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A B S T R A C T

UDCA (ursodeoxycholic acid) is the therapeutic agent most widely used for the treatment
of cholestatic hepatopathies. Its use has expanded to other kinds of hepatic diseases, and
even to extrahepatic ones. Such versatility is the result of its multiple mechanisms of action.
UDCA stabilizes plasma membranes against cytolysis by tensioactive bile acids accumulated in
cholestasis. UDCA also halts apoptosis by preventing the formation of mitochondrial pores,
membrane recruitment of death receptors and endoplasmic-reticulum stress. In addition, UDCA
induces changes in the expression of metabolizing enzymes and transporters that reduce bile acid
cytotoxicity and improve renal excretion. Its capability to positively modulate ductular bile flow
helps to preserve the integrity of bile ducts. UDCA also prevents the endocytic internalization of
canalicular transporters, a common feature in cholestasis. Finally, UDCA has immunomodulatory
properties that limit the exacerbated immunological response occurring in autoimmune cholestatic
diseases by counteracting the overexpression of MHC antigens and perhaps by limiting the
production of cytokines by immunocompetent cells. Owing to this multi-functionality, it is difficult
to envisage a substitute for UDCA that combines as many hepatoprotective effects with such
efficacy. We predict a long-lasting use of UDCA as the therapeutic agent of choice in cholestasis.

INTRODUCTION

UDCA (ursodeoxycholic acid) is currently the most
widely used therapeutic agent for the treatment of hepato-

pathies of a cholestatic nature, and the only one approved
by U.S. FDA (Food and Drug Administration) to treat
PBC (primary biliary cirrhosis). Apart from cholestatic
hepatopathies, its use is spreading to non-cholestatic liver
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Figure 1 Chemical structures of UDCA (3α,7β-dihydroxy-
5β-cholanoic acid) and its structural isomer CDCA
(3α,7α-dihydroxy-5β-cholanoic acid)
The dotted circles denote the different orientation of the hydroxy group (-OH)
in position 7 (β for UDCA and α for CDCA). This difference accounts for the
marked dissimilarity in the hydrophobicity and membrane-damaging properties of
both bile acids.

diseases, and even to non-hepatic ones. This exceptional
versatility can only be understood on the basis of its
multiple mechanisms of action. The sustained advance
in the understanding of its several hepatoprotective
properties gives us a unique opportunity to understand
more deeply the relationship between the mechanisms of
action of UDCA and its therapeutic applications.

UDCA has been used as part of a traditional Chinese
medicine from the time of the Tang Dynasty (618–907
AD) for the treatment of jaundice, which employed the
bile of black bears to cure several liver diseases. UDCA
is the predominant bile acid in the bear and this is why it
was named after ‘urso’ (bear in Latin). Its therapeutic
use was rediscovered many years later by modern
medicine, with the first reports on its use in Japan in
1961, followed by the publication of the first controlled
trial in patients with PBC in 1989 [1].

From the chemical structural point of view, UDCA is
3α,7β-dihydroxy-5β-cholanoic acid, a bile acid with two
hydroxy groups (-OH) at positions 3 and 7 in the cholane
ring structure, with an α- and β-orientation respectively
(Figure 1). The C-7 β-orientation confers the molecule a
far higher hydrophilicity than that of its structural ana-
logue with an α-orientation CDCA (chenodeoxycholic
acid). This is why UDCA has much lower ability than
CDCA to interact with, and disturb, lipid membranes. At
the same time, it retains most of the regulatory beneficial
properties of endogenous bile acids, for example their
ability to activate regulatory signalling pathways or to
trigger adaptive responses to bile acid overload [2,3].

MECHANISMS OF ACTION OF UDCA

Changes in the hydrophobicity index of
the bile acid pool by UDCA treatment
In normal individuals, UDCA comprises no more than
4 % of the total endogenous bile acid pool. This value is
increased to 40–60 % under a conventional dosage of 13–
15 mg · kg− 1 of body weight · day− 1 [4], with virtually
no change in total serum bile acids [5]. Replacement
of potentially toxic hydrophobic endogenous bile
acids in the total bile acid pool by an innocuous
hydrophilic one would theoretically reduce bile-acid-
mediated hepatic injury. However, this well-documented
effect in normal individuals does not necessarily apply to
every cholestatic condition. In PBC and PSC (primary
sclerosing cholangitis), the pool size of primary bile acids
(for example, cholic acid and CDCA) and secondary bile
acids (for example, deoxycholic acid) do not change under
UDCA treatment [6–8]. Only one study in early-stage
PBC, with a normal deoxycholic acid pool size prior
UDCA treatment, showed a reduction in the deoxycholic
acid pool size [9]. Overall, these findings add little support
for a significant role for the displacement of hydrophobic
endogenous bile acids from the whole endogenous bile
acid pool as a UDCA-protective mechanism in PBC
and PSC. In contrast, in pregnancy-induced cholestasis,
UDCA treatment displaces selectively free and taurine-
conjugated cholic acid [10,11], a bile acid that is thought
to play a role in intra-uterine fetal loss by acute anoxia
[10]. However, other changes in bile acid composition
induced by UDCA may be regarded as deleterious. For
example, lithocholic acid levels increased in PSC patients
whose progression was accelerated by high UDCA doses
[8]; since lithocholic acid feeding promotes destructive
cholangitis in mice [12], this might be a factor in this
unfavourable outcome [13].

Apart from in serum, UDCA and its conjugates are
enriched in bile, accounting for 19–64 % of total biliary
bile acids, depending on the dosage [14]. This may be
regarded as significantly protective for the biliary tree in
cholangiopathies. Liver tissue is also enriched in UDCA
at the expense of a reduction in more hydrophobic
bile acids [15]. This may be a crucial factor in the
therapeutic effects of UDCA in hepatocellular cholestasis
involving selective bile acid transport at the canalicular
level, as for example in responsive patients with early-
stage PFIC (progressive familial intrahepatic cholestasis)
type 1 (PFIC-1) and 2 (PFIC-2) [16].

Protection by UCDA against cell death
induced by cytotoxic bile acids
Under normal conditions, cytosolic bile acids in
hepatocytes and cholangiocytes are kept at levels below
the critical micellar concentration, i.e. the minimal
concentration from which bile acids display tensioactive
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properties. In cholestatic hepatopathies, bile acids build
up inside hepatocytes and, in the case of obstructive
cholestasis, in cholangiocytes. CDCA and its amide con-
jugates are the endogenous bile acids that increase the
most in chronic cholestatic hepatopathies [17], and thus
are the main bile acids involved in the cholestatic damage
[2].

It has been proposed that cytotoxic bile acids can
differentially induce either necrosis or apoptosis
depending on the severity of the cholestasis [18]; necrosis
would be the major mechanism of cell death in severe
cholestasis, whereas apoptosis would be the predominant
one under milder cholestatic conditions [19].

Specific mechanisms of cellular protection against both
apoptosis and necrosis have been described for UDCA,
as summarized below.

Effect of UDCA on cytotoxic bile-acid-induced hepatocellular
apoptosis
A strong association exists between hepatocellular apop-
tosis and cholestasis [20], and accumulated bile acids
appear to play a key role [3,21]. Bile-acid-induced
apoptosis involves the activation of (i) the intrinsic
(mitochondrial) pathway, triggered by the release into the
cytosol of pro-apoptotic mitochondrial factors through
pores in the mitochondrial membranes, followed by
the activation of executioner caspases, (ii) the extrinsic
pathway, triggered by the activation of death receptors
localized at the plasma membrane, and (iii) apoptosis
by ER (endoplasmic reticulum) stress, involving the
activation of executioner caspases without the mediation
of mitochondrial factors. UDCA and/or its amide
conjugates are instrumental in counteracting all these
apoptotic pathways (Figure 2). Importantly, apoptosis
by bile acids occurs at concentrations of 25 μM, which
can easily be reached in serum in cholestatic diseases
[22]. Moreover, apoptosis is prevented by UDCA at low
micromolar concentrations [23–25], which can readily
be achieved both in serum and liver tissue during
therapeutic administration. In line with this, UDCA
treatment reduced the amount of apoptotic cells in
patients with PBC [26,27]. This anti-apoptotic effect
could be indeed therapeutically relevant, since apoptotic
bodies are the main source of epitopes involved in
autoantigen production in this disease [28].

Intrinsic pathway of apoptosis
This pathway involves, as a triggering event, the
bile-acid-induced opening of pores in mitochondrial
membranes. This occurs by (i) activation of MPTPs [MPT
(mitochondria permeability transition) pores], a non-
specific channel formed by proteins from the inner and
outer mitochondrial membranes, and (ii) relocalization to
mitochondria of pore-forming pro-apoptotic members
of the Bcl-2 family of proteins. Generation of both
MPT- and Bcl-2-associated pores triggers the activation

of executioner caspases through a chain of events initiated
by cytochrome c release from the intermembraneous
space into the cytosol (Figure 2).

UDCA and/or its conjugated derivates can protect
against hydrophobic bile-acid-induced impairment of
mitochondrial function and integrity in hepatocytes,
and probably in cholangiocytes, by inhibiting the most
important mitochondrial events leading to apoptosis, i.e.
MPT- and Bcl-2-associated pore formation.

UDCA protection against hydrophobic bile-acid-induced
MPTP formation Hydrophobic bile acids induce the
opening of MPT pores in mitochondria from both
rodents [29–31] and humans [32]. MPTP generation
results in mitochondrial swelling and uncoupling
of oxidative phosphorylation due to the inhibition of
respiratory complexes I and III [33]; this leads to
decrease in ��m (mitochondrial membrane potential)
and, eventually, ATP depletion [34].

The mitochondrial perturbation induced by hydro-
phobic bile acids is also a major source of oxidative
stress. Loss of cytochrome c, an electron carrier in
the respiratory chain, leads to the build up of redox
equivalents, with the generation of ROS (reactive oxygen
species), mainly superoxide anions and peroxides [29].
Pro-oxidant challenges strongly sensitize hepatocytes
to apoptosis by favouring further MPTP formation.
Therefore a vicious circle is established in which MPTPs
induce ROS generation which, in turn, promotes more
MPTP formation. Another source of ROS involves
activation of NADPH oxidase, a plasma-membrane
enzyme that produces the superoxide radical anion by
transferring electrons to O2 from intracellular NADPH
[35]. UDCA protects against all of these pro-oxidant
events by (i) preventing MPTP formation and the
resulting production of ROS [36,37], and (ii) reinforcing
hepatocellular antioxidant defences.

The other antioxidant mechanism of UDCA, i.e.
enhancement of antioxidant defences, involves several,
complementary mechanisms: (i) UDCA is itself a
scavenger of free radicals [38]; (ii) UDCA induces
the overexpression of the redox-sensitive transcription
factor Nrf2 (nuclear factor-E2-related factor 2), both in
mice [39] and in PBC patients [40]; this subsequently
increases the levels of the antioxidant enzymes catalase,
peroxidase and SOD (superoxide dismutase) [39,41,42];
(iii) UDCA activates the metallothionein IIA promoter
[43], increasing the expression of this hydroxyl-radical
scavenger [41]; (iv) UDCA increases GSH (reduced
glutathione) levels, via the activation of the PI3K
(phosphoinositide 3-kinase)/Akt pathway [44].

These protective mechanisms against MPTP formation
may contribute not only to protect hepatocytes
against apoptosis, but also against necrosis. Apoptosis,
an ATP-dependent process, predominates when few
mitochondria have been recruited for MPTP formation
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Figure 2 Mechanisms of apoptotic cell death induced by CDCA, the main bile acid retained in cholestasis, and its protection
by UDCA
CDCA activates all the three main apoptotic pathways. (1) The intrinsic or mitochondrial pathway, mediated by the release of cytochrome c (Cyt c) from the
mitochondrial intermembrane space into the cytosol. Cytochrome c promotes the binding of Apaf-1 (apoptosis protease-activating factor-1) to pro-caspase 9, activation
by autocatalysis and, finally, recruitment and activation by caspase 9 of the executioner caspases 3, 6, and 7. Cytochrome c release depends on the balance of
expression/activity of pore-forming pro-apoptotic proteins of the Bcl-2 family (for example Bax and Bad) and anti-apoptotic proteins (for example Bcl-2 and Bcl-XL)
(see the left-hand side of the mitochondrion), and on the formation of MPTPs facilitated by ROS (see the right-hand side of the mitochondrion). Mitochondrial
permeabilization also exacerbates the leakage of electrons from the mitochondrial electron transport chain and further cytosolic ROS generation. (2) The extrinsic
pathway, which is initiated by the NADPH-oxidase-mediated ROS-stimulated vesicular trafficking to the plasma membrane of cell death receptors (for example Fas and
TRAILR-2), autophosphorylation, association with FADD and pro-caspases 8 and 10 to form the DISC, activation of these caspases, and the subsequent cleavage of Bid
to tBid, which promotes mitochondrial Bcl-2-dependent pore formation. (3) Apoptosis by ER stress, which is induced by ROS-mediated Ca2+ elevation and executed by
caspase 12. Irrespective of the pathways involved, apoptosis proceeds by the downstream action of the executioner caspases 3, 6 and 7. UDCA prevents the activation
of all three pro-apoptotic pathways by different mechanisms, namely (i) preventing mitochondrial permeabilization, (ii) inhibiting ROS generation, (iii) counteracting
the increased expression of pro-apoptotic mitochondrial proteins (via down-regulation of the transcriptional regulator p53), and (iv) preventing activation of caspase
12. In addition, UDCA stimulates the anti-apoptotic signalling pathways ERK/SRT/TCF and PI3K/Akt by binding to the EGFR. ERK activates by phosphorylation SRF/TCF,
a transcription factor that up-regulates the expression of mitochondrial anti-apoptotic proteins, whereas PI3K (via Akt) inhibits the pro-apoptotic protein Bad. See text
for more details.

and ATP levels are maintained. On the contrary, necrosis
is passive, and therefore predominates when more
mitochondria are affected and ATP levels fall [45].

UDCA modulation of mitochondrial Bcl-2 family of
proteins Rats fed with the hydrophobic bile acid
deoxycholic acid [37] or primary rat hepatocytes exposed

to this bile acid [46] had an increase in the mitochondrial
content of the Bcl-2 pro-apoptotic protein Bax, and
co-administration of UDCA almost fully inhibited this
increase.

The effect of Bax is complemented by other members
of the Bcl-2 family with either pro-apoptotic or anti-
apoptotic properties. Pro-apoptotic Bcl-2 members (for

C© The Authors Journal compilation C© 2011 Biochemical Society



Ursodeoxycholic acid in cholestasis 527

example Bad, Bax and Bak) homo-oligomerize to form
a pore in the outer mitochondrial membrane, whereas
the anti-apoptototic ones (for example Bcl-2 and Bcl-
XL) antagonize the function of the pro-apoptotic Bcl-
2 proteins either by preventing their mitochondrial
translocation (for example Bad) or by sequestering
them in mitochondria so as to impede their homo-
oligomerization (for example Bax) [47].

The expression of these pro- and anti-apoptotic
proteins is regulated by AP-1 (activator protein-1), a
dimer of transcription factors formed by one member
of the Jun family (c-Jun, JunB and JunD) and one
member of the Fos family (c-Fos, FosB, Fra-1 and Fra-2)
[48]. The hydrophobic bile acids glycochenodeoxycholic
acid [49] and TLCA (taurolithocholic acid) [50]
both up-regulate the expression of cFos and JunB,
and increase the transcriptional activity of these
proteins in Ntcp (Na+ /taurocholic acid co-transporting
polypeptide)-transfected HepG2 hepatoma cells. These
pro-apoptotic effects are counteracted by TUDCA
(tauroursodeoxycholic acid) [50].

UDCA also promotes the activation of intracellular
signalling pathways that regulate the expression and
function of Bcl-2 proteins. For example, by binding
to the EGFR (epidermal growth factor receptor),
both UDCA and TUDCA activate anti-apoptotic
signalling pathways dependent on the sequential
activation of PI3K and the MAPK (mitogen-activated
protein kinase) ERK1/2 (extracellular-signal regulated-
kinase 1/2) [23,51]. ERK1/2 activates the anti-apoptotic
transcription factors SRF (serum-response factor) and
TCF (T-cell factor), which act in concert to overexpress
anti-apoptotic proteins (Bcl-2 and Bcl-XL) and to
repress pro-apoptotic ones (Bax) [52]. In addition,
PI3K also turns on Akt, a downstream protein kinase
that phosphorylates and inactivates Bad [53]. The
transcriptional effects of UDCA on Bcl-2 proteins are
in part due to its ability to inhibit p53, a pro-apoptotic
transcription factor that induces Bax and represses Bcl-2
and Bcl-XL expression. UDCA exerts this effect by
halting p53 translocation from the cytosol into the cell
nucleus, and by decreasing p53 DNA-binding activity
[54]. Finally, UDCA reduces the half-life of p53 by
promoting its proteasomal degradation [55].

The anti-apoptotic effect of UDCA is not absolute.
Unconjugated UDCA has pro-apoptotic effects on
hepatocellular carcinoma cells [56], a factor that might be
involved in the clinical observation that UDCA protects
cirrhotic patients from hepatocellular carcinoma [57].
Similarly, when normal hepatocytes are exposed for
longer periods of time or at increasing concentrations,
unconjugated UDCA may exacerbate hydrophobic bile-
acid-induced apoptosis in vitro [58] and to activate pro-
apoptotic mechanisms, such as ceramide formation [58]
and release of Ca2 + from intracellular stores [59]. Of
note, some of these cytotoxic effects were not observed

for amide-conjugated UDCA. Since UDCA is efficiently
conjugated by the liver with taurine and glycine, even in
patients with mild cholestatic liver disease [11,60], studies
in vitro using unconjugated UDCA may not properly
reflect the actual condition in vivo. The situation may
be, however, different in patients on high UDCA doses
or with severe disease. Serum taurine levels are lower
[61,62] and biliary excretion of unconjugated bile acids
is higher [63] in untreated cirrhotic patients, suggesting
defective conjugation. If so, this may be a contributing
factor to the unfavourable clinical outcome in patients
taking high UDCA doses (28–30 mg · kg− 1 of body
weight · day− 1) to treat either PSC [13] or NASH (non-
alcoholic steatohepatitis) [64,65], since apoptosis plays a
critical role in these hepatopathies [66,67].

Extrinsic pathway of apoptosis
This pathway is initiated by bile-acid-activated vesicular
trafficking from Golgi to the plasma membrane of
death receptors, such as Fas [68] and TRAILR-
2 [TNF (tumour-necrosis-factor)-related apoptosis-
inducing ligand receptor-2) [69]. This is followed by
spontaneous homo-oligomerization of these receptors,
formation of the DISC (death-inducing signalling
complex) by association with the adaptor molecule
FADD (Fas-associated death domain) and pro-caspases 8
and 10, and finally, activation of these caspases (Figure 2).
Bile-acid-induced Fas activation in hepatocytes occurs
in a FasL (Fas ligand)-independent manner, through a
mechanism that involves NADPH oxidase-dependent
ROS generation in the plasma-membrane environment
[35].

In hepatocytes, progression of the apoptotic cascade
after caspase 8/10 activation depends on its amplification
by mitochondria [70]. These caspases produce proteolysis
of Bid, and its truncated form, tBid, translocates to
mitochondria. Once there, tBid induces conformational
changes in pro-apoptotic Bax and Bak, which trigger their
homo-oligomerization and pore formation.

UDCA inhibits the extrinsic pathways mediated by
Fas, probably by interfering with the action of tBid on
mitochondria [71], and perhaps by counteracting ROS-
induced Fas activation, due to its antioxidant properties
as mentioned above.

Apoptosis by ER stress
ER stress occurs when protein production and trafficking
systems in the organelle break down, leading to
accumulation of misfolded proteins and, eventually, to
apoptosis. This is triggered by factors such as oxidative
stress, ER Ca2 + accumulation, nutrient deprivation and
a number of toxic insults, among others [72].

This pro-apoptotic pathway is not fully understood,
but both disruption of Ca2 + homoeostasis and caspase
12 activation are pivotal events [73,74]. Hydrophobic
bile acids can induce apoptosis by this mechanism
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by generating ROS [75]. ROS triggers Ca2 + release
from the ER, with the subsequent activation of
caspase 12, which in turn activates executioner caspases.
This is mediated by the pro-apoptotic proteins
Bax and Bak, which are also localized at the ER
membrane, and regulate the Ca2 + channel inositol
1,4,5-trisphosphate receptor. Ca2 + release from the ER
can activate calpains, which in turn proteolytically
activate caspase 12 to mediate apoptosis. In addition,
misfolded proteins can activate the pro-apoptotic
JNK (c-Jun N-terminal kinase)-mediated signalling
pathway and induce the expression of the pro-apoptotic
transcription factor CHOP (CCAAT/enhancer-binding
protein-homologous protein), which modulates activity
and expression of Bcl-2 family proteins [72].

UDCA may halt these pro-apoptotic mechanisms at
different levels. UDCA prevents caspase 12 activation
[76], the generation of oxidative stress, and the alterations
in the balance between pro- and anti-apoptotic Bcl-2
proteins (see above). In addition, TUDCA acts as a
chemical chaperone that reduces ER stress [77].

Apoptosis by ER stress occurs in several liver
diseases, including NASH and viral hepatitis [72]. This
perhaps contributes to explain the alleged beneficial
effects of UDCA as a co-adjuvant therapeutic agent in
NASH. Indeed, preliminary studies have shown that
a combination of vitamin E and UDCA improved
liver histology, hepatocellular apoptosis and circulating
adiponectin levels in these patients [78]. On the other
hand, the anti-apoptotic effects of UDCA may be
detrimental in viral hepatitis, since apoptosis was
suggested to be a mechanism for viral elimination [79];
perhaps this contributes to the inability of the drug
to enhance viral clearance [80]. ER stress has also
been associated with the pathogenesis of many non-
hepatic diseases, such as diabetes, atherosclerosis and
neurodegenerative diseases [81,82]. This has prompted
the experimental therapeutic assay of UDCA and its
conjugates in animal models of these diseases, with
encouraging results so far [77,83–86].

Effect of UDCA on apoptosis induced by other mediators
of cholestatic disease
UDCA inhibits apoptosis induced by compounds other
than bile acids. They include the pro-inflammatory
cytokines TGF-β1 (transforming growth factor-β1) [87],
TNF-α [88] and FasL [71]. These cytokines activate death
receptors critically involved in both cholangiolar and
hepatocellular apoptosis in chronic cholestatic disease
[89]. Apoptosis is critically involved in bile duct loss
[90], and apoptotic debris contributes to activation of
collagen-producing hepatic stellate cells [91]. Therefore
the protective effects of UDCA in both bile duct loss
and fibrogenesis, two common features in most chronic

cholestatic hepatopathies, may involve the prevention of
cytokine-induced apoptosis.

For TGF-β1 at least, the anti-apoptotic effect of
UDCA requires binding of UDCA to the glucocorticoid
receptor and the further translocation of this receptor to
the nucleus [92]. Binding of UDCA to the glucocorticoid
receptor also suppresses the transcriptional activity of
NF-κB (nuclear factor κB), whose expression is induced
by pro-apoptotic inflammatory cytokines [93]. NF-κB
inhibition may, however, be regarded as unbeneficial, as
it induces the expression of anti-apoptotic genes as well,
and its activation in cholestasis was suggested to confer
resistant against apoptosis [94]. Irrespective of this dual
action in apoptosis, the ability of UDCA to bind and
activate the glucocorticoid receptor renders the drug a
pleiotropic agent playing an important role as an anti-
inflammatory agent (see below).

Activation of TRAILR-2, the receptor for TRAIL, is
a major mechanism in cell death and mediates cholestatic
liver injury [95]. Healthy cholangiocytes do not express
TRAIL, but it is up-regulated in cholangiocytes in PBC
and PSC, and this may activate the TRAIL/TRAILR-
2 pro-apoptotic pathway [95]. Whether UCDA halts
this cholangiodestructive mechanism remains to be
ascertained.

These anti-apoptotic properties of UDCA may
help to explain the widespread use of this drug
with variable success in non-cholestatic liver diseases,
in which these cytokines play a crucial role, such
as alcoholic and non-alcoholic steatohepatitis [78,96],
hepatitis induced by drugs (for example methotrexate
[97] and amoxicillin/clavulanic acid [98]) and cholestatic
viral hepatitis C [99–101]. Furthermore, TUDCA has
been shown to have neuroprotective effects in animal
models of neurological disorders with deregulation
of apoptosis, such as haemorrhagic stroke [101], and
Alzheimer’s [84], Parkinson’s [85] and Huntington’s
[86] neurodegenerative diseases, and to inhibit apoptosis
induced by different stimuli in isolated neuronal cells
[102,103]. Clinical studies are awaited to confirm these
benefits in patients.

Effect of UDCA on cytotoxic bile-acid-induced hepatocellular
oncotic necrosis
Oncotic necrosis is characterized by cell swelling and
disruption of plasma-membrane integrity, with the
release of cytosolic proteins into blood [for example
LDH (lactate dehydrogenase) and transaminases] as a
characteristic event. Necrosis is a major mechanism
of cell death in animal models of cholestasis [104–
106] and in cholestatic human diseases, such as PBC
[107,108], PSC [109] and PFIC-2 [110]. Protection by
amide-conjugated UDCA against hydrophobic bile-acid-
induced oncotic necrosis has been shown both in isolated
hepatocytes [19,111–113] and in rats in vivo [114]. This
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may have a clinical correlate, since hepatocellular necrosis
is attenuated by UDCA treatment in PBC patients [108].

Hydrophobic bile acids can induce oncotic necrosis by
two main mechanisms, namely oxidative-stress-induced
lipid peroxidation [29,30,115–117] and solubilization of
the hepatocellular plasma membrane [118,119], and both
of these can be counteracted by UDCA.

Protection by UDCA against necrosis resulting from
bile-acid-induced oxidation
As stated above, bile acids induce ROS formation from
a mitochondrial origin by inducing MPTPs. Exposure
to high levels of hydrophobic bile acids eventually leads
to ATP depletion [34], a factor that shifts cell death from
apoptosis to necrosis [45]. In addition, the associated lipid
peroxidation causes plasma-membrane breakdown, with
the subsequent escape of cytosolic proteins (for example
LDH and transaminases), a hallmark of the necrosis
process. The importance of oxidative stress is supported
by studies showing that antioxidants either totally [115]
or partially [118] prevent this process, depending on the
bile acid concentration.

The protective effects of UDCA against bile-acid-
induced oxidative stress discussed above may explain
in part the protection of UDCA on the detrimental
oxidative effects of toxic bile acids. However, the
actual importance of this UDCA-protective mechanism
remains to be established with certainty.

Protection by UDCA against bile-acid-induced membrane
solubilization
At high bile acid concentrations, ROS scavengers can
completely prevent lipid peroxidation without fully
blocking bile-acid-induced cytolysis [118]. Furthermore,
a recent study has shown that antioxidants do not
attenuate this process at all in rat hepatocytes in primary
culture [120]. This suggests that mechanisms other than
oxidative stress are involved. As an additional mechanism,
detergent bile acids have been proposed to exert direct
solubilization of the hepatocellular plasma membrane and
further necrosis by cytolysis [19,111,112,118].

A direct stabilization of the plasma membrane by
UDCA against tensioactive bile acids has been suggested
from studies in artificial membranes (liposomes)
[121–123]. This finding was recently reproduced in
isolated hepatocyte plasma membranes, where TUDCA
prevented the bilayer-to-micelle transition induced by
CDCA [113]. This membrane-stabilizing effect seems
to involve the formation of a complex between
cholesterol and the anionic form of TUDCA occurring at
physiological pH, which favours electrostatic repulsion
of negatively charged tensioactive bile acids [123,124].
It has been also suggested that TUDCA interferes in
bulk solution with the formation of mixed micelles
composed of membrane lipids and detergent bile acids

[125]. However, lipid membranes previously exposed to
TUDCA remain refractory to the solubilizing effect of
bile acids irrespective of whether TUDCA is further
present or not in the incubation medium [113].

A limitation of these findings is that millimolar
concentrations of conjugated UDCA are required to
exert membrane-stabilizing effects, but only micromolar
levels are reached in systemic circulation under normal
therapeutic conditions. Millimolar concentrations of
conjugated UDCA can, however, occur in the biliary
lumen, and UDCA conjugates may exert protective
effects from there, where endogenous bile acids also reach
cytotoxic concentrations. This protective mechanism
may particularly contribute to the beneficial effect of
UDCA treatment in hepatopathies involving genetic
defects in the canalicular phospholipid translocator
MDR3 (multidrug-resistance protein 3 {ABC4B4 [ABC
(ATP-binding cassette) sub-family B member 4]}),
such as PFIC-3 or the so-called ‘anti-mitochondrial
antibody-negative PBC’ [126]. In these hepatopathies,
phospholipid deficits in bile enhances bile acid cytolytic
effects, as it increases the amount of bile acid monomers
in bile, which otherwise would form mixed micelles with
biliary phospholipids and cholesterol.

Protection by UDCA against impairment of cholangiocyte
viability
As with hepatocytes, cholangiocytes are highly exposed
to cytotoxic bile acid levels, as they are also in direct
contact with bile. However, the ultrastructural integrity
of isolated rat perfused livers exposed to unconjugated
bile acids remain intact, even when livers from rats
with impaired bile acid conjugation to increase bile acid
toxicity were assayed [127]. On the contrary, hepatocytes
showed a prominent subcellular damage [127]. This
difference was attributed to the active extrusion of
bile acids from the cholangiocyte and the cytopro-
tective presence of phospholipids in bile. Therefore
the (T)UDCA survival mechanisms against bile-acid-
induced cell death discussed above for hepatocytes may
not necessarily apply to cholangiocytes. Nevertheless,
bile-duct loss by apoptosis in cholangiopathies such
as PBC and PSC, which have normal phospholipid
contents in bile, is mainly immune- rather than bile-
acid-mediated [128]. In these cases, the anti-apoptotic
properties of UDCA against cytokines (see above), as
well as immunomodulatory properties of UDCA (see
below), may play a key role. Interestingly, in human
cholangiocytes in culture glycoconjugated UDCA
prevented both the cytochrome c release and caspase
3 activation induced by beauvericin [129], a compound
that shares common pro-apoptotic mechanisms with
cytokines. In addition, UDCA stimulates the biliary
detoxification of NO as S-nitrosoglutathione, and the
latter compound protects cultured rat cholangiocytes
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from apoptosis by activation of the PI3K/Akt survival
pathway [130]. UDCA also decreased both nuclear DNA
fragmentation and pro-apoptotic protein Bcl-2 levels
in biliary epithelial cells from PBC patients [27]; this
suggests that the anti-apoptotic effects of UDCA at the
cholangiocyte level could be of actual clinical relevance.

Modulation of the expression of liver
transporters and enzyme systems by
UDCA

Effects of UDCA on hepatocellular bile acid transporters
and metabolizing enzymes under normal and cholestatic
conditions
UDCA exerts part of its therapeutic effects by
reducing the intracellular content/cytotoxicity of bile
acids and other potentially toxic cholephilic compounds
accumulated by the secretory failure. At the same
time, it favours the elimination of these compounds
via alternative routes, mainly the urinary route. This is
achieved by: (i) hindering basolateral bile acid uptake,
(ii) overexpressing basolateral export pumps, and (iii)
repressing bile acid synthesis and favouring bile acid
hydroxylation.

Most of these beneficial changes are due to the ability
that UDCA has to induce these changes in normal livers,
i.e. without a cholestatic context (Figure 3).

UDCA feeding to normal mice down-regulates Oatp1
{organic anion-transporting polypeptide 1 [Slco1 (solute
carrier organic anion transporter family member 1)]}, a
basolateral transporter engaged in bile acid hepatocyte
uptake, by a transcriptional mechanism [131]. The
expression of the other major basolateral bile acid
uptake system Ntcp [Slc10a1 (solute carrier family 10
member 1)] remains unaltered [131]. In addition, UDCA
administration up-regulates the basolateral export pumps
Mrp3 {multidrug resistance-associated protein 3 [Abcc3
(ABC sub-family C member 3]} [132] and Mrp4
[Abcc4 (ABC sub-family C member 4)] [133], both at
mRNA and protein levels. This facilitates the spillover
into blood of amidated and sulfated bile acids (mainly
via Mrp4) and glucuronides of bilirubin and bile
acids (mainly via Mrp3), which favours their further
urinary excretion. Overexpression of these basolateral
export pumps explains the increased serum content and
urinary excretion of sulfated and glucuronidated bile
acids, particularly those of UDCA, both in normal
subjects [134] and in patients with PBC on UDCA
treatment [135]. This is explained further by the more
efficient UDCA glucuronidation [136] and sulfation
[137] compared with most bile acids, and perhaps by the
improvement in the intrinsic transport capability of
the kidney to excrete these compounds. Indeed, UDCA
feeding to mice stimulated the expression of the renal
apical bile acid export pumps Mrp2 [132] and Mrp4 [133],

and repressed the expression of Asbt {apical sodium-
dependent bile salt transporter [Slc10a2 (solute carrier
family 10 member 2)]}, a transporter involved in the
tubular reabsorption of bile acids [133].

Feeding of UDCA to rodents also up-regulates
hepatocellular canalicular export pumps [131]. They
comprise Bsep {bile salt export pump [Abcb11 (ABC
sub-family B member 11)]}, the main canalicular
transporter of amide-conjugated bile acids, and Mrp2
[Abcc2 (ABC sub-family C member 2)], which excretes
into bile glucuronidated/sulfated bile acids, GSH and
GSSG (oxidized glutathione), and many other negatively
charged xeno- and endo-biotics, including bilirubin
glucuronides. As bile acids and GSH/GSSG are the main
osmotic driving forces for bile flow generation, the up-
regulation of both Bsep and Mrp2 would contribute to
the choleretic effect of UDCA.

In addition to transporters, UDCA also modulates
the expression in the liver of enzymes involved in
bile acid metabolism (Figure 3). UDCA administration
represses in rodents the expression of the cytochrome
P450 enzyme Cyp7a1 (cytochrome P450 family 7
subfamily A polypeptide 1), which mediates the rate-
limiting step of the classic bile-acid-biosynthetic pathway
[133]. In addition, it stimulates in mice the sterol
hydroxylases responsible for bile acid hydroxylation,
such as Cyp3a11 (cytochrome P450 family 3 subfamily a
polypeptide 11) and Cyp2b10 (cytochrome P450 family 2
subfamily b polypeptide 10) [133,138], as well as CYP3A4
(cytochrome P450 family 3 subfamily A polypeptide
4) in primary cultured human hepatocytes [138].
These metabolic changes decrease both the endogenous
production of bile acids and the potentially deleterious
toxicity of the remaining ones, as hydroxylation of bile
acids decreases their hydrophobicity.

The transcriptional regulation by UDCA of both
hepatic transporters and enzymatic systems seems to
involve, in part, its role as an activating ligand of
the nuclear receptors PXR (pregnane X receptor) and
FXR (farnesoid X receptor). These nuclear receptors
have complementary roles in the regulation of genes
involved in lipid and lipoprotein metabolism, including
bile acid synthesis and transport, and are actively involved
in the spontaneous adaptive response in cholestasis
triggers by accumulated bile acids, aimed at reducing the
synthesis and increasing the extrahepatic disposal of these
potentially toxic compounds (for reviews, see [139,140]).
By sharing with endogenous bile acids the ability to bind
to these nuclear receptors, UDCA would reinforce this
adaptive response without adding toxicity.

UDCA is a relatively strong PXR agonist, but a weak
FXR agonist [138]. Therefore a major role for FXR in
the transcriptional effects of UDCA is unlikely. This
is in line with studies of UDCA-fed FXR-knockdown
mice, where similar changes to wild-type were observed
in the expression of ABC transporters in the liver
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Figure 3 Effects of the administration of UDCA to rodents on the expression of transporters and enzymes involved in bile
acid and bilirubin detoxification
UDCA stimulates the expression and/or activity of the main canalicular transporters involved in bile formation (Bsep and Mrp2). For Bsep at least, this involves the
transcription factor FXR. UDCA also favours the reflux back to plasma of potentially toxic endogenous compounds accumulated over the cholestatic process, such as
BAs (bile acids) and Br-G [glucuronized Br (bilirubin)]. This involves the down-regulation of export pumps in the sinusoidal membrane (Mrp3 and Mrp4) and the
down-regulation of transporters involved in BA/Br uptake (Oatp). Such a reflux redirects these toxic metabolites to the kidney for depuration via glomerular filtration
and tubular renal excretion, the latter process being facilitated by the up-regulation of apical kidney transporters (Mrp2 and Mrp4). Finally, UDCA represses the hepatic
synthesis of endogenous BAs by down-regulating Cyp7a1, the cytochrome P450 that mediates the rate-limiting step in BA biosynthesis, and facilitates BA hydroxylation,
rendering lower endogenous levels of BAs with reduced toxicity. See the text for more details.

(Mrp3, Mrp4 and Mrp2), kidney (Mrp2 and Mrp4) and
gut (Mrp2) [132,133]. The only exception was Bsep,
which was not up-regulated in FXR-knockdown animals
[132,133]. Essentially, the same induction pattern and
a similar lack of FXR-dependency was observed both
in rats fed on cholic acid [132,133] and in bile-duct-
ligated animals [141], which suggests that endogenous bile
acids accumulated by the cholestatic failure shares similar
induction mechanisms to UDCA. This may explain
the limited protective response in terms of transporter
induction afforded by UDCA administration to bile-
duct-ligated mice [142].

The predominant FXR-independent response to
UDCA suggests the participation of other nuclear
receptors in the transcriptional effects of UDCA. The
high affinity of UDCA for PXR makes this nuclear
receptor a likely candidate [143]. However, studies in
PXR-knockdown animals are unfortunately lacking.

These results in laboratory animals should, however,
be extrapolated to humans with caution. Only some
of the effects of UDCA on the expression of
transporters/enzymes observed in rodents, or even
in human cell lines in vitro, have been reproduced in
humans. Otherwise healthy patients who received

C© The Authors Journal compilation C© 2011 Biochemical Society



532 M. G. Roma and others

UDCA for gallstone dissolution had increased levels of
BSEP and MRP4, but not of MRP2, MRP3 and OATP1
[144]. The bile-acid-metabolizing enzymes CYP3A4
(hydroxylation) and UGT1A1 (UDP glucuronosyltrans-
ferase 1 family polypeptide A1) (glucuronidation) also
remained unchanged [144]. Surprisingly, the limited
potential of UDCA to induce transcriptional changes
in humans is complemented by the classical PXR ligand
rifampicin, despite the alleged role for UDCA as a strong
PXR ligand. Indeed, unlike UDCA, rifampicin enhances
the expression of CYP3A4, UGT1A1 and MRP2 [144],
and improves the CYP3A4-dependent metabolism of
budesonide and cortisol [145]. These results would justify
the combined use of UDCA and rifampicin for the treat-
ment of cholestasis in UDCA-non-responsive patients.

Although many transporter/enzymes are not regulated
by UDCA administration to healthy individuals, the
situation may be different in cholestatic patients, whose
expression of these proteins is pathologically altered as
part of the course of the disease. For example, unlike
healthy individuals [144], patients with early-stage PBC,
who have a slightly decreased expression of MRP2,
showed an improvement in the levels of these transporter
after UDCA treatment [146]. This more probably reflects
the ability of UDCA to counteract cholestatic factors
involved in the pathobiology of the disease rather than
its capability to induce Mrp2 expression. In line with
this, UDCA only improved the decreased expression
of MRP2 in early-stage PBC, when cholestatic effects of
pro-inflammatory cytokines are the predominant causal
factor [147]. If the anti-cholestatic properties of UDCA
involve counteraction of the effects of cytokines, this
may also apply to, and explain, therapeutic effects of
UDCA in other inflammatory cholestatic disease, such
as parenteral-nutrition-induced cholestasis [148,149] and
cholestatic hepatitis of viral [150] or toxic [151,152]
origin. More information on the ability of UDCA
to improve transporter function and expression in
inflammatory cholestatic disease is warranted.

The potential ability of UDCA to up-regulate the
canalicular export pumps Mrp2 and Bsep in a cholestatic
context may be relevant in explaining the protective
mechanism of this bile acid in cholestatic diseases of
both a non-obstructive and non-inflammatory nature
in which impaired expression of these transporters is a
primary causal factor. This is the situation in hereditary
cholestatic diseases with partial transporter defects [153],
or functional impairment of transporter activity by
drugs [154] or sex hormones, as in pregnancy-induced
cholestasis [10,155]. In the latter pathology, susceptible
women have low basal constitutive levels of these
transporters, in many cases because of genetic mutations
[156]. To this basal impairment, pregnancy adds the
effects of cholestatic hormones that build up under this
condition (oestrogens and progesterone), which results in
an overt cholestatic phenotype. The cholestatic oestrogen

17α-ethinyloestradiol, administered to experimental
animals to mimic oestrogen-associated cholestatic disease
in patients, impairs the constitutive expression of both
Bsep [157,158] and Mrp2 [156,159]. In this model,
UDCA prevents the associated functional failure of
these transporters by enhancing carrier constitutive
expression (as for Bsep) [157] or transporter activity
without restoring protein level (as for Mrp2) [159];
the latter effect may involve a positive interaction with
either a putative regulatory site of the transporter or
its lipid microenvironment. These beneficial effects of
UDCA are, in part, due to the ability of UDCA and
its taurine conjugate to partially inhibit the UGT2B1
(UDP glucuronosyltransferase 2 family polypeptide B1)-
mediated 17β-glucuronidation of 17α-ethinyloestradiol,
which is a prerequisite for its cholestatic action [160].

Unlike what happens in hepatocellular cholestasis, the
induction that UDCA administration exerts at the level
of expression/function of canalicular transporters may be
deleterious in processes where obstructive cholestasis is
the predominant feature, for example in PSC with bile
duct strictures, or other late-stage ‘vanishing’ bile-duct
syndromes, such as PBC or biliary atresia. Under these
conditions, an improvement in bile flow generation may
aggravate biliary infarcts above the obstruction, as has
been shown in bile-duct-ligated mice [143]. This could
partly explain the limited therapeutic effects of UDCA
in late-stage PBC [161] and in patients with PSC [13], as
well as its selective therapeutic efficacy in biliary atresia,
restricted to the type III classification (ductules >50 μm)
[162].

Modulation of cholangiocyte transport and ductular bile flow
by UDCA

Cholangiocyte dysfunction is a common event in many
chronic cholestatic diseases and it may play a role in the
progression of the disease. Lack of HCO3

− -rich bile
secreted at the ductular level may concentrate potentially
toxic biliary constituents, for example detergent bile
acids, and thus contribute to cholangiocyte damage. The
distinctive property of UDCA to stimulate bile flow in
excess of what is expected from its osmotic properties
(hypercholeresis) may contribute to dilute these toxic
biliary solutes [163]. Indeed, UDCA stimulates HCO3

−

secretion both in rats [164] and in humans [165]. This is
due to its distinctive ability to both undergo cholehepatic
shunting and directly stimulate cholangiocyte secretion
(see Figure 4 for further details).

Acting through this mechanism, UDCA is thought to
reduce portal inflammation, ductular proliferation and
fibrosis in mice lacking the canalicular phospholipid
translocator Mdr2 (Abcb2), an experimental model for
sclerosing cholangitis [166]. This ameliorating effect
is, however, only observed in early stages of the
cholangiopathy, but not when regional fibro-obliteration
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Figure 4 Mechanisms of UDCA-induced HCO3
− -rich hyper-

choleresis
UDCA stimulates HCO3

− secretion and concomitant ductular bile flow formation
both by undergoing cholehepatic shunting and by directly stimulating cholangiocyte
secretion. UDCA cholehepatic shunting involves the passive absorption of the bile
acid in its protonated (uncharged) form by the cholangiocyte, followed by its
transfer back to the hepatic sinusoids via the peribiliary plexus, to be returned to
cholangiocytes by hepatocyte resecretion into bile, as ursodeoxycholate (UDC− ).
UDC− protonation renders a HCO3

− molecule in the lumen each time UDCA
suffers a cycling event, which acts as a osmotic driving force for ductular
bile formation. In addition, UDCA activates AE2, the main transporter involved
in ductular HCO3

− secretion, via both transcriptional and post-transcriptional
signalling mechanisms. The latter process involves stimulation of ATP release
by both hepatocytes and cholangiocytes into bile, which facilitates ATP-mediated
activation of purinergic 2Y receptors (P2YR). These receptors stimulate AE2 through
an increase in free cytosolic Ca2+ and the further activation of cPKC (PKCc)
isoforms, which in turn activate a variety of Cl− channels present in the apical
cholangiocyte domain required for AE2-mediated Cl− /HCO3

− exchange. See the
text for more details.

of bile ducts becomes apparent [143]. The C23 homologue
of UDCA 24-norUDCA, which has one less methyl
group in its side chain, is even more efficient than
UDCA in generating HCO3

− -rich hypercholeresis and
in preserving the bile duct integrity in Mdr2-knockout
mice [167]. The superior performance of norUDCA may
be due to (i) its even lower amide conjugation than
UDCA, which further favours passive reabsorption, and
(ii) its greater osmotic effect, since it is mostly present
in a monomeric rather than in a micellar form [168].
Ductular hypercholeresis, together with the enrichment

of UDCA in bile at the expense of more toxic bile acids
(see above), may help to explain the improvement in
serum liver tests in 60 % of patients with PFIC-3 lacking
the canalicular phospholipid translocator MDR3 [169];
lack of biliary phospholipids renders detergent bile acid
more toxic against cholangiocytes [170].

The impairment of ductular bile flow in cholestatic
cholangiopathies is multifactorial. The ductular secretion
of HCO3

− is reduced in PBC [171] and cystic
fibrosis [172]. This is due to alterations in either
or both the expression and function of transport
systems involved in ductular HCO3

− excretion, namely
AE2 (anion exchanger 2) for PBC [173], and the
Cl− channel CFTR (cystic fibrosis transmembrane
conductance regulator) for cystic fibrosis [172]. The
transcriptional expression of the Cl− /HCO3

− counter-
transporter AE2 [SLC4A2 (solute carrier family 4
anion exchanger member 2)], the main transporter
responsible for secretin-stimulated ductular bile flow,
is decreased in PBC patients and improved by
UDCA treatment [173]. Furthermore, treatment with
UDCA plus dexamethasone, an alternative therapeutic
combination for PBC patients with an incomplete
response to UDCA monotherapy, up-regulated AE2 and
enhanced its anion exchange activity in human liver
cells from both cholangiocyte and hepatocyte lineages
[174]. This occurs via the binding of both UDCA and
dexamethasone to the glucocorticoid receptor, which
interacts with liver-enriched HNF-1 (hepatocyte nuclear
factor-1) to enhance the transcriptional activity of the
AE2 alternate promoter [174]. UDCA also activates AE2
function via post-transcriptional signalling mechanisms.
It stimulates the ATP release by hepatocytes [175] and
cholangiocytes [176] into bile, and luminal ATP activates
purinergic 2Y receptors. These receptors stimulate AE2
through an increase in free cytosolic Ca2 + and the further
activation of cPKC (Ca2 + -dependent protein kinase
C) isoforms, which activate a variety of Cl− channels
present in the apical cholangiocyte domain required
for Cl− /HCO3

− exchange [176]. UDCA-mediated
activation of these kinases also reduces cholangiocyte
proliferation and ductular secretion in bile-duct-ligated
rats, an effect mediated by inhibition of the uptake
of mitogenic hydrophobic bile acids via Asbt down-
regulation [177].

UDCA-induced normalization of the
altered cellular localization of
hepatocellular transporters in cholestasis
Endocytosis into subapical vesicular compartments of
Bsep and Mrp2, the two canalicular export pumps
involved in bile flow generation, has been described in
several experimental models of cholestasis, including cho-
lestasis induced by E217G (oestradiol 17β-glucuronide)
[178,179], TLCA [180] and bile-duct ligation [181].
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Figure 5 Choleretic and anti-cholestatic mechanisms of
the taurine-conjugated metabolite of UDCA (TUDCA) by
modulation of the localization status of canalicular
transporters
TUDCA induces choleresis by stimulating exocytic insertion into the apical
membrane domain of canalicular transporters involved in bile formation. This
choleretic mechanism involves integrin-sensing and FAK/Src activation, followed
by the dual activation of the MAPKs p38MAPK ERK1/2. ERK1/2 activation
requires the upstream sequential activation of PI3K and Ras/Raf. TUDCA also
exerts anti-cholestatic effects against cholestatic drugs that induce endocytic
internalization of canalicular transporters as part of their cholestatic mechanisms,
such as E217G or TLCA. Unlike choleresis, this anti-cholestatic effect seems to
involve co-activation of cPKC and PKA. See the text for more details.

This internalization is associated with a decrease in
bile flow and an impairment in the biliary output of
cholephilic compounds, suggesting that this phenomenon
is a key mechanism triggering cholestasis (Figure 5).
A similar phenomenon has been described in different
human cholestatic diseases, including (i) obstructive
extrahepatic cholestasis [182,183], (ii) pregnancy-induced
cholestasis [184], (iii) inflammatory cholestasis associated
with autoimmune hepatitis [183], (iv) mixed (obstructive
plus inflammatory) cholestatic diseases, including PBC
[185] and PSC [183], and (v) cholestasis induced by
drugs, such as antibiotics, thiopronine, chlorpromazine
and anti-inflammatory drugs [183,186]. Since sustained
internalization of these transporters may lead to delivery
to the lysosomal compartment followed by degradation,
this phenomenon may explain, in part, the decrease
in the post-transcriptional expression of transporters
frequently observed in these hepatopathies.

TUDCA stimulates the opposite process as part of its
choleretic effects, i.e. the exocytic insertion of canalicular
transporters. TUDCA activates two MAPK-dependent
pathways, p38MAPK [187] and ERK1/2 [188], within
minutes, and this effect involves integrin-sensing and

FAK (focal adhesion kinase)/Src activation as upstream
events [189]. Dual MAPK activation by TUDCA was
causally linked to both increased biliary excretion of bile
acids and canalicular insertion of Bsep (the latter demon-
strated only for p38MAPK [187]). The stimulus induced by
TUDCA on ERK1/2, but not on p38MAPK, is dependent
on the sequential activation of PI3K and Ras/Raf
[190]. The two MAPK-dependent pathways seem to act
in parallel, and dual activation is required [187]. Studies in
human HepG2 cells and in rat hepatocytes in culture
showed that TUDCA-stimulated insertion of BSEP/Bsep
involves not only increased targeting from the subapical
compartment, but also enhanced its trafficking from the
Golgi complex to the subapical compartment, and that
p38MAPK is a key signalling mediator of this latter effect
[191].

By stimulating exocytosis, TUDCA was thought to
counteract the endocytic internalization of both Bsep
[192] and Mrp2 [193] in TLCA-induced cholestasis
in rats. This effect, however, involves a different set
of protein kinases from those promoting exocytosis
under normal conditions. The anti-cholestatic effects of
TUDCA is not mediated by MAPKs [194]; it rather
involves cPKC, through a co-operative mechanism with
PKA (protein kinase A) [195] (Figure 5). Therefore
TUDCA-stimulated transporter exocytosis (under nor-
mal conditions) and TUDCA-induced anti-cholestatic
effects by prevention of transporter endocytosis may be
independent events.

If confirmed in humans, the ability of UDCA
metabolites to prevent endocytosis of canalicular
transporters may be involved in the improvement in
the canalicular transporter expression in the broad
range of human cholestatic diseases, where endocytic
internalization of canalicular transporters has been shown
and where it may be a triggering event.

Immunoregulatory properties of
UDCA
Liver immunological attack in cholestatic autoimmune
diseases occurs by: (i) the existence of an exacerbated
immune response caused by the loss of tolerance to
autoantigens, and (ii) aberrant overexpression of antigens
of both MHC-I (in hepatocytes) [196] and MHC-II (in
cholangiocytes) [197].

UDCA has immunomodulatory effects on both
the exacerbated response of immunological cells
(immunosuppressive properties), and on the aberrant
overexpression of MHCs and intercellular adhesion
molecules involved in the immunological attack on the
liver occurring in PBC and PSC (Figure 6). Anti-
inflammatory effects of UDCA administration in the
portal tract may explain, in part, the beneficial effect of
UDCA on fibrosis progression, as shown in bile-duct-
ligated rats [198] and in patients with PBC [199]. These

C© The Authors Journal compilation C© 2011 Biochemical Society



Ursodeoxycholic acid in cholestasis 535

Figure 6 Inhibition by UDCA of the exacerbated immunological response occurring in autoimmune hepatopathies
Autoantigen-presenting cells (APCs) stimulate HTLs (CD4+ ) to produce and release IL-2, which triggers autocrine activation and clonal proliferation of these cells via
binding to its receptor IL-2R. These cells, in turn, activate B-lymphocytes (BLs) for the production of auto-antibodies (humoral response) and CTLs (CD8+ ) (cellular
response). CTLs attack both cholangiocytes and hepatocytes by releasing perforin and granzyme, inducing cellular death by necro-apoptosis. The binding of CTLs to
hepatocytes is facilitated by the overexpression of the MHC-I, which is induced by bile acids accumulated over the cholestatic process, mainly CDCA. In cholangiocytes,
CDCA induces overexpression of the MHC-II, which locally favours the sequential activation of HTLs and CTLs, leading to cholangiocyte death. This is reinforced by the over-
expression of both ICAM-1 and LFA-1 in cholangiocytes and lymphocytes respectively. UDCA counteracts the production of auto-antibodies by BLs and inhibits the
production of IL-2 by HTLs, thus impeding the activation of both BLs and CTLs. In addition, UDCA represses the overexpression of MHC-I and, perhaps, MHC-II, as well
as ICAM-1 and LFA-1. See the text for more details.

immunoregulatory effects of UDCA may also help to
support its alleged prophylactic use in other immune-
mediated hepatopathies involving humoral and cellular
immune responses, such as acute graft-versus-host disease
secondary to haemopoietic stem cell transplantation [200]
and liver allograft rejection [201].

Immunosuppressive and anti-inflammatory properties of
UDCA
In autoimmune cholestatic liver disorders, such as PBC
and PSC, humoral and cellular immune responses are
exacerbated. The former is due to the production of
antibodies against certain autoantigens against which
the patient has lost immunological tolerance. The
latter involves the direct attack of hepatocytes and
cholangiocytes by CTLs (cytotoxic T-lymphocytes)
(CD8+ ), which have been activated by cytokines
produced by HTLs (helper T-lymphocytes) (CD4+ ),
such as IFN-γ (interferon-γ ) and IL (interleukin)-1, -2,
-4 and -6 [202,203]. These cytokines are involved in the
damage of hepatocytes and cholangiocytes by inducing
the proliferation and activation of CTLs and natural

killer cells [204,205] or, in the case of IFNγ , by
causing a direct impairment in cholangiocyte integrity
[206].

UDCA is thought to inhibits humoral autoimmunity,
as suggested by its ability to suppress the production
of IgM, IgG and IgA by B-lymphocytes exposed to
bacteria, both from normal individuals and from PBC
patients [204]. UDCA also attenuates the cellular immune
response by inhibiting the release of cytokines produced
by blood mononuclear cells, such as IL-2, IL-4 and IFN-
γ [204]. However, it should be noted that endogenous
bile acids that accumulate in cholestasis, such as CDCA,
have immunosuppressive properties greater than those
of UDCA [203,207] and therefore their replacement by
UDCA may lead to an even lower immunosuppression.
Furthermore, the physiopathological relevance of these
in vitro studies has been questioned due to shortcomings
in mimicking the situation in vivo, such as a lack of
physiological amounts of proteins in the extracellular
medium; this renders UDCA concentrations in the assay
higher than those reached in patients and probably toxic
for immunocompetent cells [208]. With more realistic
conditions (UDCA concentrations in the micromolar
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range and in the presence of fetal calf serum), uptake
of UDCA by monocytes and Kupffer cells was very
low, and had no effect on lipopolysaccharide-induced
cytokine release [208]. It remains unclear, however, what
level of bile acids is actually reached at the close proximity
of the bile ductules where inflammatory cells accumulate
in cholestatic cholangiopathies; concentrations of UDCA
in the peribiliary plexus circulation higher than systemic
ones are expected, due to its efficient cholehepatic
shunting (see above). If so, this may explain the decrease
in circulating TNF-α and TGF-β1, two cytokines
that reflect severity of the disease, in PBC patients
taking UDCA [209]. Furthermore, UDCA attenuated
concanavalin A-induced mouse inflammatory liver injury
by decreasing the release of TNF-α from natural killer T-
cells [210]; a similar effect was afforded by glycoUDCA
in astrocytes exposed to unconjugated bilirubin [211],
suggesting that this may be an ubiquitous mechanism. In
contrast, UDCA failed to reduce serum TNF-α levels
in PSC patients [212], a factor that might contribute
to the lack of a beneficial effect of this drug in PSC
progression [13]. UDCA also interferes with TNF-α-
mediated activation of NF-κB, at least in part via binding
to the glucocorticoid receptor [93]. By doing so, UDCA
would break the vicious circle by which TNF-α activates
NF-κB, which in turn induces the expression of TNF-
α [213]. Again, this beneficial mechanism seems to be
ubiquitous. UDCA inhibited NF-κB activation induced
by deoxycholic acid in human colon cancer cells [214] or
by amyloid β peptide in a microglial cell line [215]. These
findings support the suggested applications of UDCA in
chemoprotection of colon cancer [216] and Alzheimer’s
disease [84] respectively.

UDCA-induced reversal of aberrant expression of MHCs
MHCs enable the recognition of autoantigens by lymph-
ocytes involved in the humoral and cellular response
in autoimmune diseases. For example, when exposed
together with the auto-antigenic epitope, MHC-I activ-
ates CTLs (CD8+ ), whereas MHC-II activates HTLs
(CD4+ ). The latter produces cytokines such as TNF-
α and IFN-γ , which increase the expression of MHC-I
in non-immunological cells (for example hepatocytes);
this increases the possibility of being immunologically
attacked. Endogenous bile acids accumulated in cho-
lestatic hepatopathies exacerbate the induction of both
MHC-I in hepatocytes and MHC-II in cholangiocytes
[217]. UDCA treatment inhibits MHC-I overexpression
in PBC patients [218,219]. On the other hand, the ability
of UDCA to counteract the overexpression of MHC-II in
cholangiocytes is doubtful, since there is evidence either
in favour [219] or against [218] this protective mechanism.

The mechanism(s) by which UDCA treatment inhibits
MHC overexpression in cholestasis remains to be
ascertained. It is possible that this is via the UDCA-
induced activation of the glucocorticoid receptor [220],

a well-recognized mediator of the suppressive effects
of glucocorticoids on the transcription of MHCs [221].
In line with this, UDCA suppressed the expression
of MHC-II induced by IFN-γ in ovarian cells stably
transfected with the glucocorticoid receptor in a ligand-
independent manner [222], although this remains to be
confirmed in hepatocytes or cholangiocytes for MHC-I
and MHC-II respectively. In addition, UDCA inhibited
the CDCA-induced production of IFN-γ in peripheral
blood mononuclear cells from PBC patients [223].

The immune-mediated progressive destruction of
interlobular bile ducts in PBC requires the penetration
of lymphocytes and other inflammatory cells to the
peribiliary vascular plexus and portal venules, followed
by migration into the perivenular tissue towards the
bile ducts. In this process, the increased expression of
both ICAM-1 (intercellular adhesion molecule-1) and
LFA-1 (lymphocyte function-associated antigen-1) in
cholangiocytes and lymphocytes respectively is essential.
In PBC, ICAM-1 was not only expressed on the basal,
but also on the luminal, side of the plasma membrane of
bile duct epithelial cells, whereas LFA-1 was detected in
lymphocytes around and among damaged bile duct epi-
thelial cells. UDCA therapy reduces ICAM-1 and LFA-1
expression at all of these sites [224], and this effect was
additive with that afforded by corticoid therapy [225].

The immunomodulatory effects of UDCA in PBC
were not consistently observed in other autoimmune
hepatopathies. For example, UDCA therapy failed to
counteract the increase in serum TNF-α and IL-8 levels in
PSC patients and the overexpression of MHC-I/MHC-
II and ICAM-1 [212]. Therefore the immunomodulatory
properties of UDCA should be analysed in the context
of each autoimmune hepatic disease in particular.

FUTURE DIRECTIONS

There have been extraordinary advances in the
understanding of the anti-cholestatic mechanisms of
UDCA over the last few years. This novel knowledge
has allowed us to envisage and successfully test new
therapeutic applications, even beyond liver disease.

There are certainly many additional beneficial
properties of UDCA to be discovered, as well as many
details to be revealed on some of its well-established, but
poorly understood, therapeutic properties. The present
scientific efforts are focused on taking advantage of the
more precise knowledge of the molecular events that
occur in every disease to design more ‘personalized’
therapeutic strategies for each situation. In this regard,
post-treatment monitoring of the decrease in selective
bile acids in serum identified to mark disease severity or
the increase in others known to aggravate the disease,
including the excessive increase in unconjugated UDCA
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to potentials dangerous levels, may help to establish the
ideal UDCA dosage for each hepatopathy.

A number of alternative drugs are currently being
tested in pre-clinical studies for the treatment of cho-
lestatic disease, including selective modulators of nuclear
receptors and signalling pathways thought to mediate
cholestasis. It will be difficult, however, to find substitutes
more innocuous than UDCA and that combine in just
one molecule so many simultaneous salutary effects
with similar efficacy. This is particularly critical in
cholestatic diseases, since they affect a multifunctional
organ like the liver, in which the primary imbalance
caused by the retention of potentially toxic metabolites
triggers multiple pathophysiological changes that affect
the general homoeostasis of the body. On this basis, we
predict a still long reign of UDCA as ‘the’ therapeutic
agent of choice in cholestasis.
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