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Abstract. Given an non necessarily linear operator T defined from an Orlicz space
Lφ′(Ω,A, µ) into itself, where φ′ denote the derivative of a strictly convex function φ, we
give necessary and sufficient conditions on T assuring that this operator is an extended
best φ-approximation operator given a suitable σ-lattice L ⊆ A.

1. Introduction and Notations

Let (Ω,A, µ) be a probability space and let M = M(Ω,A, µ) be the set of all A-
measurable real valued functions defined on Ω. Given a C1 strictly convex function
φ : [0,∞) → [0,∞) such that φ(0) = 0, φ(t) > 0 when t > 0 and φ′(0) = 0, let
Lφ = Lφ(Ω,A, µ) be the space of all functions f ∈M such that

∫

Ω

φ(λ|f |) dµ < ∞, (1.1)

for some λ > 0. According to [?] we say that a function φ is a ∆2 function if there exists
k > 0 such that φ(2t) ≤ kφ(t), for all t > 0, and in this case we write φ ∈ ∆2. In this
paper the function φ will be a ∆2 function, so the space Lφ can be defined as the space
of all functions f ∈ M where (??) holds for every positive number λ. The space Lφ′ is
analogously defined, where φ′ is the derivative of the function φ. Besides observe that for
a ∆2 function φ it holds the next inequality

φ(x) ≤ xφ′(x) ≤ φ(2x) ≤ Kφ(x),

for all x ≥ 0 and hence Lφ ⊂ Lφ′ . It is well known that φ is a ∆2 function if and only if
φ′ is a ∆2 function. For more details about properties of Orlicz spaces we refer to [?].

We say, as stated in [?], that a collection L of sets in A is a σ-lattice if it is closed under
countable unions and intersections and contains both ∅ and Ω. Given a σ-lattice L we
denote by L the σ-lattice of all the complementary sets of L, i.e. L = {Ac : A ∈ L}. A
function f is called a L-measurable function if {f > a} ∈ L, for all real numbers a, and
denoted by Lφ(L) for the set of all L-measurable functions in Lφ.

According to [?] a set C ⊂ Lφ is called φ-closed if and only if fn ∈ C and fn ↗ f ∈ Lφ

or fn ↘ f ∈ Lφ then f ∈ C. Then Lφ(L) is a φ-closed convex set and is a lattice, that is
closed for the maximum and minimum of functions. See [?].
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It is well known, see [?], that for every f ∈ Lφ there exists a unique element fL ∈ Lφ(L)
such that ∫

Ω

φ(|f − fL|) dµ = inf
h∈Lφ(L)

∫

Ω

φ(|f − h|) dµ. (1.2)

The element fL is called a best φ-approximation of f given L, and we set µL(.) for the
mapping f → fL defined on Lϕ which will be called the best approximation operator. In
Section 2, Definition ?? the operator µL(.) is extended to an operator from Lφ′ to itself
and it will be denoted by µ̃L(.). In [?] another extension of the operator µL(.) is given,
and in Theorem ??, it is proved that both extensions coincide. We refer to this extended
operator as the extended best φ−approximation operator.

The main objective of this paper is to give sufficient conditions on an operator T : Lφ′ →
Lφ′ to ensure that T is the extended best φ-approximation operator, given a suitable
σ-lattice L ⊆ A. This result is done in Theorem ??, and it gives a characterization of the
extended best φ-approximation operator. For some specific cases it is possible to define
an extension of this best approximation operator, in a rather direct way. See [?].

This sort of characterization problem has been investigated for several authors in many
cases. For the case of the classical conditional expectation, φ(t) = t2 and where L is a
sub σ-algebra of A, the first general results appear in [?], see Theorem 2.1. A similar
characterization result was given by [?] for the operator T acting on the L2 space. These
results were also treated by, among others, [?], [?], [?] and [?].

A characterization for a non linear operator T : L2(Ω) → L2(Ω), as a conditional expecta-
tion given a σ-lattice, appears in [?]. A characterization of the projection operator from
Lp(Ω,A) onto Lp(Ω,B), where B is a sub σ-algebra of A and 1 < p < ∞, appeared in [?].
The best approximation operator µL defined by equation (??) was characterized in [?], for
a rather general function φ. For the special case φ(t) = tp the same author characterized
the extended best Lp approximation operator in [?]. This last operator is acting from
Lp−1(Ω) → Lp−1(Ω).

2. Extended best φ-approximation operator.

In this section we present some basic notions about the extended best φ-approximation
operator and in the next section we give a characterization of this operator.

We know that when φ is a strictly convex function, the best φ-approximation is unique.
In [?] we gave an extension of the best φ-approximation operator to the space Lφ′ in a
monotone continuous way. In [?] we defined another extension of the best φ-approximation
operator, even for the case when φ is a convex function. Here we prove that when φ is a
strictly convex function both extensions are the same.

In order to introduce the extended best approximation operator we need the following
definitions, according to [?].

Definition 2.1. Let ν be a signed measure on A and L be a σ-lattice contained in A. We
say that P ∈ L is a ν-positive set, if for all D ∈ L we have ν(P ∩D) ≥ 0. A set N ∈ L is
called ν-negative if for all C ∈ L we have ν(N ∩ C) ≤ 0.
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Definition 2.2. Let {νa}a∈R be a family of measures on A, and L be a σ-lattice contained
in A. A L-measurable function g is called a Lebesgue-Radon-Nikodym function (LRN
function) for {νa} given L if and only if the set {g > a} is νa-positive for all a ∈ R and
the set {g < a} is νa-negative for all a ∈ R.

Remark 2.3. We note that in Definition ?? it is sufficient to impose the conditions for all
a in a dense set in R. See page 588 of [?].

For f ∈ Lφ, g ∈ Lφ(L) and a ∈ R we define the following measures on A

µg(A) =

∫

A

φ′(f − g) dµ, µa(A) =

∫

A

φ′(f − a) dµ, (2.1)

where φ′(x) = φ′(|x|) sign(x). Note that when f ∈ Lφ′ and g ∈ Lφ′(L) the measure µg and
µa are well defined.

The next theorem is a characterization of µL(f), see Theorem 3.2 in [?].

Theorem 2.4. Let f ∈ Lφ, L ⊂ A be a σ-lattice and g ∈ Lφ(L). Then the following
statements are equivalent.

(1) g = µL(f).

(2) a) the set {g > a} is µg-positive for all a ∈ R and
b) the set {g < a} is µg-negative for all a ∈ R.

(3) g is a LRN function for the family {µa}a∈R given L.

The following definition was given in [?].

Definition 2.5. Let L be a σ-lattice and let f ∈ Lφ′ . Then g is called an extended best
φ-approximation if and only if g ∈ Lφ′(L) and

i) the set {g > a} is µg-positive for all a ∈ R,
ii) the set {g < a} is µg-negative for all a ∈ R.

For f ∈ Lφ′ we denote by µ̃L(f) the set of all extended best φ-approximation functions.
In [?] it was proved that µ̃L(f) is a non-empty set.

The conditions (2) and (3) are equivalent even if we assume f ∈ Lφ′ and g ∈ Lφ′(L). In
fact the proof given in Theorem 3.2 in [?] holds in this situation. Thus we have the next
Remark.

Remark 2.6. Given f ∈ Lφ′ and g ∈ Lφ′(L) the following statements are equivalent

(1) g ∈ µ̃L(f).

(2) g is a LRN function for the family {µa}a∈R given L.
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In the next theorem we prove the uniqueness of the extended best φ-approximation op-
erator when φ is a strictly convex function.

Theorem 2.7. If φ is a strictly convex function then the extended best φ-approximation
is unique.

Proof. Given g1, g2 ∈ µ̃L(f) such that g1 6= g2, it is enough to verify that

A = {x ∈ Ω : g1(x) < a < b < g2(x)} = {g1 < a} ∩ {g2 > b}
is a µ-null set for a, b ∈ R such that a < b. Since φ′(·) is a strictly increasing function,
and assuming µ(A) > 0 we have

∫

{g1<a}∩{g2>b}
φ′(f − b) dµ <

∫

{g1<a}∩{g2>b}
φ′(f − a) dµ. (2.2)

Since {g1 < a} ∈ L and using Remark ?? we have 0 ≤ ∫
{g1<a}∩{g2>b} φ′(f−b) dµ. Similarly

the second integral is less than, or equal to, 0. Which is a contradiction.

¤

In [?], where φ is a strictly convex function, the operator of best φ-approximation is
extended in a monotone continuous way to the space Lφ′ . We denote this extension by
µ∗L(f) and it was defined as follows. For f ∈ Lφ′ and for every m ∈ N set fm = lim

n→∞
µL((f∨

(−m)) ∧ n) and then µ∗L(f) = lim
m→∞

(fm).

The next theorem and its corollary appeared in [?] and both of them characterize the
extended best φ-approximation µ∗L(f).

Theorem 2.8. Let f ∈ Lφ′ and let ` be a strictly increasing function such that `(µ∗L(f))
is bounded. Then g = µ∗L(f) if and only if g ∈ Lφ′(L), `(g) is bounded and

(1)
∫
Ω

φ′(f − g)h dµ ≤ 0, for all bounded L-measurable function h,

(2)
∫
Ω

φ′(f − g)`(g) dµ = 0.

Corollary 2.9. Let f ∈ Lφ′ . Then g = µ∗L(f) if and only if g ∈ Lφ′(L) and

i) ∫

C

φ′(f − g) dµ ≤ 0 for all C ∈ L. (2.3)

ii) ∫

{g≥a}
φ′(f − g) dµ = 0 for all a ∈ R. (2.4)

Using this Corollary we will prove the next result.

Theorem 2.10. If φ is a strictly convex function, then µ̃L = µ∗L on Lφ′ .
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Proof. Set g = µ̃L(f), by Definition ?? we have∫

{g>a}∩D

φ′(f − g) dµ ≥ 0 for all D ∈ L and (2.5)

∫

{g<a}∩C

φ′(f − g) dµ ≤ 0 for all C ∈ L, (2.6)

for all a ∈ R. As f, g ∈ Lφ′ we can use Lebesgue’s Theorem when a →∞ in (??) and we
obtain ∫

C

φ′(f − g) dµ ≤ 0 for all C ∈ L. (2.7)

From (??) we also can obtain ∫

{g≥a}
φ′(f − g) dµ ≥ 0,

for all a ∈ R. The condition (??) holds in particular for C = {g ≥ a} and we get∫

{g≥a}
φ′(f − g) dµ = 0. (2.8)

Then by (??), (??) and Corollary ?? we obtain that g = µ∗L(f). ¤

3. Characterization of the extended best φ-approximation operator.

Given an operator T : Lφ′ → Lφ′ we impose conditions on T in order to insure that T is an
extended best φ-approximation operator. We begin with some definitions and auxiliary
results.

Definition 3.1. An operator T : Lφ′ → Lφ′ is called monotone continuous if fn ↗ f or
fn ↘ f where fn, f ∈ Lφ′ for all n ∈ N then Tfn ↗ Tf or Tfn ↘ Tf.

Definition 3.2. An operator T : Lφ′ → Lφ′ is called φ-expectation invariant if for all
f ∈ Lφ′ we have that ∫

Ω

φ′(f − Tf) dµ = 0.

Note that the operator µ̃L(f), introduced in Section 2 is both a monotone continuous
operator and a monotone operator. In [?] the properties above were proved for the
operator µ∗L and by Theorem ?? µ∗L = µ̃L. Also µ̃L is a φ-expectation invariant operator
by Theorem ??. The properties as translation invariant, T (f + c) = T (f)+ c, c ∈ R, and
idempotent for the operator µ̃L(f) follow directly from the definition.

Observe also that µ̃L(f ± 1
2
µ̃L(f)) = (1± 1

2
)µ̃L(f) using Corollary ??.

The next Lemma plays the role of Lemma 7.3, of [?] and its proof follows the pattern
given there, even if we deal with an non necessarily positive homogeneous operator T.

Lemma 3.3. Let T : Lφ′ → Lφ′ be an operator which is translation invariant, monotone,
φ-expectation invariant, T (0) = 0 and T (f ± 1

2
Tf) = (1± 1

2
)Tf. Then
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(1) T is a monotone continuous operator.
(2) L = {A ∈ A : TχA = χA} is a σ-lattice.
(3) If H = {f ∈ Lφ′ : Tf = f} then

a) For all b ∈ R, H + b ⊂ H.
b) For all n ∈ N, (3

2
)nH ⊂ H.

c) H is φ′-close.
d) H is a lattice.
e) H = Lφ′(L).

Proof.

(1) Let fn, f ∈ Lφ′ for all n ∈ N, such that fn ↗ f (or fn ↘ f), we show that
Tfn ↗ Tf (Tfn ↘ Tf). We prove only the increasing case, the decreasing case
runs analogously. Since T is a monotone operator we have Tfn ≤ Tf and by the
φ-expectation invariant property

∫

Ω

φ′(fn − Tfn) dµ = 0.

We define F = lim
n→∞

Tfn then F ≤ Tf. Since φ′(t) is a strictly increasing function

then

φ′(f1 − Tf) ≤ φ′(fn − Tfn) ≤ φ′(f − Tf1).

Using the Lebesgue’s Theorem we obtain
∫

Ω

φ′(f − F ) dµ = lim
n→∞

∫

Ω

φ′(fn − Tfn) dµ = 0. (3.1)

Using the φ-expectation invariant property for f ∈ Lφ′ we have that
∫

Ω

φ′(f − Tf) dµ = 0. (3.2)

Since F ≤ Tf and φ′ is a strictly increasing function, (??) and (??) imply that
F = Tf a.e. Then we conclude that T is a monotone continuous operator.

(2) Since T (0) = 0 we have ∅ ∈ L and using the translation invariant property we
have T (1) = T (0) + 1 and then Ω ∈ L.

Let {An}n∈N be a set sequence of L. We can define for each n ∈ N the following
functions fn = χ∪n

i=1Ai
. We observe that the sequence {fn} is increasing and

fn ↗ f where f = χ∪i∈NAi
when n →∞.

We will prove that T (χ∪n
i=1Ai

) = χ∪n
i=1Ai

for all n ∈ N.

Since T is a monotone operator we have

T (χ∪n
i=1Ai

) = T (
n∨

i=1

χAi
) ≥

n∨
i=1

T (χAi
) =

n∨
i=1

χAi
. (3.3)

As T is a φ-expectation invariant operator we have
∫

Ω

φ′(χ∪n
i=1Ai

− T (χ∪n
i=1Ai

)) dµ = 0, (3.4)
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then T (χ∪n
i=1Ai

) = χ∪n
i=1Ai

.
As T is a monotone continuous operator we have

T (χ∪i∈NAi
) = χ∪i∈NAi

.

Then in a similar way we can prove that L is closed for countable intersection of
sets in L.

(3) a) For all b ∈ R, H + b ⊂ H. In fact, since T is a translation invariant operator,
T (h + b) = T (h) + b, and the property follows.

b) By hypothesis we have

(
3

2
)nH ⊂ H, (3.5)

for n = 1. Now, for all n ∈ N it follows by induction.
c) This follows since T is a monotone continuous operator.
d) For f, g ∈ H we are going to prove that f ∨ g, f ∧ g, ∈ H. By the monotone

property of T we have T (f ∨ g) ≥ Tf ∨ Tg = f ∨ g. Furthermore, by the
φ-invariant expectation property on T we have

∫

Ω

φ′(f ∨ g − T (f ∨ g)) dµ = 0.

Using that φ′ is a strictly increasing function we have T (f∨g) = f∨g. Similarly
we can prove that T (f ∧ g) = f ∧ g.

(4) We will prove that H = Lφ′(L).
Let f ∈ H and for all b ∈ R, we prove that {f > b} ∈ L. For each n ∈ N we
can define fn = ((3

2
)n(f − b) ∨ 0) ∧ 1. By (??), (??) and since H is a lattice we

have that fn ∈ H. As fn ↗ χ{f>b}, and H is φ′-closed, then χ{f>b} ∈ H. Thus

{f > b} ∈ L for all b ∈ R, that is f ∈ Lφ′(L).
To prove that Lφ′(L) ⊂ H, observe that without loss of generality we can assume

that f ≥ 0. In fact we can define for each m ∈ N, fm = f ∨ (−m) + m ≥ 0 and
fm −m ↘ f.

Given C ∈ L we have that χC ∈ H, and now we prove aχC ∈ H for all a ≥ 0.
If a > 1 we know that (3

2
)nχC ∧ a ∈ H and (3

2
)nχC ∧ a ↗ aχC then aχC ∈ H. The

case a = 0 is trivial. For 0 < a < 1 we have aχC ≤ a and aχC ≤ χC then by the
monotone property of T we have that T (aχC) ≤ a ∧ χc = aχC . Now, using the
φ-invariant expectation property on T, we have aχC = T (aχC).

Given f ∈ Lφ′(L) and f ≥ 0 we define

gn = sup
v=0,...,n2n

{ v

2n
χ{f≥ v

2n }}.

We have proved that gn ∈ H and it is well known that gn ↗ f, and then we have
f ∈ H.

¤

Remark 3.4. If T : Lφ′ → Lφ′ is an operator that satisfies T (T (0)) = T (0) and T (f ±
1
2
Tf) = (1± 1

2
)Tf, for all f ∈ Lφ′ , then T (0) = 0.
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Proof. Using the hypothesis we have T (1
2
T (0)) = T (0 + 1

2
T (0)) = 3

2
T (0). And also

T (1
2
T (0)) = T (T (0) − 1

2
T (0)) = T (T (0) − 1

2
T (T (0))) = 1

2
T (0). Thus it follows T (0) =

0. ¤

Now we can set the main result.

Theorem 3.5. Let T : Lφ′ → Lφ′ be an operator which is

i) translation invariant;
ii) idempotent;
iii) monotone;
iv) T (f ± 1

2
Tf) = (1± 1

2
)Tf ;

v) φ-expectation invariant ;

vi) weak φ-monotonic at 0; i.e.,

∫

Ω

φ′(f)Tf ≥ 0 for f ∈ L∞ with Tf ≥ 0.

Then there exists a σ-lattice L ⊂ A such that Tf = µ̃L(f), for all f ∈ Lφ′ .

Proof. According to Lemma ?? we have Lφ′(L) = {f ∈ Lφ′ : Tf = f}, for L = {A ∈
A : TχA = χA} and T is monotone continuous operator. Besides, by (??), Tf ∈ Lφ′(L),
for f ∈ Lφ′ .

First we suppose that f is a bounded function. Since the operator T is translation
invariant we assume 0 ≤ f ≤ a, then, using Remark ??, we have 0 ≤ Tf ≤ a and we
prove that Tf = µ̃L(f). For each g ∈ L∞(L) we will prove that

A)

∫

Ω

φ′(f − Tf)g dµ ≤ 0 and

B)

∫

Ω

φ′(f − Tf)Tf dµ = 0.

First we will prove A). Let g = χC where C ∈ L. Since φ′(0) = 0 then φ′(f − Tf)χC =

φ′((f − Tf)χC).

Now, by (??), we have T (3
2
f) = 3

2
f, for all f ∈ Lφ′(L) and since 3

2
f ∈ Lφ′(L) we have

that T ((3
2
)nf) = (3

2
)nf, for f ∈ Lφ′(L). We choose (3

2
)n > a, thus 0 ≤ Tf ≤ (3

2
)n.

By (??) T (fχC) ≤ Tf and T (fχC) ≤ T ((3
2
)nχC) = (3

2
)nχC then T (fχC) ≤ Tf∧(3

2
)nχC =

(Tf)χC .

Hence φ′(f − Tf)χC ≤ φ′(fχC − T (fχC)) and by (??)
∫

Ω

φ′(f − Tf)χC dµ ≤
∫

Ω

φ′(fχC − T (fχC)) dµ = 0. (3.6)

Let g be a non negative simple function, then by (??) we have that
∫

Ω

φ′(f − Tf)g dµ ≤ 0. (3.7)
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For a non negative bounded function g, there exists an increasing sequence of non negative
simple functions that converge to g. Thus (??) holds for these functions g.

If g ∈ L∞(L) there exists M > 0 such that g + M > 0 and then we have

0 ≥
∫

Ω

φ′(f − Tf)(g + M) dµ =

∫

Ω

φ′(f − Tf)g dµ + M

∫

Ω

φ′(f − Tf) dµ

=

∫

Ω

φ′(f − Tf)g dµ.

thus the condition (??) holds for all g ∈ L∞(L).

Now we prove condition (??). By (??) we have
∫

Ω

φ′(f − Tf)Tf dµ ≤ 0. (3.8)

We have to prove ∫

Ω

φ′(f − Tf)Tf dµ ≥ 0.

We define the following sequence of real number

γ1 =
1

2
, . . . , γn+1 =

1 + γn

2
.

Since 0 ≤ γn ≤ 1 we have {γn}n∈N converge to 1 when n →∞.

By induction we prove that T (f − γnTf) = (1− γn)Tf. For n = 1 it is the property (??).
We assume that the property is satisfied by n and we will prove that it is satisfied by
n + 1.

T (f − γn+1Tf) = T (f − (1 + γn)

2
Tf)

= T (f − 1

2
Tf − γn

2
Tf + γnTf − γnTf)

= T (f − γnTf − 1

2
(1− γn)Tf),

Now

T (f − γnTf − 1

2
(1− γn)Tf) = T (f − γnTf − 1

2
T (f − γnTf))

=
1

2
T (f − γnTf)

=
1

2
(1− γn)Tf = (1− γn+1)Tf.

Now as f ≥ 0 and (1− γn)Tf ≥ 0 then T (f − γnTf) ≥ 0. By (??) we have
∫

Ω

φ′(f − γnTf)T (f − γnTf) dµ ≥ 0.
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Then

0 ≤
∫

Ω

φ′(f − γnTf)(1− γn)Tf dµ =

= (1− γn)

∫

Ω

φ′(f − γnTf)Tf dµ

≤
∫

Ω

φ′(f − γnTf)Tf dµ. (3.9)

And by taking limit in (??) we have that∫

Ω

φ′(f − Tf)Tf dµ ≥ 0, (3.10)

for all non negative bounded functions f. For f ∈ L∞ set fn = f ∨ (−n) + n, thus
fn − n ↘ f, and fn ≥ 0. By (??), property (??) and (??) we have that

0 ≤
∫

Ω

φ′((fn − n)− T (fn − n))T (fn − n) dµ =

∫

Ω

φ′(fn − Tfn)(Tfn − n) dµ = (3.11)

∫

Ω

φ′(fn − Tfn)Tfn dµ

Now if n →∞ in (??) we obtain (??) for f bounded. Then, using (??), we obtain (??).
By Theorem ?? we have that T (f) = µ̃L(f) when f is a bounded function. Again, for
these bounded functions, by Theorem ?? we have

(1)
∫

φ′(f − Tf)g dµ ≤ 0, for all bounded L-measurable function g,

(2)
∫

φ′(f − Tf)`(Tf) dµ = 0,

where ` is strictly increasing function from R to (−1, 1).

Now, for a general f ∈ Lφ′ we set fm,n = (f ∨ (−m)) ∧ n and fm = limn→∞ fm,n. Since
T is a monotone continuous operator, and using Lebesgue Theorem, we have (1) and (2)
for fm and Tfm. Again, for m tending to ∞ we have (1) and (2) for f ∈ Lφ′ and the
Theorem follows by Theorem ??. ¤

Finally we point out that conditions (i) to (v) of Theorem 1, given in [?], imply the
conditions (i) to (vi) in Theorem ?? for f ∈ Lφ.

We thank to the referee for his helpful suggestions and for the proof of Remark ??.
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[4] I. Carrizo, S. Favier and F. Zó. Extension of the Best Approximation Operator in Orlicz Spaces.
Abstract and Applied Analysis Volume 2008 (2008), Article ID 374742, 15 pages.



THE EXTENDED BEST φ-APPROXIMATION OPERATOR 11

[5] R. G. Douglas. Contractive projections on an L1 space. Pacific J. Math., 15 (1965), 443-462.
[6] R. L. Dykstra. A characterization of a conditional expectation with respect to a σ-lattice. Ann.

Math. Statist., 41 (1970) no. 2, 698-701.
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