A CHARACTERIZATION OF THE EXTENDED BEST ϕ -APPROXIMATION OPERATOR

IVANA CARRIZO, SERGIO FAVIER AND FELIPE ZÓ

ABSTRACT. Given an non necessarily linear operator T defined from an Orlicz space $L^{\phi'}(\Omega, \mathcal{A}, \mu)$ into itself, where ϕ' denote the derivative of a strictly convex function ϕ , we give necessary and sufficient conditions on T assuring that this operator is an extended best ϕ -approximation operator given a suitable σ -lattice $\mathcal{L} \subseteq \mathcal{A}$.

1. INTRODUCTION AND NOTATIONS

Let $(\Omega, \mathcal{A}, \mu)$ be a probability space and let $\mathcal{M} = \mathcal{M}(\Omega, \mathcal{A}, \mu)$ be the set of all \mathcal{A} measurable real valued functions defined on Ω . Given a C^1 strictly convex function $\phi : [0, \infty) \to [0, \infty)$ such that $\phi(0) = 0, \phi(t) > 0$ when t > 0 and $\phi'(0) = 0$, let $L^{\phi} = L^{\phi}(\Omega, \mathcal{A}, \mu)$ be the space of all functions $f \in \mathcal{M}$ such that

$$\int_{\Omega} \phi(\lambda|f|) \ d\mu < \infty, \tag{1.1}$$

for some $\lambda > 0$. According to [?] we say that a function ϕ is a Δ_2 function if there exists k > 0 such that $\phi(2t) \leq k\phi(t)$, for all t > 0, and in this case we write $\phi \in \Delta_2$. In this paper the function ϕ will be a Δ_2 function, so the space L^{ϕ} can be defined as the space of all functions $f \in \mathcal{M}$ where (??) holds for every positive number λ . The space $L^{\phi'}$ is analogously defined, where ϕ' is the derivative of the function ϕ . Besides observe that for a Δ_2 function ϕ it holds the next inequality

$$\phi(x) \le x\phi'(x) \le \phi(2x) \le K\phi(x),$$

for all $x \ge 0$ and hence $L^{\phi} \subset L^{\phi'}$. It is well known that ϕ is a Δ_2 function if and only if ϕ' is a Δ_2 function. For more details about properties of Orlicz spaces we refer to [?].

We say, as stated in [?], that a collection \mathcal{L} of sets in \mathcal{A} is a σ -lattice if it is closed under countable unions and intersections and contains both \emptyset and Ω . Given a σ -lattice \mathcal{L} we denote by $\overline{\mathcal{L}}$ the σ -lattice of all the complementary sets of \mathcal{L} , i.e. $\overline{\mathcal{L}} = \{A^c : A \in \mathcal{L}\}$. A function f is called a \mathcal{L} -measurable function if $\{f > a\} \in \mathcal{L}$, for all real numbers a, and denoted by $L^{\phi}(\mathcal{L})$ for the set of all \mathcal{L} -measurable functions in L^{ϕ} .

According to [?] a set $C \subset L^{\phi}$ is called ϕ -closed if and only if $f_n \in C$ and $f_n \nearrow f \in L^{\phi}$ or $f_n \searrow f \in L^{\phi}$ then $f \in C$. Then $L^{\phi}(\mathcal{L})$ is a ϕ -closed convex set and is a lattice, that is closed for the maximum and minimum of functions. See [?].

Key words and phrases. Orlicz Spaces. Extension of a Best Approximation Operator. Lattice of functions. Limit of extended best ϕ -approximations.

²⁰⁰⁰ AMS Subjet Classification. Primary: 46E30. Secondary: 41A50.

It is well known, see [?], that for every $f \in L^{\phi}$ there exists a unique element $f_{\mathcal{L}} \in L^{\phi}(\mathcal{L})$ such that

$$\int_{\Omega} \phi(|f - f_{\mathcal{L}}|) \, d\mu = \inf_{h \in L^{\phi}(\mathcal{L})} \int_{\Omega} \phi(|f - h|) \, d\mu.$$
(1.2)

The element $f_{\mathcal{L}}$ is called a best ϕ -approximation of f given \mathcal{L} , and we set $\mu_{\mathcal{L}}(.)$ for the mapping $f \to f_{\mathcal{L}}$ defined on L^{φ} which will be called the best approximation operator. In Section 2, Definition ?? the operator $\mu_{\mathcal{L}}(.)$ is extended to an operator from $L^{\phi'}$ to itself and it will be denoted by $\tilde{\mu}_{\mathcal{L}}(.)$. In [?] another extension of the operator $\mu_{\mathcal{L}}(.)$ is given, and in Theorem ??, it is proved that both extensions coincide. We refer to this extended operator as the extended best ϕ -approximation operator.

The main objective of this paper is to give sufficient conditions on an operator $T: L^{\phi'} \to L^{\phi'}$ to ensure that T is the extended best ϕ -approximation operator, given a suitable σ -lattice $\mathcal{L} \subseteq \mathcal{A}$. This result is done in Theorem ??, and it gives a characterization of the extended best ϕ -approximation operator. For some specific cases it is possible to define an extension of this best approximation operator, in a rather direct way. See [?].

This sort of characterization problem has been investigated for several authors in many cases. For the case of the classical conditional expectation, $\phi(t) = t^2$ and where \mathcal{L} is a sub σ -algebra of \mathcal{A} , the first general results appear in [?], see Theorem 2.1. A similar characterization result was given by [?] for the operator T acting on the L^2 space. These results were also treated by, among others, [?], [?], [?] and [?].

A characterization for a non linear operator $T: L^2(\Omega) \to L^2(\Omega)$, as a conditional expectation given a σ -lattice, appears in [?]. A characterization of the projection operator from $L^p(\Omega, \mathcal{A})$ onto $L^p(\Omega, \mathcal{B})$, where \mathcal{B} is a sub σ -algebra of \mathcal{A} and 1 , appeared in [?]. $The best approximation operator <math>\mu_{\mathcal{L}}$ defined by equation (??) was characterized in [?], for a rather general function ϕ . For the special case $\phi(t) = t^p$ the same author characterized the extended best L^p approximation operator in [?]. This last operator is acting from $L^{p-1}(\Omega) \to L^{p-1}(\Omega)$.

2. Extended best ϕ -approximation operator.

In this section we present some basic notions about the extended best ϕ -approximation operator and in the next section we give a characterization of this operator.

We know that when ϕ is a strictly convex function, the best ϕ -approximation is unique. In [?] we gave an extension of the best ϕ -approximation operator to the space $L^{\phi'}$ in a monotone continuous way. In [?] we defined another extension of the best ϕ -approximation operator, even for the case when ϕ is a convex function. Here we prove that when ϕ is a strictly convex function both extensions are the same.

In order to introduce the extended best approximation operator we need the following definitions, according to [?].

Definition 2.1. Let ν be a signed measure on \mathcal{A} and \mathcal{L} be a σ -lattice contained in \mathcal{A} . We say that $P \in \mathcal{L}$ is a ν -positive set, if for all $D \in \overline{\mathcal{L}}$ we have $\nu(P \cap D) \ge 0$. A set $N \in \overline{\mathcal{L}}$ is called ν -negative if for all $C \in \mathcal{L}$ we have $\nu(N \cap C) \le 0$.

Definition 2.2. Let $\{\nu_a\}_{a\in\mathbb{R}}$ be a family of measures on \mathcal{A} , and \mathcal{L} be a σ -lattice contained in \mathcal{A} . A \mathcal{L} -measurable function g is called a Lebesgue-Radon-Nikodym function (LRN function) for $\{\nu_a\}$ given \mathcal{L} if and only if the set $\{g > a\}$ is ν_a -positive for all $a \in \mathbb{R}$ and the set $\{g < a\}$ is ν_a -negative for all $a \in \mathbb{R}$.

Remark 2.3. We note that in Definition ?? it is sufficient to impose the conditions for all a in a dense set in \mathbb{R} . See page 588 of [?].

For $f \in L^{\phi}$, $g \in L^{\phi}(\mathcal{L})$ and $a \in \mathbb{R}$ we define the following measures on \mathcal{A}

$$\mu_g(A) = \int_A \underline{\phi}'(f-g) \, d\mu, \quad \mu_a(A) = \int_A \underline{\phi}'(f-a) \, d\mu, \tag{2.1}$$

where $\underline{\phi}'(x) = \phi'(|x|) \operatorname{sign}(x)$. Note that when $f \in L^{\phi'}$ and $g \in L^{\phi'}(\mathcal{L})$ the measure μ_g and μ_a are well defined.

The next theorem is a characterization of $\mu_{\mathcal{L}}(f)$, see Theorem 3.2 in [?].

Theorem 2.4. Let $f \in L^{\phi}$, $\mathcal{L} \subset \mathcal{A}$ be a σ -lattice and $g \in L^{\phi}(\mathcal{L})$. Then the following statements are equivalent.

- (1) g = μ_L(f).
 (2) a) the set {g > a} is μ_g-positive for all a ∈ ℝ and b) the set {g < a} is μ_g-negative for all a ∈ ℝ.
- (3) g is a LRN function for the family $\{\mu_a\}_{a\in\mathbb{R}}$ given \mathcal{L} .

The following definition was given in [?].

Definition 2.5. Let \mathcal{L} be a σ -lattice and let $f \in L^{\phi'}$. Then g is called an extended best ϕ -approximation if and only if $g \in L^{\phi'}(\mathcal{L})$ and

- i) the set $\{g > a\}$ is μ_q -positive for all $a \in \mathbb{R}$,
- ii) the set $\{g < a\}$ is μ_g -negative for all $a \in \mathbb{R}$.

For $f \in L^{\phi'}$ we denote by $\widetilde{\mu}_{\mathcal{L}}(f)$ the set of all extended best ϕ -approximation functions. In [?] it was proved that $\widetilde{\mu}_{\mathcal{L}}(f)$ is a non-empty set.

The conditions (2) and (3) are equivalent even if we assume $f \in L^{\phi'}$ and $g \in L^{\phi'}(\mathcal{L})$. In fact the proof given in Theorem 3.2 in [?] holds in this situation. Thus we have the next Remark.

Remark 2.6. Given $f \in L^{\phi'}$ and $g \in L^{\phi'}(\mathcal{L})$ the following statements are equivalent

- (1) $g \in \widetilde{\mu}_{\mathcal{L}}(f)$.
- (2) g is a LRN function for the family $\{\mu_a\}_{a\in\mathbb{R}}$ given \mathcal{L} .

In the next theorem we prove the uniqueness of the extended best ϕ -approximation operator when ϕ is a strictly convex function.

Theorem 2.7. If ϕ is a strictly convex function then the extended best ϕ -approximation is unique.

Proof. Given $g_1, g_2 \in \widetilde{\mu}_{\mathcal{L}}(f)$ such that $g_1 \neq g_2$, it is enough to verify that

$$A = \{x \in \Omega : g_1(x) < a < b < g_2(x)\} = \{g_1 < a\} \cap \{g_2 > b\}$$

is a μ -null set for $a, b \in \mathbb{R}$ such that a < b. Since $\underline{\phi}'(\cdot)$ is a strictly increasing function, and assuming $\mu(A) > 0$ we have

$$\int_{\{g_1 < a\} \cap \{g_2 > b\}} \underline{\phi}'(f-b) \, d\mu < \int_{\{g_1 < a\} \cap \{g_2 > b\}} \underline{\phi}'(f-a) \, d\mu.$$
(2.2)

Since $\{g_1 < a\} \in \overline{\mathcal{L}}$ and using Remark ?? we have $0 \leq \int_{\{g_1 < a\} \cap \{g_2 > b\}} \underline{\phi}'(f-b) d\mu$. Similarly the second integral is less than, or equal to, 0. Which is a contradiction.

In [?], where ϕ is a strictly convex function, the operator of best ϕ -approximation is extended in a monotone continuous way to the space $L^{\phi'}$. We denote this extension by $\mu_{\mathcal{L}}^*(f)$ and it was defined as follows. For $f \in L^{\phi'}$ and for every $m \in \mathbb{N}$ set $f_m = \lim_{n \to \infty} \mu_{\mathcal{L}}((f \vee (-m)) \wedge n)$ and then $\mu_{\mathcal{L}}^*(f) = \lim_{m \to \infty} (f_m)$.

The next theorem and its corollary appeared in [?] and both of them characterize the extended best ϕ -approximation $\mu_{\mathcal{L}}^*(f)$.

Theorem 2.8. Let $f \in L^{\phi'}$ and let ℓ be a strictly increasing function such that $\ell(\mu_{\mathcal{L}}^*(f))$ is bounded. Then $g = \mu_{\mathcal{L}}^*(f)$ if and only if $g \in L^{\phi'}(\mathcal{L})$, $\ell(g)$ is bounded and

(1) $\int_{\Omega} \underline{\phi}'(f-g)h \ d\mu \leq 0$, for all bounded \mathcal{L} -measurable function h, (2) $\int_{\Omega} \underline{\phi}'(f-g)\ell(g) \ d\mu = 0.$

Corollary 2.9. Let $f \in L^{\phi'}$. Then $g = \mu_{\mathcal{L}}^*(f)$ if and only if $g \in L^{\phi'}(\mathcal{L})$ and

i)

$$\int_C \underline{\phi}'(f-g) \ d\mu \le 0 \ for \ all \ C \in \mathcal{L}.$$
(2.3)

ii)

$$\int_{\{g \ge a\}} \underline{\phi}'(f-g) \, d\mu = 0 \text{ for all } a \in \mathbb{R}.$$
(2.4)

Using this Corollary we will prove the next result.

Theorem 2.10. If ϕ is a strictly convex function, then $\widetilde{\mu}_{\mathcal{L}} = \mu_{\mathcal{L}}^*$ on $L^{\phi'}$.

Proof. Set $g = \tilde{\mu}_{\mathcal{L}}(f)$, by Definition ?? we have

$$\int_{\{g>a\}\cap D} \underline{\phi}'(f-g) \ d\mu \ge 0 \text{ for all } D \in \overline{\mathcal{L}} and$$
(2.5)

$$\int_{\{g < a\} \cap C} \underline{\phi}'(f - g) \ d\mu \le 0 \text{ for all } C \in \mathcal{L},$$
(2.6)

for all $a \in \mathbb{R}$. As $f, g \in L^{\phi'}$ we can use Lebesgue's Theorem when $a \to \infty$ in (??) and we obtain

$$\int_{C} \underline{\phi}'(f-g) \, d\mu \le 0 \text{ for all } C \in \mathcal{L}.$$
(2.7)

From (??) we also can obtain

$$\int_{\{g \ge a\}} \underline{\phi}'(f-g) \ d\mu \ge 0,$$

for all $a \in \mathbb{R}$. The condition (??) holds in particular for $C = \{g \ge a\}$ and we get

$$\int_{\{g \ge a\}} \underline{\phi}'(f-g) \ d\mu = 0.$$
(2.8)

Then by (??), (??) and Corollary ?? we obtain that $g = \mu_{\mathcal{L}}^*(f)$.

3. Characterization of the extended best ϕ -approximation operator.

Given an operator $T: L^{\phi'} \to L^{\phi'}$ we impose conditions on T in order to insure that T is an extended best ϕ -approximation operator. We begin with some definitions and auxiliary results.

Definition 3.1. An operator $T: L^{\phi'} \to L^{\phi'}$ is called monotone continuous if $f_n \nearrow f$ or $f_n \searrow f$ where $f_n, f \in L^{\phi'}$ for all $n \in \mathbb{N}$ then $Tf_n \nearrow Tf$ or $Tf_n \searrow Tf$.

Definition 3.2. An operator $T: L^{\phi'} \to L^{\phi'}$ is called ϕ -expectation invariant if for all $f \in L^{\phi'}$ we have that

$$\int_{\Omega} \underline{\phi}'(f - Tf) \ d\mu = 0.$$

Note that the operator $\tilde{\mu}_{\mathcal{L}}(f)$, introduced in Section 2 is both a monotone continuous operator and a monotone operator. In [?] the properties above were proved for the operator $\mu_{\mathcal{L}}^*$ and by Theorem ?? $\mu_{\mathcal{L}}^* = \tilde{\mu}_{\mathcal{L}}$. Also $\tilde{\mu}_{\mathcal{L}}$ is a ϕ -expectation invariant operator by Theorem ??. The properties as translation invariant, $T(f+c) = T(f) + c, \ c \in \mathbb{R}$, and idempotent for the operator $\tilde{\mu}_{\mathcal{L}}(f)$ follow directly from the definition.

Observe also that $\widetilde{\mu}_{\mathcal{L}}(f \pm \frac{1}{2}\widetilde{\mu}_{\mathcal{L}}(f)) = (1 \pm \frac{1}{2})\widetilde{\mu}_{\mathcal{L}}(f)$ using Corollary ??.

The next Lemma plays the role of Lemma 7.3, of [?] and its proof follows the pattern given there, even if we deal with an non necessarily positive homogeneous operator T.

Lemma 3.3. Let $T: L^{\phi'} \to L^{\phi'}$ be an operator which is translation invariant, monotone, ϕ -expectation invariant, T(0) = 0 and $T(f \pm \frac{1}{2}Tf) = (1 \pm \frac{1}{2})Tf$. Then

(1) T is a monotone continuous operator. (2) $\mathcal{L} = \{A \in \mathcal{A} : T\chi_A = \chi_A\}$ is a σ -lattice. (3) If $H = \{f \in L^{\phi'} : Tf = f\}$ then a) For all $b \in \mathbb{R}$, $H + b \subset H$. b) For all $n \in \mathbb{N}$, $(\frac{3}{2})^n H \subset H$. c) H is ϕ' -close. d) H is a lattice. e) $H = L^{\phi'}(\mathcal{L})$.

Proof.

(1) Let $f_n, f \in L^{\phi'}$ for all $n \in \mathbb{N}$, such that $f_n \nearrow f$ (or $f_n \searrow f$), we show that $Tf_n \nearrow Tf$ ($Tf_n \searrow Tf$). We prove only the increasing case, the decreasing case runs analogously. Since T is a monotone operator we have $Tf_n \le Tf$ and by the ϕ -expectation invariant property

$$\int_{\Omega} \underline{\phi}'(f_n - Tf_n) \ d\mu = 0.$$

We define $F = \lim_{n \to \infty} Tf_n$ then $F \leq Tf$. Since $\underline{\phi}'(t)$ is a strictly increasing function then

$$\underline{\phi}'(f_1 - Tf) \le \underline{\phi}'(f_n - Tf_n) \le \underline{\phi}'(f - Tf_1).$$

Using the Lebesgue's Theorem we obtain

$$\int_{\Omega} \underline{\phi}'(f-F) \, d\mu = \lim_{n \to \infty} \int_{\Omega} \underline{\phi}'(f_n - Tf_n) \, d\mu = 0.$$
(3.1)

Using the ϕ -expectation invariant property for $f \in L^{\phi'}$ we have that

$$\int_{\Omega} \underline{\phi}'(f - Tf) \, d\mu = 0. \tag{3.2}$$

Since $F \leq Tf$ and ϕ' is a strictly increasing function, (??) and (??) imply that F = Tf a.e. Then we conclude that T is a monotone continuous operator.

(2) Since T(0) = 0 we have $\emptyset \in \mathcal{L}$ and using the translation invariant property we have T(1) = T(0) + 1 and then $\Omega \in \mathcal{L}$.

Let $\{A_n\}_{n\in\mathbb{N}}$ be a set sequence of \mathcal{L} . We can define for each $n \in \mathbb{N}$ the following functions $f_n = \chi_{\bigcup_{i=1}^n A_i}$. We observe that the sequence $\{f_n\}$ is increasing and $f_n \nearrow f$ where $f = \chi_{\bigcup_{i\in\mathbb{N}} A_i}$ when $n \to \infty$.

 $f_n \nearrow f$ where $f = \chi_{\bigcup_{i \in \mathbb{N}} A_i}$ when $n \to \infty$. We will prove that $T(\chi_{\bigcup_{i=1}^n A_i}) = \chi_{\bigcup_{i=1}^n A_i}$ for all $n \in \mathbb{N}$. Since T is a monotone operator we have

$$T(\chi_{\bigcup_{i=1}^{n} A_{i}}) = T(\bigvee_{i=1}^{n} \chi_{A_{i}}) \ge \bigvee_{i=1}^{n} T(\chi_{A_{i}}) = \bigvee_{i=1}^{n} \chi_{A_{i}}.$$
(3.3)

As T is a ϕ -expectation invariant operator we have

$$\int_{\Omega} \underline{\phi}'(\chi_{\bigcup_{i=1}^{n} A_{i}} - T(\chi_{\bigcup_{i=1}^{n} A_{i}})) \ d\mu = 0, \tag{3.4}$$

then $T(\chi_{\bigcup_{i=1}^{n} A_i}) = \chi_{\bigcup_{i=1}^{n} A_i}.$

As T is a monotone continuous operator we have

$$T(\chi_{\bigcup_{i\in\mathbb{N}}A_i}) = \chi_{\bigcup_{i\in\mathbb{N}}A_i}.$$

Then in a similar way we can prove that \mathcal{L} is closed for countable intersection of sets in \mathcal{L} .

- (3) a) For all $b \in \mathbb{R}$, $H + b \subset H$. In fact, since T is a translation invariant operator, T(h+b) = T(h) + b, and the property follows.
 - b) By hypothesis we have

$$(\frac{3}{2})^n H \subset H,\tag{3.5}$$

for n = 1. Now, for all $n \in \mathbb{N}$ it follows by induction.

- c) This follows since T is a monotone continuous operator.
- d) For $f, g \in H$ we are going to prove that $f \lor g, f \land g, \in H$. By the monotone property of T we have $T(f \lor g) \ge Tf \lor Tg = f \lor g$. Furthermore, by the ϕ -invariant expectation property on T we have

$$\int_{\Omega} \underline{\phi}'(f \lor g - T(f \lor g)) \ d\mu = 0.$$

Using that $\underline{\phi}'$ is a strictly increasing function we have $T(f \lor g) = f \lor g$. Similarly we can prove that $T(f \land g) = f \land g$.

(4) We will prove that $H = L^{\phi'}(\mathcal{L})$.

Let $f \in H$ and for all $b \in \mathbb{R}$, we prove that $\{f > b\} \in \mathcal{L}$. For each $n \in \mathbb{N}$ we can define $f_n = ((\frac{3}{2})^n (f - b) \lor 0) \land 1$. By (??), (??) and since H is a lattice we have that $f_n \in H$. As $f_n \nearrow \chi_{\{f > b\}}$, and H is ϕ' -closed, then $\chi_{\{f > b\}} \in H$. Thus $\{f > b\} \in \mathcal{L}$ for all $b \in \mathbb{R}$, that is $f \in L^{\phi'}(\mathcal{L})$.

To prove that $L^{\phi'}(\mathcal{L}) \subset H$, observe that without loss of generality we can assume that $f \geq 0$. In fact we can define for each $m \in \mathbb{N}$, $f_m = f \vee (-m) + m \geq 0$ and $f_m - m \searrow f$.

Given $C \in \mathcal{L}$ we have that $\chi_C \in H$, and now we prove $a\chi_C \in H$ for all $a \geq 0$. If a > 1 we know that $(\frac{3}{2})^n \chi_C \wedge a \in H$ and $(\frac{3}{2})^n \chi_C \wedge a \nearrow a\chi_C$ then $a\chi_C \in H$. The case a = 0 is trivial. For 0 < a < 1 we have $a\chi_C \leq a$ and $a\chi_C \leq \chi_C$ then by the monotone property of T we have that $T(a\chi_C) \leq a \wedge \chi_c = a\chi_C$. Now, using the ϕ -invariant expectation property on T, we have $a\chi_C = T(a\chi_C)$.

Given $f \in L^{\phi'}(\mathcal{L})$ and $f \ge 0$ we define

$$g_n = \sup_{v=0,\dots,n2^n} \{ \frac{v}{2^n} \ \chi_{\{f \ge \frac{v}{2^n}\}} \}.$$

We have proved that $g_n \in H$ and it is well known that $g_n \nearrow f$, and then we have $f \in H$.

Remark 3.4. If $T: L^{\phi'} \to L^{\phi'}$ is an operator that satisfies T(T(0)) = T(0) and $T(f \pm \frac{1}{2}Tf) = (1 \pm \frac{1}{2})Tf$, for all $f \in L^{\phi'}$, then T(0) = 0.

Proof. Using the hypothesis we have $T(\frac{1}{2}T(0)) = T(0 + \frac{1}{2}T(0)) = \frac{3}{2}T(0)$. And also $T(\frac{1}{2}T(0)) = T(T(0) - \frac{1}{2}T(0)) = T(T(0) - \frac{1}{2}T(T(0))) = \frac{1}{2}T(0)$. Thus it follows T(0) = 0.

Now we can set the main result.

Theorem 3.5. Let $T: L^{\phi'} \to L^{\phi'}$ be an operator which is

- *i)* translation invariant;
- *ii) idempotent;*
- *iii)* monotone;
- *iv)* $T(f \pm \frac{1}{2}Tf) = (1 \pm \frac{1}{2})Tf;$
- v) ϕ -expectation invariant ;

vi) weak ϕ -monotonic at 0; i.e., $\int_{\Omega} \underline{\phi}'(f) Tf \ge 0$ for $f \in L^{\infty}$ with $Tf \ge 0$.

Then there exists a σ -lattice $\mathcal{L} \subset \mathcal{A}$ such that $Tf = \widetilde{\mu}_{\mathcal{L}}(f)$, for all $f \in L^{\phi'}$.

Proof. According to Lemma ?? we have $L^{\phi'}(\mathcal{L}) = \{f \in L^{\phi'} : Tf = f\}$, for $\mathcal{L} = \{A \in \mathcal{A} : T\chi_A = \chi_A\}$ and T is monotone continuous operator. Besides, by (??), $Tf \in L^{\phi'}(\mathcal{L})$, for $f \in L^{\phi'}$.

First we suppose that f is a bounded function. Since the operator T is translation invariant we assume $0 \le f \le a$, then, using Remark ??, we have $0 \le Tf \le a$ and we prove that $Tf = \tilde{\mu}_{\mathcal{L}}(f)$. For each $g \in L^{\infty}(\mathcal{L})$ we will prove that

A)
$$\int_{\Omega} \underline{\phi}'(f - Tf)g \ d\mu \leq 0$$
 and
B) $\int_{\Omega} \underline{\phi}'(f - Tf)Tf \ d\mu = 0.$

First we will prove A). Let $g = \chi_C$ where $C \in \mathcal{L}$. Since $\phi'(0) = 0$ then $\underline{\phi}'(f - Tf)\chi_C = \underline{\phi}'((f - Tf)\chi_C)$.

Now, by (??), we have $T(\frac{3}{2}f) = \frac{3}{2}f$, for all $f \in L^{\phi'}(\mathcal{L})$ and since $\frac{3}{2}f \in L^{\phi'}(\mathcal{L})$ we have that $T((\frac{3}{2})^n f) = (\frac{3}{2})^n f$, for $f \in L^{\phi'}(\mathcal{L})$. We choose $(\frac{3}{2})^n > a$, thus $0 \leq Tf \leq (\frac{3}{2})^n$.

By (??) $T(f\chi_C) \leq Tf$ and $T(f\chi_C) \leq T((\frac{3}{2})^n\chi_C) = (\frac{3}{2})^n\chi_C$ then $T(f\chi_C) \leq Tf \wedge (\frac{3}{2})^n\chi_C = (Tf)\chi_C$.

Hence
$$\underline{\phi}'(f - Tf)\chi_C \leq \underline{\phi}'(f\chi_C - T(f\chi_C))$$
 and by (??)
$$\int_{\Omega} \underline{\phi}'(f - Tf)\chi_C \ d\mu \leq \int_{\Omega} \underline{\phi}'(f\chi_C - T(f\chi_C)) \ d\mu = 0.$$
(3.6)

Let g be a non negative simple function, then by (??) we have that

$$\int_{\Omega} \underline{\phi}'(f - Tf)g \ d\mu \le 0. \tag{3.7}$$

For a non negative bounded function g, there exists an increasing sequence of non negative simple functions that converge to g. Thus (??) holds for these functions g.

If $g \in L^{\infty}(\mathcal{L})$ there exists M > 0 such that g + M > 0 and then we have

$$0 \ge \int_{\Omega} \underline{\phi}'(f - Tf)(g + M) \ d\mu = \int_{\Omega} \underline{\phi}'(f - Tf)g \ d\mu + M \ \int_{\Omega} \underline{\phi}'(f - Tf) \ d\mu$$
$$= \int_{\Omega} \underline{\phi}'(f - Tf)g \ d\mu.$$

thus the condition (??) holds for all $g \in L^{\infty}(\mathcal{L})$.

Now we prove condition (??). By (??) we have

$$\int_{\Omega} \underline{\phi}'(f - Tf) Tf \ d\mu \le 0.$$
(3.8)

We have to prove

$$\int_{\Omega} \underline{\phi}'(f - Tf) Tf \ d\mu \ge 0.$$

We define the following sequence of real number

$$\gamma_1 = \frac{1}{2}, \dots, \gamma_{n+1} = \frac{1+\gamma_n}{2}.$$

Since $0 \leq \gamma_n \leq 1$ we have $\{\gamma_n\}_{n \in \mathbb{N}}$ converge to 1 when $n \to \infty$.

By induction we prove that $T(f - \gamma_n Tf) = (1 - \gamma_n)Tf$. For n = 1 it is the property (??). We assume that the property is satisfied by n and we will prove that it is satisfied by n + 1.

$$T(f - \gamma_{n+1}Tf) = T(f - \frac{(1 + \gamma_n)}{2}Tf)$$

= $T(f - \frac{1}{2}Tf - \frac{\gamma_n}{2}Tf + \gamma_n Tf - \gamma_n Tf)$
= $T(f - \gamma_n Tf - \frac{1}{2}(1 - \gamma_n)Tf),$

Now

$$T(f - \gamma_n Tf - \frac{1}{2}(1 - \gamma_n)Tf) = T(f - \gamma_n Tf - \frac{1}{2}T(f - \gamma_n Tf))$$

= $\frac{1}{2}T(f - \gamma_n Tf)$
= $\frac{1}{2}(1 - \gamma_n)Tf = (1 - \gamma_{n+1})Tf.$

Now as $f \ge 0$ and $(1 - \gamma_n)Tf \ge 0$ then $T(f - \gamma_n Tf) \ge 0$. By (??) we have

$$\int_{\Omega} \underline{\phi}'(f - \gamma_n T f) T(f - \gamma_n T f) \ d\mu \ge 0.$$

Then

$$0 \leq \int_{\Omega} \underline{\phi}'(f - \gamma_n T f)(1 - \gamma_n) T f \, d\mu =$$

= $(1 - \gamma_n) \int_{\Omega} \underline{\phi}'(f - \gamma_n T f) T f \, d\mu$
 $\leq \int_{\Omega} \underline{\phi}'(f - \gamma_n T f) T f \, d\mu.$ (3.9)

And by taking limit in (??) we have that

$$\int_{\Omega} \underline{\phi}'(f - Tf) Tf \ d\mu \ge 0, \tag{3.10}$$

for all non negative bounded functions f. For $f \in L^{\infty}$ set $f_n = f \vee (-n) + n$, thus $f_n - n \searrow f$, and $f_n \ge 0$. By (??), property (??) and (??) we have that

$$0 \leq \int_{\Omega} \underline{\phi}'((f_n - n) - T(f_n - n))T(f_n - n) d\mu = \int_{\Omega} \underline{\phi}'(f_n - Tf_n)(Tf_n - n) d\mu = (3.11)$$
$$\int_{\Omega} \underline{\phi}'(f_n - Tf_n)Tf_n d\mu$$

Now if $n \to \infty$ in (??) we obtain (??) for f bounded. Then, using (??), we obtain (??). By Theorem ?? we have that $T(f) = \tilde{\mu}_{\mathcal{L}}(f)$ when f is a bounded function. Again, for these bounded functions, by Theorem ?? we have

(1) $\int \underline{\phi}'(f - Tf)g \ d\mu \leq 0$, for all bounded \mathcal{L} -measurable function g, (2) $\int \overline{\phi}'(f - Tf)\ell(Tf) \ d\mu = 0$,

where ℓ is strictly increasing function from \mathbb{R} to (-1, 1).

Now, for a general $f \in L^{\phi'}$ we set $f_{m,n} = (f \vee (-m)) \wedge n$ and $f_m = \lim_{n \to \infty} f_{m,n}$. Since T is a monotone continuous operator, and using Lebesgue Theorem, we have (1) and (2) for f_m and Tf_m . Again, for m tending to ∞ we have (1) and (2) for $f \in L^{\phi'}$ and the Theorem follows by Theorem ??.

Finally we point out that conditions (i) to (v) of Theorem 1, given in [?], imply the conditions (i) to (vi) in Theorem ?? for $f \in L^{\phi}$.

We thank to the referee for his helpful suggestions and for the proof of Remark ??.

This work was supported by CONICET and UNSL grants.

References

- R. R. Bahadur, Measurable subspaces and subalgebras. Proc. Amer. Math. Soc., 6 (1955), 565-570.
- [2] Z. W. Birnbaum and W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math, **3** (1931), 1-67.
- [3] H. Brunk and S. Johansen. A generalized Radon-Nikodym Derivative. Pacific J. Math., 34 (1970) 585-617.
- [4] I. Carrizo, S. Favier and F. Zó. *Extension of the Best Approximation Operator in Orlicz Spaces*. Abstract and Applied Analysis Volume 2008 (2008), Article ID 374742, 15 pages.

10

- [5] R. G. Douglas. Contractive projections on an L_1 space. Pacific J. Math., **15** (1965), 443-462.
- [6] R. L. Dykstra. A characterization of a conditional expectation with respect to a σ -lattice. Ann. Math. Statist., **41** (1970) no. 2, 698-701.
- S. Favier and F. Zó. Extension of the best approximation operator in Orlicz space and weak-type inequalities. Abstr. Appl. Anal., 6 (2001), 101-114.
- [8] S. Favier, F.Zó. A Lebesgue Type Differentiation Theorem for Best Approximations by Constants in Orlicz Spaces. Real Analysis Exchange, **30** (2005) no. 1, 29-42.
- [9] M. A. Krasnosel'skii and Ya. B. Rutickii, *Convex functions and Orlicz spaces*. P. Noordhoff Ltd. Groningen The Netherlands, 1961.
- [10] D. Landers and L. Rogge. Characterization of p-predictors. Proc. Amer. Math. Soc., 76 (1979) no.2, 307-309.
- [11] D. Landers and L. Rogge. Best approximation in L^{ϕ} -spaces. Z. Wahrsch. Verw. Gabiete, **51** (1980), 215-237.
- [12] D. Landers and L. Rogge. Isotonic Approximation in L_s . J. Approx. Theory., **31** (1980), 199-223.
- [13] D. Landers and L. Rogge. A characterization of best Φ-approximants. Trans. Amer. Math. Soc., 267 (1981), no. 1, 259-264.
- [14] F. Mazzone and H. Cuenya. A characterization of Best φ-approximants with Applications to Multidimensional Isotonic Approximation. Constr. Approx., 21 (2005) no. 2, 207-223.
- S. C. Moy. Characterizations of conditional expectation as a transformation on function spaces. Pacific J. Math., 4 (1954), 47-63.
- [16] M. P. Olson. A characterization of conditional probability. Pacific J. Math., **15** (1965), 971-983.
- [17] J. Pfanzagl. Characterizations of conditional expectations. Ann. Math. Statist., 38 (1967), 415-421.
- [18] Tim Robertson, F. T. Wright and R. L. Dykstra. Order restricted statistical inference. John Wiley and Sons. 1988.
- G. C. Rota. On the representations of averaging operators. Rendiconti Sem. Math. Univ. Padova, 30 (1960), 52-64.

INSTITUTO DE MATEMÁTICA APLICADA SAN LUIS. UNSL-CONICET. Avda. Ejército de los Andes 950. 5700 San Luis. Argentina

E-mail address: nivacm@unsl.edu.ar, sfavier@unsl.edu.ar, fzo@unsl.edu.ar