

FEBRUARY 9-14, 2018

41st Annual MidWinter Meeting

ARO OFFICERS FOR 2017-2018

PRESIDENT:	John P. Carey, MD (17-18) Johns Hopkins School of Medicine Department of Otolaryngology-HNS 601 North Caroline Street, Room 6161A Baltimore, MD 21287-0910 USA
PRESIDENT ELECT:	Karen P. Steel, PhD (17-18) Kings College London Guys Campus, Wolfson Center For Age Related Diseases London Central United Kingdom SE1 1UL
PAST PRESIDENT:	Matthew W. Kelley, PhD (17-18) NIDCD/NIH-Porter Neuroscience Research Center Building 35, Room ID-993 35 Convent Drive Bethesda, MD 20892 USA
SECRETARY/ TREASURER:	Gabriel Corfas, PhD (17-20) The University of Michigan, Kresge Hearing Research Institute 1150 West Medical Center. Drive Medical Sciences 1 Bldg; RM 5424A Ann Arbor, MI 48109
EDITOR:	Barbara G. Shinn-Cunningham, PhD (15-18) Boston University CRESCENT 610 Commonwealth Ave Boston, MA 02215 USA
HISTORIAN:	David J. Lim, MD UCLA Geffen School of Medicine Department of Head & Neck Surgery 1000 Veterans Ave, Rm 31-27 Los Angeles, CA 90024
COUNCIL MEMBERS AT LARGE:	Keiko Hirose, MD (17-20) Department of Otolaryngology Washington University School of Medicine 660 S Euclid Ave. St. Louis, MO 63110
	Shi Nae Park, MD, PhD (16-19) Professor, Dept of Otolaryngology – HNS Seoul St. Mary's Hospital The Catholic University of Korea College of Medicine 505 Banpo-dong, Seocho-su Seoul, Lorea 137-040
	Jennifer S. Stone, PhD (15-18) Research Associate Professor Department of Otolaryngology VM Bloedel Hearing Research Center CHDD CD 176 Box 357923 University of Washington Seattle, WA 98195 USA
ARO Executive Director:	Haley J. Brust Talley Management Group 19 Mantua Road Mt. Royal, NJ 08061 USA Ph: 1 (856) 423-7222 Ext. 103 Fax 1 (856) 423-0041

Email: hbrust@talley.com

headquarters@aro.org

0.47±0.16; BayK 0.22±0.07, n=6, p<0.05), indicating that Ca2+ influx through L-type VGCC is only activating BK channels at this stage. These results show that the VGCCs coupled to ACh release at the MOC-OHC synapse at P11-13 are the same as those at the MOC-IHC synapse at early stages (P4 to 7; Kearney et al., ARO Abstracts 2014), while at P20-22, they resemble those of the MOC-IHC synapse at P9-11 (Zorrilla de San Martin et al., 2010). These results suggest that the MOC-OHC synapse is still immature at the onset of hearing. Support: UBA& ANPCyT to EK and ABE

PS 706

Enhanced Hair Cell Postsynaptic Responses Alter Release from Presynaptic Efferent Neurons to Prolong Inhibition of the Cochlea

Carolina Wedemeyer¹; Lucas Vattino²; Jimena Ballestero¹; Stéphane F. Maison³; Mariano N. Di Guilmi¹; Julian Taranda¹; M. Charles Liberman³; Paul A. Fuchs⁴; Eleonora Katz⁵; Ana Belén Elgoyhen⁶ ¹Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI/CONICET); ²Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET); ³Harvard Medical School; ⁴Department of Otolaryngology-Head and Neck Surgery, the Center for Hearing and Balance and the Center for Sensory Biology, Institute for Basic Biomedical Sciences; ⁵Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET)/Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular; ⁶Instituto de Investigaciones en Ingeniería Genética v Biología Molecular (INGEBI-CONICET)/ Universidad de Buenos Aires, Facultad de Medicina, Instituto de Farmacología

Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers that originate in the brainstem and make direct synaptic contacts at the base of the outer hair cells (OHCs) are the final targets of several feedback loops from both the periphery and higher processing centers. Efferent activation inhibits somatic electromotility of OHCs, an active amplification system within the mammalian cochlea. This is mediated by the activation of a calcium permeable a9a10 ionotropic cholinergic nicotinic receptor (nAChR) functionally coupled to calcium activated SK potassium channels. The strength of cochlear inhibition is driven by the rate of MOC activity and short term facilitation at the MOC-OHC synapse (Ballestero et al., 2011). The present work shows that a knockin mouse with a mutation in the $\alpha 9\alpha 10$ nAChR (L9';T) with increased channel gating (Taranda et al., 2009) greatly prolongs hair cell evoked inhibitory postsynaptic currents (IPSCs). Long-term presynaptic compensatory mechanisms lead to reduced quantum content (IHC wt =1.29 ± 0.21; L9';T= 0.83 ± 0.12, n=5-6. OHC wt =0.23 \pm 0.04, L9';T = 0.14 \pm 0.02, n=12-15). However, upon high frequency stimulation of MOC-OHC synapses, L9';T mice exhibited more facilitation leading to greatly prolonged synaptic responses (S_2/S_{1-40Hz}) : wt = 1.37 ± 0.16 , L9';T = 3.47 ± 0.44 , n = 6-8, p< 0.05). At the cochlear physiology level, these synaptic changes were matched by a longer time course of efferent MOC suppression of DPOAEs. Thus, the maximal suppressive effect of electrical shocks (70-s, 200 Hz) at the base of the IVth ventricle was doubled both at 16 (p < 0.01) and 22 kHz (p < 0.05), reached much more slowly (16 kHz: wt = 5.3 ± 1.0 s, L9';T = 30.8 ± 4.1 s; 22 kHz: wt = 1.5 ± 0.4 s, L9';T = 44.1 ± 3.1 s) and persisted for a longer time after the shocks for both 16 and 22 kHz in L9';T mice (> 5 min) as compared to their wt littermates $(\leq 1 \text{ s})$. These results indicate that the properties of the MOC-OHC synapse directly determine the efficacy of the MOC feedback to the cochlea being a main player in the "gain control" of the auditory periphery.

PS 707

Immunohistochemical Identification of Human Spiral Ganglia Neurons: Implications in Sensorineural Hearing Loss and Cochlear Implantation

Janice E. Chang¹; Ivan Lopez²; Seiji Hosokawa³; Kumiko Hosokawa³; Gail Ishiyama⁴; Fred Linthicum¹; Akira Ishiyama⁵

¹UCLA Department of Head & Neck Surgery; ²Department of Head & Neck Surgery, Geffen School of Medicine at UCLA; ³Hamamatsu University Department of Otorhinolaryngology - Head & Neck Surgery; ⁴UCLA Department of Neurology; ⁵David Geffen School of Medicine, University of California, Los Angeles

Background

Human spiral ganglia neurons (hSGNs) persist in the human cochlea after hair cell loss, in contrast to SGNs in the cochlea of animal models. We hypothesize that the persistent immunolocalization of structural and functional proteins in hSGNs suggest that they may be active, even in the absence of hair cells. Here we investigate the immunolocalization of three specific structural and functional proteins in hSGNs in normal aging and inner ear pathologies, and in patients who have undergone cochlear implantation.

Methods

Temporal bones from 38 patients (age: 8-89 years; n=11 normal hearing, n=27 hearing loss, n=7 received cochlear implants) were identified. Celloidin-embedded human cochleas were immunostained using mouse monoclonal antibodies against pan-neurofilaments, acetylated-tubu-