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Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-

limiting toxicity that affects 30%–40% of patients undergoing cancer treatment.

Although multiple mechanisms of chemotherapy-induced neurotoxicity have

been described in preclinical models, these have not been translated into

widely effective strategies for the prevention or treatment of CIPN. Predictive

biomarkers to inform therapeutic approaches are also lacking. Recent studies

have examined genetic risk factors associated with CIPN susceptibility. This

review provides an overview of the clinical and pathologic features of CIPN

and summarizes efforts to identify target pathways through genetic and func-

tional studies. Structurally and mechanistically diverse chemotherapeutics are

associated with CIPN; however, the current review is focused on microtubule-

targeting agents since these are the focus of most pharmacogenetic association

and functional studies of CIPN. Genome-wide pharmacogenetic association

studies are useful tools to identify not only causative genes and genetic vari-

ants but also genetic networks implicated in drug response or toxicity and have

been increasingly applied to investigations of CIPN. Induced pluripotent stem

cell-derived models of human sensory neurons are especially useful to under-

stand the mechanistic significance of genomic findings. Combined genetic and

functional genomic efforts to understand CIPN hold great promise for develop-

ing therapeutic approaches for its prevention and treatment.
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1 | INTRODUCTION

Scientific advances have led to improved therapeutic
responses in cancer care and the development of cellular
and targeted therapies. According to the National Cancer
Institute’s Surveillance, Epidemiology, and End Results

(SEER) programme, age-adjusted death rates for any
cancer diagnosis have been steadily declining over the
last four decades (199 deaths per 100,000 persons in 1975
to 149 deaths per 100,000 persons in 2018).1 While
cytotoxic antineoplastic treatments have contributed to
decreasing mortality rates, these therapies also present
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with their own acute and long-term toxicities. Chemo-
therapy agents target and eliminate rapidly dividing cells
such as tumour cells. However, they can also affect divid-
ing and non-dividing cells in healthy tissues and lead to
serious adverse toxicities during or post-treatment with
significant impacts on patients’ quality of life. Thus, ther-
apeutic clinical benefit can be offset by the need for dose
adjustment and drug discontinuation in the face of severe
toxicities, traditionally graded according to the National
Cancer Institute – Common Terminology Criteria for
Adverse Events (NCI-CTCAE) scale. Current research
efforts are focused on establishing strategies to mitigate
and prevent cancer treatment-related toxicities.
Pharmacogenomic association studies are one approach
to identify candidate genes and pathways that might be
targeted for the treatment and prevention of therapy-
related toxicities.

2 | CHEMOTHERAPY-INDUCED
PERIPHERAL NEUROPATHY

The focus of this review is on the application of
pharmacogenomic and functional validation approaches
to the study of chemotherapy-induced peripheral neurop-
athy (CIPN), a common dose-limiting toxicity. Specifi-
cally, we will focus on microtubule-targeting agents
(MTAs) since they have been the most widely studied in
pharmacogenetic investigations. Taxanes (e.g., paclitaxel
and docetaxel), vinca alkaloids (e.g., vincristine and vin-
blastine), epothilones (i.e., ixabepilone) and eribulin all
target microtubules for their chemotherapeutic effects
and are associated with varying incidence of peripheral
neuropathy (Table 1).3,9,10 In general, the newer MTAs,
ixabepilone and eribulin, have lower incidence of periph-
eral neuropathy than the vinca alkaloids and taxanes
(Table 1). One exception is the taxane docetaxel which is
the least neurotoxic MTA.4 Within a given drug class,
incidence rates also vary widely. For example, docetaxel
and the liposomal formulation of paclitaxel (nab-

paclitaxel) are less neurotoxic than paclitaxel.3,4,6,7 The
onset and severity of symptoms are drug-specific but, in
general, dependent on the frequency of dose, route of
administration, and cumulative dose. Taxanes have
shown acute neuropathic pain as early as the first cycle,
which is not normally observed with other MTAs.11

2.1 | Clinical characteristics

It is important to recognize the clinical characteristics of
CIPN to understand its functionally limiting effects and
need for the development of toxicity mitigating
approaches. CIPN encompasses both sensory and motor
peripheral neuropathy. Sensory neuropathy is a predomi-
nant presentation that manifests in the hands and feet in
a ‘glove and stocking’ distribution, as chemotherapy-
induced nerve damage first occurs in the longest axons in
distal nerves. Motor neuropathy is less common and usu-
ally occurs after sensory neuropathy. Patient experience
of CIPN is variable and challenges our ability to charac-
terize the severity of this toxicity. Typically described sen-
sory neuropathic symptoms include numbness and/or
tingling, alterations in tactile sensations, thermal hyper-
sensitivity, and/or burning/painful sensations.9,12

Patients with CIPN may exhibit hyporeflexia, reduced
sensory perception to external touch and vibration, and
reduced proprioception.13 Furthermore, CIPN symptoms
can present acutely, persist for years or even progress
post-therapy.3,14 In severe cases, sensorimotor deficits
may be irreversible.15 Severe CIPN symptoms can inter-
fere with activities of daily living such as writing, dress-
ing and walking, significantly limiting quality of life.16 In
addition, CIPN has significant economic implications;
survivors with CIPN incur higher healthcare costs and
higher rates of loss of employment secondary to debilitat-
ing symptoms.9 The clinical picture is further compli-
cated by individual variability linked to risk factors such
as age, renal function, exposure history (including prior
treatment with neurotoxic modalities and high dose

TAB L E 1 Reported incidence rates and threshold cumulative doses for microtubule-targeting agent-induced peripheral neuropathy

Drug class Chemotherapy agent Onset cumulative dose Incidence (%)

Vinca alkaloids Vincristine >4–20 mg2 20–603,4

Vinorelbine — 335

Taxanes Paclitaxel ≥800–1980 mg/m2 3 59–933

Nab-paclitaxel >260 mg/m2 6 10–516,7

Docetaxel >400–600 mg/m2 2 6–104

Epothilone Ixabepilone 40 mg/m2 8 15–248

Halichondrin Eribulin mesylate ≥10 mg/m2 5 27–355

Note: ‘—’ means not known.
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regimens), pre-existing neuropathy (either diabetic or
inherited neuropathy), as well as comorbidities that pre-
dispose to neuropathies such as alcohol intake and diabe-
tes.3,14 Nevertheless, these risk factors do not completely
explain the interindividual variation in CIPN.17

2.2 | Current treatment modalities
of CIPN

Various individualized therapeutic modalities to address
CIPN have been explored, largely based on our under-
standing of this neurotoxicity from preclinical models.
The 2014 American Society of Clinical Oncology (ASCO)
clinical practice guideline, updated in 2020, highlights
potential preventative and therapeutic strategies for
CIPN.17,18 Investigated therapeutic modalities include
chemo-protectants (amifostine, recombinant human leu-
kaemia inhibitory factor and nimodipine), anticonvul-
sants (carbamazepine, oxcarbazepine, lamotrigine,
gabapentin and pregabalin), antidepressants (nortripty-
line, amitriptyline, venlafaxine and duloxetine), and vari-
ous dietary supplements (calcium and magnesium,
vitamin E, glutathione, acetylcysteine, glutamate/gluta-
mine, omega-3 fatty acids, goshajinkigan, retinoic acid
and diethyldithiocarbamate). The expert opinion of clini-
cal and translational scientists compiled in the ASCO
guidelines provided no strong recommendation for a
therapeutic to prevent this neurotoxicity. However,
a moderate recommendation was proposed for the use of
duloxetine for the treatment of CIPN.17 Despite the lack
of strong supporting data from randomized clinical trials,
other agents are still used in the management of CIPN,
most notably gabapentin and pregabalin.19 Often, chemo-
therapy is either dose-reduced or discontinued to address
CIPN and avoid its progression.20 This emphasizes a clin-
ical challenge, balancing maximal expected therapeutic
benefit to achieve best possible survival outcomes, while
also considering the potential morbidity of therapy.

2.3 | Pathogenesis of CIPN

Extensive investigations in rodent models and in primary
cultures of dorsal root ganglion neurons support our cur-
rent understanding of the mechanistic basis of
chemotherapy-induced sensory neuron toxicity. Several
recent reviews have described these findings in detail,
and a summary is provided in Table 2.35,36 Validated
mechanisms for MTAs include sensory neuron axonal
degeneration leading to loss of intra-epidermal nerve
endings,37,38 mitochondrial vacuolation and defects in
mitochondrial transport resulting in the production of

reactive oxidative species,24,39,40 alteration of neuronal
ion channels implicated in the excitability of peripheral
nerves,41,42 and neuroinflammation.32,33 These mecha-
nisms have been targeted for therapeutic intervention
and in some cases have been validated with serum bio-
markers in clinical studies (Table 2).

Collectively, the literature highlights the biological
complexity that underlies CIPN and underscores a need
to utilize novel approaches to investigate this toxicity.
Pharmacogenomic studies are likely to advance the field
of research surrounding CIPN by facilitating the identifi-
cation of predictive biomarkers and additional actionable
targets. Furthermore, human reverse translational studies
and novel in vitro models using human sensory neurons
should serve as investigational models to mimic the
human phenotype and provide a more adequate cellular
representation of toxicity to further our understanding of
underlying mechanisms of CIPN.

3 | GENETIC ASSOCIATION
STUDIES PROVIDE CLUES TO THE
MOLECULAR MECHANISMS
UNDERLYING MTA-INDUCED
PERIPHERAL NEUROPATHY

Genetic risk factors (e.g., single nucleotide polymorphisms
[SNPs]) have been identified as predictive biomarkers of
individual treatment decisions.43 Currently, no genetic
association has proven of clinical utility to predict risk of
CIPN, but these efforts have revealed exciting insights
into its pathophysiology. Human genetic association stud-
ies are useful tools to identify genetic networks implicated
in toxicity or response to drugs and have been increas-
ingly applied to study CIPN. These approaches have pro-
vided novel information regarding potential biological
processes contributing to the pathophysiological mecha-
nisms underlying MTA-induced neuropathy with the
hope of translating this understanding into improved and
novel preventive and therapeutic strategies. The fact that
MTA-induced peripheral neuropathy is dose-dependent
led to an initial focus on candidate genes implicated in
pharmacokinetics. Genome-wide association studies
(GWAS) have enabled an expansion from biased candi-
date gene studies and have provided a broader insight into
which pathways are linked to this toxicity.

3.1 | Candidate gene studies

Candidate gene studies on MTA-induced peripheral neu-
ropathy largely focused on SNPs in metabolizing
enzymes (CYP2C8 and CYP3A4/5) and transporters
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(ABCB1 and ABCC2).44–48 ABCB1 variants and their role
in taxane-induced neuropathy were investigated in early
candidate gene studies and were replicated in some, but
not all, validation cohorts.44,49 A less functional ABCB1
variant is consistent with a higher risk of developing neu-
ropathy, since ABCB1-encoded P-glycoprotein effluxes
toxic substances out of the peripheral nervous system.
Analyses of genes implicated in vincristine pharmacoki-
netics have shown associations of ABCC2 variants with
increased neurotoxicity.50 Other studies revealed that
patients harbouring CYP2C8 and CYP3A4 polymor-
phisms had increased susceptibility to severe neuropa-
thy.47,51 This finding is also consistent with dose-
dependent taxane toxicity and has been replicated in
other studies.52,53 CYP3A5 is the major catalyst of vincris-
tine metabolism and individuals carrying CYP3A5 vari-
ants associated with high expression are less likely to
suffer severe neuropathy induced by vincristine.54–56

Increased rates of vincristine metabolism in CYP3A5
high expressors are consistent with lower systemic and
therefore sensory neuron exposure to this neurotoxin.

Candidate gene studies have also examined variants
in genes related to drug targets. Polymorphisms dis-
rupting biological pathways related to tau, actin, and
microtubule dynamics may alter taxane effects in sensory
neurons and cause neurodegeneration. Genetic variants
in MAPT, TUBB2A and GSK3β associated with an
increase in sensitivity to taxane-induced neuropathy sup-
port this hypothesis.57,58 Genes encoding proteins regu-
lating actin/microtubule cytoskeleton interactions
(i.e., ACTG1 and CAPG) were further highlighted in a
study on vincristine-induced neuropathy.59 In general,
these candidate gene associations have not been widely
replicated in independent populations and require fur-
ther investigation.60

3.2 | Genome-wide association studies

Although candidate genes studies have provided funda-
mental insights on CIPN, genome-wide approaches rev-
ealed novel associations in an unbiased manner,
investigating both direct and indirect genetic effects on
MTA-induced peripheral neuropathy. Table 3 summa-
rizes up-to-date findings from GWAS on MTA-induced
neuropathy. Although the first candidate gene association
studies hypothesized that neurotoxicity could be related
to overall drug exposure, GWAS suggest that genes
involved in nerve repair play a more important role than
those implicated in pharmacokinetics or pharmacody-
namics. The first GWAS on the onset and severity of
paclitaxel-induced neuropathy in primary breast cancer
patients revealed three novel genes that play a role in

neurite growth during development and in the regulation
of actin for the formation of filopodia/lamellipodia
(FZD3, EPHA5 and FGD4).65 FZD3 encodes for a member
of the Wnt receptor family, Frizzled-3, that controls axo-
nal outgrowth and development of the neural crest.71

Patients carrying variants in FZD3 were initially linked to
decreased risk of onset of paclitaxel neurotoxicity, a find-
ing that was recently validated in an independent
sequencing study.65,72 EPHA5 encodes the receptor tyro-
sine kinase ephrin receptor A5 which guides axonal
growth during development.73 Association of EPHA5
genetic variants with increased risk of paclitaxel-induced
peripheral neuropathy has been replicated in other stud-
ies and may be related to the inability to repair injured
axons following paclitaxel treatment.69,74 Although the
GWAS that replicated the EPHA5 findings was limited by
sample size and included patients treated with both pacli-
taxel and carboplatin (Table 3), other EPHA genes were
also independently associated to CIPN and indicate that
ephrin-A signalling may be a critical function in the
response to neuronal injury. rs10771973 in FGD4,
the only variant that was validated in the initial GWAS of
paclitaxel-induced peripheral neuropathy, has also been
linked with increased risk of paclitaxel dose reductions in
another independent candidate SNP association study.48

Rare mutations in FGD4, a gene that encodes for an F-
actin binding protein, cause Charcot–Marie–Tooth (CMT)
disease, the most common hereditary neuropathy charac-
terized by peripheral nerve and muscle damage.75 Exome
sequencing studies in paclitaxel-treated patients have
identified other CMT genes (ARHGEF10 and PRX) with
known roles in the regulation of neuronal morphogenesis
and function, associated with susceptibility to taxane-
induced neuropathy.76,77 In contrast to congenital CMT
disease, common genetic variation in CMT genes is only
associated with peripheral neuropathy when patients are
challenged with neurotoxic chemotherapeutics.

The LIMK2 (LIM domain kinase 2) genetic locus has
also been associated with onset of paclitaxel-induced
peripheral neuropathy.69 LIMK2 is a protein kinase
involved in the regulation of actin filament dynamics and
reduced LIMK2 expression causes increased in vitro sen-
sitivity to vincristine but not paclitaxel.78 Whether the
connection between LIMK2 expression and sensitivity to
the cytotoxic effects of MTAs translates into sensitivity to
their neurotoxic effects remains unclear. Other taxane-
induced peripheral neuropathy GWAS have implicated
additional nerve regeneration genes (e.g., GPR177 and
SBF2) as well as inflammatory genes (RFX2 and
FCAMR); however, with limited sample sizes, heteroge-
neous patient populations, and lack of replication, their
importance in the pathogenesis of this dose-limiting tox-
icity remains unclear.66,67,79
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A recent GWAS meta-analysis of peripheral neuropa-
thy following treatment of breast cancer patients with
paclitaxel, nab-paclitaxel or ixabepilone identified SNPs
in the enhancer regions of S1PR1 encoding the G-protein
coupled receptor sphingosine-1-phosphate receptor
1 (S1PR1) which were associated with an increased risk
of developing CIPN.63 In vitro validation studies utilizing
FTY-720 (fingolimod), a functional antagonist of S1P
receptors, in combination with paclitaxel in an induced
pluripotent stem cell (iPSC)-derived sensory neuron
model, demonstrated that S1PR1 inhibition confers neu-
ronal protection against paclitaxel toxicity. These findings
are particularly exciting given that clinical trials are
ongoing to investigate the utility of fingolimod for the
prevention and treatment of paclitaxel-induced periph-
eral neuropathy in breast cancer patients.

It is important to note that many of the genes associ-
ated with taxane-induced peripheral neuropathy identi-
fied in GWAS and sequencing studies (FGD4,65

EPHA4/5/6/8,65,69 LIMK2,69 ARHGEF10,76,77 SBF266 and
S1PR163; Figure 1) converge on RhoGTPase signalling
pathways that are critical to biological processes such as
axonal guidance and neuronal extension (i.e., filopodia
and lamellipodia formation).80 These findings suggest
that genetic variants resulting in axonal degeneration or
lack of regeneration may prevent the reinnervation of

epidermal layers after chemotherapy, potentially contrib-
uting to the development and progression of CIPN.

While most of the GWAS to date are focused on
paclitaxel-induced neuropathy, a few including patients
treated with other MTAs have supported the hypothesis
that mechanisms of CIPN are related at least in part to
an inability to repair nerve damage. A GWAS investigat-
ing docetaxel-induced peripheral neuropathy identified a
gene related to neurodegeneration (VAC14), which was
functionally validated in vitro but has yet to be indepen-
dently replicated in patients.70 Genetic association studies
of vincristine-induced neurotoxicity have also identified
genes related to neuron structure, including genes
involved in microtubule/actin cytoskeleton organization
(CEP72 and SYNE2).61,62 Another genome-wide meta-
analysis highlighted genes involved with neurogenesis
(COCH), although the encoded cochlin protein has pri-
marily been associated with function in auditory gan-
glion.55 Among the genetic variants from GWAS of
vincristine-induced peripheral neuropathy, rs924607 in
the promoter region of CEP72, a gene encoding for a
centrosomal protein and key regulator of microtubule
organization, was associated with increased risk of neu-
ropathy and reduced expression in HapMap samples.62 In
a blinded case–control replication study in adults receiv-
ing vincristine, carriers of rs924607 were at increased risk

F I GURE 1 Actin cytoskeletal genes implicated in CIPN from genetic association studies. GPCR, G-protein coupled receptor; RTK,

receptor tyrosine kinase
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of neurotoxicity (75% of patients with the reference allele
vs. 44% with the variant allele developed grade 2–4
peripheral neuropathy), validating the original GWAS
findings in a paediatric population.81

While identification of biologically relevant genes and
pathways from GWAS has generated intriguing hypothe-
ses and supports ongoing functional studies in CIPN,
finding appropriately sized and phenotyped populations
for replication is challenging, and most of these GWAS
findings remain unreplicated. Nonetheless, GWAS have
revealed the polygenic nature of MTA-induced peripheral
neuropathy and underline the potential contribution of
nerve repair pathways in chemotherapy sensitivity.82 The
discovery and replication of additional genetic associa-
tions would offer innovative strategies for early detection
and management of CIPN by elucidating the complex
biological processes that underlie peripheral nerve dam-
age and repair following exposure to neurotoxic chemo-
therapies. As genomic sequencing technologies become
more affordable and neurotoxicity assessments
become standardized and accessible, some reported asso-
ciations will be validated and novel clinically relevant
genetic associations will be uncovered.

4 | REVERSE TRANSLATIONAL
STUDIES OF CHEMOTHERAPY
NEUROTOXICITY

Investigations into the molecular basis of genes and path-
ways identified in human genetic association studies of
CIPN will be critical for translating these findings into
useful therapeutic approaches for prevention or treat-
ment. Studies in both preclinical animal models and
human cells can be performed, with an advantage of the
latter for initial screening of GWAS findings since studies
can be higher throughput and the cells are of human ori-
gin. However, the availability of appropriate cell models
has been limited until recently. Below, we discuss the use
of neuronal cell lines and iPSC-derived sensory neurons
for reverse translational studies of CIPN GWAS findings.

4.1 | Studies in neuronal cell lines and
commercial iPSC-derived neurons

Various in vitro cellular models have been used to investi-
gate chemotherapy neurotoxicity such as the human neu-
roblastoma cell line SH-SY5Y and rat PC12
pheochromocytoma cells.83,84 Although these models
allow us to study chemotherapy-induced neurotoxicity,
they present significant limitations in understanding
human toxicity. The biggest limitation of these cell lines

is that while they can be differentiated into ‘neuron-like’
cells, they are not neurons per se. To address this limita-
tion, an increasing number of iPSC-derived neuronal
models have been commercially available such as human
iCell® neurons from Cellular Dynamics International,
human peripheral iPSC neurons from Axiogenesis
(Peri.4U®), Tempo-iSenso™ human iPSC-derived sensory
neurons from Tempo Bioscience and iPSC-derived sen-
sory neuron progenitors from Axol Bioscience. iCell®

neurons represent an assortment of postmitotic
GABAergic and glutamatergic cortical neurons while Per-
i.4U® and Tempo-iSenso™ neurons have peripheral neu-
ron characteristics, expressing canonical markers such as
β-III tubulin, peripherin, MAP2, P2X3 and vGLUT2.85–87

Only iCell® and Peri.4U Neurons® have been used for
screening of neurotoxic compounds and for functional
studies on CIPN-related genes identified by
GWAS.62,68,70,86,88,89

Important findings have been reported with the use
of these models to examine the molecular basis of genetic
variants associated with MTA-induced peripheral neu-
ropathy identified in GWAS. Genetic disruption of
TUBB2A in iCell® neurons increased paclitaxel-induced
neurite retraction by �20%.89 Validation of AIPL1 from a
GWAS (Table 3) on paclitaxel-induced cytotoxicity using
iCell® neurons demonstrated a decreased AIPL1 expres-
sion which protected against neurite morphological dam-
age caused by paclitaxel.68 In addition, evidence
supporting the association of CEP72 with vincristine-
induced neurotoxicity was reported using the same in
vitro model.62 In this work, genetic silencing of CEP72,
which represents a loss of function variant in the pro-
moter of CEP72, resulted in greater neuronal damage
caused by vincristine (i.e., decrease in neurite length and
branching).

Similar GWAS validation studies have been carried
out using Peri.4U® neurons, which have more peripheral
neuron-like characteristics. Peri.4U® neurons are sensi-
tive to MTA exposure but not to platinum-based agents
or thalidomide, in contrast to iCell® neurons that are sen-
sitive to all CIPN causative drugs.86 This finding suggests
that human iPSC-derived peripheral sensory neurons are
a more appropriate in vitro model compared to iPSC-
derived central neurons to investigate MTA-induced neu-
rodegeneration. Another study using Peri4.U® neurons
for validation of VAC14 in docetaxel-induced peripheral
neuropathy (Table 3) revealed that siVAC14 Peri.4U®

neurons, when exposed to docetaxel, have less neurite
outgrowth and less neurite branching, compared to a
non-targeting control.70 In vivo studies corroborating the
results found in Peri.4U® neurons, showed that after
docetaxel administration, Vac14�/� mice have increased
nociceptive sensitivity compared to wildtype mice,

CHUA ET AL. 9



emphasizing that these in vitro models are appropriate
for validation and screening of genetic targets associated
with MTA-induced neurodegeneration.

The iCell® and Peri.4U® neurons, provided from mul-
tiple vendors and with often unreported genetic back-
ground, are no longer commercially available. This
negates future use as reproducible experimental models
and challenges the longitudinal interpretation and com-
parison of data within a single laboratory and across lab-
oratories and institutions. Human iPSC-derived sensory
neurons are also available from Tempo Bioscience, but to
date, there are no published studies using Tempo-
iSenso™ neurons.

4.2 | Novel human iPSC-derived sensory
neuron models

In the last 5 years, other cellular models to study CIPN
have been established such as the use of human sensory
neurons differentiated from reprogrammed fibroblasts,
blood, and embryonic stem cells. These cells express
canonical nociceptor and mechanoreceptor markers and
functionally resemble DRG sensory neurons. One poten-
tial application for studying the effects of human genetic
variation on sensory neuron response to MTAs is to
establish iPSC lines from patients exposed to these che-
motherapeutics and who experience variable responses
with regards to neurotoxicity (i.e., no neuropathy to
severe neuropathy). iPSC-derived sensory neurons from
these samples could then be used to investigate underly-
ing mechanism and to link genetic variation to causal
genes and phenotypes. Analysis of gene expression in
sensory neurons derived from >100 healthy donors
showed more variation due to batch differentiation than
to donor of origin.90 This study highlighted the potential
power of iPSC-derived sensory neurons as a tool to help
understand human genetic variation but also
underscores the limitation of differentiation protocols. A
robust, widely available, accessible and reproducible
model of human iPSC-derived sensory neurons would
greatly advance mechanistic studies of chemotherapy
neurotoxicity.

Sensory neurons derived from a single iPSC line could
be used to investigate the role of selected genes and path-
ways in MTA-induced neurotoxicity. The authors have
recently described the use of the iPSC line WTC11 to dif-
ferentiate sensory neurons with a homogeneous genetic
background.91 This well-characterized pluripotent cell
line is used worldwide for the derivation of various cell
types. Human-derived sensory nociceptors are sensitive
to the exposure of neuropathy-inducing antineoplastic
agents. Following chemotherapy exposure, iPSC-derived

sensory neurons demonstrate dose-dependent changes in
neuronal morphology including reduced neurite length
and neurite density. The sensory neurons also showed
reduced mitochondrial transport, altered mitochondrial
membrane potential and changes in glutamate-induced
Ca2+ influx in response to paclitaxel. Overall, these iPSC-
derived sensory neurons show similar nociceptive
responses to MTA exposure as human sensory neurons.91

Their utility in investigating GWAS findings was demon-
strated by functional validation of a role for S1P signal-
ling in paclitaxel-induced neurotoxicity.63 A similar
method for differentiation of human iPSCs into sensory
neurons has been used to demonstrate a critical role for
SARM1 in vincristine-induced axon degeneration.92

This iPSC-derived sensory neuron model holds great
promise as the foundation of a standardized framework
to understand genes and pathways underlying mecha-
nisms of CIPN, define the contribution of genetic varia-
tion to neurotoxicity, and screen for drugs with potential
clinical application. Recently, a large-scale CRISPRi-
based platform from iPSC-derived central neurons was
developed for genetic screens in neurodegenerative dis-
eases.93 The screen uncovered gene-specific effects on
survival and neuronal morphology and provide a useful
approach for functional and mechanistic studies. Single-
cell sequencing readouts allowed the identification of
genes with cell-type-specific consequences. A similar
combination of CRISPRi screening and single-cell
sequencing techniques in iPSC-derived sensory neurons
would facilitate identification of genes and pathways
involved in CIPN and would provide information at a
cell-population level.

5 | LIMITATIONS AND PROMISE
OF PHARMACOGENETIC STUDIES
OF CIPN

Sample size and representation of non-Caucasian
populations are significant limitations of most of the
pharmacogenetic studies described above. Importantly,
not all studies considered relevant clinical covariates
such as the incidence of pre-existing neuropathy, risk fac-
tors like diabetes and excess alcohol consumption, and
the use of neuropathic pain modulating agents. CIPN
severity is often underestimated and underreported
which also leads to the introduction of bias.60 Clinical tri-
als typically use the NCI-CTCAE criteria for defining
peripheral neurotoxicity, which is focused on common
symptoms such as burning and tingling sensations in the
hands and feet and limitations to activities of daily living
such as getting dressed. The use of NCI-CTCAE is also
limited by the temporal collection of the data, with the
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patient typically asked to report symptoms that occurred
earlier in a treatment cycle. Collection of patient-reported
symptoms of toxicity that are captured in real time will
provide a richer phenotype that could increase the power
of GWAS to detect true genetic associations. Finally,
pharmacogenetic association findings can be difficult to
replicate due to the lack of well phenotyped cohorts with
relevant treatments and DNA samples.

To date, pharmacogenetic association studies of
MTA-induced peripheral neuropathy have identified
genetic variation in genes and pathways that are criti-
cal to sensory nerve function and repair. Despite the
general lack of genome-wide statistical significance and
replication in an independent population, these find-
ings provide mechanistic insight into the pathogenesis
of CIPN. More detailed functional studies of promising
genes and pathways are warranted, with the goal to
develop clinically meaningful biomarkers and to iden-
tify potential therapeutic targets for prevention and
treatment of dose-limiting CIPN. It is hoped that the
ongoing implementation of human iPSC-derived sen-
sory neurons with a homogenous genetic background
will allow the determination of the true contribution
of patient-specific genetic variation to CIPN predisposi-
tion. Introduction of specific genetic variants into these
cells will provide models to study both common and
rare genetic variation identified in genetic association
studies and extended to genetic variants in candidate
genes that are unique to understudied populations.
The iPSC-derived sensory neurons can also serve as a
platform to screen potential tailored neuroprotective
targets. A recent study has shown successful utilization
of patient iPSC-derived sensory neurons to treat severe
small fibre neuropathic pain, demonstrating that such
models can more faithfully mimic target tissues and
translate to patient experience.94

Considering that the decrease in cancer mortality is
paralleled by an increasing number of cancer survivors
who are prone to late effects of therapy, it is essential for
the scientific community to develop standardized tools
for the prediction, management, and treatment of
patients genetically susceptible to CIPN. The application
of pharmacogenetics to the study of CIPN will contribute
to this goal.
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