1)p1q

2
1+

+ (q1p1 + q2p2)(i− 2p2)p2q
2
2

)
.

Separated relation is given by an equation with real coefficients

Φ(q, µ) = (µ2 − b)q2 + (µ3 −H1µ + H2)q +
a2

4
= 0 , q = q1,2, µ = 2i q1,2p1,2 . (3.12)

Equations of motion in variables of separation look like

q̇1

q1(3µ2
1 + 2q1µ1 −H1)

+
q̇2

q2(3µ2
2 + 2q2µ2 −H1)

= 0 ,

˙µ1q1

q1(3µ2
1 + 2q1µ1 −H1)

+
˙µ2q2

q2(3µ2
2 + 2q2µ2 −H1)

= 2i .

By making the birational change

q =
a2

4x
, µ =

z

x
(3.13)

the curve (3.12) can be transformed to the canonical trigonal form (3.6) at

a1 = b1 = b2 = c2 = c3 = 0 ,

whereas other parameters are functions on a, b.

3.1.1. Deformation of the Goryachev–Chaplygin Top

Substituting q = q1,2 and µ = 2i q1,2p1,2 into the non-hyperelliptic algebraic curve of genus three
defined by the following equation

Φ1(q, µ) = cq3 + (µ2 + dµ− b)q2 + (µ3 + eµ2 − Ĥ1µ + Ĥ2)q +
a2

4
= 0 , (3.14)

and solving a pair of the resulting equations with respect to Ĥ1,2 one gets deformation of the initial
Hamilton function

Ĥ1 = J2
1 + J2

2 + 4J2
3 + ax1 +

b

x2
3

−
(

e− c− d + e

x2
1 + x2

2

+
c

x2
3

− 2c

x4
3

)
J3 +

(c− dx2
3 + ex4

3)
2

4x6
3(x

2
1 + x2

2)
,

using the generalized shift (1.8) at

f = − i(ex4
3 − dx2

3 + c)
2
√

1− x2
3 x3

3

.
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In this case quadratures are defined by the following differential equations
2∑

k=1

q̇k

qk(3µ2
k + 2µkqk + 2eµk + dqk − Ĥ1)

= 0 , µk = 2i qkpk

2∑

k=1

µkq̇k

qk(3µ2
k + 2µkqk + 2eµk + dqk − Ĥ1)

= 2i .

If c = 0 and d = e, one gets the usual Goryachev–Chaplygin gyrostat with the Hamiltonian

Ĥ1 = J2
1 + J2

2 + 4J2
3 − eJ3 + ax1 +

b

x2
3

.

In this case equation (3.14) defines a genus two hyperelliptic curve instead of trigonal one.

3.2. Goryachev System
Let us consider the Gorychev system on the sphere defined by the following integrals of motion

H1 = J2
1 + J2

2 +
4
3
J2

3 +
ax1

x
2/3
3

+
b

x
2/3
3

,

(3.15)

H2 = −2J3

3

(
J2

1 + J2
2 +

8
9
J2

3 +
b

x
2/3
3

)
+

a(3x3J1 − 2x1J3)

3x
2/3
3

.

The corresponding variables of separation q1,2 and p1,2 (3.1,3.3) are obtained from

q1 + q2 =
x

4/3
3 J3

1− x2
3

+
i(J1x2 − x1J2)x

1/3
3

1− x2
3

, q1q2 =
a

2(x1 + ix2)
, p1,2 =

3ix2/3
3

2
+

iJ3

q1,2
.

Inverse transformation looks like

x1 + ix2 =
a

2q1q2
, J3 =

iq1q2(p1 − p2)
q1 − q2

,

x1 − ix2 = 2
q1q2(1− x2

3)
a

, J1 + iJ2 = −a(q1 + q2)

2q1q2x
1/3
3

,

J1 − iJ2 = −4iq2
1q

2
2(p1 − p2)

a(q1 − q2)
x3 +

2q1q2(1− x2
3)(q1 + q2)

ax
1/3
3

, (3.16)

where

x3 =
(
−2i(p1q1 − p2q2)

3(q1 − q2)

)3/2

.

Separated relation is given by an equation with real coefficients

Φ(q, µ) = q4 − bq2 + (µ3 −H1µ + H2)q +
a2

4
= 0 , at q = q1,2, µ =

2i
3

q1,2p1,2 . (3.17)

In this case the quadratures read∫ q1

q0

dq

q(3µ2 −H1)
+

∫ q2

q0

dq

q(3µ2 −H1)
= β1 ,

(3.18)∫ q1

q0

µdq

q(3µ2 −H1)
+

∫ q2

q0

µdq

q(3µ2 −H1)
=

2i
3

t + β2 .

As usual, here µ is a function on q obtained from the separated relation (3.17).
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3.2.1. Deformation of the Goryachev System

Using a trigonal curve of genus three defined by the following equation

Φ1 = q4 + cq3 − bq2 + (µ3 + dµ2 − Ĥ1µ + Ĥ2)q +
a2

4
= 0 , (3.19)

instead of (3.17) one gets deformation of the initial Hamilton function (3.15)

Ĥ1 = H1 −
(

d

3
+

d + cx
2/3
3

x2
1 + x2

2

)
J3 +

(c + dx
4/3
3 )2

4(x2
1 + x2

2)x
2/3
3

(3.20)

after the generalized shift (1.8) at

f = − i(c + dx
4/3
3 )

2
√

1− x2
3x

1/3
3

.

The corresponding equations of motion look like

q̇1

q1(3µ2
1 + 2dµ1 − Ĥ1)

+
q̇2

q2(3µ2
2 + 2dµ2 − Ĥ1)

= 0 , µk =
2i
3

qkpk

µ1q̇1

q1(3µ2
1 + 2dµ1 − Ĥ1)

+
µ1q̇2

q2(3µ2
2 + 2dµ2 − Ĥ1)

=
2i
3

.

Birational transformation (3.13) maps the curve (3.19) to the canonical trigonal form (3.6) at
a2 = b1 = b2 = 0 .

3.3. Case 3 from [24]

Let us consider one more integrable system from [24] defined by the following integrals of motion

H1 = J2
1 + J2

2 +
(

1
12

+
(2x3 + 1)
2(x3 + 1)

)
J2

3 +
ax1

(x3 + 1)5/6
+

b

(x3 + 1)1/3
,

(3.21)

H2 =
1
27

J3
3 −

1
3

J3H1 − a(x3 + 1)1/6 J1 +
ax1J3

2(x3 + 1)5/6
.

The corresponding variables of separation q1,2 and p1,2 (3.1,3.3) are obtained from

q1 + q2 = −(1 + x3)2/3J3

2(x3 − 1)
− i(x2J1 − x1J2)

(1 + x3)1/3(x3 − 1)
, q1q2 =

a
√

1 + x3

2(x1 + ix2)
, p1,2 = 3i(1 +x3)1/3 +

iJ3

q1,2
.

Inverse transformation looks like

x1 + ix2 =
a
√

1 + x3

2q1q2
, J3 =

iq1q2(p1 − p2)
q1 − q2

,

x1 − ix2 = −2q1q2(x2
3 − 1)

a
√

1 + x3
, J1 + iJ2 =

ia(p1 − p2)
4(q1 − q2)

√
1 + x3

− a(q1 + q2)
2q1q2(1 + x3)1/6

,

J1 − iJ2 = − iq2
1q

2
2(3x3 + 1)(p1 − p2)

a(q1 − q2)
√

1 + x3
− 2q1q2(q1 + q2)(x3 − 1)

a(1 + x3)1/6
, (3.22)

where

x3 =
i(p1q1 − p2q2)3

27(q1 − q2)3
− 1 .
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Separated relations are defined by an equation with the real coefficients

Φ(q, µ) = 2q4 − bq2 + (µ3 q −H1µ + H2)q +
a2

4
= 0 , q = q1,2, µ =

i q1,2p1,2

3
(3.23)

The corresponding quadratures are given by
∫ q1

q0

q̇

q(3µ2 −H1)
+

∫ q2

q0

q̇

q(3µ2 −H1)
= β1 ,

(3.24)∫ q1

q0

µq̇

q(3µ2 −H1)
+

∫ q2

q0

µq̇

q(3µ2 −H1)
=

i
3

t + β2 .

As for the Goryachev system, the birational change (3.13) transforms the equation (3.23) to the
canonical trigonal form (3.6) at

a1 = a2 = b1 = b2 = c2 = 0 ,

It allows us to prove that integrals of motion for this system (3.21) are related to integrals of motion
(3.15) for the Goryachev system by the non-canonical transformation (3.10).

It may seem that quadratures (3.18) and (3.24) are trivially related by change of time

t → 2t ,

but we have to keep firmly in mind that µ in (3.18) is a function on q obtained from (3.17), whereas
µ in (3.24) is another function on q obtained from (3.23).

3.3.1. Deformation of the System (3.21)

Similar to the Goryachev system, we can add two terms to the initial trigonal curve of genus
three (3.23)

Φ1 = 2q4 + cq3 − bq2 + (µ3 + dµ2 − Ĥ1µ + Ĥ2)q +
a2

4
= 0 . (3.25)

Deformation of the initial Hamilton function (3.21) looks like

Ĥ1 = H1 −
(

d

6
− d

x3 − 1
− c(1 + x3)1/3

2(x3 − 1)

)
J3 +

(
d
√

1 + x3 + c(1 + x3)−1/6
)2

4(1− x3)
(3.26)

after canonical transformation (1.8) at

f = −
i
(
d(1 + x3) + c(1 + x3)1/3

)

2
√

1− x2
3

.

In this case equations of motion are equal to

q̇1

q1(3µ2
1 + 2dµ1 − Ĥ1)

+
q̇2

q2(3µ2
2 + 2dµ2 − Ĥ1)

= 0 , µk =
i
3

qkpk ,

µ1q̇1

q1(3µ2
1 + 2dµ1 − Ĥ1)

+
µ2q̇2

q2(3µ2
2 + 2dµ2 − Ĥ1)

=
i
3

. (3.27)
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3.4. Dullin–Matveev System

Let us consider the Dullin–Matveev system [25] defined by the following integrals of motion

H1 = J2
1 + J2

2 +
(

1 +
x3

x3 + c
− x2

3 − |x|2
4(x3 + c)2

)
J2

3 +
ax1

(x3 + c)1/2
+

b

x3 + c
,

(3.28)

H2 = −
(

J2
1 + J2

2 −
J2

3

4
+

(4x2
3 + 6x3c + c2 + |x|2)J2

3

4(x3 + c)2
+

b

x3 + c

)
J3

+ a
√

x3 + cJ1 − ax1J3

2
√

x3 + c
.

According to [8] variables of separation q1,2 and p1,2 are defined by (3.1,3.3)

q1 + q2 = − J3

2(c + x3)
− J1 + iJ2

x1 + ix2
, q1q2 =

a

2(x1 + ix2)
√

c + x3
, p1,2 = i(c + x3) +

iJ3

q1,2

or by inverse transformation

x1 + ix2 =
a

2
√
− i(p1q1 − p2q2)

q1 − q2
q1q2

, x3 = − i(p1q1 − q2p2)
q1 − q2

− c , J3 =
iq1q2(p1 − p2)

q1 − q2
,

x1 − ix2 = −
2
√
− i(p1q1 − p2q2)

q1 − q2
q1q2

a(q1 − q2)2
(
(c + 1 + ip1)q1 − (c + 1 + ip2)q2

)

×
(
(c− 1 + ip1)q1 − (c− 1 + ip2)q2

)
,

J1 + iJ2 = − a(q1(2q1 + q2)p1 − q2(2q2 + q1)p2)

4
√
− i(p1q1 − p2q2)

q1 − q2
, q1q2(p1q1 − p2q2)

, (3.29)

J1 − iJ2 =
iq1q2

a

√
− i(p1q1 − p2q2)

q1 − q2
(q1 − q2)

(
(c + 1 + ip1)(c− 1 + ip1)(2p1q1 − 3q2p1 − p2q2)q3

1

+
(
2i(p1 + p2)c− 4p1p2

)
(p1 − p2)q2

1q
2
2 − (c + 1 + ip2)(c− 1 + ip2)(2p2q2 − 3q1p2 − p1q1)q3

2 .

The corresponding separated relations are defined by an equation with the real coefficients

Φ(q, µ) = µ(c2 − 1)q3 + (2cµ2 − b)q2 + (µ3 −H1µ + H2) q +
a2

4
= 0 , q = q1,2, µ = i q1,2p1,2 ,

(3.30)
and the quadratures in differential form look like

q̇1

q1

(
(c2 − 1)q2

1 + 4cq1µ1 + 3µ2
1 −H1

) +
q̇2

q2

(
(c2 − 1)q2

2 + 4cq2µ2 + 3µ2
2 −H1

) = 0 ,

µ1q̇1

q1

(
(c2 − 1)q2

1 + 4cq1µ1 + 3µ2
1 −H1

) +
µ2q̇2

q2

(
(c2 − 1)q2

2 + 4cq2µ2 + 3µ2
2 −H1

) = i .
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3.4.1. Deformation of the Dullin–Matveev System

Substituting q = q1,2 and µ = i q1,2p1,2 into the non-hyperelliptic algebraic curve of genus three
defined by the following equation

Φ1 = µ(c2 − 1)q3 + (2cµ2 + dµ− b)q2 + (µ3 + eµ2 − Ĥ1µ + Ĥ2)q +
a2

4
= 0 , (3.31)

and solving a pair of the resulting equations with respect to H1,2 one gets deformation of the initial
Hamilton function (3.28)

Ĥ1 = H1 − 1
2

(
e− d

c + x3
+

(ce− d)x3 + e

x2
1 + x2

2

)
J3 +−(ce− d + x3e)2

4(x2
1 + x2

2)
(3.32)

after the generalized shift (1.8) at

f = − i(ce− d + x3e)
2
√

1− x2
3

.

Using the same birational change (3.13) the curve (3.19) can be transformed to the canonical
trigonal form (3.6) at c2 = c3 = 0.

In this case the equations of motion read as
2∑

k=1

q̇k

qk(3µ2
k + 4cqkµk + 2eµk + q2

k(c
2 − 1) + dqk − Ĥ1)

= 0 , µk = iqkpk ,

(3.33)
2∑

k=1

µkq̇k

qk(3µ2
k + 4cqkµk + 2eµk + q2

k(c
2 − 1) + dqk − Ĥ1)

= i .

3.5. Case 5 from [24]

Let us consider the last integrable system from [24] with integrals of motion

H1 = J2
1 + J2

2 +
(

3
16

+
8x3 + 5

8(x3 + 1)

)
J2

3 +
ax1

(x3 + 1)3/4
+

b√
x3 + 1

,

(3.34)

H2 =
1
8

J3
3 −

1
2
H1J3 + a(x3 + 1)1/4J1 −− ax1J3

4(x3 + 1)3/4
.

The corresponding variables of separation q1,2 and p1,2 (3.1,3.3) are obtained from

q1 + q2 =
(3x3 + 1)J3

4
√

x3 + 1(1− x3)
+

i(x2J1 − x1J2)√
x3 + 1(1− x3)

, q1q2 =
a(x3 + 1)1/4

2(x1 + ix2)
, p1,2 = 2i

√
x3 + 1 +

iJ3

q1,2
.

Inverse transformation looks like

x1 + ix2 =
a(x3 + 1)1/4

2q1q2
, J3 =

iq1q2(p1 − p2)
q1 − q2

,

x1 − ix2 = −2q1q2(x2
3 − 1)

a(x3 + 1)1/4
, J1 + iJ2 =

ia(p1 − p2)
8(q1 − q2)(x3 + 1)3/4

− a(q1 + q2)
2q1q2(x3 + 1)1/4

,

J1 − iJ2 = − iq2
1q

2
2(7x3 + 1)(p1 − p2)

2a(q1 − q2((x3 + 1)1/4
− 2q1q2(q1 + q2)(x3 − 1)(x3 + 1)1/4

a
, (3.35)

where

x3 = −(p1q1 − p2q2)2

4(q1 − q2)2
− 1 .
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Separated relations are defined by

Φ(q, µ) = −2µq3 − bq2 + (µ3 −H1µ + H2)q +
a2

4
= 0 , q = q1,2, µ =

i
2

q1,2p1,2 (3.36)

and we have the following quadratures in differential form

q̇1

q1(3µ2
1 −H1 − 2q2

1)
+

q̇2

q2(3µ2
2 −H1 − 2q2

2)
= 0 ,

µ1q̇1

q1(3µ2
1 −H1 − 2q2

1)
+

µ2q̇2

q2(3µ2
2 −H1 − 2q2

2)
=

i
2

. (3.37)

3.5.1. Deformation of the System (3.34)

Let us add three terms to the initial trigonal curve of genus three (3.36)

Φ1 = (c− 2µ)q3 − (dµ + b)q2 + (µ3 + eµ2 − Ĥ1µ + Ĥ2)q +
a2

4
= 0 . (3.38)

The corresponding deformation of the initial Hamilton function (3.34) has the form

Ĥ1 = H1 −
(

e

4
+

c + 2e

2(1− x3)
+

c

4(1 + x3)
+

d(x2
3 + 4x3 + 3)

4(1− x3)(1 + x3)3/2

)
J3

+
1

4(1− x3)

(
e
√

1 + x3 + d +
c√

1 + x3

)2

, (3.39)

after canonical transformation (1.8) at

f = − ic + ie(1 + x3)
2
√

1− x2
3

− id
2
√

1− x3
.

The corresponding quadratures are defined by
2∑

k=1

q̇k

qk(3µ2
k + 2eµk − 2q2

k − dqk − Ĥ1)
= 0 , µk =

i
2

qkpk ,

(3.40)
2∑

k=1

µkq̇k

qk(3µ2
k + 2eµk − 2q2

k − dqk − Ĥ1)
=

i
2

.

Non canonical transformations (3.10) relate equations (3.40) with similar equations (3.33) for the
deformed Dullin–Matveev system.

4. CONCLUSION
In [9, 14, 15] some new variables of separation for various integrable systems on the sphere

with higher order integrals of motion have been obtained by the brute force method. In [8, 13] we
introduce a concept of natural Poisson tensors, which allows us to understand the geometric origin
of this method and to find some common attributes of the variables of separation for the Kowalevski
top, Chaplygin system, Goryachev–Chaplygin gyrostat, Goryachev and Dullin–Matveev systems,
etc.

In this more technical paper we continue our investigations in order to describe explicitly
canonical transformations of initial physical variables to variables of separation and vice versa,
to calculate the corresponding quadratures and to discuss possible integrable deformations of these
systems associated with genus three hyperelliptic and non-hyperelliptic algebraic curves.

In Section 2 we consider real variables of separation for which the separation relations have the
real coefficients only. In Section 3 we discuss complex variables of separation and the separation
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relations with the real coefficients as above. Similar complex variables satisfying to the real
separated equations for the Kowalevski top and Goryachev–Chaplygin gyrostat have been found
in [26], for the Kowalevski–Goryachev–Chaplygin gyrostat in [27] and for the Steklov–Lyapunov
system in [28]. Real variables for the Steklov–Lyapunov system have been discussed in [29]; in
contrast to these variables, complex variables [28] can be generalized to the Rubanovsky case [30].
These and other known complex variables lying on the real algebraic curves are discussed in [3].

Further inquiry is related to numerical, algebro-geometric and topological analysis of the
obtained quadratures. For dynamical systems associated with the (3,4) trigonal curve (3.6) we
also want to discuss an application of the Kowalevski–Painlevé criteria to these systems, because
in the generic case solutions of the corresponding quadratures are non-meromorphic functions of
time.

We would like to thank A.V. Borisov and Yu.N. Fedorov for helpful discussions. The work is
supported by the Grant of The Government of the Russian Federation for the support of the
scientific research project implemented under the supervision of leading scientists at Russian
institutions of higher education (11.G34.31.0039).
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7. Stäckel, P., Über die Integralen der Hamilton–Jacobischen Differential Gleichung mittelst Separation

der Variable, Habilitationsschrift, Halle, 1891.
8. Tsiganov, A. V., On Natural Poisson Bivectors on the Sphere, J. Phys. A, 2011, vol. 44, 105203 (15 pp.).
9. Vershilov, A. V. and Tsiganov, A.V., On Bi-Hamiltonian Geometry of Some Integrable Systems on the

Sphere with Cubic Integral of Motion, J. Phys. A, 2009, vol. 42, 105203 (12 pp.).
10. Vershilov, A. V. and Tsiganov, A. V., On One Integrable System with a Cubic First Integral, Preprint,

arXiv:1103.1444v1, 2011.
11. Tsiganov, A.V., On Two Different Bi-Hamiltonian Structures for the Toda Lattice, J. Phys. A, 2007,

vol. 40, no. 24, pp. 6395–6406.
12. Grigoryev, Yu.A. and Tsiganov, A.V., Symbolic Software for Separation of Variables in the Hamilton–

Jacobi Equation for the L-systems, Regul. Chaotic Dyn., 2005, vol. 10, no. 4, pp. 413–422.
13. Tsiganov, A. V., On Bi-Integrable Natural Hamiltonian Systems on the Riemannian Manifolds, arXiv:

1006.3914, 2010.
14. Tsiganov, A. V., On the Generalized Chaplygin System, J. Math. Sci. (N.Y.), 2010, vol. 168, no. 8,

pp. 901–911.
15. Tsiganov, A. V., New Variables of Separation for Particular Case of the Kowalevski Top, Regul. Chaotic

Dyn., 2010, vol. 15, no. 6, pp. 657–667.
16. Komarov, I. V., Sokolov, V.V., and Tsiganov, A. V., Poisson Maps and Integrable Deformations of

Kowalevski Top, J. Phys. A, 2003, vol. 36, no. 29, pp. 8035-8048.
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