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Abstract: We summarize our recent work on how to infer on jet formation processes directly from
substructure data using generative statistical models. We recount in detail how to cast jet substructure
observables’ measurements in terms of Bayesian mixed membership models, in particular Latent
Dirichlet Allocation. Using a mixed sample of QCD and boosted tt jet events and focusing on the
primary Lund plane observable basis for event measurements, we show how using educated priors on
the latent distributions allows to infer on the underlying physical processes in a semi-supervised way.

Keywords: QCD; jet substructure analysis; Bayesian semi-supervised learning

1. Introduction

The use of jet substructure techniques in studying large area jets has played an impor-
tant role in identifying hadronic decays of massive resonances, such as the W [1–3] and
Higgs [4] bosons, as well as the top [5–15] quark, at the LHC. In the last few years, machine
learning (ML) tools have further greatly extended the application of jet substructure in
tagging and understanding of hadronic jets [16–19]. Recently [20,21], we have proposed a
new technique to analyse jets and events using tools developed in a branch of ML called
generative statistical modeling [22]. Developed primarily to identify emergent themes in
collections of documents, these models infer the hidden (or latent) structure of a document
corpus using posterior Bayesian inference based on word and theme co-occurrence [23–29].
Using the example of jet substructure observables based on the clustering history, we
have shown how to construct statistical mixed membership models of jet substructure. In
particular, using the model of Latent Dirichlet Allocation (LDA) [24], which can be solved
efficiently using, e.g., Variational Inference (VI) [30] techniques, we were able to define
robust parametric jet and event classifiers. In addition, we have shown that the inference
algorithm is able to separate observable patterns corresponding to the massive resonance
decays within the signal jets from patterns corresponding to light QCD emissions present
within all jets. This is achieved due to the mixed-membership nature of the generative
model, where QCD-like patterns found both in the signal and background jets are identified
as having been sampled from the same distribution describing QCD-like splittings in the jet
substructure. For an extensive comparison of different semi-supervised and unsupervised
ML approaches to collider data analysis, including LDA, we refer the reader to two recent
community papers [31,32].

The present work serves to provide a pedagogical introduction to statistical mixed
membership models and in particular their application to studies of jet substructure first
reported in Refs. [20,21]. However, in Section 4 we also discuss the important effects of
priors on the latent distributions and how LDA could be used potentially to help estimate
and correct for systematic effects in jet substructure measurements and aid the calibration
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of Monte Carlo simulations. These preliminary results are novel and have not yet been
documented elsewhere.

2. Introduction to Mixed Membership Models and LDA for Collider Events

A collider event can be represented by a sequence of observations or measurements
{o1, o2, . . . , oN} taking values in a vector space O spanned by a set of physical observables
O1, . . . ,Ok. Each event is, therefore, described by a pattern of points in O where the
number of points and their position change randomly from event to event. One of the most
common examples of this type of event representation are the points patterns describing
individual particles in the "natural" hadron collider coordinates (pT , η, φ) or (η, φ). For
most collider events, the corresponding point pattern is not uniformly distributed over
O. Indeed, a substantial amount of energy from the collision is emitted in the form of
hadronic jets leading to clustered points in (η, φ). The shape and sparsity of the point
pattern for each event will of course depend on the observables spanning O. Building a
completely general probabilistic distribution P(o1, o2, . . . , oN) for events in an arbitrary O
is, therefore, challenging.

2.1. A Simple Probabilistic Model for Collider Events

In the following, we write down a simple generative probabilistic model for event
measurements that is capable of learning the main underlying features in the event. The
probabilistic model is based on the three following assumptions: (i) the measurements in
each event are exchangeable, (ii) the space O of observables is discretized (binned), and
(iii) the event measurements are generated from multiple latent probability distributions
over O.

The first assumption implies that the order in which the measurements oi are ex-
tracted is irrelevant, leading to a joint probability distribution that is permutation invariant
P(o1, . . . , oN) = P(oπ(1), . . . , oπ(N)), where π is any element of the permutation group of
N indices. Exchangeability should not be confused with independent and iid (identically
distributed). Exchangeability actually implies a weaker notion of statistical independence
called ‘conditional independence’. This property can be understood via De Finetti’s repre-
sentation theorem:

De Finetti’s representation theorem: A sequence of event measurements is exchangeable if and
only if there exists a distribution P(ω) over some latent space Ω, such that

P(o1, . . . , oN) =
∫

Ω
dωP(ω)

N

∏
i=1
P(oi|ω) . (1)

Notice that if measurements in O are assumed exchangeable, then these can be
thought as being conditionally independent with respect to a marginalized hidden variable
ω ∈ Ω. One can give a Bayesian interpretation to (1), where P(ω) is a prior and P(o|ω) a
likelihood.

The next step is to chose a suitable prior and likelihood in (1). We assume that the
likelihood P(o|ω) is a discrete distribution and that the prior and likelihood are conjugate
distributions belonging to the exponential family. We discretize the data by binning O
and indexing each bin, so that the outcome of any event measurement is in a one-to-one
correspondence with the index {1, · · · , M}, M being the total number of bins. From all
the discrete distributions in the exponential family, the most natural choice for P(o|ω) is
the multinomial distribution (a multivariate generalization of the binomial distribution),
parametrized by a M-dimensional vector β = (β1, · · · , βM), satisfying

M

∑
m=1

βm = 1 and 0 ≤ βm ≤ 1, (2)
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where βm is the probability that measurement oi populates the mth bin. Notice that the
space defined by (2) is one of an (M− 1)-dimensional simplex. At this stage, β is a free
parameter of the model that would need to be fixed. Given that the number of bins is large,
it is convenient to introduce a prior distribution for β. The only probability distribution
over the simplex belonging to the exponential family that is conjugate to the multinomial,
is the Dirichlet distribution, defined as

D(β|η) =
Γ(η1 + · · ·+ ηM)

Γ(η1) · · · Γ(ηM)

M

∏
m=1

(βm)
ηm−1 . (3)

The Dirichlet D(·|η) is a family of continuous distributions itself parametrized by a
concentration parameter η = (η1, . . . , ηM), ηm > 0, where Γ(x) denotes the Gamma function.
The concentration parameter controls the shape of the Dirichlet over the simplex. Intro-
ducing this Dirichlet prior makes the probabilistic model ’smoother’ since fixing the free
parameter of the model now corresponds to choosing the shape of a smooth distribution,
whereas before we had to fix independently the β parameters of a discrete distribution.
The benefit of ‘smoothing’ is a better performance of the model when inferring on the data,
especially when measurements are sparse leading to many bins without any measurements.

2.2. Latent Dirichlet Allocation

The last model-building assumption we will make is that the measurements in an
event can come from more than one underlying physical source. We assume that oi are
sampled from several latent multinomial distributions P(o|t, βt), labeled by a finite index
t ∈ {1, . . . , T} and parametrized by βt = (βt1, · · · , βtM). These multinomials, or themes
This terminology is imported from topic modelling and natural language processing, where
multinomials are distributions defined over a vocabulary representing a specific theme
or topic present in a corpus of documents., will each be composed by features coming
from a hidden physical process. We take as latent variable ω = (ω1, . . . , ωT) the relative
proportion of every theme contributing to the event. The likelihood in De Finetti’s event
representation is then given by a multinomial mixture model

P(o|ω) =
T

∑
t=1
P(t|ω)P(o|t, βt) . (4)

The discrete distributions P(t|ω) are also multinomial distributions parametrized
by the latent variable ω. These represent the probability of selecting a particular theme
t for each measurement in the event which is then sampled from P(o|t, βt). The latent
space Ω is, therefore, a (T− 1)-dimensional simplex, denoted by ΩT , spanned by the latent
mixtures ω which now satisfy the convexity constraints as in (2). The simplex ΩT must not
be confused with the simplices defined for each multinomial theme parameters βt. The
most natural choice for the prior P(ω) in (1) is again a Dirichlet distribution defined over
ΩT . When putting together the three model-building assumptions discussed above, one
arrives to a simple Bayesian generative model for collider events called Latent Dirichlet
Allocation (LDA):

P(o1, . . . , oN |α, η) =

(
T

∏
t=1
D(βt|ηt)

) ∫
ΩT

dωD(ω|α)
N

∏
i=1

[
T

∑
t=1
P(t|ω)P(oi|t, βt)

]
. (5)

LDA was first proposed as a topic model for texts with other topic models have been
previously used for collider studies in [33] for quark/gluon jet discrimination [24]. The
model has two (multidimensional) model-building hyperparameters controlling the shapes
of the Dirichlet distributions: the T-dimensional vector α = (α1, . . . , αT) for the theme
mixing proportions and a T ×M matrix η where the M-dimensional row ηt controls the
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shape of the Dirichlet for the theme multinomials over O. The number of themes T must
also be fixed before training LDA with data. The simplest possible case is a two-theme
LDA model with T = 2. In this case, the Dirichlet prior D(ω|α1, α2) reduces to a beta
distribution over the unit interval, and P(t|ω) reduces to a binomial distribution over
t ∈ {1, 2}. The generative process for a single collider event reads:

• Draw a random mixing ω parameter between zero and one from the beta prior.
• Randomly select one of the two themes t = 1, 2 by drawing from the binomial given ω.
• Sample one event measurement o ∈ O from the selected theme (i.e., the multinomial

over O parametrized by βt) .
• Repeat steps (ii-iii) until all measurements o1, . . . , oN in the event have been generated.

LDA is a special type of Bayesian model known as a mixed-membership model (MMM)
because each measurement oi within an event can come from multiple themes, and each
event within an event sample is composed of these themes with different proportions.
MMM are generalizations of mixture models and the two are not to be confused with
each other. For mixture models, all measurements in an event would be drawn from a
single theme (the mixture of themes is then manifest at the event sample level, and not
at the event level). MMM are much more flexible probabilistic models that are capable of
capturing common features between different underlying physical processes contributing
to the event.

2.3. Event Classification with LDA

After fixing the Dirichlet free hyperparameters α, η and the number of themes T = 2,
one can use LDA for fully unsupervised event classification tasks. To do this, one calculates
using Bayes theorem the posterior distribution P(ω, t, β|oi, α, η). The main point is to
learn from unlabelled collider data the theme parameters βtm and use themes to cluster
events into two underlying categories, or clusters. One popular learning algorithm used for
LDA is variational inference (VI) [24]. During training, the algorithm extracts the themes
by identifying recurring measurement patterns, in particular, it identifies co-occurrences
between measurements populating different bins throughout the event sample. Once the
learning converges and the themes have been extracted, one can compute the likelihood-
ratio defined as

L(o1, . . . , oN |α) =
N

∏
i=1

P(oi|1, β̂1(α))

P(oi|2, β̂2(α))
. (6)

The β̂t are statistical estimators for the βt’s extracted from VI. The classifier is ob-
tained in the usual way by thresholding the likelihood ratio: for some suitable c ∈ R, if
L(o1, . . . , oN |α) > c then the event belongs to theme t = 1, else it belongs to theme t = 2.
Notice that this classifier depends explicitly on our initial choice for the Dirichlet parameter
α. In reality, there is a continuous two-dimensional ‘landscape’ of two-theme LDA classi-
fiers. In principle, there is no criteria for choosing one value of α over another. A detailed
systematic study performed in ref. [21] suggests that a quantity known as perplexity can be
used to precisely select the best α. The perplexity is a common metric in topic modelling
that measures how well the approximated posterior obtained through VI matches the true
(intractable) posterior. For given hyperparameters α, η, the perplexity is thus a criteria for
the convergence of the algorithm. It can also be useful to distinguish between different sets
of hyperparameters because it is related to the lower bound of the probability of measuring
the data given the hyperparameters, or evidence of the model. However, as we do not have
an upper bound on the evidence this lower bound is not enough to provide a bound on
the Bayes factor between the competing models. What we showed in ref. [21] is that the
perplexity is still enough to select a set of hyperparameters by virtue of being correlated
with the performance of the likelihood-ratio classifier.
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3. LDA for Jet Substructure

The experimental data we have so far considered in our work consists solely of jets,
although the LDA technique could also be applied to final states with different types of
objects such as leptons, missing transverse energy or directly to low-level observables such
as calorimeter tracks. To make use of it, we must be careful to choose a representation
of the experimental data such that it fits into the probabilistic framework outlined in the
previous section. One such representation that meets these requirements is in terms of the
Lund plane observables [34,35].

To obtain the Lund plane representation for a single jet we start by re-clustering it
using the C/A algorithm. This algorithm uses the distance in the (η, φ) plane as a metric
to perform a pairwise iterative clustering of the constituents, η and φ being the pseudo-
rapidity and the azimuthal angle defined in the laboratory frame. This 2→1 re-clustering
continues until all constituents (and subjets) are clustered into one jet with a maximum
radius R. The Lund plane representation follows from undoing this clustering piece by
piece. At each step, we split a subjet into two further subjets, ja → jb jc, where jb,c are
referred to as the daughter subjets and ja as the parent subjet. From them, we calculate the
observables

∆Rb,c =
√
(ηb − ηc)2 + (φb − φc)2 ,

kT = pT,b∆Rb,c where pT,b > pT,c ,

m2
a = p2

a = (pb + pc)
2 , d = max(mb/ma, mc/ma) ,

z = pT,b/(pT,b + pT,c) , κ = z∆Rb,c . (7)

We then assign each splitting to a primary, secondary, etc Lund plane using the simple
algorithm:

1. uncluster ja → jb jc
2. assign l=0(1) to the daughter with the larger (smaller) pT
3. perform the next step in the unclustering, e.g., jc → jd, je
4. assign l=0(1) to the daughter with the larger (smaller) pT
5. add the l from the parent jc to the l’s assigned to the daughters jd and je
6. repeat steps 3–5 until the jet is completely unclustered.

At the end, each splitting comes with a set of observables and an l-value. We identify
l = 0 as the primary Lund plane, l = 1 as the secondary Lund plane, and so on. This way
the primary Lund plane contains all splittings from the hardest pT-core of the jet, while
the secondary Lund plane contains splittings once removed from this hardest pT-core, and
so on. In the following, we focus on just the primary Lund splittings, and on the (kT , ∆R)
observables.

To establish a connection with the previous section, the splittings in the jet are denoted
by oi with i labelling the splitting. The latent parameters β denoting the theme refer in this
case to a mixture of different physical processes occurring while the jet forms in the detector.
For example, a QCD jet would consist of splittings which are entirely described by QCD
splitting functions, whereas top jets would consist partially of these QCD splttings and
partially of splittings related to the hard decay of the top quark to a W boson and a bottom
quark. To see that this Lund plane representation fits into the probabilistic structure of LDA
we only need to note that each splitting in the jet is independent of the other splittings, up
to the underlying physical processes at play during its formation, i.e., the latent themes.

Features in the jet substructure, such as the decay of a top quark or some other
relatively heavy particle, then correspond to features in the primary Lund plane (kT , ∆R)
which can be uncovered through statistical inference using the LDA model. In the next
section, we will see an explicit implementation of this idea with tt̄ data.
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4. Example: Mixed Samples of QCD and Top Jets

We demonstrate our technique using boosted top quark pair-production. Since our
model is built to learn from jet substructure, we consider only the hadronic final states
of the W bosons pp → tt̄ → bb̄W+W−. Consequently, the main background process is
QCD di-jet production. In recent years, this process has become a standard benchmark for
supervised machine learning applications to particle physics [36]. Although there is no
need for an unsupervised top tagging algorithm, it is a nice example that demonstrates the
power of LDA by applying it to a well measured and understood physical process.

All event samples are generated using MadGraph5_aMC@NLO [37] interfaced with Pythia
8 [38] for showering and hadronization, and FastJet 3.4.1 [39] for jet clustering. The
events are generated at a collision energy of 13 TeV and the jets are clustered using the CA
algorithm [40,41] with R = 1.5. No jet grooming is performed. Jets with pT < 300 GeV are
discarded. The detector effects are not simulated, although we have verified that the effects
of subcluster energy smearing consistent with the Delphes 3 [42] simulation of the ATLAS
detector have no significant effect on our results.

In addition to the primary Lund basis observables, we also implement jet labels to
represent the data. Although in the considered benchmark example the ordering of the
jets is not crucial for performance, since both jets in the event are top jets and have the
same decay structure, one can easily imagine other signals where this might not be the
case. Even more, being able to differentiate between these different structures is not just
important for classification, but is also important for a physical interpretation of the themes
learned through the VI algorithm. Therefore, in the case where the signal events contain
two different jets, we would like to be able to associate the (J1, J2) labels with splittings
from one jet or the other, consistently across the whole sample. This will not happen if
we label the jets by their pT , thus, instead, we order the jets according to their jet mass
mJ , such that m1 > m2. We plot the pure signal (tt̄ jets) and background (QCD di-jets)
samples in the (log R/∆, log kT) plane, in Figure 1. In said Figure, we see that the splittings
corresponding to the hard decays of the top quark and the W boson are indicated by the
two overlapping clusters at log kT ' 5 and log R/∆ ' 1. This choice of observable basis
leads to a large overlap between the background and signal distributions, as seen by the
stream of splittings at low log kT . However, there are still clearly discernible differences
between the features that allow us to distinguish tt̄ events from the QCD background.
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Figure 1. Distributions of QCD (left) and tt̄ (right) di-jet events in the (log kT , log R/∆) plane. See
text for details.
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With the simulated events at hand, we define the LDA model and perform Bayesian
inference on the themes and theme weights using Variational Inference. We do this by
using the Gensim package [43]. As detailed in Ref. [21], LDA possesses several hyperpa-
rameters, some related to the VI procedure such as the learning rate, the offset and the
chunksize and some related to the model itself such as α and η. In Ref. [21] we explored the
influence of the former on the convergence and performance of the LDA theme learning. In
particular, we have shown how the perplexity can be used to determine the theme fraction
hyperparameters α, which are close to optimal from a tagging perspective. To do this, we
kept the theme hyperparameters η fixed.

In this work, we are interested in using LDA to recover the underlying distributions
shown in Figure 1 from a corpus of events where the signal is not rare. We consider
45 × 103 total events, where 30 × 103 originate from QCD di-jet events and 15 × 103 from
tt̄ production. This S/B = 0.5 case is similar to the second row of Figures 13 and 14 in
Ref. [21] albeit with less total events.

As we are not interested in classification itself but only on recovering the themes, we
do not perform a hyperparameter scan on α to find the best possible choice from a tagging
perspective. Instead, we consider a fixed set α = (0.67, 0.33) which provides a reasonable
reconstruction performance, something to be expected given the hyperparameter scan
for fixed η detailed in ref. [21]. Although performing the α scan could provide us with
quantitatively better results, the qualitative behavior we are interested in would be very
similar. In the present work, we instead focus on the priors for the themes themselves (given
by hyperparameters η). Contrary to a fully unsupervised approach, we thus perform a
semi-supervised analysis where we prime the LDA with information about the approximate
shapes of the themes to recover. We consider the following priors for the themes:

p(β|η) =
2

∏
t=1

Dir (βt|ηt)

ηtj = Σt · p(t)j , for j = 1,..,V (8)

where p(1), p(2) are two probability distributions over the vocabulary of size V and Σ1, Σ2

are two normalization factors. The role of p(t)j and Σt can be understood by looking at the
mean and variance of a given theme probability βt,j

E[βt,j] = p(t)j

Var [βt,j] =
p(t)j (1− p(t)j )

Σt + 1
(9)

From these equations, one sees that p(t)j represent the expected distributions while
Σt controls the confidence we have in that expectation. Using this parameterization, we
consider two cases: (a) uniform prior and (b) smeared/distorted representation of the
observable distributions. These two cases are shown in Figure 2. The former case (a) is
the default one we considered previously in Refs. [20,21] and is suited for unsupervised
analyses of the data. The latter (b) encodes a more realistic case, where we have a fairly
reasonable idea of what we expect but we do not trust the Monte Carlo simulations and
thus want to perform a semi-supervised analysis where the algorithm can improve upon
our imperfect knowledge of the data. In our example, where the “true” distributions
are obtained from Monte Carlo simulations, we construct the imperfect estimate (b) by
smearing the energies of each final state particle for each event of our simulated dataset
Other options would be to use different Monte Carlo tunes to generate different datasets,
or to use parton shower level distributions when inferring the themes from simulated
detector level reconstructed events. We consider our choice of a smeared Monte Carlo as
representative of a crude or inexact estimation of the data.
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Figure 2. Left (Right) columns: Probability distributions of the uniform (smeared Monte Carlo) prior.
We only show the leading jet themes, with the subleading jets exhibiting a similar behavior.

We perform the inference in LDA for the two sets of theme priors using different
degrees of confidence. We consider the special case Σ1 = Σ2 = ΣT to reduce the number
of hyperparameters to scan. We consider different values of ΣT between 102 and 106. The
range of ΣT we consider takes into account that the interplay between prior and likelihood
is roughly dictated by the relation between ΣT and the frequencies of the words. As we
consider 45,000 documents with 15,000 belonging to tt and assuming each jet has no more
than two or three hard splittings, the appropriate scale where prior and likelihood are
similar is of order 104 − 105. Given that, in practice, one does not know the appropriate
scale, we scan over a broader range of ΣT and study the learned themes for each choice.
We show the obtained themes for the two sets of priors with a good ΣT choice in Figure 3.
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Theme 1

Figure 3. Left (right) columns: The obtained theme distributions using uniform (smeared Monte
Carlo) priors and ΣT = 10, 000. We only show the leading jet themes, with the subleading jets
exhibiting a similar behavior.

For lower ΣT , the inference procedure is too likelihood-dominated and different
priors yield equivalent results. In this case, the performance of the algorithm is sub-
optimal with the two themes picking up mostly QCD features. For higher ΣT , the inference
procedure is too prior-dominated and the obtained themes are very similar to the initial p(t).
For intermediate values of ΣT where the prior and likelihood influences are comparable,
different priors yield different results and so we can guide the performance of the algorithm.
This is the case for ΣT = 10, 000 shown in Figure 3. In this case, we see that the use of
smeared Monte Carlo simulations to perform semi-supervised analysis yields better results
compared to when using flat priors. The latter yields a data-like theme (0) where QCD
and hard top-decay features are blended together, and a noise-like theme (1) where some
hard features populate the highest probability bins, but do not correspond to physical
top-decay distributions. On the other hand, LDA with smeared Monte Carlo priors is
able to identify correctly the hard top-decay features and assign the appropriate cluster
the highest probability in the second theme (1). Importantly, these hard splittings are not
the same as the ones present in the prior, although they are close in the primary Lund
plane. It is also able to correct the mismodelled (prior) QCD features of this top-like theme.
However, because LDA captures archetypes, it assigns low probabilities to these QCD-like
features, which conversely dominate the background-theme (0). Similarly, we observe that
this QCD-like theme (0) moves away from its prior and now closely resembles the true
QCD jet substructure distribution.

5. Conclusions

In this work, we have reviewed a general unsupervised machine learning (ML) frame-
work capable of learning rare patterns in event data collected at high-energy colliders: the
Bayesian probabilistic modeling technique called Latent Dirichlet Allocation (LDA). By rep-
resenting individual collider events as sequences of binned exchangeable measurements,
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we have constructed a simplified picture in which the events are generated by sampling
these measurements from some underlying joint probability distribution. The assumption
of exchangeability of measurements guarantees, through de Finnetti’s theorem, that the
sequence of measurements in an event are conditionally dependent on a latent variable
sampled from a (marginalised over) prior distribution over a latent space. Through some
basic assumptions on this latent space, one arrives at the Bayesian generative model of LDA.
LDA is a mixed-membership model, meaning that the measurements in individual events
are assumed to have been sampled from multiple (two, in our case) different multinomial
distributions – themes. These themes encode information on the underlying structure, i.e.,
hidden patterns, in the event data represented in terms of binned measurements. The
mixing proportions of themes are sampled from a prior taking the form of a Dirichlet
distribution, a parametric family of distributions over the simplex. Mixed membership
models have the advantage of describing different events which share features arising from
the same underlying physical source.

To demonstrate the power of this technique, we considered the analysis of di-jet events
at the LHC focusing on the benchmark example of boosted SM tt̄ production. We described
how to pre-process the event data to express each event as a sequence of exchangeable
measurements, and how the generative model for di-jet events is to be interpreted using
LDA. Our choice of jet substructure observables in the Lund plane basis [34] for the analysis
is based upon high level observable combinations that have previously been shown to
be good for identifying massive resonance decay chains within large radius jets with
supervised methods.

We have demonstrated how the extracted themes hold valuable information about the
signal and background processes. In particular, the features in the probability distributions
over the kinematical observables of the two uncovered themes match to a high degree the
expected features of the underlying hard processes—hadronic decays of top-quarks and
the QCD background, respectively, allowing for an intuitive and physical understanding
of what the algorithm has learned.

From the results, it is clear that the inference algorithm was able to separate measure-
ment patterns corresponding to the massive resonance decays within the signal jets from
patterns corresponding to light QCD emissions present within all jets. This is achieved due
to the mixed-membership nature of the generative model, where QCD-like patterns found
both in the signal and background jets were identified as having been sampled from the
same theme describing QCD-like splittings in the jet substructure.

Going beyond previously published results, we have explored the possibility of intro-
ducing non-trivial theme priors into the algorithm. Well-motivated (e.g., based on Monte
Carlo simulations) priors allow to perform a semi-supervised analysis where the algorithm
starts with an imperfect Monte Carlo based estimates of the observable distributions, and
improves them after training on real data collected by the experiments. This is achieved
by a balance between the likelihood and the prior weights which we encode in the Σt
hyperparameters. We have shown how this works in practice for the tt production example
where the advantage of considering priors to recover realistic latent distributions over
starting from uniform priors is clear. Introducing theme priors opens new possibilities as
one could differentiate between background and signal theme priors or implement general
types of priors which are sensitive to many different signals. One compelling example
is 4-top production where current Monte Carlo simulations of signal and background
distributions do not describe the observed data well. Introducing Monte Carlo-based SM
background and signal theme priors, it could thus be possible to cover many potential
New Physics possibilities where conventional analyses may be sub-optimal [44]. In this
sense, priors can be regarded as another set of hyperparameters which allow LDA enough
flexibility to deal with the complexity of LHC data. A more systematic study of LDA priors
is in progress and the results will be published elsewhere.
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