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Nonlocal thermoelectric engines in hybrid topological Josephson junctions
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The thermoelectric performance of a topological Josephson nonlocal heat engine is thoroughly investigated.
The nonlocal response is obtained by using a normal metal probe coupled to only one of the proximized
helical edges in the middle of the junction. In this configuration, we investigate how the flux and phase
biases trigger the nonlocal thermoelectric effects under the application of a thermal difference between the
superconducting terminals. Possible experimental nonidealities such as asymmetric proximized superconducting
gaps are considered, showing how the nonlocal response can be affected. The interplay between Doppler shift,
which tends to close gaps, and Andreev interferometry, which affects particle-hole resonant transport, are clearly
identified for different operating regimes. Finally, we discuss the power and the efficiency of the topological
thermoelectric engine which reaches maximum power at maximal efficiency for a well-coupled normal probe.
We find quite high nonlocal Seebeck coefficients of the order of tenths of μV/K at a few Kelvin, a signal that
would also be clearly detectable against any spurious local effects even with moderate asymmetry of the gaps.
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I. INTRODUCTION

Topological Josephson junctions have been actively in-
vestigated in recent years [1–4]. In particular, their potential
to localize Majorana fermions [5–8] could represent a novel
platform for topological quantum computation [9,10]. Topo-
logical Josephson junctions are also a unique resource in the
field of low-temperature thermal management [11–15], which
could play an important role for quantum technologies in gen-
eral. Applications based on the proximized helical edge states
have been envisioned [16–22]. For such cases, a fundamental
step is the capability to identify the helical nature of edge
states as a result of the spin-momentum locking, determined
by the topological protection [23–26]. After the theoretical
prediction [27,28], experimental evidence [29–31] has been
shown on the existence of edge states in several systems but
not yet on their helical nature [32–38]. For this purpose, differ-
ent strategies have been identified [39,40]. Recently, we have
realized that the helical nature determines a unique signature
in the thermoelectrical properties of topological Josephson
junctions (TJJs) [41,42].

Thermoelectricity is in itself an important trend in
materials science [43], which found a renaissance in low-
dimensional [44,45] and quantum-based [46–48] devices.
The thermoelectric response in superconducting systems is
expected to be negligible due to the particle-hole (PH)
symmetry, which is enforced by superconducting corre-
lations as clearly shown in the Bogoliubov-de Gennes
(BdG) Hamiltonian [49]. Still, the thermoelectric response of
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superconductors has a long history since Ginzburg’s seminal
work [50] and following literature [51,52]. There are various
strategies aimed at inducing thermoelectricity in supercon-
ducting or proximized systems by explicitly breaking the PH
symmetry by means of ferromagnetic correlations [53–57]
and nonlocal geometries [53,58,59] or by using nonlinearities
[60–64]. Recently, several authors have discussed Andreev
interferometers [65–69] and nonlocal thermoelectricity in
Cooper pair splitters [70,71], which found experimental con-
firmations. [72–75]. The application of thermal gradients to
Josephson junctions has also suggested unique technologies
[62,76–83], showing that the peculiar properties of TJJs could
also play an important role in this perspective [19,22,84–88].

In this paper, we discuss how, in realistic situations, the
nonlocal thermoelectric response is intimately connected to
the helical nature of edge states in a TJJ. In two previous
works [41,42], we analyzed a three-terminal structure where
the TJJ, obtained by proximizing the two ends of a 2D topo-
logical insulator (TI) bar through superconducting electrodes,
is contacted on one edge with a normal metal probe (N)
[19,39,84,89–91]. In this configuration, there is a nonlocal
thermoelectric response when a temperature bias is applied
between the two superconductors, which consists of the occur-
rence of a current flowing in the probe. We note that to observe
such a nonlocal thermoelectric effect, it is necessary to break
the PH symmetry at nonlocal level [92]. This can be done by
introducing a magnetic field orthogonal to the plane of the TI,
which induces the so-called Doppler shift (DS) of the TI bands
[41], or simply by applying [42] a Josephson phase difference
φ, which may be generated by imposing a dissipationless
current throughout the junction. In Refs. [41,42], we assumed
equal proximized gaps in the two superconducting right/left
ends and we concentrated only on the linear regime. In this
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FIG. 1. Sketch of the setup. A helical Kramers pair of edge states
of a quantum spin Hall bar is put in contact with two superconductors
at different temperatures TL = T + δT/2 and TR = T − δT/2. A
bias voltage VN is applied to the normal-metal probe coupled to the
edge at the point x0 and kept at temperature TN = T . L is the length
of the junction. The structure is threaded by a magnetic flux � which
induces a DS in the edge states in addition to a Josephson phase dif-
ference φ ≡ φR − φL applied between the two superconductors. The
green arrow depicts spin-↑ right-moving quasiparticles, the orange
arrow indicates spin-↓ left-moving quasiparticles.

paper, we generalize to the case where we have different
gaps, which better describes a realistic experimental situation,
where the samples have unavoidable imperfections leading to
asymmetric pairing potentials in the superconducting leads
[62,63,79,80]. Hence, showing how the unique nonlocal sig-
nature survives in the asymmetric case. At the same time, we
take the opportunity to analyze in detail the nonlinear regime,
discussing the thermodynamic performance of the nonlocal
thermoelectric engine obtained in such a configuration. Even
if the analysis of this paper focuses on the 2D TI case, we ex-
pect similar physics to also occur in 3D topological surfaces,
where DS effects can be induced [93,94].

More specifically, in Sec. II, we present the three-terminal
setup and introduce the model Hamiltonian. By using the scat-
tering approach, we discuss how the dissipative currents can
be computed. In Sec. III, we investigate the nonlocal Onsager
coefficients in the linear-response regime and discuss how
the junction asymmetry affects the nonlocal thermoelectricity.
In Sec. IV, we study the performance quantifiers (electrical
power, efficiency, and nonlocal Seebeck coefficient) in the
nonlinear regime and in the presence of finite voltage bias
and/or finite temperature difference between the two super-
conducting electrodes. In Sec. V, we present the relevant
conclusions concerning the nonlocal effects of the TJJs and
possible perspectives.

II. SYSTEM AND MODEL

We consider a TJJ which consists of two superconducting
electrodes placed on top of a 2D TI at a distance L (see Fig. 1).
The two electrodes induce superconducting correlations on
the edge states via proximity effect [16,17]. A normal-metal
probe is contacted to one side of the junction as depicted
in Fig. 1, thus putting it in electrical contact with only one
edge. In the setup, a voltage bias VN may be applied be-
tween the probe N and the superconducting electrodes, which
are equipotential and grounded [95] Keeping the two super-
conductor equipotentials is important in order to not induce

time dependent Josephson effect. The two superconductors
are kept at different temperatures to maintain a thermal bias
δT = TL − TR. A superconducting phase difference φ = φR −
φL is also applied between the two. We fix the temperature of
the probe at the average temperature TN = (TL + TR)/2 = T .
As we will see below, this choice is the most convenient
experimental one to extract the nonlocal signal. The width of
the TI strip is assumed to be large enough such that we can
neglect the lower edge, i.e., we focus only on the upper one.

The proximized system in the upper-edge can be described
by the following BdG Hamiltonian:

H =
(

H (x) iσy�(x)
−iσy�(x)∗ −H (x)∗

)
, (1)

expressed in the four-component Nambu basis (ψ↑, ψ↓,

ψ∗
↑, ψ∗

↓ )T with spin ↑ and ↓ collinear with the natural spin
quantization axis of the TI edge pointing along the z direc-
tion. In Eq. (1), H (x) = vF (−ih̄∂x + pDS/2)σz − μσ0 + 	(x)
is the low-energy effective Hamiltonian of a 2D TI, with
−H (x)∗ being its time-reversal partner. Here vF indicates the
Fermi velocity, μ is the chemical potential, and σi are the
Pauli matrices. The momentum pDS = (π h̄/L)(�/�0) rep-
resents the so-called DS contribution describing the gauge
invariant shift of momentum induced by a small magnetic flux
� threading the weak link, while �0 = h/2e is the magnetic
flux quantum [16]. A contact potential 	(x) = 	Lδ(x) +
	Rδ(x − L) is also included at the junction boundaries. �(x)
is the superconducting order parameter which is assumed
to obey rigid boundary conditions: �(x) = �L�(−x)eiφL +
�R�(x − L)eiφR , where �(x) is the step function and �i (with
i = L/R) is the proximity-induced gap for the left and right
superconducting regions. The two gaps can indeed be different
for many reasons. For example, the two superconductors may
be made of different materials [96], or the two superconduct-
ing films might have different thicknesses [97–99], or the two
S-TI interfaces might be made of a different quality [100,101].
Moreover, in realistic experimental conditions, the finite tem-
perature difference in the nonlinear regime may induce the
superconducting gaps to take different values on the two sides
[96]. In the latter case, to make realistic predictions in a
wide temperature range, we need to include the self-consistent
temperature dependence of the gaps. Despite these facts, a
careful study of TJJs with asymmetric gaps is something not
frequently done in literature, even if nonidentical gaps may
introduce many unexpected nontrivial effects, especially when
DS effects are involved.

The eigenspectrum of the BdG Hamiltonian relative
to a homogeneously proximized 2D TI upper edge is

given by Eiχ
± (k) = (εDS(�) + χ

√
(h̄vF k ∓ μ)2 + �2

i ). Here
the lower index ± labels the right/left parabola, χ = ± in-
dicates branches with positive/negative concavity, i = L, R
for the left and right superconducting regions, and εDS(�) =
vF pDS/2 = (vF h/4L)(�/�0) is the DS energy. The effect of
the DS on the dispersion curve is to shift the various branches
vertically by an amount εDS(�), upward or downward, as
shown in the example of Fig. 2, where we plot the disper-
sion curves for the three regions composing the TJJ. As a
consequence, a finite value of the magnetic flux � reduces
the gap in the eigenspectrum, which eventually closes when
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FIG. 2. Dispersion curves for electronlike QPs (solid lines) and holelike QPs (dashed lines) in the left [panel (a)] and right [panel (c)]
proximized regions, and in the weak link TI region [panel (b)] for 0 < εDS(�) < �L (with �R > �L). Green arrows represent spin-↑ right-
moving QPs, while orange arrows spin-↓ left-moving QPs.

|εDS(�)| = �L/R in the left/right superconducting regions of
the 2D TI, respectively. Clearly, when the values of �L and
�R are different, such a gap closing in the left and right
regions occurs at different values of the flux �.

The eigenfunctions of the electronlike Bogoliubov quasi-
particles (QPs) of the BdG Hamiltonian for both left/right
superconducting regions can be written, in Nambu notation,
as

� i,χ
e+ = (χui−ei φi

2 , 0, 0, vi−e−i φi
2 )T eikiχ

e+ x,

� i,χ
e− = (0,−χui+ei φi

2 , vi+e−i φi
2 , 0)T eikiχ

e− x, (2)

where the energy-dependent coherence factors (spinor com-
ponents) are

ui± =
√

�i

2ε±
e

1
2 hi (ε± ); vi± =

√
�i

2ε±
e− 1

2 hi (ε± ), (3)

with ε± = ε ± εDS(�) and hi(ε±) = arc Cosh(ε±/�i ) for
ε± > �i and hi(ε±) = i arccos (ε±/�i ) for ε± < �i. The

QP’s momentum is kiχ
e± = ±kF (χ

√
(ε2∓ − �2

i )/μ2 + 1), while

the related group velocity is viχ
e± = h̄−1|∂kE iχ

± | = vF (u2
i∓ −

v2
i∓). The eigenfunctions �

i,χ
h± relative to the holelike Bo-

goliubov QPs can be obtained by replacing (ui±, vi±) →
(vi±, ui±), kiχ

e± → kiχ
h∓ = ki,χ̄

e± (with χ̄ = −χ ), and viχ
e± →

v
iχ
h∓ = viχ

e± in the expressions of Eq. (2). Clearly, the limit
�i → 0 returns the standard 1D Dirac spectrum [shown in
Fig. 2(b)], which characterizes the 2D TI (nonproximized)
edge.

The normal-metal probe N—which would model, for in-
stance, a scanning tunneling microscopy (STM) tip [39,89–
91]—is assumed to be directly contacted to the upper edge
at the point x0 (see Fig. 1) and modeled by an energy- and
spin-independent transmission amplitude t .

A. Charge and heat currents

In the following, we will investigate only the dissipa-
tive currents flowing through the structure which can be
obtained by using the Landauer-Büttiker scattering [102]

formalism generalized to include superconductivity [103].
More precisely, we are not interested in the dissipationless
(Josephson) contribution to the charge current flowing in the
superconducting electrodes, which has been already discussed
elsewhere[4,8,22,104–108]. The dissipative charge (γ = −)
current at lead N and heat (γ = +) currents exiting from leads
i = L, R, N can be written in this form[

J−
N

J+
i

]
=2

h

∑
j,α,β

∫ ∞

0
dε[αe$ε − αμi )]F

αβ
i j (ε)Pα,β

i, j (ε, 	θ ), (4)

with α, β = +/− for electronlike and holelike QPs, respec-
tively, and where we set μN = eVN and μL = μR ≡ μS = 0.
The function

Fαβ
i j = f α

i (ε) − f β
j (ε) (5)

is a compact way to write differences of the generalized Fermi
functions f α

i (ε) = {e(ε−αμi )/kBTi + 1}−1, where Ti represents
the temperature of lead i.

In Eq. (4), the most important physical quantities are the
scattering coefficients Pα,β

i, j (ε, 	θ ) which are calculated from

the scattering matrix Sα,β

(i,σ ),( j,σ ′ ) as follows:

Pα,β
i, j (ε, 	θ ) =

∑
σ,σ ′

∣∣Sα,β

(i,σ ),( j,σ ′ )

∣∣2
(6)

[see Appendix A for the details of the computation and Ap-
pendix B for the discussion of the special symmetries of the
scattering coefficients in the symmetric case (i.e., when �L =
�R)]. The scattering coefficients Pα,β

i, j (ε, 	θ ) represents the re-
flection (i = j) or transmission (i �= j) probability of a QP of
type β injected from lead j to end up as a QP of type α in
lead i. We introduced the vector parameter 	θ ≡ (�,φ) which
includes both the magnetic flux � and the gauge-invariant
Josephson phase difference φ ≡ φR − φL. The two quantities
should be treated independently, since � depends directly
on the magnetic-field flux in the junction, while the phase
bias φ also depends on the dissipationless current imposed
through the junction. They represent two different degrees of
freedom needed to fully characterize the state of the TJJ. Their
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difference is reflected in the fact that the observables relative
to the Josephson junction are 2π periodic with respect to
phase bias φ (as required by the gauge invariance), but are not
periodic in the flux bias � (once the gap is closed it does not
open again). Moreover, there is another important difference
between the two quantities: the flux bias operates differently
on the two opposite helical edges states of the TI, while the
phase bias affects the two edges in the same way.

Finally, it is worth noting that there is no dependence of the
scattering coefficients on the contact potential [109] parame-
ters 	i [110]. This is a direct consequence of the helicity of
the edge channels which do not admit ordinary reflections at
barriers (akin to the Klein paradox) [111].

III. LINEAR RESPONSE REGIME

The occurrence of a nonlocal thermoelectric response in
the presence of a DS [41] or of a phase difference [42] was
discussed and attributed to the helical nature of the edge states
of the TJJ. For simplicity, in those papers, only the symmetric
case of equal gaps �L = �R was considered. We refer the
reader to Appendix C for a thorough discussion of such a
symmetric case, which completes the analysis done in Ref.
[42] by presenting the analytical expressions of the heat and
charge currents flowing through the probe obtained in the
general case in which both the DS and the phase bias are
present.

In this section, we explore the asymmetric case (where
�L �= �R). This is not a mere generalization of previous
results, since it provides important information relevant for
realistic (experimental) realizations. Indeed, when one of the
two temperatures Ti is bigger than 0.4TC,i (with TC,i being
the critical temperature of the ith superconductor) the self-
consistent gap �i(Ti ) gets reduced from the zero-temperature
value �i,0 and the right-left symmetric gap condition is hardly
valid [96].

Let us first clarify which is the relevant thermoelectrical re-
sponse for the three-terminal setup depicted in Fig. 1. We use
the approach developed in Ref. [112] to investigate thermo-
electrical properties for multiterminal systems [92]. The first
step is to identify the independent currents. Since charge and
energy must be conserved, we are only left with four indepen-
dent currents, out of six (three charge currents and three heat
currents). In our three-terminal Josephson junction setup, we
consider the case of a stationary superconducting phase bias
(φ̇ = 0), which indeed necessarily requires VL = VR [113]. In
such a configuration, the charge current flowing in the two
superconductors is dominated by the dissipationless Joseph-
son current which, in the linear response regime, is unaffected
by the temperature difference between the electrodes. In the
following, in analogy to Refs. [41,42], we mainly discuss
the only relevant currents which allow us to characterize the
nonlocal thermoelectric response of our setup. These are the
charge current (J−

N ) flowing in the normal probe and the heat
current associated to the superconductors (see below for the
proper definition). Moreover, interesting features also emerge
from the analysis of the linear heat current (J+

N ) flowing in
the normal probe, which will be presented for completeness
in Sec. III E.

A. Nonlocal thermoelectric and Peltier coefficients

For small values of VN and δT , the charge current J−
N

can be expanded up to the linear order in these quantities
[70,71,92,112,114,115]. The charge current for the probe
reads

J−
N = LN

11
VN

T
+ LN

12
δT

T 2
, (7)

with VN/T and δT/T 2 taking the role of the relevant affini-
ties of the problem, while LN

11 and LN
12 are linear transport

coefficients. We note that the electrical response to the bias
VN is given by the conductance G = LN

11/T , while the linear
response to δT (temperature difference between the super-
conductors) corresponds to a nonlocal thermoelectric current,
represented by the coefficient LN

12. It is important to stress
now that in the linear-response regime the system is close to
equilibrium. As a result, the temperature of the probe needs
to be set to its equilibrium value, namely, TN = T . By setting
J−

N = 0 in Eq. (7) and solving for VN , one finds the linear See-
beck thermovoltage V S

N , through which we can compute the
nonlocal Seebeck coefficient S = −V S

N /δT = (1/T )LN
12/LN

11,
similar to the derivation of the local case.

Let us now consider the heat currents. In the symmetric
case (�L = �R) and for TN = T , the heat current flowing in
the left superconducting lead J+

L is exactly opposite to the
current flowing in the right lead J+

R , namely, J+
L = −J+

R , while
J+

N = 0 (i.e., there is no heat current at the probe), due to the
symmetries of the configuration, see Appendix C for details.
When the left-right symmetry is broken (�L �= �R), the two
superconducting terminals are no more equivalent and the heat
currents in the two superconducting terminals are different.
In such a case, it is convenient to describe the heat current
associated to the two superconductors by the average

J+
S ≡ J+

L − J+
R

2
. (8)

In the linear-response regime, it is expressed as

J+
S = LS

21
VN

T
+ LS

22
δT

T 2
. (9)

The last term is the local heat conductance κ = LS
22/T 2 be-

tween the two terminals, while the first term represents the
nonlocal Peltier-like contribution. We note that, in general, for
a multiterminal system [112], one does not expect any specific
symmetry relation between the nonlocal linear coefficients.
However, with the definition of Eq. (8), the Onsager-Casimir
relations [92,116–118] for the linear coefficients defined by
Eqs. (7) and (9) can be expressed in the following form:
LN

12(	θ ) = −LS
21(	θ ). In the next section, we will numerically

verify that such a relation holds independently of the ratio
between the gaps.

We will divide the analysis in two limiting situations. In the
first case, we will discuss the Onsager coefficients as functions
of the DS in absence of any phase-bias, i.e., φ = 0. In the sec-
ond case, instead, we analyze how in an extremely asymmetric
case the thermoelectrical effect depends on the phase bias in
absence of the DS (� = 0). In real experiments, the discussed
effects, which are different aspects of the nonlocal thermo-
electricity, are probably mixed but it is interesting to discuss
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FIG. 3. Onsager coefficients LN
11 (a), LN

12 (b), LS
21 (c), and

LS
22 (d ) as functions of εDS(�)/�0,L and δ = �0,R/�0,L for φ =

φR − φL = 0, T/TC,L = 0.1, L/ξL = 3 and |t |2 = 0.5. Such quan-
tities are normalized as follows: LN

11/(G0T ), LS
22/(GT T 2) and

(LN
12, LS

21)/(
√

G0GT T 3).

them separately to clearly recognize their contributions to the
nonlocal thermoelectrical signal.

B. Asymmetric case for φ = 0

In this section, we investigate the linear transport coeffi-
cients in the case where the right/left symmetry is broken
by different zero-temperature superconducting gaps (�0,R �=
�0,L) and we define the ratio δ ≡ �0,R/�0,L = ξL/ξR, where
the second identity is expressed in terms of the coherence
lengths ξi = h̄vF /π�0,i, with i = R, L. We note that, when
δ �= 1, the scattering coefficients Pα,β

i, j of Eq. (6) depend on
the position of the probe. This is different from the left/right
symmetric case (when δ = 1) in which the scattering coef-
ficients do not depend on the position x0 of the probe but
simply on the total length L of the junction (see Appendix
B for more details). For the sake of convenience, hereafter
we consider the probe positioned exactly in between the two
superconductors (i.e., x0 = L/2) and we fix δ � 1 [119].

The behavior of the linear coefficients LN/S
i j of Eqs. (7) and

(9) is shown in Fig. 3 as a function of the DS εDS(�)/�0,L

and of the asymmetry parameter δ, for fixed phase bias φ = 0.
The local coefficients LN

11 and LS
22 are plotted in units of G0T

and GT T 2, respectively, where G0 denotes the electrical con-
ductance quantum and GT = (π2/3h)k2

BT the thermal one.
The nonlocal thermoelectrical coefficients LN

12 and LS
21 are

plotted in units of
√

G0GT T 3. In these plots, we consider
an intermediate coupling parameter to the probe (|t |2 = 0.5)
and set the length of the junction three times longer than

the superconducting coherence length, i.e., L/ξL = 3. Such a
value of L corresponds to the case of a long junction (given
a coherence length ξL in the proximized TI of the order of
600 nm), which allows the emergence of oscillations in the
linear-response coefficients due to the proliferation of reso-
nant states in the junction. The choice of the value |t |2 = 0.5
comes from the fact that, by increasing the coupling |t |2, the
resonances get broadened, eventually disappearing when the
coupling approaches unity, irrespective of the length L (not
shown).

Assuming �0,L < �0,R (namely, δ > 1), it turns out that
the DS energy εDS(�), modulated by the flux �, modifies the
dispersion curves of Fig. 2 in a different way for the right and
left superconductors. In particular, for |εDS(�)| < �0,L, the
spectrum is gapped for energies ε < �0,L − |εDS(�)| in both
superconducting leads. For �0,L < |εDS(�)| < �0,R, we are
in a situation where the gap is closed for the left superconduc-
tor, but open for the right one. Finally, when |εDS(�)| > �0,R

the gaps are closed for both sides of the junction.
These different regimes can be recognized in the behavior

of the Onsager coefficients, depicted in Fig. 3, computed
at low temperature T/TC,L = 0.1 (with TC,L the critical
temperature of the left superconductor). In particular, we rec-
ognize a subgap region (i) (between vertical solid lines) for
|εDS(�)/�L| < 1, a partially gapped region (ii) (between the
dashed and solid lines) and the supragap region (iii) (below
diagonal dashed lines). Note that the clear distinction of the
different regions emerging in the behavior of all the Onsager
coefficients of Fig. 3 can be used, in principle, as an experi-
mental observation of the different zero temperature gaps of
the superconductors forming the junction.

For the electrical coefficient LN
11/G0T , depicted in

Fig. 3(a), we can recognize a similarity with (superconductor-
insulator-normal metal-insulator-supercondutor junctions
where transport is typically suppressed in the subgap regime
(i), though resonances are present (vertical red stripes) that
correspond to Andreev bound states (ABSs) crossing zero
energy. We checked that the linewidth of ABS resonances
depends on the coupling parameter (by increasing the
coupling |t |2 the resonances broaden). Furthermore, the
number of resonances inside region (i) grows with the
ratio L/ξL due to the proliferation of ABSs in the junction
(not shown). Similarly, in the partially gapped (ii) and the
supragap (iii) regions, we see a weak oscillating behavior
(vertical stripes) reminiscent of Andreev interferometric
effects. On the other hand, we observe that the thermal
coefficient LS

22/GT T 2 [Fig. 3(d)] is completely suppressed
in region (i) since, in this case, the ABS resonances cannot
contribute to thermal transport due to the Andreev mirror
effect. Indeed, Andreev reflection does not allow the flow of
energy through the S interface, since energy is carried by QPs
but not by the condensate. However, the thermal conductance
becomes finite and large in the supragap region (iii) where
energy can be carried by QPs. In region (ii), the thermal
transport between the two superconductors is not completely
suppressed and is influenced by an Andreev interferometric
mechanism which determines an oscillating behavior.

Concerning the nonlocal coefficients LN
12 and LS

21, depicted
in Figs. 3(b) and 3(c), respectively, we confirm the validity of
the discussed generalized Onsager symmetry which becomes
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FIG. 4. Nonlocal thermoelectrical coefficient LN
12, expressed in

units of
√

G0GT T 3, as a function of εDS(�)/�0,L for δ = 2 and
different temperatures. We see that also in the subgap region LN

12 �= 0
when temperature increase. Parameters are as in Fig. 3.

LN
12(�) = −LS

21(�) (here being φ = 0). The nonlocal coef-
ficients clearly resemble some aspects of those discussed in
Ref. [41] for identical gaps. In particular, LN

12 is suppressed in
the subgap region (i) and two main peaks at |εDS(�)| = �0,R

appear at the boundaries of regions (ii) and (iii) (dashed lines).
In this condition, for εDS > 0 (εDS < 0), the top left (top
right) band of the right proximized region in Fig. 2(c) nearly
touch zero energy opening the possibility for thermoelectrical
effects. In particular, the helicity of the edge states allows
(for example, for εDS > 0) a flow of holelike QPs [whose
dispersion is represented by the dashed red curve in Fig. 2(a)]
to move to the right from the proximized region SL and a
flow of electronlike QPs [whose dispersion is represented by
the solid blue curve in Fig. 2(c)] to move to the left from
the proximized region SR. Under the application of a small
temperature bias between the superconductors, the unbalance
between the flow of cold electronlike QPs from the right and
hot holelike QPs from the left leads to a net thermoelectric
current flowing through the probe [41].

C. Interference character of Doppler shift in region (ii)

The true novel feature of the asymmetric case is repre-
sented by the appearance of a finite thermoelectric contribu-
tion (LN

12 �= 0) in region (ii) [see Fig. 3(b)], where the right
superconductor is still gapped. In such a case, the situation
resembles the Andreev interferometric mechanism [42], even
if in this case φ = 0. In this respect, the presence of a finite
thermoelectric effect in region (ii) allows us to single out
the Andreev interferential character of the DS effect (which
contributes as an effective finite phase bias) from that of band
shifting. Note that this effect, in principle, is also present in
the subgap region (i) even if it is exponentially suppressed
as ∼e−(|εDS(�)|−�L )/kBT . Indeed, only the supragap states con-
tribute to thermoelectricity as long as they are thermally
activated. This behavior is clarified by investigating the evo-
lution of LN

12 for different temperatures. Figure 4 represents a
horizontal cut of Fig. 3(b) at δ = 2 for four different values
of the temperature T [the blue curve corresponds to the data

plotted in Fig. 3(b)]. When the temperature increases, LN
12 also

increases even in subgap region (i). Furthermore, for higher
temperatures, all the resonances are smoothened due to the
averaging between different energies.

At the lowest temperature, LN
12 presents changes of signs

which disappear for higher values of T . This can be un-
derstood by noting that the sign of LN

12 directly reflects the
nature of the dominant carriers in the junction. For kBT �
�0,L and for |εDS| � �0,R, only one type of carries, coming
from the superconductor with the smaller gap, are allowed
for the transport within the energy window 0 � ε � kBT (see
Fig. 2), namely, holelike QPs (electronlike QPs) for εDS > 0
(εDS < 0). This flux of holelike QPs (electronlike QPs) is
contrasted by an opposite flux of electronlike QPs (holelike
QPs) originating due to Andreev reflections occurring at the
interface with the other superconductor, which is still gapped
in that energy window. The (nontrivial) unbalance between
these positive and negative charged carries determines the sign
of the charge current flowing inside the probe and thus the sign
of LN

12.
As a final remark, it is important to note that, different from

the results discussed in Ref. [41] for identical gaps where LN
12

was an odd function of � (namely, LN
12(�) = −LN

12(−�)), in
the asymmetric case (i.e., �L �= �R) LN

12(�) does not manifest
any particular symmetry under the inversion � → −� (as
clearly emerges from Fig. 4). This is due to the fact that in the
symmetric case, there are extra symmetries in the scattering
coefficients, as discussed in Appendix B.

D. Asymmetric case for � = 0: Interference effects on local
thermoelectricity

Let us first recall that in Ref. [42], we have shown that
a finite φ alone, i.e., even in the absence of the DS, is suf-
ficient to establish a nonlocal thermoelectric response due
to an Andreev interferometric effect. Here we demonstrate
that Andreev interferometry generates another peculiar effect
that contributes to LN

12, which emerges only by increasing the
left/right asymmetry. We consider the extreme situation in
which �0,R → ∞ (i.e., δ → ∞), so we can neglect all the
contributions from the QPs on the right side, allowing us to
obtain a simple analytical result for the charge current at probe
J−

N . In other words, we are focusing on the regime where
kBTL,�L � �R. As a consequence of that choice, the temper-
ature TR will not even enter in the discussion. Therefore, the
only thermal bias capable of driving a thermoelectric current
through the probe is the local one present between the left
superconductor SL and the probe N itself. Interestingly, the
right superconductor SR, even if it does not directly contribute
to the energy transport (being fully gapped), still influences
the exchange of charge between N and SL through the An-
dreev reflection processes occurring at the interface with SR.
The resulting dependence of the current J−

N on the phase
difference φ, see below, is due to the Josephson coupling
established between the two superconducting leads. Note that
this interference (coherent) effect on the local thermoelectric-
ity between N and SL can be controlled by the application
of a dissipationless current between the two superconductors,
which changes the phase difference φ.

235434-6



NONLOCAL THERMOELECTRIC ENGINES IN HYBRID … PHYSICAL REVIEW B 103, 235434 (2021)

FIG. 5. Charge current J−
N linear coefficients LN

11 and LN
12 in the

extreme asymmetric limit δ → ∞ as a function of the phase bias φ

and junction length L. Other parameters are T/TC,L = 0.2, |t |2 = 0.5.

The charge current at the probe takes the form

J−
N = 2e

h

∫ �L

0
dε F+−

NN (ε)[A(ε, φ) + A(ε,−φ)]

+ 2e

h

∫ ∞

�L

dε
∑

σ,σ ′=±
σ |r||σ−σ ′| F σ,σ ′

NL (ε)Q(ε,−σ ′φ),

(10)

where the first term is the subgap energy contribution and the
function

A(ε, φ) = 2|t |4 · �(�L − ε)

1 + |r|4 + 2|r|2 cos
(
2π Lε

h̄vF
+ φ + arcsin

(
ε

�L

)) ,

with |r|2 = 1 − |t |2. Such a first term vanishes when VN = 0,
since F+−

NN = 0 in that case [see Eq. (5)]. The second term,
instead, collects all the contribution for energies above the left
gap and the function

Q(ε, φ) = (g(ε)2 − 1) · �(ε − �L )

g(ε)2 + |r|4 − 2g(ε)|r|2 sin (2π Lε
h̄vF

+ φ)
, (11)

with g(ε) = earcCosh(ε/�). Note that in Eq. (10), the function
Fαβ

NL = f α
N (ε) − f β

L (ε) involves only the electrodes N and SL.
From Eq. (10), it is possible to derive the analytical expres-
sions of the Onsager coefficients LN

11 and LN
12 of Eq. (7) in the

case VN , δT → 0:

LN
11 = −2e2

h

∫ �L

0
dε 2T f ′

0(ε)[A(ε, φ) + A(ε,−φ)]

− 2e2

h

∫ ∞

�L

dε T f ′
0(ε)(1 + |r|2)[Q(ε, φ) + Q(ε,−φ)]

(12)

LN
12 = −2e

h

∫ ∞

�L

dε ε T f ′
0(ε)|t |2[Q(ε, φ) − Q(ε,−φ)],

(13)

where f ′
0(ε) = [4kBT cosh (ε/2kBT )2]−1 is the derivative of

the Fermi function f0(ε) = [1 + eε/kBT ]−1. From Eqs. (12)
and (13), the even and odd parities in φ of LN

11 and LN
12, respec-

tively, clearly emerge. In Fig. 5, we plot those two quantities
with respect to the phase bias φ and the junction length L.

The main difference with respect to the purely nonlocal ther-
moelectric coefficient of Ref. [42] is that the thermoelectric
coefficient LN

12 of Eq. (13) depends on sin (2π Lε
h̄vF

+ φ) [see

Eq. (11)] instead of cos (2π Lε
h̄vF

+ φ) (see Appendix C). For
long junctions (i.e., L → ∞), the contributions for differ-
ent energies average to zero, recovering the expected result
of a standard NS junction. This clearly shows that when
the superconducting leads are far from each other, the An-
dreev interferometric mechanism on the local thermoelectrical
transport is suppressed.

We conclude this section by observing that the local
thermoelectric effect in the probe, which emerges with gap
asymmetry, represents one of the main sources of disturbance
to the measurement of the nonlocal thermoelectric effect dis-
cussed in the sections above. This implies that, to clearly see
the nonlocal thermoelectrical effect, it is convenient to be
in a situation with weak asymmetry. However, we estimated
that this local thermoelectric effect is of the order of a few
μV/K, to be compared with the nonlocal thermoelectric effect
determined by DS, discussed before, which could reach values
of the order of many tenths of μV/K (see below). So we do
not expect that spurious local thermoelectrical effects would
substantially affect the nonlocal measurements, at least for
moderate gap asymmetry.

E. Linear-response heat current at the probe

In the asymmetric case (�R �= �L), it is interesting to
discuss the behavior of the heat current flowing in the probe
J+

N . Similarly to Eq. (7), in the linear-response regime we can
write

J+
N = LN

21
VN

T
+ LN

22
δT

T 2
. (14)

The coefficient LN
21 accounts for the local Peltier effect at

the probe (describing how the heat current at the probe is
influenced by the voltage bias VN ). While LN

22 represents the
transverse heat response at the probe, i.e., the heat current
induced in the probe as determined by a transversal temper-
ature gradient between the superconductors. In contrast to the
symmetric case in which J+

N = 0 in the linear response regime
(see Appendix C and Refs. [41,42]), in the asymmetric con-
figuration J+

N can be finite, even in linear response. This can
be interpreted as the consequence of the contributions of the
different heat currents flowing from the two superconducting
leads kept at different temperatures. In Fig. 6, we plot LN

21,
panel (a), and LN

22, panel (b), as functions of εDS and δ; both
quantities are significantly different from zero only in region
(ii). Indeed, in region (i), J+

N vanishes since the system is not
able to activate enough supragap states [120]. On the other
hand, in region (iii) the two gaps are both closed and there
is almost no difference in the thermal coupling between right
and left leads. Since the probe is at the average temperature
T = (TR + TL )/2, the system behaves very similarly to the
symmetric case (δ = 1 bottom border of the figures), where
the thermal flux from the hotter lead is compensated with the
thermal losses in the colder lead giving a null net thermal
current in the probe.

Furthermore, we notice the behavior of the transverse ther-
mal coefficient LN

22 of the system can be described in terms
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FIG. 6. Heat current J+
N Onsager coefficients LN

21 (a) LN
22 (b) as

functions of εDS(�)/�0,L and δ = �0,R/�0,L , for φ = φR − φL = 0,
T/TC,L = 0.1, L/ξL = 3, and |t |2 = 0.5. Such quantities are normal-
ized as follows: LN

21/(
√

G0GT T 3), LS
22/(GT T 2).

of a thermal divider, i.e., a device that controls the sign of
the heat current in an intermediate third terminal (the probe),
assuming that there is a main heat flow generated from the
thermal gradient δT (between the superconductors) [121]. In
particular, the three-terminal setup can be described as a series
of two thermal conductances with the probe in the middle. In
such a case, the heat flux in the probe would depend essen-
tially on the ratio of thermal resistances. Indeed, in region (ii)
for δ > 1 the thermal coupling of the probe with right lead
is very opaque with respect to the left lead. Since the probe
temperature is fixed at T = (TR + TL )/2, there is more heat
flowing from the left lead than into the right one, determining
the negative sign of LN

22 (since positive thermal current of the
probe is defined exiting from the probe) [122]. We verified
that the sign of LN

22 changes globally for the opposite case
δ < 1 (not shown). This behavior qualitatively resembles the
concept of the thermal router [123] in superconducting hybrid
systems.

In region (ii), we notice that both linear coefficients are
also oscillating (see the vertical stripes). In particular, the
sign changing of LN

21 with � reflects the change of the main
carrier (electronlike or holelike QP) as determined by Andreev
interference discussed in Sec. III B. It is indeed important to
remember that LN

21 being a local Peltier-like coefficient, its
sign will be directly dependent to the sign of the dominant
carrier. Instead, LN

22 doesn’t have similar sign changes being
associated to a transversal thermal response that cannot dis-
tinguish on the main carrier charge sign.

IV. NONLINEAR RESPONSE REGIME

In this section, we investigate the behavior of the nonlocal
thermoelectricity from the perspective of a thermodynamic
engine within the nonlinear regime. The laws of thermody-
namics set very general constraints on the currents of Eq. (4).
In particular, the first law of thermodynamics, which guaran-
tees energy conservation, can be written as

∑
i

J+
i = P, (15)

where P is the electrical power

P = −
∑

i

J−
i Vi. (16)

With this definition, P is positive when the current flows
against the applied bias, i.e., there is a thermopower gener-
ated in the system that can be dissipated on an external load
(P ≡ Pgen). The device thus works as a thermoelectrical en-
gine [46,47,92,112,124]. Note that, since we set VL = VR = 0,
Eq. (16) reduces only to P = −J−

N VN , which means that the
power is dissipated only in the probe circuit. Another impor-
tant performance quantifier is the efficiency defined as

η = Pgen∑+
i J+

i

, (17)

where the numerator corresponds to the electrical power gen-
erated Pgen, while the denominator corresponds to the total
heat current entering the system (the superscript + in the sum
means that we are summing only positive heat currents). In
the remaining part of the paper, we discuss the symmetric
case (δ = 1), with �0 ≡ �0,L = �0,R and TC ≡ TC,L = TC,R.
However, when the temperature difference between the two
superconductors becomes comparable with the critical tem-
peratures, the superconducting gaps on the two sides of the
junction will take different values. In what follows, we take
into account this fact by including self-consistent temperature
dependence of the two gaps.

A. Electrical power and maximum power

The electrical power P of Eq. (16) is presented in Fig. 7
and expressed in units of GTC TC [with GTC = (π2/3h)k2

BTC the
thermal conductance quantum at TC], as a function of eVN/�0

and εDS(�)/�0 in the case of short L/ξ = 0.1 [Fig. 7(a)],
medium L/ξ = 1 [Fig. 7(b)], and long L/ξ = 3 [Fig. 7(c)]
junctions, with ξ = h̄vF /π�0. Here we set |t |2 = 0.5, rep-
resenting a intermediate Ohmic contact with the probe and a
phase difference φ = 0. It is important to note that here we set
T = 0.2TC and δT/TC ≈ 0.4, which is the largest thermal bias
for which TL, TR � 0.4TC , such that the superconducting gaps
can be safely considered still constant [�L(TL ) ≈ �R(TR) ≈
�0].

In Fig. 7, the white dashed lines represent the stop-
ping voltage Vstop defined through the equality Pgen(Vstop) =
J−

N (Vstop) = 0, while the red dashed lines locate the max-
imum generated power Pmax = maxVN [Pgen]. By comparing
Figs. 7(a)– 7(c), we can see that the behavior of the electrical
power for different lengths of the junction remains roughly the
same. In particular, when the gap closes due to the flux bias
�, i.e., when |εDS(�)/�0| ≈ 1, the electrical generated power
Pgen is maximized irrespective of the length L. For long junc-
tions, the only additional feature is the presence of ripples in
the generated power due to the proliferation of resonant states
inside the junction [see Fig. 7(c)], which in turn also affects
the supragap states. No oscillations occur at any lengths when
|t |2 ≈ 1 (not shown). Furthermore, another important feature
which emerges from Fig. 7 is that the sign of the stopping
voltage Vstop changes when � → −� as a consequence of
the antisymmetry of the thermoelectricity under the magnetic
field inversion.

235434-8



NONLOCAL THERMOELECTRIC ENGINES IN HYBRID … PHYSICAL REVIEW B 103, 235434 (2021)

FIG. 7. Electrical power P in units of GTC TC as a function of eVN/�0 versus εDS(�)/�0 in the case of short (a) L/ξ = 0.1, medium,
(b) L/ξ = 1, and long (c) L/ξ = 3 junctions. Blue depicts the generated power Pgen = P > 0. The white dashed line corresponds to the
stopping voltage curve, while the red dashed line indicates the maximum generated power Pmax. Here we choose |t |2 = 0.5 (an intermediate
coupling parameter representing a not fully Ohmic contact with the probe), δT/TC ≈ 0.4 (large enough to guarantee the highest possible
electrical power by keeping constant and equal the gaps of the superconductors), with T/TC = 0.2 and φ = 0.

A study of the dependence of the maximum generated
power on the phase difference φ is presented in Fig. 8. Here,
Pmax is plotted in units of GTC TC , as a function of the two
external tuneable knobs, i.e., εDS(�)/�0 and φ/π , setting
L = ξ . This length is realistic, assuming a STM tip with a
state-of-the-art width of 100 nm and a coherence length ξ in
the proximized TI of the order of 600 nm [125]. Furthermore,
over a length L ∼ ξ , no backscattering events are expected to
occur at the operating temperatures for our setup, typically
of a few Kelvin. Also, in this case we consider an inter-
mediate coupling parameter |t |2 = 0.5 with the probe and a
thermal gradient δT/TC ≈ 0.4 with T/TC = 0.2. Importantly,
Fig. 8 shows that the following symmetry holds: Pmax(	θ ) =
Pmax(−	θ ). The same holds, in general for the electrical power,
i.e., P(	θ,VN ) = P(−	θ,−VN ).

In Fig. 9, we present the results of the maximum generated
power Pmax as a function of δT/TC for different values of the
coupling parameter |t |2. In this case, we explicitly consider the

FIG. 8. Maximum generated power Pmax in units of GTC TC as a
function of εDS(�)/�0 versus φ/π . Here we considered L/ξ = 1,
|t |2 = 0.5 and δT/TC ≈ 0.4 (large enough to guarantee the highest
possible electrical power by keeping constant and equal the gaps of
the superconductors) with T/TC = 0.2.

temperature dependence of the superconducting gaps by using
the approximated formula �i = �0 tanh (1.74

√
TC/Ti − 1)

(with i = L, R) which is accurate better than 2% with respect
to the self-consistent BCS result [85,96]. We compare it with
the maximum power in the linear response regime given by

the relation Pmax = GS2

4 δT 2 = L2
12

L11

δT 2

4T 3 (dashed lines) [92]. In
the figure, we consider T/TC = 0.5 to maximize the excur-
sion of the thermal gradient δT/TC ∈ [0, 1] by preserving the
superconducting state of the leads (namely, such that the gap
of the hotter superconductor does not close, i.e., TL/TC � 1).
Here we set L/ξ = 1, φ = 0, and εDS(�)/�0 = 1. From an
analysis of the result of Fig. 9 emerges that all the curves
match the trend of the linear regime for small δT as expected.
Nonlinearities emerge only for δT/TC � 0.4 due to the clo-
sure of the gap of the hotter superconductor.

It is important to note that the red curves of Fig. 9, cor-
responding to the case of perfect coupling with the probe
(|t |2 = 1), do not depend on the phase difference φ nor the
length of the junction L. This curve clearly maximizes the
performance with respect to all the other cases |t |2 < 1.

FIG. 9. Maximum generated power Pmax in units of GTC TC as a
function of δT/TC for different values of the coupling parameter |t |2
(solid lines) in comparison with the maximum power in the linear
regime (dashed lines). Other parameters in the heading. Here we
choose T/TC = 0.5 to maximize the range of the thermal gradient
δT/TC so the gap of the hotter superconductor does not close (i.e.,
TL/TC � 1).
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(a)

(b)

FIG. 10. (a) Efficiency η normalized with respect to the Carnot
efficiency ηC = δT/T as a function of eVN/�0. (b) So-called lasso
diagrams showing the normalized efficiency η/ηC at every power
output expressed in units of GTC TC . Different colors correspond to
different probe temperatures T/TC = 0.25 (blue line), T/TC = 0.5
(yellow line), T/TC = 0.75 (red line). Different style of lines cor-
respond to different values of the thermal gradient (normalized with
respect to δTmax of Eq. (18): δT/δTmax = 0.1 (solid line), δT/δTmax =
0.5 (dashed line), δT/δTmax = 1 (dot-dashed line).

B. Efficiency and Lasso diagram

We now present in Fig. 10 the results for the efficiency,
defined in Eq. (17), by assuming perfect coupling with the
probe |t |2 = 1 and εDS(�)/�0 = 1, for which we have max-
imum power (according to the discussion of the previous
section). In this situation, both the efficiency η and Pmax

do not depend on the phase difference φ and the junction
length L. Here, we consider different values of the tempera-
ture of the probe, namely, T = 0.25 TC, 0.5 TC , and 0.75 TC ,
corresponding to different colors in Fig. 10. For each value
of T , we take three different values of the thermal bias
δT = 0.1 δTmax, 0.5 δTmax, δTmax (corresponding to the differ-
ent style of the lines: solid, dashed, dot-dashed). δTmax takes
the following value:

δTmax = min {2T, 2(TC − T )} (18)

to always fulfill the condition 0 < TL, TR < TC for any op-
erating temperature of the superconductors. All the curves

in Fig. 10(a) present the same reversed-parabola behavior,
passing through VN = 0 when the themocurrent becomes null
again, similarly to what is expected for a linear thermoelec-
trical engine [92]. The nonlocal thermoelectrical engine has
a quite small maximum value for the efficiency, i.e., η/ηC �
3.5%. This low efficiency can be attributed to the large flux of
heat entering the system [thus increasing the denominator of
Eq. (17)], which occurs when gaps close as a consequence of
the DS.

A convenient way to present the efficiency at a given power
output, and vice versa, is in the form of lasso diagrams as
depicted in Fig. 10(b). The parameter that is changed along
the lasso line is the applied voltage VN . As we can see, the
lasso curves in Fig. 10(b) are long and narrow loops for all
values of the controlling parameters (T and δT ). This implies
that maximum efficiency and maximum output power occur
at the same value of parameters. This is advantageous for the
operation of a thermoelectric device, where one typically must
decide whether to optimize the engine operation with respect
to efficiency or power output and constitute a major difference
between this nonlocal thermoelectrical engine and standard
linear thermoelectrical engines [92].

C. Nonlinear Seebeck coefficient

In this section, we present the result of the nonlinear See-
beck coefficient as a function of δT/TC for different values of
the coupling parameter |t |2. In Fig. 11, we plot the nonlinear
nonlocal Seebeck coefficient defined as

S = −Vstop

δT
, (19)

expressed in units of μV/K , where Vstop is the stopping voltage
for which J−

N (Vstop) = Pgen(Vstop) = 0 (see white dashed lines
of Fig. 7). We observe that the nonlinear Seebeck coefficient is
quite big, considering that the operating temperature for these
devices is of the order of few Kelvin. Moreover, we see that S
weakly depends on the temperature difference as long as the
gap remains unaffected. Furthermore, we see that S increases
going toward the tunneling limit |t |2 → 0. We can conclude
that nonlocal thermoelectricity is a strong effect.

FIG. 11. Seebeck coefficient in units of μV/K as a function of
δT/TC for different values of the coupling parameter |t |2. The other
parameters are the same of Fig. 9 (see the heading).
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V. CONCLUSIONS

We have discussed the nonlocal thermoelectricity gener-
ated in a three-terminal topological Josephson engine where
one edge of a 2D TI is coupled to a normal metal probe. The
nonlocal thermoelectricity is associated to the helical nature
of the edge states and is triggered by the application of the
DS εDS(�) (flux bias �) and/or by the phase difference φ

between the superconductors. In this paper, we have discussed
in detail the case of asymmetric gaps which generalize previ-
ous studies of the same device to a more realistic situation
where the right and left leads are not exactly identical. This
is also necessary to investigate strong nonlinear conditions
which typically occur in experiments. We have found that
nonlocal thermoelectricity is also present in the asymmetric
case. The nonlocal Onsager coefficients satisfy the standard
symmetry between Seebeck and Peltier coefficients if the
heat current between the two superconductors is properly
defined to take into account the nonlocality. We have found
that, in the asymmetric gap case, the DS develops a strong
nonlocal thermoelectric effect when the two gaps close. We
have discussed how the gap asymmetry gives rise to an in-
termediate regime (for �L < |εDS(�)| < �R) where Andreev
interference determines a weak nonlocal thermoelectrical ef-
fect without applying a phase bias. We have investigated how
this Andreev mechanism also influences the local thermoelec-
tric effect. We have estimated that such a local thermoelectric
effect is of the order of a few μV/K, to be compared with
the nonlocal thermoelectric effect determined by the DS dis-
cussed before, which could reach values of the order of many
tenths of μV/K. We can conclude that the thermoelectricity
generated in the probe by the DS can be used as a clear
evidence of the helical nature of the edge modes of the 2D TI.
Similarly, we expect that the DS will also potentially generate
a nonlocal thermoelectrical response in 3D topological struc-
tures [93,94]. Furthermore, we have also analyzed the heat
current in the probe, finding that it can be finite and the system
can be viewed as a flux controlled thermal router, depending
on the difference between the superconducting gaps.

Finally, we have discussed the nonlinear performance of
the nonlocal thermoelectric machine. In particular, we have
studied the symmetry of the Seebeck coefficient, the power
generated, and the efficiency. The latter turns out to be quite
low (with a maximum value η/ηc ≈ 3.5%). Notably, effi-
ciency and power are maximized simultaneously for a wide
range of parameters. We have finally estimated that the See-
beck coefficient for large nonlinear temperature differences
reaches a few tenths of μV/K, which is an impressive value
given the operating temperature of few Kelvin required by the
BCS superconductors. We hope that this research will trigger
further experimental investigations for similar setups both for
2D and 3D TIs. We also expect that the stability against the
possible gap asymmetries and the intensity of the effect would
be detectable nowadays with low-temperature technologies.
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APPENDIX A: SCATTERING MATRIX

We analyze the setup assuming the absence of inelastic
scattering, since it may appear for junctions longer than co-
herence length L � ξ = h̄vF /π� and/or high temperatures
where standard low-temperature BCS superconductivity can-
not survive. In such a case, dc transport is determined by
the quantum mechanical scattering matrix S [103], which
yields scattering properties at energy ε, of a phase-coherent,
noninteracting system described by a Hamiltonian H such as
Eq. (1). The scattering problem, in terms of scattering matrix,
can be formulated as

�α
(i,σ )|out = Sαβ

(i,σ )( j,σ ′ )�
β

( j,σ ′ )|in. (A1)

It relates incoming/outgoing states ( j, σ ′)/(i, σ ) with
{σ, σ ′} = {↑,↓} labeling the spin-channel at the respective
lead i, j = N, L, R. In Eq. (A1), {α, β} = {e, h} may indicate
electrons and holes in the normal probe N or, eventually,
{α, β} = {ẽ, h̃} label electronlike and holelike QPs in the su-
perconductors. To compute the full scattering matrix S of the
system, we proceed by first writing the scattering matrix SN

describing the coupling of the metallic probe with the TI edge⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c↓
N

b↓
N

c↑
N

b↑
N

c↓
L+

b↓
L+

c↑
R−

b↑
R−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 r 0 0 0 t 0
0 0 0 r∗ 0 0 0 t∗
r 0 0 0 t 0 0 0
0 r∗ 0 0 0 t∗ 0 0
0 0 t 0 0 0 r 0
0 0 0 t∗ 0 0 0 r∗
t 0 0 0 r 0 0 0
0 t∗ 0 0 0 r∗ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

SN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c↑
N

b↑
N

c↓
N

b↓
N

c↑
L+

b↑
L+

c↓
R−

b↓
R−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A2)

where we have indicated with c↑↓
i /c̃↑↓

i and b↑↓
i /b̃↑↓

i the
incoming and outgoing electrons/electronlike QPs and
holes/holelike QPs, respectively, with i = L±, R±, N la-
beling the corresponding lead [with −(+) indicating the
left(right) side of the S-TI interface]. In particular, for the
previous formula SN , we assumed a symmetric beam split-
ter which effectively describes the contact interface between
the normal lead N and the TI where r = cos(η) and t =
i sin(η) with η ∈ [0, π

2 ] such that unitarity is satisfied, i.e.,
|r|2 + |t |2 = 1. In the matrix, the complex conjugate r∗ and
t∗ are the amplitudes for the holes. Indeed, See

N (i,σ )( j,σ ′ )(ε)
acts in the particle sector, and the scattering (sub)matrix
for the holes satisfies Shh

N (i,σ )( j,σ ′ )(ε) = [See
N (i,σ )( j,σ ′ )(−ε)]∗ as

requested by the PH symmetry of the system [61]. Obvi-
ously, the elements Sαᾱ

N (i,σ )( j,σ ′ )(ε) (with α = e, h), coupling
incoming electrons(holes) with outgoing holes(electrons) are
necessarily zero since only ordinary scattering processes are
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involved, no Andreev reflections occur for normal metal
probe. The scattering matrix SN describing the contact be-
tween the normal-metal probe and the TI edge can be also
recasted in the more compact fashion SN (η) = i sin (η)ζ1 ⊗
σ1 ⊗ τ3 + cos (η)ζ0 ⊗ σ1 ⊗ τ0, expressed in terms of the Pauli
matrices ζ , σ and τ , respectively, acting in the N-TI chan-
nel space, spin space, and PH space. Then we introduce the
scattering matrices Si with i = L/R describing, respectively,
left/right interfaces of the TI with the superconductors. To
find the solutions for the scattering amplitude, we have to
solve the wave function matching problem at both interfaces
by imposing the following boundary condition obtained by
integrating the BdG Eq. (1):

−λ∗
i u↑(x−

0 ) = −λiu↑(x+
0 )

λiu↓(x−
0 ) = λ∗

i u↓(x+
0 )

−λiv↑(x−
0 ) = −λ∗

i v↑(x+
0 )

λ∗
i v↓(x−

0 ) = λiv↓(x+
0 ), (A3)

where λi = 1 + i 	i
2h̄vF

accounts for the contact potential 	i at
left (i = L) and right (i = R) interfaces located at x0 = 0, L.
Following this prescription, we find the scattering matrix SL

for the left interface:⎛
⎜⎜⎜⎝

c̃↓
L−

b̃↓
L−

c↑
L+

b↑
L+

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0 rL
ẽh̃

rL
h̃ẽ

0
tL
ẽe 0
0 tL

h̃h
tL
eẽ 0
0 tL

hh̃

0 rL
eh

rL
he 0

⎞
⎟⎟⎠

SL

⎛
⎜⎜⎜⎝

c̃↑
L−

b̃↑
L−

c↓
L+

b↓
L+

⎞
⎟⎟⎟⎠. (A4)

The obtained coefficients rL
αβ and tL

αβ represent, respectively,
the reflection and transmission amplitudes of an incoming
particle of type β to a particle of type α at the interface. Those
coefficients can be compactly written as

rL
γ γ̄ = γ

vLγ̄

uLγ̄

eiαγ̄ eiγφL ,

rL
γ̃ ˜̄γ = −vLγ

uLγ

e−iβL
γ ·�L

γ (ε),

tL
γ γ̃ =

√
u2

Lγ̄ − v2
Lγ̄

uLγ̄

e
i
2 (αγ̄ −βL

γ̄ )e−iγ φL
2 eiγ̄ 2 arg (λL ) · �L

γ̄ (ε),

tL
γ̃ γ = γ̄

√
u2

Lγ − v2
Lγ

uLγ

e
i
2 (αγ −βL

γ )eiγ̄ φL
2 eiγ̄ 2 arg (λL ) · �L

γ (ε),

(A5)

where the qp/qh index (γ = e/h) on the left-hand side (LHS)
is converted in a simple sign (γ = +/−) on the right-hand
side (RHS) to match with the notation used in Eq. (3).
We also introduced the symbol �L

γ (ε) = 1 when |εDS| >

�L ∧ 0 < ε < |�L − |εDS|| and �L
γ (ε) = �(|εγ | − �L ) oth-

erwise. The exponents take the values αγ = εγ /εc and β i
γ =√

ε2
γ − �2

i /εc, with εc = h̄vF
L the Thouless energy of the junc-

tion. A similar result for the scattering matrix at the right
interface SR can be computed. The scattering coefficients
can be obtained from Eq. (A6) by replacing (rL

αβ, tL
αβ ) →

(rR
βα, tR

βα ) on the LHS and RHS, making the substitution L →
R and φL → −φR.

In conclusion, following the standard procedure presented
in Ref. [126], the full scattering matrix of the system is ob-
tained by combining the three scattering matrices such as

S = SL ◦ SN ◦ SR (A6)

which determines the fundamental scattering between the
three terminals.

APPENDIX B: SYMMETRIES

It is known [42,103,118] that the scattering coeffi-
cients satisfy relations due to microreversibility Pα,β

i, j (ε, 	θ ) =
Pβ,α

j,i (ε,−	θ ), PH symmetry Pα,β
i, j (ε, 	θ ) = P−α,−β

i, j (−ε, 	θ ) and
unitarity ∑

αi

Pα,β
i, j (ε, 	θ ) = Nβ

j (ε, 	θ )),

∑
β j

Pα,β
i, j (ε, 	θ ) = Nα

i (ε, 	θ ),

where Nα
i (ε, 	θ ) is the number of open channels for α-like QPs

at energy ε in lead i. Moreover, when �L = �R (namely, the
system is left/right symmetric), the scattering coefficients also
show the following additional symmetries:

Pα,β
N,N (ε, 	θ ) = P−α,−β

N,N (ε, 	θ ),

Pα,β
N,L (ε, 	θ ) = P−α,−β

N,R (ε, 	θ ),

Pα,β

N,L/R(ε, 	θ ) = P−α,−β

N,L/R (ε,−	θ ). (B1)

Interestingly, again in the left/right symmetric case, one finds
that the scattering coefficients Pα,β

i, j do not depend on the
position x0 of the probe but simply on the total length L of the
junction. The reason for this relies on the symmetry exhibited
by the different paths that take a QP of type β from lead j to a
QP of type α in lead i. More specifically, due to the helicity of
the edge state and the spin independence of the transmission
amplitude t , each of these paths comes in pair with its sym-
metric one (obtained by exchanging left and right), in such
a way that their contribution to Pα,β

i, j only depends on L. On
the contrary, in the asymmetric case, i.e., when �L �= �R, the
position of the probe x0 along the edge does matter. When
we discuss the asymmetric case, usually we assume to fix the
probe tip just in the middle of the junction, i.e., x0 = L/2.

APPENDIX C: ANALYTICAL RESULTS OF THE PROBE’S
CURRENTS IN THE SYMMETRIC CASE �L = �R

Here we discuss some analytical results for the symmetric
case (i.e., �L = �R = �) exploiting the symmetry expressed
in the relations of Eqs. (B1). We concentrate mainly on the QP
charge (γ = −) and heat (γ = +) current at probe N that can
be written as

Jγ
N = 2

h

∫ ∞

0
dε eδγ ,− (ε − eVN )δγ ,+

× {
F γ

N (ε)[Aγ (ε, 	θ ) + Aγ (ε,−	θ )]

− F γ
LR(ε)[Qγ (ε, 	θ ) + γ Qγ (ε,−	θ )]

}
, (C1)
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FIG. 12. Regions of validity in Eq. (C4) for εDS > 0: εDS < � (left panel), εDS = � (middle panel), εDS > � (right panel).

in which we defined the Fermi function sums/differences
(γ = +/−) at the probe F γ

N = f +
N + γ f −

N or among the two
superconductors F γ

LR = f ±
L + γ f ∓

R . The quantity

Aγ (ε, 	θ ) = (N+
N − P++

NN + γ P−+
NN )/2

= (N−
N − P−−

NN + γ P+−
NN )/2 (C2)

represents the strength of the qp charge (with γ = −) or the
heat flux (with γ = +) transferred from the probe into the
edge at given energy ε and 	θ . The scattering probabilities P±±

NN

describe normal reflections, P±∓
NN the Andreev ones and N+(−)

N
the number of open channels for electrons (holes) at the probe.
The quantity

Qγ (ε, 	θ ) = (P++
NL + γ P−+

NL ) = (−1)δγ ,− (P+−
NR + γ P−−

NR ). (C3)

describes the strength of the charge (heat) γ = − (γ = +) transferred into the probe N when a qp is injected from the
superconductor L. For γ = −, due to the gap symmetry and Eq. (B1), it coincides with amount of qh (with opposite sign)
transferred into the probe when a qh is injected from R. Similarly, when γ = +, Eq. (C3) represents the amount of energy
transferred into the probe when a qp(qh) is injected from L(R).

These quantities have been discussed in Ref. [42] in the case of the charge current (i.e., γ = −) and without the DS � = 0.
Here we also generalized them to the presence of the DS (namely, 	θ �= 0), in which case their analytical expressions read as

Aγ (ε, 	θ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2|t |4·δγ ,−

1+|r|4+2|r|2 cos
(

2π
Lε+
ξ�

+φu−2 arccos
(

ε+
�

)) for ε ∈ I

(g(ε)2−γ )(g(ε)2+γ |r|2 )|t |2·�(εDS )

g(ε)4+|r|4−2g(ε)2|r|2 cos
(

2π
Lε+
ξ�

+φu

) + 2|t |4·�(εDS )δγ ,−

1+|r|4+2|r|2 cos
(

2π
Lε+
ξ�

−φu−2 arccos
(

ε+
�

)) for ε ∈ II

(g(ε)2−γ )(g(ε)2+γ |r|2 )|t |2
g(ε)4+|r|4−2g(ε)2|r|2 cos

(
2π

Lε+
ξ�

+φu

) , for ε ∈ III

Qγ (ε, 	θ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for ε ∈ I

(g(ε)2−1)(g(ε)2+γ |r|2 )|t |2
g(ε)4+|r|4−2g(ε)2|r|2 cos

(
2π

Lε+
ξ�

+φu

) · �(εDS) for ε ∈ II

(g(ε)2−1)(g(ε)2+γ |r|2 )|t |2
g(ε)4+|r|4−2g(ε)2|r|2 cos

(
2π

Lε+
ξ�

+φu

) for ε ∈ III,

(C4)

where g(ε) = earcCosh(ε+/�), ε+ = ε + εDS, |r|2 = 1 − |t |2 and
φu = φ + 2LεDS

πξ�
is the phase difference along the edge which

includes the contribution of the external magnetic flux. In the
expressions of Eq. (C4), we indicated the energy regions I,
II, and III, depicted in Fig. 12, which represent, respectively,
the contributions deriving from the subgap (region I), the
semicontinuum (region II), and the full continuum (region
III). We note that in Eq. (C4), the subgap contribution of
the function Aγ (ε, 	θ ) is nonzero only in the case of charge
current (for γ = −), while it is zero for the heat current (for
γ = +). This is because the Andreev bound states cannot

allow any thermal transport, while mediating only the charge
transport.

From the previous analytical formulas, we can deduce
some general consequences for the probe’s currents of
Eq. (C1). Let us first consider the case of the charge cur-
rent with γ = −. When VN = 0, the function F−

N = 0 (since
f +
N = f −

N ), so from formula Eq. (C1) one can easily conclude
that J−

N is independent of the temperature TN . This shows
that no local thermoelectrical effect can be induced by means
of a thermal bias between the TI and the probe. The only
thermoelectric response in the probe is the nonlocal one when
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a thermal bias between the two superconductors δT is applied,
i.e., F−

LR = f ±
L − f ∓

R �= 0. This is particularly important at an
experimental level since the temperature of the probe does
not need to be controlled during the measurement of nonlocal
thermoelectricity. The strength of such nonlocal thermoelec-
tric response [see Eq. (C1)] is determined by the integral over
the energies of the odd parity component in 	θ of the function
Q−(ε, 	θ ), i.e., Q−(ε, 	θ ) − Q−(ε,−	θ ), from which it follows
that the Onsager nonlocal thermoelectrical linear coefficient
L12 is an odd function of 	θ . Instead, when δT = 0, the func-
tion F−

LR = 0 (since f ±
L = f ∓

R ), so from formula Eq. (C1) it
turns out that the charge current J−

N is determined by the
integral over the energies of the even parity component in 	θ of
the function A−(ε, 	θ ), i.e., A−(ε, 	θ ) + A−(ε,−	θ ), from which

it follows that the Onsager local electrical coefficient L11 is an
even function of 	θ

Furthermore, regarding the heat component of Eq. (C1)
with γ = +, it turns out that J+

N is an even function of 	θ
since it depends only on the even components of the func-
tions A+(ε, 	θ ) and Q+(ε, 	θ ). In the linear regime, one can
find that, for TL/R = T ± δT/2 and TN = T , the heat cur-
rent in the probe is proportional to the energy integral of
the term

∑
σ=±[A+(ε, σ 	θ ) − Q+(ε, σ 	θ )], which—using the

expressions of Eq. (C4)—turns out to be zero. As a conse-
quence, in the linear regime, the heat current at the probe
J+

N = 0. This is a direct consequence of the energy con-
servation computed in the linear regime and for symmetric
gaps.
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