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Collective phenomena fascinate by the emergence of order in systems composed of

a myriad of small entities. They are ubiquitous in nature and can be found over a vast

range of scales in physical and biological systems. Their key feature is the seemingly

effortless emergence of adaptive collective behavior that cannot be trivially explained by

the properties of the system’s individual components. This perspective focuses on recent

insights into the similarities of correlations for two apparently disparate phenomena:

flocking in animal groups and neuronal ensemble activity in the brain. We first will

summarize findings on the spontaneous organization in bird flocks and macro-scale

human brain activity utilizing correlation functions and insights from critical dynamics.

We then will discuss recent experimental findings that apply these approaches to the

collective response of neurons to visual and motor processing, i.e., to local perturbations

of neuronal networks at the meso- and microscale. We show how scale-free correlation

functions capture the collective organization of neuronal avalanches in evoked neuronal

populations in nonhuman primates and between neurons during visual processing in

rodents. These experimental findings suggest that the coherent collective neural activity

observed at scales much larger than the length of the direct neuronal interactions

is demonstrative of a phase transition and we discuss the experimental support for

either discontinuous or continuous phase transitions. We conclude that at or near a

phase-transition neuronal information can propagate in the brain with similar efficiency as

proposed to occur in the collective adaptive response observed in some animal groups.

Keywords: correlations, criticality, brain dynamics, neuronal network, flocking, scale-free, synchronization,mutual

information

INTRODUCTION

The collective movement of animal groups has been the subject of great interest for many decades,
with the early work focusing on model simulations (Aoki, 1982; Reynolds, 1987). It is now well-
accepted that collective properties in animal groups are closely related to the general study of
collective phenomena in physics, which initially was focused on phase transitions in equilibrium
systems composed of many, locally interacting particles (Stanley, 1971; Ma, 1976, 1985), but
eventually was expanded to include far-from-equilibrium systems (Meakin, 1987; Kertesz and
Wolf, 1989; Martys et al., 1991). Many biological systems were found to fit into this latter
category specifically when considering systems of self-driven particles to model movements of ants
(Millonas, 1992; Rauch et al., 1995), fish schools (Huth and Wissel, 1992) and bird flocks resulting
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in the seminal model by Vicsek et al. (1995) for flocking in
biological systems based on local interactions impacted by noise.
Since then, variations of the Vicsek model (Grégoire and Chaté,
2004; Chate et al., 2008) as well as other models that utilize
attraction and distance rules (Couzin et al., 2002; Romanczuk
et al., 2009) have been combined with experimental observations
to capture population dynamics of many species such as locust
swarms (Huepe et al., 2011), ants (Gelblum et al., 2016), fish
schools (Tunstrøm et al., 2013), migrating white storks (Nagy
et al., 2018), and cycling pelotons (Belden et al., 2019) with a
major goal to understand the emergence of collective behavior
from the mechanistic interactions between individuals [for a
review, see e.g., Wang and Lu (2019)].

These observations support the idea that biological systems
seem to be naturally poised near a phase transition (Bak, 1996),
where they might benefit from order yet maintain adaptability to
changing environmental conditions, an idea that is increasingly
gaining attraction including the brain (Chialvo, 2010; Mora
and Bialek, 2011; Plenz, 2012; Hesse and Gross, 2014; Plenz
and Niebur, 2014). The initial theoretical debate has been
enriched recently by an ever-improving ability to simultaneously
track many biological elements (neurons, birds, midgets, etc.)
over time, such that now the ideas are being challenged and
contrasted by the experimental findings in the usual manner of
statistical mechanics.

In this note, we focus on the behavior of the system correlation
properties, the central tenet of statistical mechanics. For the
sake of discussion, our starting point will be the work by
Cavagna et al. in 2010, who demonstrated that starlings in a
flock exhibit spatial correlations much longer than the length
of direct interactions between neighboring birds (Cavagna et al.,
2010, 2018). Specifically, they showed that the correlation length,
i.e., the distance at which correlations drop below zero, grows
monotonically with flock size (Figure 1A) and is, therefore, scale-
free. The absence of any characteristic scale in the correlations is
known to be a hallmark of critical systems (Wilson, 1979). For the
human brain, early evidence of scale-free correlation functions
was found for ongoing neuronal activity assessed indirectly using
the blood oxygen level dependent signal (BOLD) (Expert et al.,
2011) followed by the demonstration of correlation length to
grow with the size of the observed brain region (Figure 1B)
(Fraiman and Chialvo, 2012), exactly as was described for starling
flocks. These remarkable population-spanning correlations were
replicated for a network model of the brain with experimentally
based interareal connectivity when the network dynamics was
tuned to criticality (Haimovici et al., 2013). Since then, they have
also been observed for bacterial colonies (Chen et al., 2012),
insect swarms (Attanasi et al., 2014b), and globular proteins
(Tang et al., 2017, 2020). Here, we explore specifically the
analogy in scale-free correlations between animal groups and
brain dynamics at the scale of local population activity during
motor outputs in nonhuman primates and down to the cellular
scale of single neuron interactions during sensory processing
in mice. We will demonstrate that this analogy goes beyond
phenomenology and shares the same formal scaling relations
which suggest common underlying principles.

SCALE-FREE CORRELATIONS IN
RESPONSE TO EXTERNAL
PERTURBATIONS

The absence of a central control for the emergence of order lies
at the heart of collective phenomena. With respect to animal
groups this remarkable feature is also known as “coordination”
and allows animals to stay together for protection in the
face of predators (Powell, 1985; Terborgh, 1990; Krause and
Ruxton, 2002) or to enhance foraging (Krebs, 1973; Munn
and Terborgh, 1979; Greenberg, 2000). This collective response
thus requires information about a local predator or local food
source to be translated into a coordinated flock response
for escape behavior or foraging to be successful. Several
studies have now demonstrated how swarms can achieve such
de-centralized coordination using local interactions between
neighbors (Gregoire et al., 2003; Sumpter, 2006; Strombom, 2011;
Bialek et al., 2012; Vicsek and Zafeiris, 2012; Ling et al., 2019b).

Predominantly local interactions are also characteristic for
many brain networks, specifically as found for the cortex in
mammals (Markram et al., 2015). Like a bird in a flock, the
“action” or output of a cortical neuron depends largely on the
activity of its intracortical neighbors (Boucsein et al., 2011).
The response to external perturbations of a flock, e.g., by the
local intrusion of a predator, also invite interpretations similar
to the response of a cortical network to external inputs. Those
inputs directly affect only a small proportion of all neurons, e.g.,
through input from the thalamus (Bruno and Sakmann, 2006)
or from other cortical regions, and thus are analogous to local
perturbations of ongoing network dynamics (Arieli et al., 1996).
And although neurons in a network do not change physical
positions in relation to one another like birds, they may change
their interaction neighborhood over time by strengthening or
weakening their direct connections through synaptic plasticity.
The mechanisms by which neuronal networks can propagate
information quickly and flexibly to very distant, but not directly
interacting, neurons are less clear though. Thus, inspired by
the flock results we searched for evidence of scale-invariant
correlations in brain activity in response to sensory input.

We recently explored the behavior of neuronal correlation
functions at scales closer to direct neuronal interactions (Ribeiro
et al., 2020). At the scale of a cortical area (i.e., the mesoscale
of millimeters), we measured the distribution of the so-called
local field potential (LFP) with high-density microelectrode
arrays implanted in the premotor and prefrontal cortices of
non-human primates performing a self-initiated motor task and
a working memory task, respectively. The LFP extracts the
local synchronization of neuronal groups and its emergence
and propagation thus tracks the spatiotemporal evolution of
population activity at a spatial resolution of several 100µm with
millisecond precision. At the scale of the cortical microcircuit
(i.e., the scale of few micrometers), we measured the intracellular
calcium dynamics in pyramidal cells expressing the genetically
encoded calcium indicator YC2.6 in superficial layers of the
primary visual cortex in awake mice passively viewing drifting
gratings. The fluorescent indicator closely tracks the action
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FIGURE 1 | Scale-free growths in correlations length is observed in bird flocks and the mammalian brain at different scales and using different recording techniques.

(A) Correlations in the velocity fluctuations of pairs of starlings in flocks of different sizes. Fluctuations are obtained by subtracting from each bird’s velocity vector (left)

the center-of-mass velocity of the flock (middle). Correlation length, defined as the distance at which correlations of the fluctuations reaches zero, scales linearly with

flock size (right) in line with expectations from critical dynamics. Adapted from (Cavagna et al., 2010). (B) Correlations obtained from blood oxygenated level

dependent (BOLD) signals using fMRI to measure ongoing neuronal activity of the human brain. Left: Average correlation between voxel pairs drops with distance

between voxels as a power law (solid line), while phantom data drops exponentially (dashed line) and spatially shuffled data is constant (dotted line). Adapted from

(Expert et al., 2011) Middle: Correlation length, ξ, from fluctuations in BOLD data scales linearly with the size of the brain area observed (black circles) or when pooling

areas together (red diamonds). Adapted from Fraiman and Chialvo (2012). Right: Mutual information between voxel pairs decays with pair distance, allowing for the

definition of “mutual information length,” ξI, in analogy to correlation length. ξI scales linearly with the size of the brain area observed (black circles). Adapted from

Fraiman and Chialvo (2012). (C) Correlations in the fluctuations of LFP amplitudes from prefrontal cortex in nonhuman primates during a working-memory task using

high-density microelectrode arrays. Left/middle: LFP vectors depicting phase and amplitude on the array without/with subtraction of the population average (blue

arrow, left) in analogy to velocity distributions in flock data. Right: Correlation length scales linearly with (sub)array size for both ongoing (blue) and evoked (red) data.

Adapted from Ribeiro et al. (2020). Inset: Mutual information length scales linearly with (sub)array size for both ongoing (blue) and evoked (red) data. (D) Correlations in

the fluctuations of neuronal activity from primary visual cortex in mice during visual stimulation using 2-photon imaging. Left: Example field-of-view showing cells used

for the analysis. Middle: Average correlation of activity fluctuations between pairs of neurons decays with distance as well as with the size of the observed window

(colors). Right: Correlation length scales linearly with observed window size for both gray screen (gray) or drifting gradings (red). Adapted from Ribeiro et al. (2020).

potential firing in individual pyramidal neurons, which allows
for a cellular reconstruction of spatiotemporal population activity
with micrometer spatial resolution and sub-second temporal
precision. At both scales, we observed the linear growth of
the correlation length as a function of the linear size of the
sampled area during sensory processing and motor output
(Figures 1C,D). Remarkably, these scale-free correlations were
similarly present during rest and evoked responses from the
sensory/motor stimulation (Figures 1C,D) [see also Ribeiro
et al. (2020)]. In line with previous results for the whole
brain (Fraiman and Chialvo, 2012), the mutual information
found in neuronal activity also behaved in a scale-free manner.
By measuring how the mutual information between pairs of
electrodes decays with distance, we showed that the “mutual
information length” grew linearly with system size, just like
the correlation length, for ongoing and evoked neuronal at the
mesoscale (Figure 1C, inset).

Animal groups exhibit collective behavior in space during
motion, in contrast to the brain, where activity propagates
in high-dimensional networks and neurons themselves are

stationary. These differences come into focus when considering
scaling of correlation length by the spontaneous breaking of
continuous rotational symmetry as is the case for orientation in
space. In this case, global ordering can emerge in the absence
of criticality at lower temperatures including the presence of
powerlaw decay in space (Goldstone’s theorem) (Goldstone,
1961). For this reason, Cavagna et al. (2010) also investigated
correlations in the speed of birds, for which that argument does
not apply: whereas orientation could be seen as a soft mode
(being bound, they have a “soft” degree of freedom), speed in
principle is unbounded and thus is considered a so-called “stiff”
mode. In the case of brain activity, the Goldstone’s theorem does
not apply, at least for the data presented here, since there is no
continuous symmetry that can be broken or soft modes. It needs
to be noted that although a “pseudo” phase can be extracted from
the LFP using a Hilbert transform of the original time series
(Yu et al., 2017) the work of Ribeiro et al. (2020) used only the
change in LFP amplitude (which is unbounded) to compute the
correlation length. Furthermore, similar results were obtained
when using binarized negative excursions of the LFP below a
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certain threshold [so-called nLFPs, which represent the local,
synchronous firing of neurons around the electrode; see Yu et al.
(2017)], calcium traces or deconvolved spikes (Ribeiro et al.,
2020), all of which are analogous to speed in animal movement.

INTERACTION LENGTH VS.
CORRELATION LENGTH

As commented, many animals living in groups synchronize their
behavior to that of their neighbors. In that manner, they can
spend less time on the lookout for predators and more time
feeding or resting (Bednekoff and Lima, 1998). If animals were
required to be on alert to the behavior of distant group members,
more resources would need to be allocated to group observation.
Obviously, this requirement might not even be possible, e.g., for
herds that are confined to a plane where observation of distant
members is obscured or for very large animal groups in general.
The attention toward neighbors is accounted for by most models
of collective behavior in animal groups, which, considering
local interactions (Vicsek et al., 1995; Cucker and Smale, 2007;
Wang and Lu, 2019), are able to capture the synchronization
of animals to their neighbors as found for red deer (Rands
et al., 2014) and recently for black-headed gulls (Evans et al.,
2018). In a more extreme example, mosquitofish were shown
to only respond to their single nearest neighbor (Herbert-Read
et al., 2011). Thus, regardless of whether interactions between
animals depend on metric or topological distance (Ballerini
et al., 2008; Ginelli and Chate, 2010; Strandburg-Peshkin et al.,
2013), it is probably safe to say that keeping track of nearby
neighbors is a preferred behavioral strategy in groups. On the
other hand, this strategy requires that information pertinent
for the individual survival must travel efficiently throughout
the entire group, independently of the group size. In physics,
this feature of transforming local (short-range) interactions
into global (long-range) correlations, is known to be present
in systems (almost exclusively) at criticality (Wilson, 1979).
Support for this concept comes from the work of Cavagna et al.
(2015) who employed a maximum entropy approach to infer
the effective interactions from individuals in a natural flock and
showed that the interaction range decays exponentially over the
range of just a few individuals. Additionally, Calvão and Brigatti’s
model (Calvao and Brigatti, 2019), which is an implementation
of the classical “selfish herd hypothesis” (Hamilton, 1971), is
composed of local-interacting agents which collectively undergo
a discontinuous phase transition. Their model successfully
reproduces the behavior observed in nature for midge swarms
including long-range correlations (Attanasi et al., 2014a,b).

For the brain, direct interactions between neurons exhibit
a far more complex and selective organization than nearest
neighbor relations. Neuronal interaction in the cortex includes
a dominant number of direct short-range connections onto
which long-range connections are superimposed that link distant
cortical regions within and between hemispheres. Accordingly,
the observation of long-range correlations might arise from
short-range interactions at critical dynamics, from long-range
connections independent of dynamical regimes, or both. To

disambiguate this, we have simulated critical dynamics in a
neuronal network with a precisely defined characteristic size
for its connections and evaluated how the correlation function
changes for distances beyond the short interaction range (Ribeiro
et al., 2020). We found that there is a clear change in the
behavior of the correlation function at the interaction range,
with correlations growing much faster for distances up to this
point, confirming our experimental findings in primary visual
cortex. The obtained interaction distance was similar to the
characteristic distance at which two pyramidal cells in layers II/III
are connected anatomically (Levy and Reyes, 2012; Seeman et al.,
2018). These results suggest critical dynamics in combination
with short interactions to be a major factor behind the observed
correlation length scaling at the microscale and indirectly suggest
that as in the case of animal flocks, the information about a
local input or perturbation can rapidly propagate through the
entire system.

EFFECTS OF THE HETEROGENEITY OF
THE ELEMENTS ON THE CORRELATION
STRUCTURE

Although some early works have taken heterogeneity and self-
sorting into account (Couzin et al., 2002), animal group behavior
has been mostly studied assuming homogeneous behavior of
the individual (Ero et al., 2018; Gouwens et al., 2019). More
recently, the effects of heterogeneity within groups has gained
increased attention [for a review, see e.g., King et al. (2018)]. For
instance, it has been shown that body size affects the strength
of social interactions and the spatial organization of fish schools
(Romenskyy et al., 2017). For jackdaws, a bird species that form
lifelong pair-bonds, social relationships between different birds
lead to the appearance of sub-structures within a flock. Pair-
bonded jackdaws interact with fewer neighbors than unpaired
birds, flap their wings more slowly, which may save energy and
flocks with more pairs exhibit shorter correlation length, which
may lead to decreased group-level benefits (Ling et al., 2019a).

For the mammalian brain, already a cortical column with
∼10,000 neurons across its six layers provides a major modeling
challenge with its diversity in cell types, cell connectivity,
cellular, and subcellular dynamics (Markram et al., 2015; Dura-
Bernal et al., 2019). The type of dynamics that in principle
can be generated in these high-dimensional models is not
easily constrained and can range from large-scale synchronized
oscillations to more local, sometimes sequential activity. With
respect to the latter and in analogy to how the social relationships
affect correlations in jackdaw flocks (Ling et al., 2019a), it has
been shown that some neurons (leaders) consistently fire earlier
than others in spontaneous bursts of activity in vitro (Eytan
and Marom, 2006; Eckmann et al., 2008; Orlandi et al., 2013;
Pasquale et al., 2017). Yet, it is currently not known how the
heterogeneity of cell types, layers and areas contribute to scale-
free correlation lengths measured in the awake brain at macro-,
meso-, and microscale. In a first attempt to address this issue,
we studied functional subnetworks in cortical circuits, such
as the one formed by orientation selective, i.e., “tuned” cells
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with similar tuning preference in V1 (Palagina et al., 2019).
When separately analyzing tuned and non-tuned cells, despite
significant changes in the absolute value of correlation changes
(evidencing the different structure present in these subgroups),
we were able to show that scale-free correlations are present
along the tuning dimension (Ribeiro et al., 2020). We note that
the subgroup not included in the analysis was still participating
in the overall network response and that this finding does not
exclude the possibility that both subgroups are essential to create
the observed scale-free correlations for both subnetworks.

NATURE OF THE PHASE TRANSITION
UNDERLYING THE COLLECTIVE
PROPERTIES OF ANIMAL GROUPS AND
NEURONAL POPULATIONS

A variety of collective states can be observed in animal groups.
For instance, Tunstrøm et al. (2013) have shown that golden
shiner schools can present three dynamically-stable collective
states, namely swarm, polarized and milling, with frequent
transitions between them. Naturally, different types of collective
states and accompanied transitions between those states are
necessary for different animal species. Here, we discussed
coordination or synchronization in animal groups in the context
of emerging of directional order (or onset of collective motion)
(Vicsek and Zafeiris, 2012) and condensation or clustering
transitions (Chen et al., 2012; Calvao and Brigatti, 2019).
Modeling work reflects this wide variety in collective behavior,
which have been linked to different types of phase transitions,
mainly of the discontinuous type [first order transitions,
including hysteresis and metastability; e.g., Couzin et al. (2002),
Chate et al. (2008), Hein et al. (2015), and Calvao and Brigatti
(2019)] or the continuous type [second order, in line with
criticality; e.g., Barberis and Albano (2014), Calovi et al. (2015),
Feinerman et al. (2018)], or both (Huepe et al., 2011). Even
within one model, the type of phase transition encountered can
be sensitive to the specific model parameters and simulations
conducted. For example, the original introduction of the Vicsek
model (Vicsek et al., 1995) suggested a second-order phase
transition, yet, clear discontinuities where identified particularly
when adding aggregational terms and/or allowing noise to be
directly added to the neighborhood computation (Grégoire and
Chaté, 2004; Chate et al., 2008). There is strong theoretical
evidence for the discontinuous nature of the transition in the
Vicsek model (Bertin et al., 2009; Ihle, 2011; Peshkov et al., 2014),
yet finite-size effects can smooth a discontinuous transition
making it appear continuous (Grégoire and Chaté, 2004; Solon
et al., 2015; Brown et al., 2020). Nevertheless, there are claims
for the existence of robust continuous transitions in the Vicsek
model within certain parameter regimes (Barberis and Albano,
2014). These commonly encountered sensitivities of abstract
models to parameter regime and seemingly innocent model
variation, necessarily call for elaborate experimental designs to
validate models. For example, cooperative transport in ants was
found to be more in line with a continuous phase transition when

quantifying transport velocity for food pellets of different sizes
(Feinerman et al., 2018).

The plethora of models that can be construed for brain
networks ranging from abstract, binary neurons with random
connectivity to detailed compartmental neuronal networks
requires a prudent and stepwise alignment of theory and models
with continuously improving experimental evidence. Here, we
would like to point out the experimental demonstration of scale-
free neuronal avalanches in isolated brain preparations in line
with predictions for a critical branching process (Beggs and
Plenz, 2003). This experimental finding suggested that system
wide correlations form spontaneously in a fluctuation dominated
brain state, with low and sparse rate. The experimental
demonstration of scale-free (most-often weak) correlations for
spontaneous and evoked neuronal activity in the awake brain
in the presence of scale-invariant neuronal avalanches has
been reliably found at the macroscale (Expert et al., 2011;
Fraiman and Chialvo, 2012; Tagliazucchi et al., 2012), meso and
microscale (Ribeiro et al., 2020). Importantly, LFP avalanches
in the non-human primate that show scale-free correlations
also exhibit a scaling collapse with an exponent of 2 for mean
size vs. duration and an inverted parabolic profile in line
with predictions for a critical branching process (Miller et al.,
2019). This scaling collapse revealed a complex interaction with
simultaneously present oscillations exhibiting the value of 2 at
temporal resolutions outside the scale of the oscillation, required
limit-analysis when measured at the scale of the oscillation, and
collapsed to 1.5 when oscillations were removed by low-pass
filtering. It is this body of experimental results in the awake cortex
(Scott et al., 2014; Bellay et al., 2015), which forms the seed for
a more comprehensive understanding of the mechanisms ruling
the scale-free dynamics in brain activity.

A variety of alternative models and simulations often exhibit
significant differences when accounting for the above-mentioned
body of experimental findings. For example, the identification
of universality classes that deviate from the directed percolation
model have been found to be indecisive to explain neural data
obtained from the anesthetized or sleep state under severe
subsampling conditions (Fontenele et al., 2019; Carvalho et al.,
in press). Similarly, neuronal models that feature a first order
transition between a low and high activity mode switched
randomly by external noise and include oscillations (Scarpetta
and de Candia, 2013; Scarpetta et al., 2018), while demonstrating
a size distribution exponent of −3/2, also exhibit scaling
exponents ∼1.1, which is lower than the relationship found in
awake nonhuman primates (Miller et al., 2019). The Landau-
Ginzburg scenario introduced recently to simulate avalanches
in neuronal networks (di Santo et al., 2016; Buendia et al.,
2020) exhibits, under certain parameter choices, a first order
transition, hysteresis, and exponents similar to those of a
critical branching process. However, the temporal avalanche
profile identified in that model differs from an inverted-parabola
measured experimentally in non-human primates (Miller et al.,
2019). In addition, the disorder-synchronization phase transition
in that model gives rise to statistically distinct giant (“king”)
avalanches found typically in disinhibited brain activity similar
to epileptic seizures.
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FIGURE 2 | Criticality and scale-free organization provide key advantages for both flocks and brains such as maximal information transmission and dynamic range.

(A) In a decision-making model of flock behavior, information transmission peaks at criticality, shown by a peak in mutual information for K ∼ 1.62 and τ ∼ 2,500

(critical point). Adapted from Lukovic et al. (2014). (B) In organotypic cultures grown from rodent brains, information transmission peaks when spontaneous neuronal

activity displays scale-free neuronal avalanches, in line with expectation from criticality (κ ∼ 1). Two different coarse-graining levels are shown (colors). Proximity to

criticality, i.e., scale-free avalanches, is controlled through pharmacological manipulation of the cultures. Adapted from Shew et al. (2011). (C) Information transmission

is maximized as mice recover from anesthesia, establishing neuronal avalanches. Left: Criticality distance measure approaches 1 (critical point) as time from

anesthesia application (in min) passes. Anesthetized (blue), recently awake (red) and fully awake (green) states are highlighted. Entropy (middle) and information

transmission (right) reaches a maximum as mice recover from anesthesia and reestablishing neuronal avalanches. Adapted from Fagerholm et al. (2016). (D) In

organotypic cortex cultures, the dynamic range peaks when neuronal avalanches emerge and can be reduced when pharmacologically changing the natural

excitation/inhibition balance. Adapted from Shew et al. (2009). (E) Using microelectrode array recordings in rats in vivo, the peak of dynamic range was demonstrated

using natural stimuli and changes in excitation/inhibition balance through local pharmacological manipulation. Adapted from Gautam et al. (2015).
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As a final reflection on this aspect, it needs to be noted that
in contrast with the empirical solitude of the finding of neuronal
avalanches a decade and half ago, the field is currently populated
by a large variety of not-always self-consistent models. It seems
that a fruitful avenue now might be to balance the modeling
efforts with a careful analysis of the continuously improving
sophisticated experimental evidence at hand.

IMPORTANCE OF SCALE-FREE
CORRELATIONS FOR BRAIN FUNCTION

A large body of modeling work and some experimental evidence
have shown that scale-free correlations are beneficial, providing
key advantages to animals living in groups. For example, Rauch
et al. (1995) showed the emergence of self-organized trails
near a critical density of foraging ants. The length of these
trails exceeded several orders of magnitude the ants perceptual
scale, being another example of long-range correlations. In
the same line, it has been shown that evolutionary pressure
could move fish schools toward an optimized state near a
discontinuous phase transition in an evolutionary model, where
local environmental perturbations can cause changes in the
collective school state (Hein et al., 2015). Using the Vicsek model
for flocks (Vicsek et al., 1995), it has been shown that information
transmission is maximized near the phase transition (Figure 2A)
(Vanni et al., 2011; Lukovic et al., 2014), which as discussed
in the previous subsection could have an underlying first-order
origin. The enlarged correlations arising as a result from this
maximized information transmission, lead to optimized response
to predators (Mateo et al., 2017), in line with what has been
observed in data-driven models of fish schools (Calovi et al.,
2015) or sheep herds (Ginelli et al., 2015) near criticality. It
has also been shown that the efficiency of computations in the
Grégoire and Chaté (2004) model is maximized at the phase
transition (Crosato et al., 2018).

On the brain side, theory and model simulations on
critical dynamics in neuronal networks has proposed many
advantages in information processing, some of which have
been demonstrated experimentally, specifically when using
pharmacological manipulations to move cortical networks away
from neuronal avalanche dynamics (Figures 2B–E) [for reviews,
see e.g., Shew and Plenz (2013) and Cocchi et al. (2017)].
For example, the dynamic range, which measures the range of
stimulus intensity a network is able to differentiate, has been
proposed to maximize at criticality by Kinouchi and Copelli
(2006) and was demonstrated experimentally (Figures 2D,E)
(Shew et al., 2009; Gautam et al., 2015).

Another parallel between scale-free flocks and brains is the
presence of decentralized signal processing. This aspect has
gained increased attention in the context of artificial intelligence,
with many studies proposing the usage of artificial swarm
systems (Hornischer et al., 2019; Sueoka et al., 2019). The
brain also provides inspiration for these systems: Monaco
et al. (2020) proposed an analogy between these multi-agent
robotic platforms and place cells in the hippocampus, suggesting

improvements to current models that follow solutions found by
brain circuits. Startle responses in animal populations can trigger
escape waves (Herbert-Read et al., 2015; Sosna et al., 2019), in
the latter case yielding heavy-tail cascade size distributions and
involve distributed repositioning of in the swarm beyond an
individual’s sensitivity changes to perturbation. The initiation
and spread of such local response bears similarities to branching
process dynamics suggesting promising similarities with critical
brain dynamics.

CONCLUSIONS

The emergence of order in systems composed of a myriad of
small entities exhibits many parallels between animal groups
and neuronal populations in the brain. We summarized new
experimental findings for the brain on the emergence of
scale-invariant correlations and scale-invariant population
sizes and discussed their similarities and differences compared
to collective behavior in animals. We show that for both
fields of research there are fascinating arguments for
systems to be positioned near a phase transition to support
propagation of local information throughout the entire
system. Future experimental work on the role of cell types
and microcircuit mechanisms in maintaining these scale-free
dynamical features are crucial for understanding how the brain
processes information.
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