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a b s t r a c t

The best polynomial approximation operator was recently extended by one of the authors
from Lp to Lp−1. In this paper, we studyweak and strong inequalities for maximal operators
related with the extended best polynomial approximation operator. As an application, we
obtain norm convergence of the coefficients of the best polynomial approximation.
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1. Introduction and notation

Given a Lebesgue measurable set A ⊂ Rn we set Lp = Lp(A), 0 < p < ∞, for the equivalence class of Lebesgue
measurable functions f : A → R with ∥f ∥Lp(A) =


A |f |pdµ

1/p
< ∞, and ∥f ∥L∞(A) = sup ess{|f (x)| : x ∈ A}. Let Πm be the

space of algebraic polynomials, defined on Rn, of degree at most m. We write |A| for the Lebesgue measure of the set A. If A
is a measurable set with |A| > 0, and f ∈ Lp(Rn) we define TA,p(f ) as the set of all P ∈ Πm minimizing

A
|f (t) − P(t)|p dt.

It is well known that TA,p(f ) is a single set if 1 < p < ∞. Thus the best approximation polynomial TA,p is a mapping from
Lp(A) to Πm, 1 < p < ∞. In [1], this operator was extended from Lp(A) to Lp−1(A). More precisely, if A has finite measure
then for f ∈ Lp−1(A), TA,p(f ) is the unique P ∈ Πm which verifies

A
|f (t) − P(t)|p−1sgn(f (t) − P(t))Q (t)dt = 0, (1.1)

for all Q ∈ Πm. A more general class than Πm was considered in [1]. The polynomial TA,p(f ) is called the extended best
polynomial approximation of f on A. Moreover, it is proved, in [1], that the operator TA,p : Lp−1(A) → Πm is the unique
continuous extension to Lp−1. For the case p = 2, a detailed study of this operator appeared in [2].

Inequalities for the maximal functions associated with the extended best approximation operator have been extensively
studied in the literature; see [3–9] and also [10].
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Set B(x, ε) for the ball centered at x and radius ε > 0 and denote by T ε
x (f ) for the extended best approximation

operator TB(x,ε),p(f ). This polynomial T ε
x (f ) can be written as a polynomial in the variable t as


|α|≤m aα(x, ε)(t − x)α ,

where α = (α1, . . . , αn), tα = tα1 · · · tαn and |α| = α1 + · · ·+αn, where the coefficients aα(x, ε) are uniquely determined.
It is well known, for f ∈ Cm, that the polynomial T ε

x (f ) tends to the Taylor polynomial Tx(f )(t) =


|α|≤m
1
α!

∂α f (x)(t − x)α ,
as ε tends to 0. This result has a long standing history since [11] and for further results, see [12–14].

The main estimate for the operator TA,p(f ) is given in Theorem 2.1. In the case A = B(x, ε) we consider Theorems 2.8 and
2.13 as our principal results. We also point out that Corollary 2.7 gives a pointwise convergence result under a very general
differentiability assumption on the function f . These results allow us to consider the Lp norm convergence of aα(x, ε) to the
function 1

α!
∂α f (x) besides of the pointwise convergence previously studied.We should point out that the norm convergence

results are known only for the casesm = 0, p ≥ 1 (see [7,5]) and for p = 2, for any degreem, see [2].
We remark that to obtain the Lp convergence resultaα(·, ε) −

1
α!

∂α f (·)

Lp(Rn)

→ 0, (1.2)

as ε tends to 0, even if the function f is in the original space Lp, we have to study inequalities for the extended best
approximation operator defined on the space Lp−1.

2. Inequalities in Lp−1 and its applications to convergence results

From now on and throughout the remainder of the paper pwill be a fixed real number bigger than 1. We begin with the
following theorem.

Theorem 2.1. Let p > 1 and set K = 2p+1 if p ≥ 2, and K = 8 if 1 < p ≤ 2. Then we have
A
|TA,p(f )(t)|p−1

|Q (t)|dt ≤ K

A
|f (t)|p−1

|Q (t)|dt (2.1)

for any measurable set A ⊂ Rn, 0 < |A| < ∞, f ∈ Lp−1(A), for all Q ∈ Πm satisfying sgn(Q (t)TA,p(f )(t)) = (−1)η , for any
t ∈ A such that Q (t)TA,p(t) ≠ 0, where η = 0 or η = 1.

Proof. Let A ⊂ Rn be with 0 < |A| < ∞ and let f ∈ Lp−1(A). We write P = TA,p(f ). Clearly, only the case η = 0 it must be
considered. Let Q ∈ Πm with Q (t)P(t) > 0 for all t ∈ A such that Q (t)P(t) ≠ 0. It is easy to show that there are constants
B = B(p) and C = C(p) with 0 < B ≤ 1 ≤ C such that

B(ap−1
+ bp−1) ≤ (a + b)p−1

≤ C(ap−1
+ bp−1), a ≥ 0, b ≥ 0. (2.2)

We consider the following sets

N = {t ∈ A : f (t) > P(t)} and L = {t ∈ A : f (t) ≤ P(t)}, (2.3)

and set

U1 = N ∩ {t ∈ A : P(t) ≥ 0}, U2 = N ∩ {t ∈ A : P(t) < 0},
U3 = L ∩ {t ∈ A : P(t) ≥ 0} and U4 = L ∩ {t ∈ A : P(t) < 0}.

(2.4)

We write H(t) = |P(t) − f (t)|p−1Q (t). By (1.1) we have
N
H(t)dt =


L
H(t)dt,

which is equivalent to
U3

H(t)dt −


U2

H(t)dt =


U1

H(t)dt −


U4

H(t)dt. (2.5)

From (2.2) and (2.4) it follows that
A
|P(t)|p−1

|Q (t)|dt =


A
|P(t) − f (t) + f (t)|p−1

|Q (t)|dt

≤ C
4

i=1


Ui

|H(t)| dt + C
4

i=1


Ui

|f (t)|p−1
|Q (t)|dt = C(I1 + I2). (2.6)

Now we only have to deal with I1 =
4

i=1


Ui

|H(t)| dt.
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Clearly
U1∪U4

|H(t)| dt ≤


U1∪U4

|f (t)|p−1
|Q (t)|dt ≤ 2


A
|f (t)|p−1

|Q (t)|dt. (2.7)

Since sgnP = sgnQ we have that
U2∪U3

|H(t)| dt =


U3

H(t) dt −


U2

H(t) dt. (2.8)

Next we use (2.5) and we get
U3

H(t) dt −


U2

|H(t)| dt =


U1

H(t) dt −


U4

H(t) dt =


U1∪U4

|H(t)| dt, (2.9)

and by (2.7) the above integral is less than or equal to 2

A |f (t)|p−1

|Q (t)| dt. �

We have the following corollary of Theorem 2.1.

Corollary 2.2. Let 1 < p < ∞ and A ⊂ Rn, 0 < |A| < ∞. Then

(a) There is a constant K = K(p) such that

∥TA,p(f )∥
p
Lp(A) ≤ K∥f ∥p−1

Lp−1(A)
∥TA,p(f )∥L∞(A). (2.10)

(b) There exists a constant K = K(A, p) such that

∥TA,p(f )∥Lp−1(A) ≤ K∥f ∥Lp−1(A), (2.11)

for all f ∈ Lp−1(A).

Proof. (a) follows fromTheorem2.1. Since thenorms∥·∥Lp(A),∥·∥L∞(A), and∥·∥Lp−1(A) are equivalent on the finite dimensional
space Πm, from (a) we get (b). �

Inequality (2.11) is unknown for us, even if f ∈ Lp. In that case TA,p(f ) is the best ∥ · ∥Lp(A)-approximation to f from Πm,
so we have ∥TA,p(f )∥Lp(A) ≤ 2∥f ∥Lp(A). However, we cannot obtain (2.11) starting of the last inequality. For a different
approximation class this inequality was obtained in [15].

Let B(x, ε) be the ball in Rn of center at x and radius ε > 0. Henceforward, we denote T ε
x (f ) = TB(x,ε),p(f ), for f ∈ Lp−1.

We will need the following lemma; see Lemma 2.6 in [16].

Lemma 2.3. Given an integer m,m ≥ 0 there exists a function φ(t) infinitely differentiable with support in {|x| ≤ 1}, such that
for every ε > 0 and every polynomial P ∈ Πm

P(x) =


Rn

1
εn

φ


x − y

ε


P(y) dy, (2.12)

holds.

The following inequalities for polynomials will be used in the sequel.

Lemma 2.4. For all P ∈ Πm over Rn we have

(i) 
B(x,ε)

|P(t)|q1
dt

|B(x, ε)|

 1
q1

≤


B(x,ε)

|P(t)|q2
dt

|B(x, ε)|

 1
q2

≤ ∥P∥L∞(B(x,ε)), (2.13)

for 0 < q1 < q2.
(ii) There exists C > 0, depending only on n,m and q, 0 < q < ∞, such that

C∥P∥L∞(B(x,ε)) ≤


B(x,ε)

|P(t)|q
dt

|B(x, ε)|

 1
q

. (2.14)

(iii) There exists a constant C > 0 depending only on n and m such that

1
C

∥P∥L∞(B(x,ε)) ≤ max
|α|≤m

ε|α|
|aα| ≤ C∥P∥L∞(B(x,ε)), (2.15)

when the polynomial P is written as P(t) =


|α|≤m aα(x)(t − x)α.
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Proof. Inequality (2.13) follows using Jensen’s inequality. The same arguments used to prove the equivalence of norms in
finite dimensional normed spaces ensure that there exists C > 0, depending only on n,m and q, 0 < q < ∞, such that

max
|y|≤1

|Q (y)| ≤ C


|y|≤1
|Q (y)|q dy

 1
q

, (2.16)

for any polynomial Q ∈ Πm. Now, given a polynomial P ∈ Πm set Q (y) = P(x + εy) in Eq. (2.16) and, after a change of
variable, we get (2.14).

To prove (iii) first we observe that ∥P∥L∞(B(x,ε)) ≤ Cm,n max|α|≤m ε|α|
|aα|. To prove the right hand side of Eq. (2.15) we use

Lemma 2.3. In fact Eq. (2.12) implies

∂αP(x) =


Rn

1
εn

1
ε|α|

(∂αφ)


x − y

ε


P(y) dy. (2.17)

Hence

ε|α|∂αP(x) =


B(x,ε)

1
εn

(∂αφ)


x − y

ε


P(y) dy. (2.18)

Then

ε|α|
|∂αP(x)| ≤ ∥P∥L∞(B(x,ε))


B(x,ε)

1
εn

(∂αφ)


x − y

ε

 dy
≤ ∥P∥L∞(B(x,ε))


Rn

1
εn

(∂αφ)


x − y

ε

 dy = ∥P∥L∞(B(x,ε))


|y|≤1

|(∂αφ)(y)| dy. � (2.19)

Corollary 2.5. Let f be in Lp−1
loc (Rn); then

1
εn


B(x,ε)

|T ε
x (f )(t)|p dt

 1
p

≤ M


1
εn


B(x,ε)

|f (t)|p−1 dt
 1

p−1

, (2.20)

for every ε > 0 and x ∈ Rn. Where the constant M depends only on m, n and p.

Proof. Using (2.14) in (2.10) we have

∥T ε
x (f )∥p

Lp(B(x,ε)) ≤
K
C

∥f ∥p−1
Lp−1(B(x,ε))∥T

ε
x (f )∥Lp(B(x,ε)),

and thus (2.20) follows withM = ( K
C )

1
p−1 . �

Henceforward, the constantsM or C may not be the same in each occurrence.
Note that, from the statement of the last corollary and its proof, we also have

∥T ε
x (f )∥L∞(B(x,ε)) ≤ C


1
εn


B(x,ε)

|f (t)|p−1 dt
 1

p−1

, (2.21)

for some constant C depending only on n,m and p.
Let T ε

x (f )(t) =


|α|≤m aα(x, ε)(t − x)α , where α = (α1, . . . , αn), tα = tα1 · · · tαn and |α| = α1 + · · · + αn.

Corollary 2.6. Let f be in Lp−1
loc (Rn); then

ε|α|
|aα(x, ε)| ≤ C


1
εn


B(x,ε)

|f (t)|p−1 dt
 1

p−1

, (2.22)

for every ε > 0, |α| ≤ m and x ∈ Rn. Where the constant C depends only on n,m and p.

Proof. Using (2.14) and (2.15) we have

max
|α|≤m

ε|α|
|aα(x, ε)| ≤ C


1
εn


B(x,ε)

|T ε
x (f )(t)|p dt

 1
p

.

Now (2.22) follows using (2.20). �
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We point out that the estimate given by the above corollary is useful only for the case aα(x, ε) with α = 0. For the
remainder values of α we shall prove sharper estimates. To be more specific we shall write aα(f )(x, ε) for aα(x, ε). We set
Tx(f ) for the Taylor polynomial of degreem of the function f at the point x, that is

Tx(f )(t) =


|α|≤m

∂α f (x)
α!

(t − x)α. (2.23)

Now we recall the following pointwise smoothness condition which was introduced by Calderón and Zygmund in [16]. The
function f ∈ tp−1

m (x) if there exists a polynomial Tx(f )(t) such that
1
εn


B(x,ε)

|f (t) − Tx(f )(t)|p−1 dt
 1

p−1

= ◦(εm), (2.24)

as ε → 0. It is easy to see that condition (2.24) uniquely determines the polynomial Tx(f ), and its coefficients, multiply byα!,
are called the partial derivative denoted by ∂α f (x). Indeed, by (2.15) and taking into account that ∥P∥L∞(B(x,ε)) is equivalent
to max|α|≤m ε|α|

|aα|, we have that a polynomial in Πm that satisfies (2.24) must be the zero polynomial.
From now on, we will write aα(f )(x, ε) for aα(x, ε) in order to emphasize the dependence on the function f for the

coefficients of the polynomial T ε
x (f ). That is T ε

x (f )(t) =


|α|≤m aα(f )(x, ε)(t − x)α.

Corollary 2.7. Let f ∈ Lp−1
loc (Rn) and assume that f ∈ tp−1

m (x) in a fixed point x. Then T ε
x (f )(t) → Tx(f )(t), for each t, as ε → 0.

Proof. Since T ε
x (f − Tx(f )) = T ε

x (f ) − Tx(f ), [1], we have

aα(f − Tx(f ))(x, ε) = aα(f )(x, ε) −
∂α f (x)

α!
. (2.25)

Now by Corollary 2.6 applied to f − Tx(f ) we have

ε|α|

aα(f )(x, ε) −
∂α f (x)

α!

 ≤ C


1
εn


B(x,ε)

|f (t) − Tx(f )(t)|p−1 dt
 1

p−1

. (2.26)

Thus, by (2.24), it follows that aα(f )(x, ε) tends to ∂α f (x)
α!

, as ε tends to 0, for |α| ≤ m. �

We point out that this pointwise convergence result is new for f ∈ Lp−1. If f ∈ Lp and the differentiability assumption
(2.24) is assumed in Lp instead of Lp−1 the convergence result is well known and it has a direct proof. For our case we have
used Corollary 2.6. Also even if f ∈ Lp we may assume the weaker condition f ∈ tp−1

m (x) and still obtain the pointwise
convergence.

Theorem 2.8. Let f be in Lp−1
loc (Rn) and T ε

x (f )(t) =


|α|≤m aα(f )(x, ε)(t − x)α; then we have

|aβ(f )(x, ε)| ≤
M
εl

 1
εn


B(x,ε)

f (t) −


|α|≤l−1

∂α f (x)
α!

(t − x)α

p−1

dt

 1
p−1

, (2.27)

for any |β| = l, l ≤ m.

Proof. Since T ε
x (f − f (x)) = T ε

x (f ) − f (x), we have a0(f − f (x)) = a0(f ) − f (x), but aα(f ) = aα(f − f (x)), for |α| > 0. Then,
by Corollary 2.6,

|aα(f )(x, ε)| ≤
M
ε


1
εn


B(x,ε)

|f (t) − f (x)|p−1 dt
 1

p−1

, (2.28)

for any |α| = 1. Thus (2.27) holds in this case.
Set T l

x(f )(t) =


|α|≤l
∂α f (x)

α!
(t − x)α . Now for any 2 ≤ l ≤ mwe have

T ε
x (f − T l−1

x (f )) = T ε
x (f ) − T l−1

x (f ),

and then aβ(f − T l−1
x (f ))(x, ε) is equal to aβ(f )(x, ε) −

∂β (f )(x)
β!

, when |β| ≤ l − 1 and aβ(f − T l−1
x (f ))(x, ε) = aβ(f )(x, ε),

for |β| = l. Now, by Corollary 2.6, we have (2.27). �
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For f ∈ Lqloc(R
n) and q > 0 we denote byMq(f ) the following Hardy–Littlewood maximal function

Mq(f ) := sup
ε>0


1
εn


B(x,ε)

|f (y)|q dy
 1

q

. (2.29)

Now we introduce the following polynomial maximal functions associated to the extended approximation polynomial
operator.

Definition 2.9. Let f ∈ Lp−1
loc (Rn). The polynomial maximal function T ∗

p (f ) on Rn is given by

T ∗

p (f )(x) = sup
ε>0


1
εn


B(x,ε)

|T ε
x (f )(t)|p dt

 1
p

, (2.30)

where T ε
x (f )(t) =


|α|≤m aα(x, ε)(t − x)α.

Definition 2.10. Let f ∈ Lp−1
loc (Rn). We define the next maximal function a∗

α(f ), 0 ≤ |α| ≤ m, on Rn as

a∗

α(f )(x) = sup
ε>0

|aα(x, ε)|. (2.31)

Note that even a∗
α(f ) depends on p, for simplicity, we have omitted p in the notations of this operator.

Theorem 2.11. Let f ∈ Lp−1
loc (Rn). For any |α| ≤ m the polynomial maximal functions T ∗

p (f ) and a∗
α(f ) are measurable.

Proof. Given ε > 0wewill prove that T ε
x (f )(t) is a continuous function of x. Let xk → x as k → ∞, and assume |xk−x| < ε.

We have that

∥T ε
xk(f )∥L∞(B(x,ε)) ≤ ∥T ε

xk(f )∥L∞(B(xk,2ε)) ≤ C


1
εn


B(xk,2ε)

|f (t)|p−1 dt
 1

p−1

≤ C


1
εn


B(x,3ε)

|f (t)|p−1 dt
 1

p−1

, (2.32)

where we have used (2.21) to obtain the second inequality.
Thus, the polynomials {T ϵ

xk(f )} are uniformly bounded. Suppose that {T ϵ
xkj

(f )} is a subsequence which converges to a

polynomial P of degreem. For anypolynomialQ of degree less than or equal tom, we denote gj(t) = |f−T ϵ
xkj

(f )(t)|p−1sgn(f−

T ϵ
xkj

(f )(t))Q (t) and g(t) = |f − P(t)|p−1sgn(f − P(t))Q (t). We have

B(xkj ,ϵ)

gj(t)dt −


B(x,ϵ)

g(t)dt

 ≤



B(xkj ,ϵ)

gj(t)dt −


B(x,ϵ)

gj(t)dt

+


B(x,ϵ)
gj(t)dt −


B(x,ϵ)

g(t)dt


≤


B(xkj ,ϵ)∆B(x,ϵ)

|gj(t)|dt +


B(x,ϵ)

(gj(t) − g(t))
 dt. (2.33)

Since each term in the last member of inequality (2.33) tends to zero, as j → ∞, we get that

0 =


B(xkj ,ϵ)

|f − T ϵ
xkj

(f )(t)|p−1sgn(f − T ϵ
xkj

(f )(t))Q (t)dt

→


B(x,ϵ)

|f − P(t)|p−1sgn(f − P(t))Q (t)dt, (2.34)

for any polynomial Q of degreem. Thus P = T ϵ
x (f ). Then, {T ϵ

xk(f )} converges uniformly to T ϵ
x (f ).

Finally, if fϵ(x) =
1

|B(x,ϵ)|


B(x,ϵ) |T ϵ

x (f )(t)|pdt
 1

p
, clearly fϵ(x) is a continuous function for all ϵ > 0, and aα(x, ϵ) is a

continuous function for all ϵ > 0, |α| ≤ m. Then it follows that T ∗
p (f ) and a∗

α(f ) are lower semi-continuous functions. Hence
they are measurable functions. �
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Theorem 2.12. Let f ∈ Lp−1
loc (Rn); then

T ∗

p (f )(x) ≤ Mp−1(f )(x). (2.35)

Thus, for any f ∈ Lp−1(Rn) we have

|{x ∈ Rn
: T ∗

p (f )(x) > λ}| ≤ K
1

λp−1


Rn

|f (x)|p−1 dx, (2.36)

where the constant K depends only on p, n and m.

Proof. Eq. (2.35) follows by (2.20) and (2.36) follows by the well known property for the Hardy–Littlewood maximal
function; see [17]. �

As an application of the above theorem, we prove the following result.

Theorem 2.13. Let f ∈ Lp−1
loc (Rn) with continuous derivatives ∂β f , |β| ≤ m. Then

a∗

β(f ) ≤ CM1(∂
β f )(x), (2.37)

for 1 ≤ |β| ≤ m and p − 1 < 1,

a∗

β(f ) ≤ CMp−1(∂
β f )(x), (2.38)

for 1 ≤ |β| ≤ m and p − 1 ≥ 1.
Also we have

a∗

0(f ) ≤ CMp−1(f )(x). (2.39)

Thus, for any f ∈ Lp−1(Rn) we have

|{x ∈ Rn
: a∗

0(f )(x) > λ}| ≤ C
1

λp−1


{x∈Rn:|f (x)|> λ

2 }

|f (x)|p−1 dx, (2.40)

and

|{x ∈ Rn
: a∗

β(f )(x) > λ}| ≤ C
1
λ


{x∈Rn:|∂β f (x)|> λ

2 }

|∂β f (x)| dx, (2.41)

for 1 ≤ |β| ≤ m, and the constant C depends only on p, n and m.

Proof. Eq. (2.39) follows by (2.22). Now by Theorem 2.8 we have, for |β| = l,

|aβ(f )(x, ε)| ≤
C
εl

 1
εn


B(x,ε)

f (t) −


|α|≤l−1

∂α f (x)
α!

(t − x)α

p−1

dt

 1
p−1

. (2.42)

Now, using the integral form for the remainder in the Taylor expansion we have that |aβ(f )(x, ε)| is bounded by

C
1
εl

 1
εn


B(x,ε)


|α|=l

l
α!

(t − x)α
 1

0
∂α f (x + s(t − x))(1 − s)l ds


p−1

dt

 1
p−1

. (2.43)

As |(t − x)α| ≤ ε|α| in the above integral and using (2.2) we have

|aβ(f )(x, ε)| ≤ C

|α|=l


1
εn


B(x,ε)

 1

0
|∂α f (x + s(t − x))| ds

p−1

dt

 1
p−1

. (2.44)

Now for p − 1 > 1 we use the Minkovski integral inequality
B(x,ε)

 1

0
|∂α f (x + s(t − x))| ds

p−1 dt
εn

 1
p−1

≤

 1

0


B(x,ε)

|∂α f (x + s(t − x))|p−1 dt
εn

 1
p−1

ds,
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in (2.44) and we get

|aβ(f )(x, ε)| ≤ C

|α|=l

 1

0


1
εn


B(x,ε)

|∂α f (x + s(t − x))|p−1 dt
 1

p−1

ds

= C

|α|=l

 1

0


1

(sε)n


B(x,sε)

|∂α f (y)|p−1 dy
 1

p−1

ds ≤ C

|α|=l

Mp−1 (|∂α f |) (x), (2.45)

for |β| = l. Thus we have proved (2.38). Now for p − 1 < 1 we use Jensen’s inequality in (2.44) and we get

|aβ(f )(x, ε)| ≤ C

|α|=l

1
εn


B(x,ε)

 1

0
|∂α f (x + s(t − x))| ds dt. (2.46)

Now we proceed as we did in (2.45) and we have (2.37).
The inequalities (2.40) and (2.41) follow by the standard properties of the Hardy–Littlewood maximal function. �

We point out that in the previous theorems we obtained the inequalities for the polynomial maximal functions for f ∈

Lp−1
loc , 1 < p. Additional inequalities can be obtained when f is also in Lq(Rn), q > p − 1.

Corollary 2.14. For every f ∈ Lq(Rn) we have

∥a∗

0(f )∥q ≤ Cq∥f ∥q, (2.47)

for q > p − 1.
Beside if for any 1 ≤ |α| ≤ m the derivatives ∂α f are in Lq(Rn), we have

∥a∗

α(f )∥q ≤ Cq∥∂
α f ∥q, (2.48)

for every q > 1 if p − 1 ≤ 1 and q > p − 1 if p − 1 ≥ 1.

Proof. The inequalities (2.47) and (2.48) follow using the arguments of the standard Marcinkiewicz interpolation theorem;
see [17]. �

Note that in the case p − 1 > 1 we obtain Eq. (2.48) for the right range of q, i.e. p − 1 < q. On the other hand, we do not
know if inequality (2.37) can be improved for the case 0 < p − 1 < 1, as follows a∗

α(f ) ≤ CMp−1(∂
α f )(x), in order to obtain

the same range of q.
By Corollary 2.7 for a smooth function f we have |aα(x, ε) −

1
α!

∂α f (x)| tends to 0 for every x ∈ Rn as ε tends to 0. Now,
by Corollary 2.14, we can use Lebesgue’s dominated convergence theorem to obtain the next remark.

Remark 2.15. For every f ∈ Lq(Rn) such that the derivatives ∂α f are in Lq(Rn), |α| ≤ m, we haveaα(·, ε) −
1
α!

∂α f (·)

Lq(Rn)

→ 0, (2.49)

as ε tends to 0, for 1 ≤ |α| ≤ m and for every q > 1 if p − 1 ≤ 1 and q > p − 1 if p − 1 ≥ 1. And for the case α = 0 we
always consider q > p − 1.
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