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Abstract

In the framework of algebras with infinitary operations, an equational
base for the category of σ-complete MV -algebras is given. In this
way, we study some particular objects as simple algebras, directly ir-
reducible algebras, injectives, etc. A completeness theorem respect
to the standard MV -algebra, considered as σ-complete MV -algebra,
is obtained. Finally we apply this result to the study of σ-complete
Boolean algebras and σ-complete product MV -algebras.

Keywords: σ-complete MV-algebras, infinitary operations, Loomis-Sikorski Theo-
rem
Mathematics Subject Classification 2000: 06D35, 08A68.

Introduction

The theory of σ-complete MV -algebras was studied by several authors in an
attempt to extend classical results related to σ-complete Boolean algebras
to MV -algebras [1, 10, 23]. Another motivation is rooted in the study of
new algebraic and topological representation of MV -algebras [8, 6, 16]. The
aim of this paper is to investigate, the category of σ-complete MV -algebras
as a class of algebras endowed with infinitary operations.

∗e-mail: hfreytes@gmail.com hfreytes@dm.uba.ar

1

Manuscript
Click here to download Manuscript: DBsigmaMV.pdf 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

http://www.editorialmanager.com/alun/download.aspx?id=3304&guid=1284e754-a21e-4d77-a057-23186241207d&scheme=1


S lomiński [27] showed that many results on classical universal algebra
can be generalized to the case of infinitary operations. In this framework we
develop an equational base that characterizes the class of σ-complete MV -
algebras. This equational system has a rigorous motivation when we consider
 Lukasiewicz tribes as algebras endowed with a denumerable operation given
by a truncated series, pointwise defined, in a power of the real interval [0, 1].

The paper is organized as follows. In Section 1, we recall some basic no-
tion of abstract algebras with infinitary operations. In Section 2, we review
some basic properties of MV -algebras. Moreover we study certain proper-
ties of the distance function in MV -algebras. In Section 3, we introduce
a class of algebras with infinitary operations called MVω-algebras. This
class is defined by equations and captures basic properties of  Lukasiewicz
tribes. In Section 4, we investigate the relationships between σ-complete
MV -algebras and MVω-algebras. More precisely we prove that the cate-
gory of MVω-algebras and the category of σ-complete MV -algebras is the
same. In Section 5, we study MVω-algebras as a particular case of monadic
MV -algebras. In Section 6, we study sub-structures in the category of MVω-
algebras. In Section 7, the theory of filters and congruences in MVω-algebras
is developed. Section 8 is dedicated to the study of directly irreducible and
simple MVω-algebras. In Section 9, an standard completeness theorem for
MVω-algebras is obtained. In Section 10 and Section 11, we apply the results
of the previous sections to the study of σ-complete Boolean algebras and σ-
complete product MV -algebras respectively. Finally in Section 12, injective
objects in σ-complete MV -algebras and σ-complete product MV -algebras
are characterized.

1 Basic notions

In what follows we adapt the terminology and some results present in [27] to
the class of algebras admitting at most numerable operations. Let us denote
by N the set of natural numbers starting with 1. Let A be a non-empty set
and α be an ordinal where α ≤ ω. If f is a function with domain Aα where
~a = (ai)i∈α ∈ Aα then f(~a) means the value f(a0, a1, . . . ai, . . .) where i ∈ α.

An ω-type is a set τ of operation symbols having ordinal numbers α ≤ ω
for arities. Let τ be an ω-type. An ω-algebra of type τ is a pair 〈A,F 〉 where
A is a non-empty set and F is a family of operations on A indexed by the
type τ such that, corresponding to each α-ary function symbol ϕ ∈ τ , there
is an α-ary operation ϕA : Aα → A in F . An ω-algebra A is trivial iff it
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has only one element.
Let A and B be two ω-algebras of type τ . Then B is a sub-algebra of

A iff B ⊆ A and for every ϕ ∈ τ , ϕB is ϕA restricted to B. A function
f : A → B is said to be a τ -homomorphism iff for each operation symbol
ϕ ∈ τ with arity α ≤ ω and for each family (xi)i∈α on A, f(ϕA(x0, x1, . . .)) =
ϕB(f(x0), f(x1), . . .). A is said to be rigid iff the identity τ -homomorphism
is the only automorphism.

An equivalence relation θ on A is an ω-congruence iff θ satisfies the follow-
ing compatibility property: for each operation symbol ϕ ∈ τ of arity α ≤ ω,
and elements ai, bi ∈ A, if (ai, bi) ∈ θ holds for i ∈ α then (ϕ(~a), ϕ(~b)) ∈ θ
holds, where ~a = (ai)i∈α and ~b = (bi)i∈α. It is clear that the diagonal rela-
tion ∆ on A and the all relations A2, denoted by ∇, are ω-congruences. The
set of all ω-congruences on A is denoted by Conω(A) and 〈Conω(A),⊆〉 is a
complete lattice. A is simple iff Conω(A) = {∆,∇}. A has the congruence
extension property (CEP) iff for each sub-algebra B and θ ∈ Conω(B) there
is a φ ∈ Conω(A) such that θ = φ ∩ A2. If θ ∈ Conω(A) then the quotient
algebra of A by θ is the algebra whose universe is the set A/θ and whose oper-
ations satisfy ϕA/θ(x0/θ, x0/θ, . . .) = ϕA(x0, x1, . . .)/θ where ϕ ∈ τ has arity
α ≤ ω and (xi)i∈α is sequence on A. Note that A/θ is an ω-algebra of type
τ and the natural map pθ : A → A/θ is a surjective τ -homomorphism. If
f : A → B is a τ -homomorphism then Ker(f) = {(a, b) ∈ A2 : f(a) = f(b)}
is an ω-congruence.

The direct product of a family (Ai)i∈I of ω-algebras of type τ , denoted by∏
i∈I Ai, is the ω-algebra of type τ obtained by endowing the set-theoretical

Cartesian product of the family with the operation of type τ , defined point-
wise. For each j ∈ I the jth-projection πj is a τ -homomorphism onto Aj .
A is directly indecomposable iff A is not τ -isomorphic to a direct product of
two non trivial algebras of type τ .

A class A of ω-algebras is called ω-variety iff it is closed with respect to
direct products, sub-algebras and homomorphic images. Let τ be an ω-type
and X be a set of variables. The set Termτ (X) of terms over X is the
smallest set such that:

i X∪τ0 ⊆ Termτ (X) where τ0 is the set of constant operation symbols.

ii If ϕ ∈ τ is α-ary (α ≤ ω) and ~p = (pi)i∈α ⊆ Termτ (X) then, ϕ(~p) ∈
Termτ (X).

For t ∈ Termτ (X) we often write t(~x) to indicate that the variables
~x = (xi)i∈α≤ω occurring in t are among (xi)i∈α≤ω.
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Let A be an ω-algebra of type τ . For t(~x) ∈ Termτ (X) where ~x =
(xi)i∈α≤ω, we define the term function tA : Aα → A as follows:

i if t is a variable xi, then tA(~a) = ai for ~a = (aj)j∈α ∈ Aα, i.e. tA is
the ith-projection map.

ii if t is of the form ϕ(~p(~x)) where ϕ ∈ τ is α-ary (α ≤ ω) and ~p(~x) =
(pk(~x))k∈α ⊆ Termτ (X) then ϕA(~a) = ϕA(~pA(~a)) where ~pA = (pA

k )k∈β.

An equation of type τ over X is an expression of the form p = q where
p, q ∈ Termτ (X). An ω-algebra A of type τ satisfies an equation p = q
(abbreviated by A |= p = q) iff pA = qA. Let A be a class of ω-algebras of
type τ . Then the equation p = q is satisfied inA (abbreviated byA |= p = q)
iff for each A ∈ A, A |= p = q. Let E be a set of equations of type τ over
X. We denote by Algτ (E) the class of ω-algebras of type τ that satisfies the
equations in E. A is said to be equationally definable iff there exists a set E
of equations of type τ over X such that A = Algτ (E).

Theorem 1.1 [27, § 7] Let K be an equationally definable class of ω-algebras.
Then K is an ω-variety. 2

Let A be a category of ω-algebras. An algebra A in A is injective iff for
every A-monomorphism f : B → C and every A-homomorphism g : B → A
there exists an A-homomorphism h : C → A such that g = h ◦ f (◦ denote
the composition of A-homomorphisms).

2 MV -algebras

Introduced by Chang in [3, 4], this structure represents the algebraic counter-
part of infinite-valued propositional calculus of  Lukasiewicz. In this section
we first recall from [5] some basic facts about MV -algebras. Subsequently
we study certain properties of the distance function in MV -algebras that
play an important role in the following section.

An MV-algebra is an algebra 〈A,⊕,¬, 0〉 of type 〈2, 1, 0〉 satisfying the
following equations:

MV1 〈A,⊕, 0〉 is an abelian monoid,

4
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MV2 ¬¬x = x,

MV3 x⊕ ¬0 = ¬0,

MV4 ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

We denote by MV the variety of MV -algebras. In agreement with the
usual MV -algebraic operations we define

x� y = ¬(¬x⊕ ¬y), x ∨ y = (x → y) → y = (x� ¬y)⊕ y,

x → y = ¬x⊕ y, x ∧ y = x� (x → y),

1 = ¬0.

Moreover, we use the following notation:
⊕n

i=1 xi = x1 ⊕ x2 ⊕ . . . ⊕ xn

and
⊙n

i=1 xi = x1 � x2 � . . . � xn. On each MV -algebra A we can define
an order x ≤ y iff x → y = 1. This order turns 〈A,∧,∨, 0, 1〉 in a bounded
distributive lattice with 1 the greatest element and 0 the smallest element.

Lemma 2.1 Let A be an MV -algebra. Then:

1. (x → y) ∨ (y → x) = 1. (prelinearity condition)

2. For each n ∈ N, (
⊙2n

i=1 x) ∧ (
⊙2n

i=1 y) ≤ (
⊙n

i=1 x)� (
⊙n

i=1 y).

3. For each n ∈ N,
⊙2n

i=1(x ∨ y) ≤ (
⊙2n

i=1 x) ∨ (
⊙2n

i=1 y).

Proof: 1) See [16, Proposition 1.1.7]
2) It is shown in [16, Lemma 2.4.1] that (x�x)∧(y�y) ≤ (x�y). There-

fore (
⊙2n

i=1 x)∧(
⊙2n

i=1 y) = ((
⊙n

i=1 x)�(
⊙n

i=1 x))∧((
⊙n

i=1 y)�(
⊙n

i=1 y)) ≤
(
⊙n

i=1 x)� (
⊙n

i=1 y).
3) We use induction on n. It is shown in [15, Lemma 2.2.24] the following

inequality (x ∨ y) � (x ∨ y) ≤ (x � x) ∨ (y � y). That constitutes the
base of the induction. Suppose that

⊙2k

i=1(x ∨ y) ≤ (
⊙2k

i=1 x) ∨ (
⊙2k

i=1 y)
whenever k < n. Then

⊙2n

i=1(x ∨ y) = (
⊙2n−1

i=1 (x ∨ y)) � (
⊙2n−1

i=1 (x ∨ y)) ≤
((

⊙2n−1

i=1 x) ∨ (
⊙2n−1

i=1 y))� ((
⊙2n−1

i=1 x) ∨ (
⊙2n−1

i=1 y)) ≤ (
⊙2n

i=1 x) ∨ (
⊙2n

i=1 y).
2

Let A be an MV -algebra and x be an element in A. x is called nilpotent
iff there exists a natural number n such that

⊙n
i=1 x = 0 and it is called a

unity iff x 6= 1 and 1 = ¬x →
⊙n

i=1 x for each n ∈ N. We say that x is

5
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Boolean iff x ⊕ x = x. The set of Boolean elements of A will be denoted
by B(A). We can prove that: x ∈ B(A) iff x � x = x iff x ∨ ¬x = 1 iff
x ∧ ¬x = 0 iff ∀y ∈ A : x⊕ y = x ∨ y iff ∀y ∈ A : x� y = x ∧ y [5, Theorem
1.5.3]. Equipped with the operations of A, B(A) is a sub-MV -algebra of A
which is a Boolean algebra.

A very important example of MV -algebra is [0, 1]MV = {[0, 1],⊕,¬, 0}
where [0, 1] is the real unit segment and ⊕ and ¬ are defined as follows:

x⊕ y = min(1, x + y) ¬x = 1− x

The derived operations in [0, 1]MV are given by x � y = max(0, x + y − 1)
(called  Lukasiewicz t-norm) and x → y = min(1, 1−x+y). The MV -lattice
structure is the natural order in [0, 1]. For each integer n ≥ 2 the n-element
set  Ln = {0, 1

n−1 , . . . , n−2
n−1 , 1} yields an example of sub-algebra of [0, 1]MV .

Moreover [0, 1]MV and all the sub-algebras are rigid algebras [5, Corollary
7.2.6].

Let A be an MV -algebra. A subset F ⊆ A is called filter iff it satisfies
the following conditions:

1. 1 ∈ F ,

2. if x ∈ F and x → y ∈ F then y ∈ F .

It is easy to verify that a non-empty subset F is a filter iff F is an
increasing set (i.e. if a ∈ F and a ≤ b then b ∈ F ) and if a, b ∈ F then
a�b ∈ F . F is said to be proper iff 0 does not belong to F . The intersection
of any family of filters of A is again a filter of A. We denote by 〈X〉MV the
filter generated by X ⊆ A, i.e., the intersection of all filters of A containing
X. We abbreviate this as 〈a〉MV when X = {a} and it is easy to verify that
〈X〉MV = {x ∈ A : ∃ w1 · · ·wn ∈ X such that x ≥ w1,� · · · ,�wn}.

For any filter F of A, θF = {(x, y) ∈ A2 : x → y, y → x ∈ F} =
{(x, y) ∈ A2 : ∃a ∈ F : x � a ≤ y and y � a ≤ x} is a congruence on A.
Moreover F = {x ∈ A : (x, 1) ∈ θF }. Conversely, if θ ∈ Con(A) then
Fθ = {x ∈ A : (x, 1) ∈ θ} is a filter and (x, y) ∈ θ iff (x → y, 1) ∈ θ and
(y → x, 1) ∈ θ. Thus the correspondence F → θF is a bijection from the
set of filters of A onto the set Con(A). If F is a filter of A, we shall write
A/F instead of A/θF

, and for each x ∈ A we shall write x/θF
or x/F for the

equivalence class of x. F is called prime iff for each x, y ∈ A x → y ∈ F or
y → x ∈ F . It is well known that F is prime iff A/F is tottaly ordered. F is
said to be stonean filter iff for every x ∈ F there is z ∈ F ∩B(A) such that
z ≤ x.
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Let A be an MV -algebra. A is simple iff it is MV -isomorphic to a
subalgebra of [0, 1]MV iff for each x < 1, x is nilpotent. [5, Theorem 3.5.1].
We call radical of A the intersection of all maximal filters of A. The radical
of A will be denoted by Rad(A) and we can see that Rad(A) = {x ∈ A :
x is unity} [5, Proposition 3.6.4]. A is semisimple iff Rad(A) = {1} iff it is
a subdirect product of subalgebras of [0, 1]MV [5, Proposition 3.6.1].

An important characterization of the equations in MV is given by:

MV |= t = s ⇐⇒ [0, 1]MV |= t = s [5, Theorem 2.5.3] (1)

Now we study some properties about the distance function in MV -
algebras that play an important role in the following section. Let A be
an MV -algebra. The distance function d : A×A → A is defined by

d(x, y) = (x� ¬y)⊕ (y � ¬x)

In [0, 1]MV the distance function is given by d(x, y) =| x− y |. In this case
d(x, y) gives the usual distance in the unitary real interval.

Proposition 2.2 In every MV -algebra we have:

1. d(x, y) = 0 iff x = y,

2. d(x, y) = d(y, x) = d(¬x,¬y),

3. d(x, z) ≤ d(x, y)⊕ d(y, z),

4. d(x⊕ s, y ⊕ t) ≤ d(x, y)⊕ d(y, t),

5. x⊕ d(x, x ∨ y) = x ∨ y,

6. if x ≤ y then x⊕ d(x, y) = y.

Proof: 1...4) See [5, Proposition 1.2.4]. 5) By the characterization of the
MV-equations, we study this equation in [0, 1]MV . In fact: x⊕d(x, x∨y) =
x⊕ | x−x∨y |= x⊕(x∨y−x) = min(x+x∨y−x, 1) = min(x∨y, 1) = x∨y.

6) Suppose that x ≤ y. By item 5, x⊕d(x, y) = x⊕d(x, x∨y) = x∨y = y.
2

Let A be an MV -algebra and ~x = (xi)i∈N be a sequence in A. Then we
define the following sequences:

Sup0(~x) = 0 Sum0(~x) = 0
Supn(~x) =

∨n
i=1 xn Sumn(~x) =

⊕n
i=1 xi

7
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Proposition 2.3 Let A be an MV -algebra and ~x = (xi)i∈N be a sequence
in A. Then for each n ∈ N

1.
⊕n

i=1 d(Supi−1(~x), Supi(~x)) = Supn(~x),

2.
⊕n

i=1 d(Sumi−1(~x), Sumi(~x)) = Sumn(~x) (⊕-telescopic property).

Proof: 1) We use induction on n. If n = 1 then
⊕1

i=1 d(Supi−1(~x), Supi(~x)) =
d(0, Sup1(~x)) = Sup1(~x). Suppose that the proposition holds for k <
n. Then

⊕n
i=1 d(Supi−1(~x), Supi(~x)) = (

⊕n−1
i=1 d(Supi−1(~x), Supi(~x))) ⊕

d(Supn−1(~x), Supn(~x)) = Supn−1(~x)⊕ d(Supn−1(~x), Supn(~x)). By Proposi-
tion 2.2-6, Supn−1(~x)⊕d(Supn−1(~x), Supn(~x)) = Supn(~x) since, Supn−1(~x) ≤
Supn(~x). Hence

⊕n
i=1 d(Supi−1(~x), Supi(~x)) = Supn(~x) for each n ∈ N.

2) Note that ~s = (Sumi(~x))i∈N is an increasing sequence. Then Supi(~s) =
Sumi(~x). Hence, by item 1,

n⊕
i=1

d(Sumi−1(~x), Sumi(~x)) =
n⊕

i=1

d(Supi−1(~s), Supi(~s))

= Supn(~s) = Sumn(~x)

2

In each MV -algebra the following forms of distributive laws are known:
if

∨
i∈I xi exists in A then:

x�
∨
i∈I

xi =
∨
i∈I

(x� xi) and x ∧
∨
i∈I

xi =
∨
i∈I

(x ∧ xi) (2)

An interesting consequence of (2) is the following:

Proposition 2.4 Let A be an MV -algebra and suppose that
∨

n∈N
⊕n

i=1 xi

exists in A. Then: ∨
n∈N

(x⊕
n⊕

i=1

xi) = x⊕
∨
n∈N

n⊕
i=1

xi

Proof: Observe that, for each n ∈ N, x ⊕
⊕n

i=1 xi ≤ x ⊕
∨

n∈N
⊕n

i=1 xi.
Let k be an upper bound of the sequence (x⊕

⊕n
i=1 xi)n∈N. From definition

of ∧, it follows that:
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¬x� (x⊕
∨
n∈N

n⊕
i=1

xi) = ¬x� (¬x →
∨
n∈N

n⊕
i=1

xi) = ¬x ∧
∨
n∈N

n⊕
i=1

xi

=
∨
n∈N

¬x ∧
n⊕

i=1

xi =
∨
n∈N

¬x� (¬x →
n⊕

i=1

xi)

=
∨
n∈N

¬x� (x⊕
n⊕

i=1

xi) ≤
∨
n∈N

¬x� k = ¬x� k

Therefore, by residuation and definition of ∨, we have:

x⊕
∨
n∈N

n⊕
i=1

xi ≤ ¬x → (¬x� k) = x⊕ (¬x� k) = x ∨ k = k

since x ≤ k. Hence,
∨

n∈N(x⊕
⊕n

i=1 xi) = x⊕
∨

n∈N
⊕n

i=1 xi.
2

We say that an MV -algebra A is σ-complete iff suprema and infima
exist for all denumerable subsets in A. Every σ-complete MV -algebra is
semisimple.

Proposition 2.5 [1, Proposition 1] The only σ-complete and simple MV -
algebras (up to isomorphisms) are [0, 1]MV and the finite chains  Ln. 2

3 An algebraic framework for  Lukasiewicz tribes

 Lukasiewicz tribes are collections of fuzzy sets closed under the standard
 Lukasiewicz complementation and  Lukasiewicz sum with countably many
arguments. Here, we introduce and study an equational class of ω-algebras,
called MVω-algebras, that capture some basic properties of  Lukasiewicz
tribes when they are viewed as algebras with infinitary operations.

Definition 3.1 Let X be a non-empty set. A collection M ⊆ [0, 1]X is
called  Lukasiewicz tribe iff

1. 0 ∈ M where 0(x) = 0 for each x ∈ X.

2. If f ∈ M , then ¬f : X → [0, 1] defined as ¬f(x) = 1 − f(x) belongs
to M .
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3. If ~f = (fi)i∈N is a sequence in M then
∑

 L ~f : X → [0, 1] defined as

∑
 L

~f(x) =
{ ∑∞

i=1 fi(x), if
∑∞

i=1 fi(x) converges in [0, 1]
1, if ∃k ∈ N s.t.

⊕k
i=1 fi(x) = 1

belongs to M .

Every  Lukasiewicz tribe M ⊆ [0, 1]X is a σ-complete MV -algebra. Denu-
merable suprema, resp. infima, on M coincide with denumerable suprema,
resp. infima, in [0, 1] applied pointwisely to functions on X with values in
[0, 1].

Proposition 3.2 Let M ⊆ [0, 1]X be a  Lukasiewicz tribe, h, g ∈ M and
~f = (fi)i∈N be a sequence in M . Then:

1. If we define h ⊕ g =
∑

 L(h, g,0,0 . . .) then 〈M,⊕,¬, 0〉 is an MV -
algebra. Moreover, the lattice order structure associated to 〈M,⊕,¬, 0〉
is defined pointwisely on X.

2.
∑

 L ~f =
∨

n∈N
⊕n

i=1 fi =
∑

 L(d(Sumi(~f), Sumi−1(~f)))i∈N,

3.
∑

 L(d(Supi(~f) ∧ g, Supi−1(~f) ∧ g))i∈N ≤ g

Proof: 1) Immediate.
2) If ~f = (fi)i∈N is a sequence in M and x ∈ X, we define ~fx as the se-

quence in the interval [0, 1] given by ~fx = (fi(x))i∈N. Then we have to prove
that

∑
 L ~f(x) =

∨
n∈N

⊕n
i=1 fi(x) =

∑
 L(d(Sumi(~fx), Sumi−1(~fx)))i∈N for

each x ∈ X.
We first suppose that for each n ∈ N,

⊕n
i=1 fi(x) ≤ 1. Then for each

n ∈ N,
⊕n

i=1 fi(x) =
∑n

i=1 fi(x) = Sumn(~fx). Since (Sumn(~fx))n∈N is
an increasing bounded sequence, by the monotone convergence principle,
(Sumn(~fx))n∈N is a convergent sequence in [0, 1] and

∨
n∈N

n⊕
i=1

fi(x) =
∨
n∈N

Sumn(~fx) = lim
n→∞

Sumn(~fx) =
∞∑
i=1

fi(x) =
∑

 L
~f(x)

Note that
∑∞

i=1 fi(x) = (f1(x)− 0) + (f1(x) + f2(x)− f1(x)) + (f1(x) +
f2(x) + f3(x)− f1(x)− f2(x)) . . . =

∑∞
i=1 d(Sumi(~fx), Sumi−1(~fx)). Hence,∑

 L ~f =
∑

 L d(Sumi(~f), Sumi−1(~f))i∈N.
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Now we suppose that there exists n ∈ N such that
⊕n

i=1 fi(x) = 1.
Then

∑
 L ~f(x) = 1 =

∨
n∈N

⊕n
i=1 fi(x). By Proposition 2.3-2, we have that⊕n

i=1 d(Sumi(~fx), Sumi−1(~fx)) = Sumn(~fx) =
⊕n

i=1 fi(x) = 1. Conse-
quently,

∑
 L d(Sumi(~f), Sumi−1(~f))i∈N = 1 =

∑
 L ~f(x). Hence

∑
 L ~f(x) =∨

n∈N
⊕n

i=1 fi(x) =
∑

 L(d(Sumi(~fx), Sumi−1(~fx)))i∈N.

3) Consider the sequence ~y = (fi ∧ g)i∈N in M . Note that

Supn(~y) =
n∨

i=1

(fi ∧ g) = g ∧
n∨

i=1

fi = g ∧ Supn(~f) ≤ g

By Proposition 2.3-1, for each n ∈ N
n⊕

i=1

d(Supi(~y), Supi−1(~y)) = Supn(~y) ≤ g

Hence, by item 2,

∑
 Ld(Supi(~f) ∧ g, Supi−1(~f) ∧ g)i≥1 =

∑
 Ld(Supi(~y), Supi−1(~y))i≥1

=
∨
n∈N

n⊕
i=1

d(Supi(~y), Supi−1(~y))

=
∨
n∈N

Supn(~y) ≤ g

2

Remark 3.3 Let M be a  Lukasiewicz tribe. The set of operations 〈
∑

 L,¬,0〉
suggest that M can be seen as an ω-algebra of type 〈ω, 1, 0〉 equipped with an
underlying MV -structure definable form

∑
 L. This motivates the following

abstract framework for  Lukasiewicz tribes based on ω-algebras.

Let A be a non-empty set. Let ~x = (xi)i∈N be a sequence in A. If
s : N → N is a bijective function then we define the ~x-permutation s(~x) as
s(~x) = (xs(i))i∈N. Let

∑
be an operation of type ω in A (i.e.

∑
: AN → A).

For the value
∑

(~x) we use the following notations:∑
(~x) =

∑
~x =

∑
i∈N

xi
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Let n ≥ 1 and consider the subsequence ~x≥n = (xn, xn+1 . . .) of ~x. Then we
define the expression

∑
i≥n xi by∑

i≥n

xi =
∑

~x≥n

∑
is said to be commutative iff

∑
~x =

∑
s(~x) for each ~x ∈ AN and for each

~x-permutation s. Suppose that
∑

is commutative. An element 0 ∈ A is
said to be neutral element for

∑
iff for each x ∈ A,

∑
(x, 0, 0 . . .) = x.

Definition 3.4 Consider the structure 〈A,
∑

, 0〉 of type 〈ω, 0〉 such that∑
is a commutative operation and 0 is neutral element for

∑
. Define the

operation ⊕ : A2 → A such that, for each x, y ∈ A,

x⊕ y =
∑

(x, y, 0, 0 . . .)

Then we say that 〈A,
∑

, 0〉 is an Abelian ω-monoid iff x⊕(y⊕z) = (x⊕y)⊕z.

It is clear that if 〈A,
∑

, 0〉 is an Abelian ω-monoid then 〈A,⊕, 0〉 is an
Abelian monoid.

Definition 3.5 An MVω-algebra is an ω-algebra 〈A,
∑

,¬, 0〉 of type 〈ω, 1, 0〉
such that, for each sequence ~x = (xi)i∈N in A, satisfies:

Σ 1. 〈A,
∑

, 0〉 is an Abelian ω-monoid,

Σ 2.
∑

~x = x1 ⊕
∑

i≥2 xi,

Σ 3. 〈A,⊕,¬, 0〉 is an MV -algebra,

Σ 4.
∑

~x =
∑

i∈N d(Sumi(~x), Sumi−1(~x)),

Σ 5. (
∑

i∈N d(Supi(~x) ∧ y, Supi−1(~x) ∧ y)) → y = 1.

Note that axioms Σ 3, Σ 4 and Σ 5 capture the basic properties of
 Lukasiewicz tribes given in Proposition 3.2.

We denote by MVω the category whose object are MVω-algebra and
whose arrows are functions preserving the operations

∑
,¬, 0. These arrows

are called MVω-homomorphisms. Since MVω is equationally definable, by
Theorem 1.1, it is an ω-variety. In agreement with the usual MVω-algebraic
operation we define:⊙

~x =
⊙
i∈N

xi = ¬
∑
i∈N

¬xi where ~x = (xi)i∈N
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Example 3.6 By Proposition 3.2, each  Lukasiewicz tribe with the signature
〈
∑

 L,¬, 0〉 is an MVω-algebra. In particular we denote by [0, 1]MVω the
standard MVω-algebra 〈[0, 1],¬,

∑
 L, 0〉 where

∑
 L is defined as

∑
 L~x =

{ ∑∞
i=1 xi, if

∑∞
i=1 xi converges in [0, 1]

1, if ∃k ∈ N s.t.
⊕k

i=1 xi = 1

Clearly, the underlying MV -structure associated to [0, 1]MVω coincides with
the standard MV -algebra [0, 1]MV .

Proposition 3.7 Let A be an MVω-algebra and ~x = (xi)i∈N be a sequence
in A. Then:

1. For each n ∈ N,
∑

~x =
⊕n

i=1 xi ⊕
∑

i>n xi = Sumn(~x)⊕
∑

i>n xi,

2.
∑

~x =
∨

n∈N(
⊕n

i=1 xi) =
∨

n∈N Sumn(~x),

3. for each n0 ∈ N,
∑

i∈N x =
∑

i>n0
x,

4. if ~x = (x1, x2 . . . xn, 0, 0, 0 . . .) then
∑

~x =
⊕n

i=1 xi,

5. if ~x = (x1, x2 . . . xn, 1, 1, 1 . . .) then
⊙

~x =
⊙n

i=1 xi,

6.
⊙

~x =
∧

n∈N(
⊙n

i=1 xi).

Proof: 1) We use induction on n. By Σ 2, if n = 1,
∑

i∈N xi = x1⊕
∑

i>2 xi.
Suppose that

∑
i∈N xi =

⊕n
i=1 xi ⊕

∑
i>n xi. Then

∑
i∈N xi =

⊕n
i=1 xi ⊕

(xn+1⊕
∑

i>n+1 xi) = (
⊕n

i=1 xi⊕xn+1)⊕
∑

i>n+1 xi =
⊕n+1

i=1 xi⊕
∑

i>n+1 xi

since ⊕ is associative.

2) Let y =
∑

~x =
∑

i∈N xi. Since y = Sumn(~x) ⊕
∑

i>n xi then
Sumn(~x) ≤ y for each n ∈ N. Let k be an upper bound of the sequence
~s = (Sumn(~x))n∈N. Since for each n ∈ N Supn(~s) = Sumn(~x), by Σ 4 and
Σ 5 we have:

y =
∑
i∈N

xi =
∑
i∈N

d(Sumi(~x), Sumi−1(~x))

=
∑
i∈N

d(Sumi(~x) ∧ k, Sumi−1(~x) ∧ k)

=
∑
i∈N

d(Supi(~s) ∧ k, Supi−1(~s) ∧ k) ≤ k
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Hence y =
∑

i∈N xi =
∨

n∈N Sumn(~x).

3)
⊕n

i=1 x =
⊕n+n0+1

i=n0+1 x. Then
∨

i∈N(
⊕n

i=1 x) =
∨

i∈N(
⊕n+n0+1

i=n0+1 x) and
by item 2,

∑
i∈N x =

∑
i>n0

x for each n0 ∈ N.

4) Immediate from item 1 and Σ1.

5) By item 4,
⊙

(x1, x2 . . . xn, 0, 0, 0 . . .) = ¬
∑

(¬x1,¬x2 . . .¬xn, 0, 0, 0 . . .) =
¬(

⊕n
i=1 ¬xi ⊕

∑
i>n xi) = ¬(

⊕n
i=1 ¬xi)⊕ 0 =

⊙n
i=1 xi.

6) By item 2,
⊙

~x = ¬
∑

i∈N ¬xi = ¬
∨

n∈N(
⊕n

i=1 ¬xi) =
∧

n∈N ¬(
⊕n

i=1 ¬xi) =∧
n∈N

⊙n
i=1 xi.

2

Note that Proposition 3.7-2 allows to see, in an abstract way, the opera-
tion Σ as a kind of “limit” of partial sums. Our next aim is to analyze a kind
of version of the fact that for convergent positive term series, not only the
original series converge to a limit, but also for any reordering it converges
to the same limit. We first have to introduce some terminology:

Let A be an MVω-algebra and ~x = (xi)i∈N be a sequence in A. Let I be
a non-empty subset of N and consider the sequence ~xI = (xI

i )i∈N where

xI
i =

{
xi if i ∈ I,
0, otherwise.

Then we define the expression
∑

i∈I xi as follows:∑
i∈I

xi =
∑

~xI

With these notations we have:

Proposition 3.8 Let A be an MVω-algebra, ~x = (xi)i∈N be a sequence in
A and I be a non-empty subset of N. Then:

1.
∑

i∈I xi ≤
∑

~x.

2. If I is a finite set then
∑

i∈I xi =
⊕

i∈I xi.
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Proof: 1) By definition of ~xI , for each n ∈ N,
⊕n

i=1 xI
i ≤

⊕n
i=1 xi. Then,

by Proposition 3.7-2,
∑

i∈I xi =
∑

~xI =
∨

n∈N
⊕n

i=1 xI
i ≤

∨
n∈N

⊕n
i=1 xi =∑

~x. 2) Follows from Proposition 3.7-4.
2

Proposition 3.9 Let A be an MVω-algebra and ~x = (xi)i∈N be a sequence
in A. Let (In)n∈N be a partition of N such that In is a non-empty set. Then:∑

~x =
∑
n∈N

(
∑
i∈In

xi)

Proof: We first prove that (
∑

t∈Ia
xt) ⊕ (

∑
j∈Ib

xj) =
∑

i∈Ia∪Ib
xi. By

Proposition 2.4 and Proposition 3.7-2 we have:

(
∑
t∈Ia

xt)⊕ (
∑
j∈Ib

xj) = (
∨
r∈N

r⊕
t=1

xIa
t )⊕ (

∨
s∈N

s⊕
j=1

xIb
j )

=
∨
r∈N

∨
s∈N

(
r⊕

t=1

xIa
t ⊕

s⊕
j=1

xIb
j )

Observe that, for each r, s ∈ N,
⊕r

t=1 xIa
t ⊕

⊕s
j=1 xIb

j ≤
∑

i∈Ia∪Ib
xi

and then (
∑

t∈Ia
xt)⊕ (

∑
j∈Ib

xj) ≤
∑

i∈Ia∪Ib
xi. Conversely,

⊕m
i=1 xIa∪Ib

i ≤∨
r∈N

∨
s∈N(

⊕r
t=1 xIa

t ⊕
⊕s

j=1 xIb
j ) and then

∑
i∈Ia∪Ib

xi =
∨

m∈N
⊕m

i=1 xIa∪Ib
i ≤

(
∑

t∈Ia
xt)⊕(

∑
j∈Ib

xj). It proves that (
∑

t∈Ia
xt)⊕(

∑
j∈Ib

xj) =
∑

i∈Ia∪Ib
xi.

Then, by induction, we obtain

n⊕
j=1

(
∑
i∈Ij

xi) =
∑

i∈
Sn

j=1 Ij

xi

for each n ∈ N. Consequently, by Proposition 3.8-1,

∑
n∈N

(
∑
i∈In

xi) =
∨
n∈N

(
n⊕

j=1

∑
i∈Ij

xi)

=
∨
n∈N

∑
i∈

Sn
j=1 Ij

xi

≤
∑

~x
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Now we prove the other inequality. Note that, if n ∈ N then there exists
m ∈ N such that

⊕n
i=1 xi ≤

⊕m
j=1

∑
t∈Ij

xt. In fact, we can take m =

min{k ∈ N : {x1, . . . xn} ⊆
⋃k

j=1 Ij}. Thus,
⊕n

i=1 xi ≤
∨

m∈N
⊕m

j=1

∑
t∈Ij

xt

and ∑
~x =

∨
n∈N

n⊕
i=1

xi ≤
∨

m∈N

m⊕
j=1

∑
t∈Ij

xt =
∑
j∈N

(
∑
i∈Ij

xi)

Hence the equation
∑

~x =
∑

n∈N(
∑

i∈In
xi) holds in A.

2

4 MVω-algebras and σ-complete MV -algebras

In this section we will show that the classMVω equationally defines the class
of σ-complete MV -algebras. We denote by σMV the category whose objects
are σ-complete MV -algebras and whose arrows (called σMV -homomorphims)
are MV -homomorphisms preserving denumerable suprema and consequently,
denumerable infima.

Proposition 4.1 Let A be a σ-complete MV -algebra. If we define

∑
i∈N

xi =
∨
n∈N

n⊕
i=1

xi

for all sequence ~x = (xi)n∈N in A then 〈A,
∑

,¬, 0〉 is an MVω-algebra.

Proof: By the definition of
∑

, 〈A,
∑

, 0〉 is an Abelian ω-monoid. This
proves Σ1). By Proposition 2.4, x1 ⊕

∑
i≥2 xi = x1 ⊕

∨
n≥2

⊕n
i=2 xi =∨

n≥2(x1 ⊕
⊕n

i=2 xi) =
∨

n∈N
⊕n

i=1 xi =
∑

i∈N xi and we have proved Σ2).
It is clear that x⊕ y = Σ(x, y, 0, 0 . . .) and then 〈A,

∑
,¬, 0〉 define the MV -

structure on A. This proves Σ3). It follows from Proposition 2.3-2 that:

∑
i∈N

d(Sumi(~x), Sumi−1(~x)) =
∨
n∈N

n⊕
i=1

d(Sumi(~x), Sumi−1(~x))

=
∨
n∈N

Sumn(~x) =
∨
n∈N

n⊕
i=1

xi =
∑
i∈N

xi

and we have proved Σ4). In order to prove Σ 5), consider the sequence
~y = (k ∧ xi)n∈N. Note that, for each n ∈ N, Supn(~y) =

∨n
i=1(k ∧ xi) =
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k ∧
∨n

i=1 xi = k ∧ Supn(~x). Then, by Proposition 2.3-1,∑
i∈N

d(Supi(~x) ∧ k, Supi−1(~x) ∧ k) =
∑
i∈N

d(Supi(~y), Supi−1(~y))

=
∨
n∈N

n⊕
i=1

d(Supi(~y), Supi−1(~y))

=
∨
n∈N

Supn(~y) =
∨
n∈N

Supn(~x) ∧ k ≤ k

Therefore 〈A,
∑

,¬, 0〉 is an MVω-algebra.
2

Proposition 4.2 Let A be an MVω-algebra. Then 〈A,⊕,¬, 0〉 is a σ-complete
MV -algebra in which for each sequence ~x = (xi)i∈N in A,∨

i∈N
xi =

∑
i∈N

d(Supi(~x), Supi−1(~x))

Moreover,
⊙

~x ≤
∧

i∈N xi ≤
∨

i∈N xi ≤
∑

~x.

Proof: Let y =
∑

i∈N d(Supi(~x), Supi−1(~x)). By Proposition 2.3-1 and
Proposition 3.7-2 , for each n ∈ N,

xn ≤ Supn(~x) =
n⊕

i=1

d(Supi(~x), Supi−1(~x))

≤
∨
n∈N

n⊕
i=1

d(Supi(~x), Supi−1(~x))

=
∑
i∈N

d(Supi(~x), Supi−1(~x)) = y

Therefore y is an upper bound of the sequence ~x = (xi)i∈N. Let k
be an upper bound of ~x. Then for each i ∈ N, Supi(~x) ≤ k and by Σ 5,
y =

∑
i∈N d(Supi(~x), Supi−1(~x)) =

∑
i∈N d(Supi(~x) ∧ k, Supi−1(~x) ∧ k) ≤ k.

Hence y =
∨

i∈N xi and 〈A,⊕,¬, 0〉 is a σ-complete MV -algebra.
Since A is σ-complete MV -algebra,

∨
i∈N xi exists in A. Then, by Propo-

sition 3.7-2,
∑

~x =
∨

n∈N
⊕n

i=1 xi ≥
∨

n∈N
∨n

i=1 xi =
∨

i∈N xi. The rest of
the inequality follows from duality.

2
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Proposition 4.3 f : A → B is an MVω-homomorphism iff f is a σMV -
homomorphism.

Proof: Suppose that f is an MVω-homomorphism. By definition of ⊕, f is
an MV -homomorphism. Let ~x = (xi)i∈N be a sequence in A and we define
f(~x) = (f(xi))i∈N. By Proposition 4.2,

f(
∨
i∈N

xi) = f(
∑
i∈N

d(Supi(~x), Supi−1(~x)))

=
∑
i∈N

d(Supi(f(~x)), Supi−1(f(~x))) =
∨
i∈N

f(xi)

Thus f is a σMV -homomorphism. The converse is immediate from Propo-
sition 4.1.

2

By Proposition 4.1, each σ-complete MV -algebra 〈A,⊕,¬, 0〉 becomes an
MVω-algebra 〈A,

∑
,¬, 0〉 by defining

∑
i∈N xi =

∨
n∈N

⊕n
i=1 xi. Conversely,

if 〈A,
∑

,¬, 0〉 is an MVω-algebra and we consider the operation x ⊕ y =∑
(x, y, 0, 0, . . .), by Proposition 4.2, 〈A,⊕,¬, 0〉 is a σ-complete MV -algebra

in which
∨

i∈N xi =
∑

i∈N d(Supi(~x), Supi−1(~x)). Consequently, we shall use
the two terms (MVω-algebra and σ-complete MV -algebra) almost as if they
were synonymous, selecting on each occasion the one that seems intuitively
more appropriate. Therefore, taking into account Proposition 4.3, we can
establish the following result:

Theorem 4.4 σMV = MVω as categories, i.e. they have the same objects
and the same arrows, resulting σMV an equationally definable class of ω-
algebras.

2

5 MVω-algebras as monadic MV -algebras

Monadic MV-algebras (monadic Chang algebras by Rutledge’s terminology)
were introduced by Rutledge in [25] and studied by several authors [2, 7].
They provide an algebraic model for the predicate calculus of  Lukasiewicz
infinite-valued logic, in which only a single individual variable occurs. In this
section we study the MVω-algebra structure as a particular case of monadic
MV -algebras.
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A monadic MV -algebra is an algebra 〈A,⊕,¬,∀, 0〉 of type 〈2, 1, 1, 0〉
such that 〈A,⊕,¬, 0〉 is an MV -algebra and in addition ∀ satisfies the fol-
lowing equations:

∀1. ∀x ≤ x, ∀4. ∀(∀x� ∀y) = ∀x� ∀y,

∀2. ∀(x ∧ y) = ∀x ∧ ∀y, ∀5. ∀(x� x) = ∀x� ∀x,

∀3. ∀(¬∀x) = ¬∀x, ∀6. ∀(x⊕ x) = ∀x⊕ ∀x.

Let A be an MVω-algebra. On A we introduce the unary operation 2 as
follows: for each x ∈ A consider the constant sequence ~x = (x, x, x . . .) then

2x =
⊙

~x

The unary operation 2, defined in any MVω-algebra, plays a crucial role in
the rest of the paper.

Proposition 5.1 Let A be an MVω-algebra and x ∈ A. Then

1. 2x ≤ x.

2. 2x ∈ B(A).

3. If z ∈ B(A) then 2z = z.

4. 22x = 2x, 2(¬2x) = ¬2x and 2(2x�2y) = 2x�2y.

5. 2x = max{z ∈ B(A) : z ≤ x}.

6. 2x =
∧

n∈N(
⊙kn

i=1 x) =
∧

n∈N(
⊙kn

i=1 x) for each k ∈ N.

7. 2(x ∧ y) = 2x ∧2y.

8. 2(x ∨ y) = 2x ∨2y.

9. 2(x → y) ∨2(y → x) = 1.

10. 2(x� x) = 2x�2x and 2(x⊕ x) = 2x⊕2x.

Proof: 1) Immediate.
2) We prove that

∑
i∈N x ∈ B(A). By Proposition 3.7-(1 and 3), for

each n ∈ N,
∑

i∈N x =
⊕n

i=1 x ⊕
∑

i>n x =
⊕n

i=1 x ⊕
∑

i∈N x. Hence, by
Proposition 2.4,

∑
i∈N x =

∨
n∈N(

⊕n
i=1 x ⊕

∑
i>n x) = (

∨
n∈N

⊕n
i=1 x) ⊕
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∑
i∈N x =

∑
i∈N x⊕

∑
i∈N x and

∑
i∈N x ∈ B(A). Hence by definition of

⊙
,

2x ∈ B(A).
3) If z ∈ B(A) then, for each n ∈ N, z =

⊙n
i=1 z and 2z = z.

4) Follows from item 3.
5) Let z ∈ Z(A) such that z ≤ x. For each n ∈ N z =

⊙n
i=1 z ≤

⊙n
i=1 x.

Then z = 2z ≤ 2x ≤ x and hence 2x = max{z ∈ B(A) : z ≤ x}.
6) Let k ∈ N. Note that

⊙kn
i=1 x =

⊙n
i=1(

⊙k
i=1 x). Consider the se-

quence ~kx = (
⊙k

i=1 x,
⊙k

i=1 x, . . .). Then, by Proposition 3.7-6, we have
that

⊙~kx =
∧

n∈N
⊙n

i=1(
⊙k

i=1 x) =
∧

n∈N
⊙kn

i=1 x. Note that
⊙~kx is a

lower bound of the family (
⊙n

i=1 x)n∈N. Let m be another lower bound
of the family (

⊙n
i=1 x)n∈N. Then, for each n ∈ N, m ≤

⊙kn
i=1 x and

m ≤
∧

n∈N(
⊙kn

i=1 x) =
⊙~kx. Thus

∧
n∈N(

⊙kn
i=1 x) =

∧
n∈N(

⊙n
i=1 x) =⊙

i∈N x = 2x. Notice that since 2x ≤
⊙kn

i=1 x ≤
⊙kn

i=1 x, this implies that
2x ≤

∧
n∈N(

⊙kn

i=1 x) ≤
∧

n∈N(
⊙kn

i=1 x) = 2x. Hence 2x =
∧

n∈N(
⊙kn

i=1 x) =∧
n∈N(

⊙kn

i=1 x) holds in A for each k ∈ N.
7) Since x ∧ y ≤ x, y then 2(x ∧ y) ≤ 2x,2y and 2(x ∧ y) ≤ 2x ∧ 2y.

Now we prove that 2x ∧ 2y ≤ 2(x ∧ y). By Lemma 2.1-2, for each
n ∈ N, (

⊙2n
i=1 x) ∧ (

⊙2n
i=1 y) ≤ (

⊙n
i=1 x) � (

⊙n
i=1 y) =

⊙n
i=1(x � y) ≤⊙n

i=1(x∧y). Then, by item 6, 2x∧2y =
∧

n∈N(
⊙2n

i=1 x)∧
∧

n∈N(
⊙2n

i=1 y) ≤∧
n∈N(

⊙n
i=1(x ∧ y) = 2(x ∧ y). Hence 2(x ∧ y) = 2x ∧2y.

8) Let xn =
⊙2n

i=1 x and yn =
⊙2n

i=1 y. First we shall prove that∧
n∈N(xn∨yn) = (

∧
n∈N xn)∨(

∧
n∈N yn). Note that (

∧
n∈N xn)∨(

∧
n∈N yn) is

a lower bound of the sequence (xn ∨ yn)n∈N. Let k be another lower bound
of (xn ∨ yn)n∈N. Since (xn)n∈N is a decreasing sequence, for each n0 ∈ N,
k ≤ xn ∨ yn ≤ xn0 ∨ yn whenever n ≥ n0. Therefore k ≤

∧
n≥n0

(xn0 ∨ yn) =
xn0∨

∧
n≥n0

yn = xn0∨
∧

n∈N yn since (yn)n∈N is a decreasing sequence. With
the same argument, k ≤

∧
n0∈N(xn0 ∨

∧
n∈N yn) = (

∧
n∈N xn) ∨ (

∧
n∈N yn).

Thus
∧

n∈N(xn ∨ yn) = (
∧

n∈N xn) ∨ (
∧

n∈N yn) and

∧
n∈N

(
2n⊙
i=1

x ∨
2n⊙
i=1

y) = (
∧
n∈N

2n⊙
i=1

x) ∨ (
∧
n∈N

2n⊙
i=1

y)

It is now easy to see that 2(x ∨ y) = 2x ∨ 2y. Taking into account item 6
and Lemma 2.1-3 we have:

2(x ∨ y) =
∧
n∈N

2n⊙
i=1

(x ∨ y) ≤
∧
n∈N

(
2n⊙
i=1

x ∨
2n⊙
i=1

y)
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= (
∧
n∈N

2n⊙
i=1

x) ∨ (
∧
n∈N

2n⊙
i=1

y) = 2x ∨2y

The inequality 2x ∨2y ≤ 2(x ∨ y) is immediate.
9) Since (x → y) ∨ (y → x) = 1, it follows by item 8.
10) x � x ≤ x and then 2(x � x) ≤ 2x. Since 2x ∈ B(A), 2(x � x) =

2x ∧2(x� x) = 2x�2(x� x) ≤ 2x�2x. For the converse, 2x ≤ x and
then 2x�2x ≤ x�x. Thus, by item 4, 2x�2x = 2(2x�2x) ≤ 2(x�x).
Similarly we prove that 2(x⊕ x) = 2x⊕2x.

2

An immediate consequence of Proposition 5.1 is the following:

Theorem 5.2 Let A be an MVω algebra. Then 〈A,⊕,¬,2, 0〉 is a monadic
MV -algebra. 2

Remark 5.3 The monadic structure associated to an MVω-algebra is a
particular case of a more general structure called MV -algebra with storage
[22] i.e., an MV -algebra equipped with a unitary operation I satisfying,
I(1) = 1, I(x) = x� I(x) and x� I(x → (x� x� y)) ≤ I(y). We can prove
that I(x) is the greatest Boolean element ≤ x. Thus, if A is an MVω-algebra,
by Proposition 5.1-5, 〈A,⊕,¬,2, 0〉 is an MV -algebra with storage.

6 Sub MVω-algebras

Let A and B be two σ-complete MV -algebras. If A is a sub-MV -algebra of
B, the supremum (infimum) in A of a sequence (xi)i∈N of A, will be denoted
by

∨A
i∈N xi (

∧A
i∈N xi) to distinguish it from the supremum

∨B
i∈N xi (infimum∧B

i∈N xi ) in B, which need not belong to A.

Proposition 6.1 Let A and B be two MVω-algebras. The following condi-
tions are equivalent:

1. A is a sub-MVω-algebra of B.

2. A is a sub MV -algebra of 〈B,⊕,¬, 0〉 in which
∨A

i∈N xi =
∨B

i∈N xi for
each sequence (xi)i∈N in A.

Proof: 1 =⇒ 2) Suppose that A is a sub-MVω-algebra of B. Since
∑

is
closed in A, ⊕ and Supi are closed operations in A. Thus A is a sub-MV -
algebra of B and

∨A
i∈N xi =

∑
i∈N d(Supi(~x), Supi−1(~x))) =

∨B
i∈N xi.
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2 =⇒ 1) We prove that
∑

is closed in A. Let ~x = (xi)i∈N be a sequence
in A. By Proposition 4.1,

∑
~x =

∨B
n∈N

⊕n
i=1 xi =

∨A
n∈N

⊕n
i=1 xi ∈ A. Hence∑

is closed in A and A is a sub MVω-algebra of B.
2

Proposition 6.2 Let A be an MVω-algebra. Then B(A) equipped with the
MVω-operations of A is a sub-MVω-algebra of A which is a σ-complete
Boolean algebra.

Proof: By [5, Corollary 6.6.5], B(A) is a σ-complete Boolean algebra and
the countable operations of B(A) agree with the restriction of the corre-
sponding operations of A. Hence, by Proposition 6.1, B(A) is a sub MVω-
algebra of A.

2

7 MVω-congruences and MVω-filters

The aim of this section is to construct a theory of filters and congruences in
MVω-algebras. Let A be an MVω-algebra. An MVω-congruence on A is an
ω-congruence on A i.e., an equivalence relation θ ⊆ A2 compatible respect
to the signature 〈¬, 0〉, satisfying the following condition:

if for each i ∈ N, (xi, yi) ∈ θ then (
∑

i∈N xi,
∑

i∈N yi) ∈ θ.

We shall denote by ConMVω(A) the set of all MVω-congruences and by
ConMV (A) the set of all MV -congruences of 〈A,⊕,¬, 0〉. It is clear that
ConMVω(A) ⊆ ConMV (A).

Proposition 7.1 Let A be an MVω-algebra and θ ⊆ A2. Then the following
assertions are equivalent:

1. θ ∈ ConMVω(A),

2. θ ∈ ConMV (A) and the following condition is satisfied: if (xi, yi) ∈ θ
for each i ∈ N then, (

∨
i∈N xi,

∨
i∈N yi) ∈ θ.

Proof: Assume that θ ∈ ConMVω(A). By definition of ⊕, θ is an MV -
congruence of 〈A,⊕,¬, 0〉. Suppose that for each i ∈ N, (xi, yi) ∈ θ. Then,
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for each i ∈ N, (d(Supi(~x), Supi−1(~x)), d(Supi(~y), Supi−1(~y))) ∈ θ where
~x = (xi)i∈N and ~y = (yi)i∈N. By hypothesis,

(
∑
i∈N

d(Supi(~x), Supi−1(~x)),
∑
i∈N

d(Supi(~y), Supi−1(~y))) ∈ θ

hence by Proposition 4.2, (
∨

i∈N xi,
∨

i∈N yi) ∈ θ.
For the converse suppose that θ is a MV -congruence on 〈A,⊕,¬, 0〉 that

satisfies: if for each i ∈ N, (xi, yi) ∈ θ then (
∨

i∈N xi,
∨

i∈N yi) ∈ θ. Notice
that for each n ∈ N, (

⊕n
i=1 xi,

⊕n
i=1 yi) ∈ θ. By hypothesis

(
∨
i∈N

n⊕
i=1

xi,
∨
i∈N

n⊕
i=1

yi) ∈ θ

Hence, by Proposition, 4.1 (
∑

i∈N xi,
∑

i∈N yi) ∈ θ and θ ∈ ConMVω(A).
2

Let A be an MVω-algebra and θ ∈ ConMVω(A). Then, by Theorem 1.1,
the quotient algebra A/θ is an MVω-algebra and the natural application
pθ : A → A/θ is an MVω-homomorphism. Consequently, for each sequence
(xi)i∈N in A, ∨

i∈N
(xi/θ) = (

∨
i∈N

xi)/θ. (3)

In [1] an equivalent result was obtained without an equational theory for
σ-complete MV -algebras.

Definition 7.2 Let A be an MVω-algebra. A non-empty subset F ⊆ A is
an MVω-filter iff F is an increasing set and, if (xi)i∈N is a sequence in F ,
then

⊙
i∈N xi ∈ F .

We shall denote by FiltMVω(A) the set of all MVω-filters in A and by
FiltMV (A) the set of all MV -filters of 〈A,⊕,¬, 0〉. Clearly FiltMVω(A) ⊆
FiltMV (A).

Proposition 7.3 Let A be an MVω-algebra and F be a non-empty subset
of A. Then the following assertions are equivalent:

1. F ∈ FiltMVω(A).

2. F ∈ FiltMV (A) and it is closed by denumerable infima.
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Proof: Suppose that F ∈ FiltMVω(A). Let (xi)i∈N be a sequence in F .
By Proposition 3.8-1

⊙
i∈N xi ≤

∧
i∈N xi. Since

⊙
i∈N xi ∈ F and F is an

increasing set,
∧

i∈N xi ∈ F . Hence F is closed by denumerable infima.
For the converse, let (xi)i∈N be a sequence in F . Since F ∈ FiltMV (A),

for each i ∈ N,
⊙n

i=1 xi ∈ F . Since F is closed by denumerable infima, by
Proposition 3.7-6,

⊙
i∈N xi =

∧
i∈N

⊙n
i=1 xi ∈ F . Thus F ∈ FiltMVω(A).

2

Let A be an MVω-algebra. Observe that, the intersection of any family
of MVω-filters of A is a filter of A. Thus 〈FiltMVω(A),⊆〉 is a complete
lattice. We denote by 〈X〉MVω the MVω-filter generated by X ⊆ A, i.e.,
the intersection of all MVω-filters of A containing X. We abbreviate 〈a〉MVω

when X = {a} and we say that 〈a〉MVω is the principal MVω-filter associated
to a.

Proposition 7.4 Let A be an MVω-algebra and X be a non-empty subset
of A. Then

〈X〉MVω = {a ∈ A : ∃(xi)i∈N ⊆ X s.t.
⊙
i∈N

xi ≤ a}

In particular, for each x ∈ A, 〈x〉MVω = 〈2x〉MVω = [2x).

Proof: We first prove that the set

FX = {a ∈ A : ∃(xi)i∈N ⊆ X s.t.
⊙
i∈N

xi ≤ a}

is an MVω-filter. It is obvious that FX is an increasing set. Let (ai)i∈N
be a sequence in FX . Then, for each ai in the sequence, there exists a
sequence (xji)ji∈Ni in X such that

⊙
ji∈Ni

xji ≤ ai where Ni = N × {i}.
Since

⋃
i∈N Ni is a denumerable set, we can consider

⋃
i∈N Ni endowed with an

order isomorphic to N given by a bijective function γ :
⋃

i∈N Ni → N. Thus
we can assume that N =

⋃
i∈N Ni in which (Ni)i∈N is a denumerable partition

of N. Moreover we consider the sequence ~x = (xk)k∈N such that xk = xji iff
γ(j, i) = k. By Proposition 3.9

⊙
~x =

⊙
i∈N(

⊙
ji∈Ni

xji) ≤
⊙

i∈N ai. Since
~x is a sequence in X,

⊙
i∈N ai ∈ FX . Hence FX is a MVω-filter.

Since X ⊆ FX then 〈X〉MVω ⊆ FX . Conversely, let a ∈ FX . Then there
exists a sequence (xi)i∈N in X such that x =

⊙
i∈N xi ≤ a. If F is an MVω-

filter containing X then, x ∈ F and a ∈ F since F is an increasing set. Thus
a ∈ 〈X〉MVω and FX ⊆ 〈X〉MVω . Consequently FX = 〈X〉MVω .

2
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Proposition 7.5 Let A be an MVω-algebra, F ∈ FiltMVω(A) and B be a
sub MVω-algebra of A. Then:

1. F is a Stonean MV -filter.

2. F ∩B ∈ FiltMVω(B).

3. If G ∈ FiltMVω(B) and GA is the MVω-filter of A generated by G then
G = GA ∩B.

4. F ∩B(A) = {2x : x ∈ F}.

5. F = 〈F ∩B(A)〉MVω .

Proof: 1) Since F is closed by
⊙

, for each x ∈ F , x ≥ 2x ∈ F . Hence F is
a Stonean MV -filter. 2) Straightforward. 3) Clearly G ⊆ GA∩B. To see the
converse, let a ∈ GA ∩B. Then, by Proposition 7.4, there exists a sequence
(xi)i∈N ⊆ G such that

⊙
i∈N xi ≤ a. Since G is an MVω-filter and a ∈ B, it

follows that a ∈ G. 4) If x ∈ F ∩B(A) then x = 2x and x ∈ {2x : x ∈ F}.
Thus F ∩B(A) ⊆ {2x : x ∈ F}. The other inclusion is trivial. 5) We prove
that F ⊆ 〈F ∩ B(A)〉MVω . By item 4, if x ∈ F then 2x ∈ F ∩ B(A) and
2x ≤ x. Hence x ∈ 〈F ∩ B(A)〉MVω and F ⊆ 〈F ∩ B(A)〉MVω . The other
inclusion is trivial.

2

Let A be an MVω-algebra. Given θ ∈ ConMVω(A) we define:

Fθ = {x ∈ A : (x, 1) ∈ θ}

Conversely, given F ∈ FiltMVω(A) we define:

θF = {(x, y) ∈ A2 : ∃a ∈ F : x� a ≤ y and y � a ≤ x}

Theorem 7.6 Let A be an MVω-algebra. The maps F 7→ θF and θ 7→ Fθ

are mutually inverse lattice-isomorphisms between ConMVω(A) and FiltMVω(A).

Proof: We first prove that if F ∈ FiltMVω(A) then θF ∈ ConMVω(A). First,
observe that θF is an MV -congruence of 〈A,⊕,¬, 0〉. By Proposition 7.1, we
have to prove that if (xi, yi)i∈N is a sequence in θF then (

∧
i∈N xi,

∧
i∈N yi) ∈

θF . For each i ∈ N, there exists zi ∈ F such that xi�zi ≤ yi and yi�zi ≤ xi.
By Proposition 7.3, z =

∧
i∈N zi ∈ F . Since xi � z ≤ yi we have that

xi ≤ z → yi and then
∧

i∈N xi ≤ z → yi. Thus for each i ∈ N, z�
∧

i∈N xi ≤ yi
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and then z �
∧

i∈N xi ≤
∧

i∈N yi. By the same argument we can prove that
z�

∧
i∈N yi ≤

∧
i∈N xi. Hence (

∧
i∈N xi,

∧
i∈N yi) ∈ θF and θF ∈ ConMVω(A).

To complete the proof, suppose now that θ ∈MVω (A). Since Fθ is
an MV -filter of 〈A,⊕,¬, 0〉, by Proposition 7.3, we have to prove that Fθ is
closed by denumerable infima. Let (xi)i∈N be a sequence in Fθ i.e., (xi, 1) ∈ θ
for each i ∈ N. By Proposition 7.1 we can prove that (

∧
i∈N xi, 1) ∈ θ. Hence∧

i∈N xi ∈ Fθ and Fθ ∈ FiltMVω(A).
Since F 7→ θF and θ 7→ Fθ are mutually inverse lattice-isomorphisms

between ConMV (A) and FiltMV (A), by the precedent argument, F 7→ θF

and θ 7→ Fθ are mutually inverse lattice-isomorphisms between ConMVω(A)

and FiltMVω(A).
2

The latter theorem together with Proposition 7.5-3, allows to establish
the following result:

Proposition 7.7 If A is an MVω-algebra then A satisfies CEP.
2

Remark 7.8 In the literature, MV -filters closed by denumerable infima
have also been termed σ-filters [1, 8]. They are a natural generalization of
σ-filters for σ-complete Boolean algebras [14, 18, 26]. Thus, according to
the Proposition 7.3 and Theorem 7.6, σ-filters determine the congruences
theory for MVω-algebras.

8 Direct products and simple MVω-algebras

The aim of this section is to describe directly irreducible and simple algebras
in MVω. Our results depend of the fact that Boolean elements of MV -
algebras determine a direct decomposition of the algebra. We begin by
briefly recalling some basic notions about direct products decompositions of
MV -algebras.

Let A be an MV -algebra, z ∈ B(A) and consider the segment

[0, z] = {x ∈ A : 0 ≤ x ≤ z}

Note that ⊕ is a closed operation in [0, z]. If we define the unary operation
¬zx in [0, z] by the formula ¬zx = z ∧¬x then [0, z]MV = 〈[0, z],⊕,¬z, 0, z〉
is an MV -algebra. The map B(A) 3 z 7→ θz = {(a, b) ∈ A2 : a ∧ z = b ∧ z}
is a Boolean isomorphism between B(A) and the Boolean sublattice of
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ConMV (A) of factor congruences. The correspondence x/θz 7→ x ∧ z de-
fines an MV -isomorphism from A/θz onto [0, z]MV and x 7→ (x ∧ z, x ∧ ¬z)
defines an MV -isomorphism from A onto [0, z]MV × [0,¬z]MV . Conversely,
if f : A → A1 × A2 is a MV -isomorphism, the element z ∈ A such that
f(z) = (1, 0) is the unique element in B(A) such that A1 is MV -isomorphic
to [0, z]MV and A2 is MV -isomorphic to [0,¬z]MV .

In what follows we shall establish analogous results for MVω-algebras.

Proposition 8.1 Let A be an MVω-algebra and z ∈ B(A). Then:

1. The operation
∑

of A is closed in [0, z] and the structure [0, z]ω =
〈[0, z],

∑
,¬z, 0〉 is an MVω-algebra.

2. θz = {(a, b) ∈ A2 : a ∧ z = b ∧ z} ∈ Conω(A) and the correspondence
x/θz 7→ x ∧ z defines an MVω-isomorphism from A/θz onto [0, z]ω.

3. x 7→ (x ∧ z, x ∧ ¬z) defines an MVω-isomorphism from A onto the
direct product [0, z]ω × [0,¬z]ω.

Proof: 1) Taking into account that A is a σ-complete MV -algebra, [0, z] is
closed by denumerable suprema and infima. Hence [0, z]MV is a σ-complete
MV -algebra. If we define

∑[0,z] ~x =
∨

n∈N
⊕n

i=1 xi for each sequence ~x =
(xi)i∈N in [0, z] then, by Proposition 4.1, [0, z]ω = 〈[0, z],

∑[0,z],¬z, 0〉 is an
MVω-algebra in which

∑
coincides with

∑[0,z] in [0, z].
2) θz is an MV -congruence. Then, by Proposition 7.1, we need to prove

that: if (xi, yi) ∈ θz for each i ∈ N then (
∨

i∈N xi,
∨

i∈N yi) ∈ θz. Since
xi∧z = yi∧z then, (

∨
i∈N xi)∧z =

∨
i∈N(xi∧z) =

∨
i∈N(yi∧z) = (

∨
i∈N yi)∧

z. Hence (
∨

i∈N ai,
∨

i∈N bi) ∈ θz and θz ∈ Conω(A). Taking into account
that x/θz 7→ x ∧ z defines an MV -isomorphism from A/θz onto [0, z]MV , it
preserves denumerable suprema. Hence, by Proposition 4.3, it is an MVω-
isomorphism.

3) Follows from the precedent items.
2

Proposition 8.2 Let A be an MVω-algebra. Then the following assertions
are equivalent:

1. A is simple in MVω.

2. For each x < 1, 2x = 0.
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3. B(A) = {0, 1}.

4. A is directly irreducible MVω.

Proof: 1 ⇒ 2) Let x < 1. By Proposition 7.4, 〈x〉ω = [2x). Since A is
simple in MVω, by Proposition 7.6, 〈x〉ω = A and then 2x = 0.

2 ⇒ 3) Let z ∈ B(A). If z < 1 then z = 2z = 0. Hence B(A) = {0, 1}.
3 ⇔ 4) Follows from Porposition 8.1.
4 ⇒ 1). Let F be a MVω-filter in A and x ∈ F such that x < 1. By

definition of MVω-filter, 2x ∈ F and 2x ∈ B(A) = {0, 1}. Thus F = A and
A is a simple MVω-algebra.

2

Theorem 8.3 Let A be an MVω-algebra. Then, A is simple in MVω iff
A is MV -isomorphic to [0, 1]MV or A is MV -isomorphic to  Ln for some
n ≥ 2.

Proof: Suppose that A is a simple MVω-algebra. By Proposition 8.2,
B(A) = {0, 1}. Let x ∈ A such that 0 < x < 1. We shall prove that x is
nilpotent. Since 〈A,⊕,¬, 0〉 is a σ-complete MV -algebra, it is semisimple
and x is not a unity. Thus, there exists n0 ∈ N such that ¬x →

⊙n0
i=1 x 6= 1.

By Proposition 5.1-9,

1 = 2(¬x →
n0⊙
i=1

x) ∨2(
n0⊙
i=1

x → ¬x)

= 2(¬x →
n0⊙
i=1

x) ∨2(¬
n0+1⊙
i=1

x)

Since 2(¬x →
⊙n0

i=1 x) ∈ B(A) = {0, 1} and taking into account that
2(¬x →

⊙n0
i=1 x) ≤ ¬x →

⊙n0
i=1 x < 1, 2(¬x →

⊙n0
i=1 x) = 0. This

implies that 1 = 2(¬
⊙n0+1

i=1 x) ≤ ¬
⊙n0+1

i=1 x and x is nilpotent in A. Thus,
〈A,⊕,¬, 0〉 is a σ-complete simple MV -algebra. Hence A is MV -isomorphic
to [0, 1]MV or A is MV -isomorphic to  Ln for some n ≥ 2.

2

Corollary 8.4 Simple algebras in MVω are rigid algebras.

Proof: Since [0, 1]MV and all the sub-algebras are rigid algebras, the proof
follows from the fact that MVω-homomorphisms are MV -homomorphisms.

2
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Corollary 8.5 The only totally ordered MVω-algebras, up to isomorphisms,
are [0, 1]MV or  Ln for each n ≥ 2 .

Proof: If A is a totaly ordered MVω-algebra then B(A) = {0, 1}. Hence,
by Proposition 8.2 and Theorem 8.3, A is MV -isomorphic to [0, 1]MV or A
is MV -isomorphic to  Ln for some n ≥ 2.

2

Proposition 8.6 Let A be an MVω-algebra and F ⊆ A be a non-empty set.
Then the following conditions are equivalent:

1. F is a prime MVω-filter,

2. F is maximal MV -filter closed by denumerable infima,

3. For each x ∈ A, x 6∈ F iff ¬2x ∈ F .

4. F is maximal in FiltMVω .

5. F is a MVω-filter and A/F is a simple MVω-algebra.

Proof: 1 =⇒ 2) See [1, Proposition 6].
2 =⇒ 3) F is a maximal MV -filter closed by denumerable infima. If

x 6∈ F then 〈{x} ∪F 〉MVω = A. Therefore there exists a sequence (xi)i∈N in
F such that 2x �

⊙
i∈N xi = 0 and

⊙
i∈N(xi) ≤ ¬2x. By Proposition 7.3,⊙

i∈N xi ∈ F . Hence ¬2x ∈ F . Conversely, if x ∈ F then 2x ∈ F . Since
2x� ¬2x = 0 and F is proper, ¬2x 6∈ F .

3 =⇒ 4) Let K 6= F be a MVω-filter of A such that F ⊆ K. Suppose
that x ∈ K and x 6∈ F . By hypothesis we must have ¬2x ∈ F . Hence
0 = 2x� ¬2x ∈ K and K = A.

4 =⇒ 5) Let us assume that F is maximal in FiltMVω and let us consider
an element xF ∈ A/F such that xF 6= 1F . Then x 6∈ F and 〈{x}∪F 〉MVω =
A. Therefore, there exists a sequence (xi)i∈N in F such that 2x�

⊙
i∈N xi =

0 and
⊙

i∈N(xi) ≤ ¬2x. Since
⊙

i∈N(xi) ∈ F , ¬2x ∈ F and then ¬2xF =
1F . Hence 2xF = 0F and, by Proposition 8.2, A/F is a simple MVω-algebra.

5 =⇒ 1) If A/F is a simple MVω-algebra, by Proposition 8.3, A/F is a
totally ordered set. Hence F is a prime MV -filter.

2

Proposition 8.7 Let A be an MVω-algebra, B be a sub-MVω-algebra of A
and F be a MVω-filter. Then:
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1. If F is a maximal MVω-filter then F ∩ B is a maximal MVω-filter of
B.

2. F is a maximal MVω-filter of A iff F ∩ B(A) is a maximal Boolean
filter of B(A) closed by denumerable infima.

Proof: 1) By Proposition 7.5-4, F ∩ B is an MVω-filter of B. By Propo-
sition 8.6, if x, y ∈ B then x → y ∈ F ∩ B or y → x ∈ F ∩ B. Thus F ∩ B
is a prime MVω-filter of B and then it is a maximal MVω-filter of B.

2) By item 2 we only need to prove that if F∩B(A) is a maximal Boolean
filter of B(A), closed by denumerable infima, then F is a maximal MVω-filter
of A. Let us consider two elements x, y ∈ A. By Proposition 5.1-9 we have
that 2(x → y) ∨ 2(y → x) = 1 ∈ F ∩ B(A). Since F ∩ B(A) is a maximal
Boolean filter of B(A), 2(x → y) ∈ F ∩ B(A) or 2(y → x) ∈ F ∩ B(A).
Then, 2(x → y) ≤ x → y ∈ F or 2(y → x) ≤ y → x ∈ F i.e., F is a prime
filter. Hence, by Proposition 8.6, F is a maximal MVω-filter of A.

2

9 Standard completeness for MVω-algebras

We have seen that the structure of the MVω-algebra is a good abstraction for
 Lukasiewicz tribes. However, the class of all  Lukasiewicz tribes is not large
enough to represent every MVω-algebra. Despite this, they play a crucial role
in the study of MVω-equations. In fact, using the Loomis-Sikorski theorem
for MV -algebras, we will establish an standard completeness theorem for
MVω-equations respect to [0, 1]MVω .

The famous Loomis-Sikorski theorem for σ-complete Boolean algebras
was generalized independently by Mundici [23] and Dvurec̆enskij [10] to σ-
complete MV -algebras in the following way:

Theorem 9.1 Let A be a σ-complete MV -algebra A. Then there exist a
 Lukasiewicz tribe T and a surjective σ-homomorphism f : T → A.

2

The latter theorem together with Theorem 4.4 allows to establish the
following standard completeness result for MVω-algebras:

Theorem 9.2 (Standard completeness) Let p(~x) = q(~x) be an equation of
type 〈Σ,¬, 0〉. Then:

MVω |= p(~x) = q(~x) iff [0, 1]MVω |= p(~x) = q(~x)
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Proof: As regard to the non-trivial direction assume that [0, 1]MVω |=
p(~x) = q(~x). Since each  Lukasiewicz tribe T is a σ-complete MV -algebra
that can be embedded into a direct product

∏
X [0, 1]MVω preserving denu-

merable suprema, by Proposition 6.1, T |= p(~x) = q(~x). Therefore, for
each  Lukasiewicz tribe T , we have that T |= p(~x) = q(~x). Let A be an
MVω-algebra and ~a be a sequence in A. By Theorem 9.1, there exists a
 Lukasiewicz tribe T and a surjective σ-homomorphism f : T → A. By
Proposition 4.3, f is an MVω-homomorphism. Since f is surjective, there
exists a sequence ~m in T such that f(~m) = ~a. Since pT (~m) = qT (~m) then
pA(~a) = f(pT (~m)) = f(qT (~m)) = qA(~a). Hence A |= p(~x) = q(~x) and the
equation holds in MVω.

2

10 σ-complete Boolean Algebras

In this section we shall study the class of σ-complete Boolean algebras as
an equationally definable subclass of MVω.

As shown by Chang [3], Boolean algebras coincide with MV -algebras
satisfying the equation x ⊕ x = x. In this case the operation ⊕ coincides
with ∨ and the operation � coincides with ∧. Let σB be the category
whose objects are σ-complete Boolean algebras and whose arrows (called
σB-homomorphims) are Boolean homomorphisms preserving denumerable
suprema and consequently, denumerable infima. Then, by Theorem 4.4,

σB = MVω + {x⊕ x = x}

Hence σB is equationally definable as a class of ω-algebras.
In what follows we reformulate the equational base for σB in the language

of Boolean algebras, Let A be a Boolean algebra viewed as an MV -algebra
and ~x = (xi)i∈N be a sequence in A. If A is σ-complete, by Proposition 4.1,
we have: ∑

~x =
∨
i∈N

xi =
∨

~x

Thus
∑

and
∨

i∈N coincide as ω-ary operations on A and the operation ∨
becomes a definable operation in the following way: x∨ y =

∨
(x, y, 0, 0 . . .).

Note that Supi(~x) = Sumi(~x) for each i ≥ 0 and the distance function
d(x, y) is the symmetric difference x4y = (x ∧ ¬y) ∨ (y ∧ ¬x). In this way
one obtains the following equivalent equational base for σ-complete Boolean
algebras:

31

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 



Definition 10.1 A σ-complete Boolean algebra is an ω-algebra 〈A,
∨

,∨,∧,¬, 0, 1〉
of type 〈ω, 2, 2, 1, 0, 0〉 such that satisfies for each ~x = (xi)i∈N:

1. 〈A,
∨

, 0〉 is an ω-monoid,

2. 〈A,∨,∧,¬, 0, 1〉 is a Boolean algebra,

3. x ∨ y =
∨

(x, y, 0, 0, . . .),

4.
∨

~x =
∨

i∈N(Supi(~x)4Supi−1(~x)) = x1 ∨
∨

i≥2 xi,

5. (
∨

i∈N(Supi(~x) ∧ y)4(Supi−1(~x) ∧ y)) → y = 1.

Let A be a σ-complete Boolean algebra. By Theorem 7.6, ω-congruences
in A (σB-congruences) are identified with Boolean filters in A closed by
denumerable infima (σB-filters). Note that 2 = {0, 1} is the unique simple
and directly irreducible algebra in σB. Observe that, the unary operation
2 is the discrete quantifier in the sense of Halmos [13].

The concept of tribe is a direct generalization of a σ-field of sets. By
a σ-field of sets over a non-empty set X we mean a σ-complete Boolean
algebra of 2-valued functions over X, where countable suprema are given
by pointwise countable suprema. Using the Loomis-Sikorski theorem for σ-
complete Boolean algebras and sigma-field of sets, we can also establish an
standard completeness theorem for σB-equations respect to 2. The famous
Loomis-Sikorski Theorem, proved independently by Loomis [18] and Sikorski
[26] reads:

Theorem 10.2 Let A be a σ-complete Boolean algebra. Then there exist a
σ-field of sets T and a surjective σB-homomorphism f : T → A. 2

With the same argument used in Theorem 9.2, we can apply Theorem
10.2 to obtain the following standard completeness for σ-complete Boolean
algebras:

Theorem 10.3 (Standard completeness) Let p(~x) = q(~x) be an equation of
type 〈

∨
,∨,∧,¬, 0, 1〉. Then:

σB |= p(~x) = q(~x) iff 2 |= p(~x) = q(~x)

2
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11 σ-complete product MV -algebras

In this section we shall study the class of σ-complete product MV -algebras
as an equationally definable class of ω-algebras. A product MV -algebra
[20, 21, 24] (for short: PMV -algebra) is an algebra 〈A,⊕, •,¬, 0〉 of type
〈2, 2, 1, 0〉 satisfying the following:

1 〈A,⊕,¬, 0〉 is an MV -algebra,

2 〈A, •, 1〉 is an abelian monoid,

3 x • (y � ¬z) = (x • y)� ¬(x • z).

The terminology product MV -algebra conflicts with terminology of [9],
according to which product in a product MV -algebra needs not be commu-
tative and needs not have unit. PMV -algebras correspond to commutative
product MV -algebras in [9] satisfying the equation 1 • x = x.

An important example of PMV -algebra is [0, 1]MV equipped with the
usual multiplication (called product t-norm). This algebra is denoted by
[0, 1]PMV . Note that every Boolean algebra becomes a PMV -algebra by
letting the product operation coincide with the infimum operation.

Remark 11.1 It is shown in [24, Theorem 3.1.4] that the ordinary product
in [0, 1] is the only binary operation satisfying the conditions of definition of
PMV -algebra. Hence  L2 is the unique finite sub-algebra of [0, 1]PMV which
admits product.

The following are almost immediate consequences of the definition of
PMV -algebras:

Lemma 11.2 In each PMV -algebra we have:

1. 0 • x = 0,

2. If a ≤ b then a • x ≤ b • x,

3. x� y ≤ x • y ≤ x ∧ y.

2

Lemma 11.3 [20, Lemma 2.11]. A PMV -algebra and the underlying MV -
algebra have the same congruences. 2
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Definition 11.4 A product MVω-algebra, (PMVω-algebra for short) is an
ω-algebra 〈A,

∑
, •,¬, 0〉 of type 〈ω, 2, 1, 0〉 such that satisfies:

1. 〈A,
∑

,¬, 0〉 is aN MVω-algebra,

2. 〈A,⊕, •,¬, 0〉 is a PMV -algebra.

We denote by PMVω the category whose objects are PMVω-algebras
and whose arrows are MVω-homomorphisms preserving the operation •.
Note that [0, 1]MVω equipped with the usual multiplication is a PMVω-
algebra denoted by [0, 1]PMVω and called standard PMVω-algebra. By Re-
mark 11.1,  L2 is the unique finite sub-PMVω-algebra of [0, 1]PMVω .

Proposition 11.5 A PMVω-algebra and the underlying MVω-algebra have
the same congruences.

Proof: Let A be PMVω-algebra and θ be an ω-congruence of the under-
lying MVω-structure. Since θ is an MV -congruence, by Lemma 11.3, θ is
compatible with the operation •. Therefore θ is an ω-congruence on A. Thus
A and the underlying MVω-algebra have the same congruences.

2

Theorem 11.6 Let A be a PMVω-algebra. Then the following assertions
are equivalent:

1. A is simple in PMVω.

2. A is PMV -isomorphic to [0, 1]PMV or A is PMV -isomorphic to  L2.

3. A is directly irreducible in PMVω.

Proof: 1 ⇐⇒ 2) By Proposition 11.5 A is simple in PMVω iff A is simple
as MVω-algebra. Hence, by Theorem 8.3 and Remark 11.1, A is simple in
PMVω iff A is PMV -isomorphic to [0, 1]PMV or A is PMV -isomorphic to
 L2.

1 ⇐⇒ 3) Follows by Proposition 11.5 and Proposition 8.2.
2

We denote by σPMV the category whose objects are σ-complete PMV -
algebras and whose arrows are PMV -homomorphisms preserving denumer-
able suprema and infima. By Theorem 4.4 we obtain:
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Theorem 11.7 σPMV = PMVω i.e., they have the same objects and the
same arrows, resulting σPMV an equationally definable class of ω-algebras.

2

Now we present the Loomis-Sikorski theorem for PMV -algebras. A
product tribe is a tribe which is closed under the pointwise usual product.
Observe that each product tribe is a PMVω-algebra.

Theorem 11.8 [11, 23] Let A be a σ-complete PMV -algebra. Then there
exist a product tribe T and a surjective σPMV -homomorphism f : T → A.

2

With the same argument used in Theorem 9.2, we can apply Theorem
11.8 to obtain the following standard completeness theorem for equations in
the language of PMVω:

Theorem 11.9 (Standard completeness) Let p(~x) = q(~x) be an equation of
type 〈

∑
, •,¬, 0〉. Then:

PMVω |= p(~x) = q(~x) iff [0, 1]PMVω |= p(~x) = q(~x)

2

It is well known that the axiomatization of all identities in the language
of PMV, which are valid in the PMV -algebra arising from the real in-
terval [0, 1], is an open problem [17, 20]. In our case we have provided a
completeness theorem for PMVω-equations with respect to the standard
PMVω-algebra.

12 Injectives in σB, MVω and PMVω

Halmos [12] raised the question concerning to the existence of nontrivial
injective objects in σB. Consider the category mB whose objects are m-
complete Boolean algebras where m is a an infinite cardinal and whose
arrows are Boolean-homomorphisms preserving m-suprema. In [19] Monk
proved the following theorem:

Theorem 12.1 mB has only trivial injectives. 2

Consequently σB has only trivial injectives. An interesting application
of the last theorem is the characterization of injectives in MVω and PMVω.
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Proposition 12.2 MVω and PMVω have only trivial injectives.

Proof: Suppose that A is either MVω or PMVω. Let A be an injective
in A. We shall prove that B(A) is injective in σB. Let g : B → B(A) be
a σB-homomorphism and f : B → C be a σB-monomorphism. Since σB
is a full subcategory of A and A is injective in A, there exists an MVω-
homomorphism h : C → A such that g = h ◦ f . Taking into account
that anMVω-homomorphism maps Boolean elements into boolean elements,
Imag(h) ⊆ B(A) and the following diagram is commutative:

-

? �
��≡

B B(A)

C

g

f

h

Thus B(A) is injective in σB. By Theorem 12.1, B(A) is trivial and then
A is trivial. Hence MVω and PMVω have only trivial injectives.

2
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[16] U. Höhle, “Commutative, residuated l-monoids”, in Non-classical Log-
ics and their applications to Fuzzy Subset, a Handbook on the Math-
ematical Foundations of Fuzzy Set Theory, U. Höhle, E. P. Klement,
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