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a b s t r a c t

The Blocking Lemma identifies a particular blocking pair for each non-stable and individ-
ually rational matching that is preferred by some agents of one side of the market to their
optimal stable matching. Its interest lies in the fact that it has been an instrumental result
to prove key results on matching. For instance, the fact that in the college admissions prob-
lem the workers-optimal stable mechanism is group strategy-proof for the workers and the
strong stability theorem in the marriage model follow directly from the Blocking Lemma.
However, it is known that the Blocking Lemma and its consequences do not hold in the
general many-to-one matching model in which firms have substitutable preference rela-
tions. We show that the Blocking Lemma holds for the many-to-one matching model in
which firms’ preference relations are, in addition to substitutable, quota q-separable. We
also show that the Blocking Lemma holds on a subset of substitutable preference profiles if
and only if the workers-optimal stable mechanism is group strategy-proof for the workers
on this subset of profiles.

© 2010 Published by Elsevier B.V.

1. Introduction

Two-sided, many-to-one matching models study assignment problems where a finite set of agents can be divided into
two disjoint subsets: the set of institutions (called firms) and the set of individuals (called workers). Each firm has a preference
relation on all subsets of workers and each worker has a preference relation on the set of firms plus the prospect of remaining
unmatched. A preference profile is a list of preference relations, one for each agent. A matching assigns each firm with a
subset of workers (possibly empty) in such a way that each worker can work for at most one firm. Given a preference profile
a matching is called stable if all agents have acceptable partners (individual rationality) and there is no unmatched worker-
firm pair who both would prefer to be matched to each other rather than staying with their current partners (pair-wise
blocking).

The “college admissions model with substitutable preferences” is the name given by Roth and Sotomayor (1990) to the
most general many-to-one model with ordinal preferences in which stable matchings exist. Each firm is restricted to have
a substitutable preference relation on all subsets of workers; namely, each firm continues to want to employ a worker even
if other workers become unavailable (Kelso and Crawford, 1982 were the first to use this property in a more general model
with money). For each substitutable preference profile the deferred-acceptance algorithms produce either the firms-optimal
stable matching or the workers-optimal stable matching, depending on whether the firms or the workers make the offers.
The firms (workers)-optimal stable matching is unanimously considered by all firms (respectively, workers) to be the best
matching among all stable matchings.
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A more specific many-to-one model, called the “college admissions problem” by Gale and Shapley (1962), supposes that
firms have a maximum number of positions to be filled (their quota), and that each firm, given its ranking of individual
workers, orders subsets of workers in a responsive manner; namely, for any two subsets that differ in only one worker a
firm prefers the subset containing the most preferred worker.1 In this model the Blocking Lemma says the following. Fix a
responsive preference profile. Suppose that the set of workers that strictly prefer an individually rational matching to the
workers-optimal stable matching is nonempty. Then, we can always find a firm and a worker with the following properties:
(a) the firm and the worker block the individually rational matching, (b) the firm was hiring another worker who strictly
prefers the individually rational matching to the workers-optimal stable matching, and (c) the worker (member of the
blocking pair) considers the workers-optimal stable matching to be at least as good as the individually rational matching.
The interest of the Blocking Lemma lies in the fact that it is an instrumental result to prove key results on matching. For
instance, the fact that in the college admissions problem the workers-optimal stable mechanism is group strategy-proof for
the workers (Dubins and Freedman, 1981)2 and the strong stability theorem in the marriage model (Demange et al., 1987)
follow directly from the Blocking Lemma. The first result says that if in centralized markets (like entry-level professional
labor markets or the admission of students to colleges) a mechanism selects for each preference profile its corresponding
workers-optimal stable matching then, no group of workers can never benefit by reporting untruthfully their preference
relations. This is an important property and it becomes critical if the market has to be redesigned, in which case the declared
preference profile conveys very valuable information. The second result says that every non-stable matching is either non-
individually rational or we can identify a blocking pair (a firm and a worker) and another stable matching such that both
members of the blocking pair weakly prefer to the original one.

It is known that the Blocking Lemma does not hold for the many-to-one matching model with substitutable preference
profiles. The purpose of this paper is two-fold. First, we consider a weaker condition than responsiveness, called quota
q-separability, that together with substitutability implies that the Blocking Lemma holds for all these preference profiles
(Theorem 1).3 A firm is said to have a separable preference relation over all subsets of workers if its partition between
acceptable and unacceptable workers has the property that only adding acceptable workers makes any given subset of
workers a better one. However, in many applications such as entry-level professional labor markets, separability alone does
not seem very reasonable because firms usually have fewer openings (their quota) than the number of “good” workers looking
for a job. In these cases it seems reasonable to restrict the preference relations of firms in such a way that the separability
condition operates only up to their quota, considering unacceptable all subsets with higher cardinality. Moreover, while
responsiveness seems the relevant property for extending an ordered list of individual students to a preference relation
on all subsets of students, it is too restrictive, though, to capture some degree of complementarity among workers, which
can be very natural in other settings. The quota q-separability condition permits greater flexibility in going from orders on
individuals to orders on subsets. For instance, candidates for a job can be grouped together by areas of specialization. A firm
with quota two may consider as the best subset of workers not the set consisting of the first two candidates on the individual
ranking (which may have both the same specialization) but rather the subset composed of the first and fourth candidates in
the individual ranking (i.e., the first in each area of specialization).

Second, we show (in Theorem 2) that the Blocking Lemma holds on a subset of substitutable preference profiles (not
necessarily quota q-separable) if and only if the workers-optimal stable mechanism is group strategy-proof for the workers
on this subset of profiles. This means that, in contrast with what the literature has considered so far, the Blocking Lemma is
more fundamental than just a key step to prove general results like group strategy-proofness of the workers-optimal stable
mechanism for the workers. Observe that our former result (Martínez et al., 2004) showing that the workers-optimal stable
mechanism is group strategy-proof for the workers on the set of substitutable and quota q-separable preference profiles
was proved assuming that the Blocking Lemma was true on the set of all these profiles. Hence, Theorem 2 and our former
result does not imply that the Blocking Lemma holds on the set of all substitutable and quota q-separable preference profiles.
Theorem 1 states that this is indeed the case.

The paper is organized as follows. In Section 2, which closely follows Martínez et al. (2004), we present the preliminary
notation and definitions. In Section 3 we present the Blocking Lemma and state, in Theorem 1, that it holds on the set of all
substitutable and q-separable preference profiles. In Section 4 we state and prove the equivalence, on any subset of substi-
tutable preference profiles (not necessarily quota q-separable), between the Blocking Lemma and group strategy-proofness

1 Observe that the marriage model (i.e., the one-to-one matching model) is a particular instance of the “college admissions problem” when all firms have
quota one.

2 To be precise, they show it for the marriage model, but their result can be extended to the college admissions problem. Some results concerning stability
in the college admissions problem are immediate consequences of the fact that they hold for the marriage model. Each college is split into as many pieces as
positions it has, so transforming the original many-to-one model into a one-to-one model. Responsiveness allows then the translation of stability from one
model to another. See Roth and Sotomayor (1990) for a complete description of this procedure as well as for its applications. Observe that this reduction
is possible only if preferences are responsive.

3 We have already showed that if firms have substitutable and quota q-separable preference profiles then, (a) the set of unmatched agents is the same in
all stable matchings (Martínez et al., 2000), (b) the set of stable matchings has a lattice structure with two natural binary operations (Martínez et al., 2001),
(c) the workers-optimal stable matching is weakly Pareto optimal for the workers, relative to the set of individually rational matchings (Martínez et al.,
2004), and (d) the workers-optimal stable mechanism is group strategy-proof for the workers (Martínez et al., 2004). This last result is proven assuming
that the Blocking Lemma holds for all substitutable and quota q-separable preference profiles; here, we are providing a proof that this is indeed the case.



R. Martínez et al. / Journal of Mathematical Economics 46 (2010) 937–949 939

of the workers-optimal stable mechanism for the workers. In Section 5 we conclude with an example of a substitutable and
quota q-separable preference profile for which the symmetric Blocking Lemma for the firms does not hold. We collect all
proofs in two Appendices at the end of the paper.

2. Preliminaries

There are two disjoint sets of agents, the set of n firms F = {f1, . . ., fn} and the set of m workers W = {w1, . . . , wm}. Generic
elements of both sets will be denoted, respectively, by f, f̄ , and f̃ , and by w, w̄, and w̃. Each worker w∈W has a strict,
transitive, and complete preference relation P(w) over F ∪{∅ }, and each firm f ∈ F has a strict, transitive, and complete
preference relation P(f) over 2W. Preference profiles are (n + m)-tuples of preference relations and they are represented by
P = (P(f1), . . . , P(fn); P(w1), . . . , P(wm)). Given a preference relation of a firm P(f) the subsets of workers preferred to the
empty set by f are called acceptable. Similarly, given a preference relation of a worker P(w) the firms preferred by w to the
empty set are called acceptable. Therefore, we are allowing for the possibility that firm f may prefer not to hire any worker
rather than to hire unacceptable subsets of workers and that worker w may prefer to remain unemployed rather than to
work for an unacceptable firm. To express preference relations in a concise manner, and since only acceptable partners will
matter, we write acceptable partners in the order of decreasing preference. For instance,

P(fi) : w1w3, w2, w1,∅
P(wj) : f1, f3,∅

mean that {w1, w3}P(fi){w2}P(fi){w1}P(fi)∅ and f1P(wj)f3P(wj)∅.
A market is a triple (F, W, P), where F is a set of firms, W is a set of workers, and P is a preference profile. Given a market

(F, W, P) the assignment problem consists of matching workers with firms, keeping the bilateral nature of their relationship
and allowing for the possibility that both firms and workers, may remain unmatched. Formally,

Definition 1. A matching � is a mapping from the set F ∪ W into the set of all subsets of F ∪ W such that for all w ∈ W and
f ∈ F:

(a) Either |�(w)| = 1 and �(w) ⊆ F or else �(w) = ∅.
(b) �(f) ∈ 2W.
(c) �(w) = {f } if and only if w ∈ �(f ).

Condition (a) says that a worker can either be matched to at most one firm or remain unmatched. Condition (b) says that
a firm can either hire a subset of workers or be unmatched. Finally, condition (c) states the bilateral nature of a matching in
the sense that firm f hires worker w if and only if worker w works for firm f. We say that w and f are unmatched in a matching
� if �(w) = ∅ and �(f) =∅. Otherwise, they are matched. A matching � is said to be one-to-one if firms can hire at most
one worker; namely, condition (b) in Definition 1 is replaced by: Either |�(f) | = 1 and �(f) ⊆ W or else �(f) =∅. The model in
which all matchings are one-to-one is also known in the literature as the marriage model. The model in which all matchings
are many-to-one (i.e., they satisfy Definition 1) and firms have responsive preferences4 is also known in the literature as
the college admissions problem (Gale and Shapley, 1962). To represent matchings concisely we will follow the widespread
notation where, for instance, given F = {f1, f2, f3} and W = {w1, w2, w3, w4},

� =
(

f1 f2 f3 ∅
w3w4 w1 ∅ w2

)

represents the matching where firm f1 is matched to workers w3 and w4, firm f2 is matched to worker w1, and firm f3 and
worker w2 are unmatched. Given a matching � and two subsets F′ ⊆ F and W′ ⊆ W we denote by �(F′) and �(W′) the sets
{w ∈ W |�(w) ∈ F ′} and {f ∈ F |∃w ∈ W ′ such that w ∈ �(f )}, respectively; i.e., �(F ′) =

⋃
f ∈ F ′ �(f ) and �(W ′) =

⋃
w ∈ W ′ �(w).

Let P be a preference profile. Given a set of workers S ⊆ W, let Ch(S, P(f)) denote firm f’s most-preferred subset of S according
to its preference relation P(f). Generically we will refer to this set as the choice set.

A matching � is blocked by worker w if ∅P(w)�(w). A matching � is blocked by firm f if �(f) /= Ch(�(f), P(f)). We say that
a matching is individually rational if it is not blocked by any individual agent. We will denote by IR(P) the set of individually
rational matchings. A matching � is blocked by a firm–worker pair (f, w) if w /∈ �(f ), w ∈ Ch(�(f ) ∪ {w}, P(f )), and fP(w)�(w).

Definition 2. A matching � is stable if it is not blocked by any individual agent nor any firm–worker pair.

Given a preference profile P, denote the set of stable matchings by S(P). It is easy to construct examples of preference
profiles with the property that the set of stable matchings is empty. These examples share the feature that at least one
firm regards a subset of workers as being complements. This is the reason why the literature has focused on the restriction

4 Roughly, for any two subsets of workers that differ in only one worker a firm prefers the subset containing the most-preferred worker. See Roth and
Sotomayor (1990) for a precise and formal definition of responsive preferences as well as for a masterful and illuminating analysis of these models and an
exhaustive bibliography.
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where workers are regarded as substitutes (Kelso and Crawford, 1982 were the first to introduce the notion of substitutable
preferences).

Definition 3. A firm f’s preference relation P(f) satisfies substitutability if for any set S containing workers w and w′(w /= w′),
if w ∈ Ch(S, P(f )) then w ∈ Ch(S \ {w′}, P(f )).

A preference profile P is substitutable if for each firm f, the preference relation P(f) satisfies substitutability.
Blair (1988) shows that the choice set of substitutable preference relations have the following property.

Remark 1. Let P(f) be a substitutable preference relation and assume A and B are two subsets of workers. Then, Ch(A ∪ B,
P(f)) = Ch(Ch(A, P(f)) ∪ B, P(f)).

Kelso and Crawford (1982) shows that (in a more general model with money) if all firms have substitutable preference
relations then: (1) the set of stable matchings is nonempty, and (2) firms unanimously agree that a stable matching �F is the
best stable matching. Roth (1984) extends these results and shows that if all firms have substitutable preference relations
then: (3) workers unanimously agree that a stable matching �W is the best stable matching,5 and (4) the optimal stable
matching for one side is the worst stable matching for the other side. That is, S(P) /= ∅ and for all � ∈ S(P) we have that
�FR(f)�R(f)�W for all f ∈ F and �W R(w)�R(w)�F for all w ∈ W .

The deferred-acceptance algorithm, originally defined by Gale and Shapley (1962) for the marriage model, produces either
�F or �W depending on who makes the offers. At any step k of the algorithm in which firms make offers, a firm proposes itself
to the choice set of the set of workers that have not already rejected it during the previous steps, while a worker accepts the
offer of the best firm among the set of current offers plus the one made by the firm provisionally matched in the previous
step (if any). The algorithm stops at step K̄ at which all offers are accepted; the (provisional) matching then becomes definite
and it is the firms-optimal stable matching �F. Symmetrically, at any step k of the algorithm in which workers make offers,
a worker proposes himself to the best firm among the set of firms that have not already rejected him during the previous
steps, while a firm accepts the choice set of the set of current offers plus that of the workers provisionally matched in the
previous step (if any). The algorithm stops at step K at which all offers are accepted; the (provisional) matching then becomes
definite and it is the workers-optimal stable matching �W.

Let P be a substitutable preference profile. In the proofs of Theorems 1 and 2 we will use properties of the deferred-
acceptance algorithm in which workers make offers. For this reason we present the following notation. For all f ∈ F, the set

O(f ) = {w ∈ W |fR(w)�W (w)}
is the set of workers that make an offer to f along the deferred-acceptance algorithm in which workers make offers and
whose outcome is matching �W. For any step 1 ≤ k < K, let Ok(f) denote the set of workers that make an offer to f at k or at
earlier steps. Obviously, for all f ∈ F,

O1(f ) ⊆ . . . ⊆ Ok(f ) ⊆ . . . ⊆ OK (f ) = O(f ).

Moreover, for all f ∈ F,

�W (f ) = Ch(O(f ), P(f )). (1)

Example 1 below (taken from Martínez et al., 2004) illustrates the deferred-acceptance algorithm in which workers make
offers.

Example 1. Let F = {f1, f2, f3} and W = {w1, w2, w3, w4} be the two sets of agents with the substitutable preference profile
P, where

P(f1) : w1w2, w2, w1, w4,∅,
P(f2) : w3, w2w4, w1w2, w4, w1, w2,∅,
P(f3) : w4, w1, w3,∅,
P(w1) : f2, f3, f1,∅,
P(w2) : f2, f1,∅,
P(w3) : f3, f2,∅,
P(w4) : f2, f1, f3,∅.

The table below summarizes the 6 steps of the deferred-acceptance algorithm in which workers make offers with the
corresponding offer sets, choice sets, and rejected workers for each of the three firms (we omit the brackets in the sets and
write, for each fi, Ok

i
and Chk

i
instead of Ok(fi) and Ch(Ok(fi), P(fi)), respectively).

5 The matchings �F and �W are called, respectively, the firms-optimal stable matching and the workers-optimal stable matching. We are following the
convention of extending preference relations from the original sets (2W for the firms and F ∪{∅ } for the workers) to the set of matchings. However, we
now have to consider weak orderings since the matchings � and �′ may associate to an agent the same partner. These orderings will be denoted by R(f) and
R(w). For instance, to say that all firms prefer �F to any stable � means that for every f ∈ F we have that �FR(f)� for all stable � (that is, either �F(f) = �(f)
or else �F(f)P(f)�(f)).



R. Martínez et al. / Journal of Mathematical Economics 46 (2010) 937–949 941

f1 f2 f3

k Ok
1 Chk

1 Rejects Ok
2 Chk

2 Rejects Ok
3 Chk

3 Rejects

1 ∅ ∅ − w1, w2, w4 w2, w4 w1 w3 w3 −
2 ∅ ∅ − w1, w2, w4 w2, w4 − w1, w3 w1 w3

3 ∅ ∅ − w1, w2, w3, w4 w3 w2, w4 w1, w3 w1 −
4 w2, w4 w2 w4 w1, w2, w3, w4 w3 − w1, w3 w1 −
5 w2, w4 w2 − w1, w2, w3, w4 w3 − w1, w3, w4 w4 w1

6 w1, w2, w4 w1, w2 − w1, w2, w3, w4 w3 − w1, w3, w4 w4 −

The algorithm terminates at step 6 (i.e., K = 6), when no worker is rejected, and the provisional matching then becomes
definite. For all f ∈ F, O(f) = O6(f) and Ch(O(f), P(f)) = �W(f); namely,

�W =
(

f1 f2 f3
w1w2 w3 w4

)

is the workers-optimal stable matching.
A firm f has a separable preference relation if the division between good workers ({w}P(f )∅) and bad workers (∅P(f ){w})

guides the ordering of subsets in the sense that adding a good worker leads to a better set, while adding a bad worker leads
to a worse set.6 Formally,

Definition 4. A firm f’s preference relation P(f) satisfies separability if for all S ⊆ W and w /∈ S we have that (S ∪ {w})P(f )S if
and only if {w}P(f )∅.

A preference profile P is separable if for each firm f, the preference relation P(f) satisfies separability.

Remark 2. All separable preference relations are substitutable. To see this, just note that if P(f) is separable then, for every
S ⊆ W, Ch(S, P(f )) = {w ∈ S|{w}P(f )∅}. Moreover, the preference relation

P(f ) : w1, w1w2, w2,∅

shows that not all substitutable preference relations are separable.

Sönmez (1996) shows that if firms have separable preference relations then there exists a unique stable matching. A
simple way to construct this unique stable matching � is as follows: for each w ∈ W , let �(w) be the maximal element,
according to P(w), on the set of firms for which w is an acceptable worker; i.e., {f ∈ F |{w}P(f )∅}. The stability of � follows
directly from separability of firms’ preferences.

Here, we will assume that each firm f has, in addition to a substitutable and separable preference relation, a maximum
number of positions to be filled: its quota qf. This limitation may arise from, for example, technological, legal, or budgetary
reasons. Since we are interested in stable matchings we introduce this restriction by incorporating it into the preference
relation of the firm. The college admissions problem with responsive preference profiles (Gale and Shapley, 1962) incorpo-
rates the quota restriction of each firm by imposing a limit on the number of workers that a firm may admit. However, from
the point of view of stability, this is equivalent to supposing that all sets of workers with cardinality larger than the quota
are unacceptable for the firm. Therefore, even if the number of good workers for firm f is larger than its quota qf, all sets of
workers with cardinality strictly larger than qf will be unacceptable. Formally,

Definition 5. A firm f’s preference relation P(f) over sets of workers is qf − separable if:

(a) For all S�W such that | S |<qf and w /∈ S we have that (S ∪ {w})P(f )S if and only if {w}P(f )∅.
(b) ∅P(f)S for all S such that | S |>qf.7

We will denote by q = (qf)f∈F the list of quotas and we will say that a preference profile P is quota q-separable if each P(f)
is quota qf-separable. In principle we may have firms with different quotas. The case where all firms have quota 1-separable
preference relations is equivalent, from the point of view of the set of stable matchings, to the marriage model. Hence, our
set-up includes the marriage model as a particular case. In general, and given a list of quotas q, the sets of separable and
quota q-separable preference relations are unrelated. Moreover, quota q-separability does not imply substitutability and the
set of responsive preference relations is a strict subset of the set of quota qf-separable and substitutable preference relations.

6 This condition has been extensively used in social choice; see, for instance, Barberà et al. (1991). It has also been used in matching models; see, for
instance, Alkan (2001), Dutta and Massó (1997), Ehlers and Klaus (2003), Martínez et al. (2000), Martínez et al. (2001), Martínez et al. (2004), Papai (2000),
and Sönmez (1996).

7 For the purpose of studying the set of stable matchings, condition (b) in this definition could be replaced by the following condition: | Ch(S, P(f)) |≤qf

for all S such that | S |>qf . We choose condition (b) since it is simpler. Sönmez (1996) uses an alternative approach which consists of deleting condition (b)
in the definition but then requiring in the definition of a matching that | �(f) |≤qf for all f ∈ F. Notice that in his approach the set of separable preference
relations of firm f is quota qf-separable for all qf .
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There are quota q-separable preference profiles for which the set of stable matchings is empty (see Example 1 in Martínez
et al., 2004).

3. The Blocking Lemma

The Blocking Lemma is a statement relative to a substitutable preference profile. Given a substitutable preference profile
P, the Blocking Lemma states that if the set of workers that strictly prefer an individually rational matching � to �W is
nonempty then, we can always find a blocking pair (f, w) of � with the property that f was hiring at � a worker strictly
preferring � to �W and w considers �W being at least as good as �. Formally,

Definition 6 (The Blocking Lemma). Let P be a substitutable preference profile and let � ∈ IR(P). Denote by W ′ =
{w ∈ W |�(w)P(w)�W (w)} the set of workers who strictly prefer � to �W. Assume W′ is nonempty. We say that the Blocking
Lemma holds at P if there exist f ∈ �(W′) and w ∈ W \ W ′ such that the pair (f, w) blocks �.

Let P̃ be a subset of substitutable preference profiles. We say that the Blocking Lemma holds on P̃ if it holds at all P ∈ P̃.
Gale and Sotomayor (1985) proved the Blocking Lemma for the marriage model (i.e., the Blocking Lemma holds on the

set of all profiles of preference relations in which each agent only orders the set of individual agents of the other side of
the market plus the prospect of remaining unmatched). Using the decomposition described in Footnote 2, it is easy to see
that the Blocking Lemma also holds for the college admission problem (i.e., on the set of all responsive preference profiles).
In Martínez et al. (2004) we exhibit an example (Example 1 above used to illustrate the deferred-acceptance algorithm in
which workers make offers) of a substitutable preference profile P for which the Blocking Lemma does not hold at P. For
completeness, we reproduce below why the Blocking Lemma does not hold at P.

Example 1 (Continued). Consider F, W, and the substitutable preference profile P of Example 1. As we have already found,
the workers-optimal stable matching is

�W =
(

f1 f2 f3
w1w2 w3 w4

)
.

The individually rational matching

� =
(

f1 f2 f3
w4 w1w2 w3

)

has the property that for all w ∈ W , �(w)P(w)�W (w). Hence, W \ W′ =∅ since W ′ = {w ∈ W |�(w)P(w)�W (w)} = W . Therefore,
we cannot find w ∈ W \ W ′ and f ∈ �(W′) such that (f, w) blocks �. Thus, the conclusion of the Blocking Lemma does not hold
at P.

Theorem 1. The Blocking Lemma holds on the set of all substitutable and quota q-separable preference profiles.

The proof of Theorem 1 is in Appendix A.

4. Blocking Lemma and group strategy-proofness

Many real matching markets are centralized. A centralized matching market consists of a clearinghouse that, after asking
each agent to report a preference relation, proposes a matching. This defines a mechanism. A mechanism is stable if it
proposes, for each reported preference profile, a stable matching.8 Formally, let P̄ be a domain of preference profiles and let
M be the set of all matchings. A mechanism h : P̄ → M maps each preference profile P ∈ P̄ to a matching h(P) ∈M. Therefore,
h(P)(f) is the set of workers assigned to f and h(P)(w) is the firm assigned to w (if any) at preference profile P ∈ P̄by mechanism
h. A mechanism h : P̄ → M is stable if for all P ∈ P̄, h(P) ∈ S(P).

Let S be the set of substitutable preference relations of any firm on 2W and let T be the set of all preference relations
of any worker on F ∪{∅ }. The set of all substitutable preference profiles can be written as the set P = SF × TW . Let S̃ be a
subset of substitutable preference relations for any firm and let P̃ = S̃F × TW .9 To emphasize the role of a subset of workers
Ŵ we will write the preference profile P ∈ P̃ as (PW , P−W ). Therefore, given P ∈ P̃, Ŵ ⊆ W, and P ′

Ŵ
∈ TŴ , we write (P ′

Ŵ
, P−Ŵ )

to denote the preference profile P′ obtained from P after replacing PŴ ∈ TŴ by P ′
Ŵ

∈ TŴ . Mechanisms require each agent to
report some preference relation. A mechanism is group strategy-proof for the workers if for all subsets of workers they can
never obtain better partners by revealing their preference relations untruthfully. Formally,

8 The National Resident Matching Program is a very well-know example of a centralized entry-level professional labor market in the U.S.A. that uses a
stable mechanism to match yearly around 20,000 medical students to hospital programs to undertake their medical internship (see Roth and Sotomayor,
1990 for a description an analysis of this market). See Roth and Xing (1994) for a discussion of many centralized matching markets.

9 Observe that the domain of preference relations of the workers is unrestricted while the domain of preference relations of the firms may be any subset
of substitutable preference relations.
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Definition 7. A mechanism h : P̃ → M is group strategy-proof for the workers if for all preference profiles P ∈ P̃, all subsets
of workers Ŵ ⊆ W, and all reports P ′

Ŵ
∈ TŴ ,

h(P)(w)R(w)h(P′
Ŵ

, P−Ŵ )(w)

for some w ∈ Ŵ .

We say that hW : P̃ → M is the workers-optimal stable mechanism if it always selects the workers-optimal stable matching;
that is, for all P ∈ P̃, hW(P) is the workers-optimal stable matching relative to P. Theorem 2 below states that the Blocking
Lemma and group strategy-proofness of the workers-optimal stable mechanism for the workers are equivalent on any subset
of substitutable preference profiles P̃ = S̃F × TW .

Theorem 2. The Blocking Lemma holds on P̃ if and only if the workers-optimal stable mechanism hW : P̃ → M is group strategy-
proof for the workers.

The proof of Theorem 2 is in Appendix B at the end of the paper.

5. Concluding remark

One may ask whether or not the symmetric Blocking Lemma for the firms also holds on the same set of preference profiles
for which the Blocking Lemma holds for the workers. The answer is negative because it does not even hold on the smaller
subset of responsive preference profiles. Example 2 (taken from Roth, 1985) contains a substitutable and quota q-separable
preference profile P for which the Blocking Lemma for the firms does not hold at P.

Example 2. Let F = {f1, f2, f3}and W = {w1, w2, w3, w4} be the two sets of agents with the (2, 1, 1)-separable and substitutable
preference profile P,10 where

P(f1) : w1w2, w1w3, w2w3, w1w4, w2w4, w3w4, w1, w2, w3, w4,∅,
P(f2) : w1, w2, w3, w4,∅,
P(f3) : w3, w1, w2, w4,∅,
P(w1) : f3, f1, f2,∅,
P(w2) : f2, f1, f3,∅,
P(w3) : f1, f3, f2,∅,
P(w4) : f1, f2, f3,∅.

The firms-optimal stable matching is

�F =
(

f1 f2 f3
w1w4 w2 w3

)
.

Consider the individually rational matching

� =
(

f1 f2 f3
w1w4 w2 w3

)
.

The set of firms that prefer � to �F is F′ ≡ {f ∈ F | �(f)P(f)�F(f)}= {f1, f3}. Thus, F \ F′ = {f2}. However, f2 can only block � together
with w1, but �(w1) = f1P(w1)f2. Hence, the Blocking Lemma for the firms does not hold at P. Note that this profile is used in
Roth (1985) to show that, in the college admissions problem, the deferred-acceptance algorithm in which firms make offers
is not strategy-proof for the firms.
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Appendix A. Proof of Theorem 1

Through out all this appendix we will assume that P is a substitutable and quota q-separable preference profile and that
� ∈ IR(P). The set of workers who strictly prefer � to �W will be denoted by W ′ = {w ∈ W |�(w)P(w)�W (w)} and we will
assume that W′ is nonempty.

In the proof of the Blocking Lemma for the marriage model (i.e., qf = 1 for all f ∈ F), the firm f that, together with a worker w,
blocks � is matched at � because f ∈ �(W′); that is, f fills its quota at � (i.e., |�(f) | = qf = 1). In the proof of the Blocking Lemma
for the many-to-one model, the firm f that, together with a worker w, blocks � is also matched at � because f ∈ �(W′), but
now it will be necessary to consider separately the case in which f does not fill its quota at � (i.e., | �(f) |<qf) from the case
in which f fills its quota at � (i.e., |�(f) | = qf). Proposition 1 considers the case where | �(f) |<qf. For the case where |�(f) | = qf
the proof of the Blocking Lemma will also be decomposed, as in the marriage model, into two propositions depending on
whether or not �(W′) = �W(W′) holds (Proposition 2 for the simple case where they are different and Proposition 3 for the
more involved case where they are equal). However, before proving these three propositions, we prove a series of three
lemmata that will be used in the proof of all three propositions since they hold regardless of whether or not �(W′) = �W(W′)
and whether or not all firms in �(W′) fill their quota at �.

Lemma 1. For each f ∈ �(W′), |�W(f) | = qf.

Proof. Assume otherwise and let f′ ∈ �(W′) be such that |�W (f ′)| < qf ′ . Since W′ is nonempty and f′ ∈ �(W′) there exists
w′ ∈ W ′ such that f ′ = �(w′)P(w′)�W (w′), which implies that w′ /∈ �W (f ′). Moreover, � ∈ IR(P), quota qf ′ -separability of P(f′),
and |�W (f ′)| < qf ′ imply w′ ∈ Ch(�W (f ′) ∪ {w′}, P(f ′)). Thus, (f ′, w′) blocks �W, which is a contradiction. �

Lemma 2. Assume there exist f ∈ �(W′) and w ∈ Ch(�(f ) ∪ �W (f ), P(f )) \ {[�W (f ) ∩ W ′] ∪ [�(f ) ∩ (W \ W ′)]}. Then w ∈ W \ W ′,
and (f, w) blocks �.

Proof. Since w ∈ Ch(�(f ) ∪ �W (f ), P(f )) and w /∈ [�W (f ) ∩ W ′] ∪ [�(f ) ∩ (W \ W ′)], we have that either w ∈ W ′ and w ∈ �(f ) \
�W (f ) or w ∈ W \ W ′ and w ∈ �W (f ) \ �(f ). Assume w ∈ W ′ and w ∈ �(f ) \ �W (f ). Then,

f = �(w)P(w)�W (f ). (2)

Moreover, w ∈ Ch(�(f ) ∪ �W (f ), P(f )) implies, by substitutability of P(f), that w ∈ Ch(�W (f ) ∪ {w}, P(f )), which together with
(2) imply that (f, w) blocks �W. Therefore, we can assume that w ∈ W \ W ′ and w ∈ �W (f ) \ �(f ). Then,

f = �W (w)P(w)�(w). (3)

Moreover, w ∈ Ch(�(f ) ∪ �W (f ), P(f )) implies, by substitutability of P(f), that w ∈ Ch(�(f ) ∪ {w}, P(f )), which together with
(3) imply that (f, w) blocks �. �

By Remark 1 and condition (1), Lemma 2 can also be stated as follows.

Remark 3. Assume there exist f ∈ �(W′) and w ∈ Ch(�(f ) ∪ O(f ), P(f )) \ {[�W (f ) ∩ W ′] ∪ [�(f ) ∩ (W \ W ′)]}. Then w ∈ W \ W ′,
and (f, w) blocks �.

Lemma 3. Assume there exists f ∈ �(W′) such that | �(f) ∩ W′ | /= | �W(f) ∩ W′ |. Then, there exist f̃ ∈ �(W ′) and w ∈ W \ W ′ such
that (f̃ , w) blocks �.

Proof. It follows from Claims 1 and 2 below. �

Claim 1. Assume there exists f ∈ �(W′) such that | �(f) ∩ W′ |>| �W(f) ∩ W′ |. Then, there exists w ∈ W \ W ′ such that (f, w) blocks
�.

Proof of Claim 1. Assume f ∈ �(W′). We will first show that | �(f) ∩ W′ |>| �W(f) ∩ W′ | implies that there exists w ∈ Ch(�(f ) ∪
�W (f ), P(f )) \ {[�W (f ) ∩ W ′] ∪ [�(f ) ∩ (W \ W ′)]}. To see this, first observe that, by Lemma 1, |�W(f) | = qf. Moreover,

|�W (f )| = |�W (f ) ∩ W ′| + |�W (f ) ∩ (W \ W ′)| = qf

and

|�(f )| = |�(f ) ∩ W ′| + |�(f ) ∩ (W \ W ′)| ≤ qf . (4)

By hypothesis and (4), | �W(f) ∩ W′ |+| �(f) ∩ (W \ W′) | < qf. By |�W(f) | = qf, �W(f) ⊆ �(f) ∪ �W(f), and qf-separability of P(f),
|Ch(�(f) ∪ �W(f), P(f)) | = qf. Hence, there exists

w ∈ Ch(�(f ) ∪ �W (f ), P(f )) \ {[�W (f ) ∩ W ′] ∪ [�(f ) ∩ (W \ W ′)]}.

By Lemma 2, (f, w) blocks �. �

Claim 2. Assume there exists f ∈ �(W′) such that | �(f) ∩ W′ |<| �W(f) ∩ W′ |. Then, there exist f̃ ∈ �(W ′) and w ∈ W \ W ′ such that
(f̃ , w) blocks �.
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Proof of Claim 2. By definition, W ′ = ∪f ∈ �(W ′)(�(f ) ∩ W ′). Thus, ∪f ∈ �(W ′)(�(f ) ∩ W ′) ⊆ W ′. Therefore,

|W ′| =
∑

f̄ ∈ �(W ′)

|�(f̄ ) ∩ W ′| ≥
∑

f̄ ∈ �(W ′)

|�W (f̄ ) ∩ W ′|.

Hence, by the hypothesis that there exists f ∈ �(W′) such that | �(f) ∩ W′ |<| �W(f) ∩ W′ |, there exists f̃ ∈ �(W ′) with the prop-
erty that |�(f̃ ) ∩ W ′| > |�W (f̃ ) ∩ W ′|. This f̃ satisfies the hypothesis of Claim 1, and hence, there exists w ∈ W \ W ′ such that
(f̃ , w) blocks �. �

Proposition 1. Assume f ∈ �(W′) is such that | �(f) |<qf.11Then, there exist f̃ ∈ �(W ′) and w ∈ W \ W ′ such that (f̃ , w) blocks �.

Proof. Let f ∈ �(W′) be such that | �(f) |<qf. By Lemma 1, |�W(f) | = qf. We consider two cases:

Case 1. | �(f) ∩ W′ | /= | �W(f) ∩ W′ |. By Lemma 3, there exist f̃ ∈ �(W ′) and w ∈ W \ W ′ such that (f̃ , w) blocks �.
Case 2. |�(f) ∩ W′ | = | �W(f) ∩ W′ |. Then, | �(f) ∩ (W \ W′) |<| �W(f) ∩ (W \ W′) | since | �(f) |<qf = | �W(f) |. Hence, there exists
w ∈ (�W (f ) ∩ (W \ W ′)) \ (�(f ) ∩ (W \ W ′)). In particular, w ∈ (�W (f ) ∩ (W \ W ′)) \ �(f ). Therefore, since w /∈ W ′, w /∈ �(f ),
and w = �W (f ) we have that

fP(w)�(w). (5)

Moreover, by quota qf-separability of P(f) and the individual rationality of �W, w is a good worker for f. Hence, | �(f) |<qf
implies

w ∈ Ch(�(f ) ∪ {w}, P(f )). (6)

Conditions (5) and (6) say that f ∈ �(W′) and w ∈ W \ W ′ are such that (f, w) blocks �. �

Proposition 2. Assume �(W′) /= �W(W′) and, for all f ∈ �(W′), |�(f) | = qf. Then, there exist f ∈ �(W′) and w ∈ W \ W ′ such that
(f, w) blocks �.

Proof. Consider the following two cases:

Case 1. There exists f ∈ �(W′) \ �W(W′). Thus, there is w′ ∈ W ′ such that w′ ∈ �(f ), implying | �(f) ∩ W′ |≥1. Moreover,
f /∈ �W(W′) implies that |�W(f) ∩ W′ | = 0. Therefore, | �(f) ∩ W′ | /= | �W(f) ∩ W′ |. Hence, by Lemma 3, the conclusion of
Proposition 2 holds.
Case 2. There exists f ∈ �W(W′) \ �(W′). Thus, there is w′ ∈ W ′ such that w′ ∈ �W (f ), implying | �W(f) ∩ W′ |≥1. Moreover,
f /∈ �(W′) implies |�(f) ∩ W′ | = 0. Therefore, | �(f) ∩ W′ | /= | �W(f) ∩ W′ |. Hence, by Lemma 3, the conclusion of Proposition 2
holds. �

Finally, Proposition 3 below states that the conclusion of the Blocking Lemma holds for all remaining cases where
�(W′) = �W(W′).

Proposition 3. Assume �(W′) = �W(W′) and, for all f ∈ �(W′), the following three properties hold:

(a) |�(f) | = qf.
(b) |�(f) ∩ W′ | = | �W(f) ∩ W′ |.
(c) Ch(�(f) ∪ O(f), P(f)) \ {[�W(f) ∩ W′] ∪ [�(f) ∩ (W \ W′)]}=∅.

Then, there exist f̄ ∈ �(W ′) and w̄ ∈ W \ W ′ such that (f̄ , w̄) blocks �.

Proof. By (c), for all f ∈ �(W′), Ch(�(f) ∪ O(f), P(f)) ⊆ {[�W(f) ∩ W′] ∪ [�(f) ∩ (W \ W′)]}. We want to show that this inclusion
holds with equality. We will do it by showing that the two sets have the same cardinality.

By (a), quota q-separability of P(f), and �(f) ⊆ �(f) ∪ O(f), |Ch(�(f) ∪ O(f), P(f)) | = qf. Thus,

|(�W (f ) ∩ W ′) ∪ (�(f ) ∩ (W \ W ′))| ≤ |�W (f ) ∩ W ′| + |�(f ) ∩ (W \ W ′)|
= |�(f ) ∩ W ′| + |�(f ) ∩ (W \ W ′)| by (b)
= |�(f )|
= qf by (a).

Hence,

Ch(�(f ) ∪ O(f ), P(f )) = {[�W (f ) ∩ W ′] ∪ [�(f ) ∩ (W \ W ′)]}. � (7)

11 Note that f ∈ �(W′) and | �(f) |<1 are incompatible in the marriage model.
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Claim 3. For all w ∈ W ′, �W (w) /= ∅.

Proof of Claim 3. By definition, W ′ = ∪f ∈ �(W ′)�(f ). Hence, W ′ = (∪f ∈ �(W ′)�(f )) ∩ W ′. Because all workers can work at most
for one firm and since (b) holds,

|W ′| =
∑

f ∈ �(W ′)

|�(f ) ∩ W ′| =
∑

f ∈ �(W ′)

|�W (f ) ∩ W ′|. (8)

If there would exist w ∈ W ′ such that �W (w) = ∅ then, |W ′| >
∑

f ∈ �(W ′)|�W (f ) ∩ W ′|, which would contradict (8). �

For each step 1 ≤ k ≤ K of the deferred-acceptance algorithm in which workers make offers, define the set Tk as the set of
pairs of firms and workers in �(W′) and W′, respectively, with the property that w is acceptable for f, w makes an offer to f
at k or at earlier steps, and f rejects w at step k. Namely,

Tk = {(f, w) ∈ �(W ′) × W ′|w ∈ Ch({w}, P(f )) ∩ Ok(f ) and w /∈ Ch(Ok(f ), P(f ))}. (9)

Set T0 =∅. Since for all 1 < k ≤ K and all f ∈ F, Ok−1(f) ⊆ Ok(f) holds, substitutability of P(f) implies that, for all 1 ≤ k ≤ K, Tk−1 ⊆ Tk.
Furthermore, there exists 1 ≤ k̄ ≤ K such that Tk̄ /= ∅. To see that, note that: (i) each w ∈ W ′ makes an offer to f = �(w) at
(some) step k of the algorithm (w ∈ Ok(f )), (ii) w is acceptable for f(w ∈ Ch({w}, P(f )), and (iii) since w /∈ �W (f ), f rejects w at
(some) step k̄ ≥ k (w /∈ Ch(Ok(f ), P(f )). Therefore, step kM where

kM = max{1 ≤ k ≤ K |Tk \ Tk−1 /= ∅}
is well-defined. By Claim 3, TK \ TK−1 =∅. Hence, and since T0 =∅, 1 ≤ kM < K.

Claim 4. For all f ∈ �(W′) and all k ≥ kM, | Ok(f) |>qf.

Proof of Claim 4. By definition of TkM
, for all f ∈ �(W′) and all w ∈ �(f ) ∩ W ′, (f, w) ∈ TkM

. Since � ∈ IR(P), w is acceptable for
f. Hence, by quota qf-separability of P(f), w /∈ Ch(OkM (f ), P(f )) implies | Ok(f) |>qf for all k ≥ kM because Ok(f) ⊇ OkM (f) for all
k ≥ kM. �

By definition of kM and (1), for all f ∈ �(W′) and all k ≥ kM,

Ch(Ok(f ), P(f )) ∩ W ′ ⊆ �W (f ) ∩ W ′ = Ch(O(f ), P(f )) ∩ W ′. (10)

Let (f1, w1) ∈ �(W ′) × W ′ be a pair such that (f1, w1) ∈ TkM
\ TkM−1. By Claim 3, �W (w1) /= ∅. Hence, there exists f2 ∈ �(W′)

such that

w1 ∈ �W (f2). (11)

Claim 5. There exists k∗ > kM such that w1 ∈ Ok∗
(f2) \ Ok∗−1(f2) and w1 ∈ Ch(Ok∗

(f2), P(f2)).

Proof of Claim 5. By (11) and the fact that w1 ∈ W ′, w1 ∈ �W (f2) ∩ W ′. Hence, there exists k∗ such that w1 ∈ Ch(Ok∗
(f2), P(f2)).

Note that k∗ > kM because at step kM, w1 was rejected by firm f1. �

Claim 6. Ch(OkM (f2) ∪ �(f2), P(f2)) \ {[�W(f2) ∩ W′ ∩ OkM (f2)] ∪ [�(f2) ∩ W \ W′]} /= ∅.

Proof of Claim 6. By (7) and f2 ∈ �(W′),

Ch(�(f2) ∪ O(f2), P(f2)) = {[�W (f2) ∩ W ′] ∪ [�(f2) ∩ (W \ W ′)]}. (12)

Let w ∈ �(f2) ∩ (W \ W ′). By (12), w ∈ Ch(�(f2) ∪ O(f2), P(f2)). By substitutability of P(f2), OkM (f2) ⊆ O(f2), and the fact that
�(f2) ∩ (W \ W′) ⊆ �(f2), w ∈ Ch(�(f2) ∪ OkM (f2), P(f2)). Hence,

[�(f2) ∩ (W \ W ′)] ⊆ Ch(OkM (f2) ∪ �(f2), P(f2)).

Moreover, [�W(f2) ∩ W′ ∩ OkM (f2)] ⊆ �W(f2) ∩ W′. Let w ∈ [�W (f2) ∩ W ′ ∩ OkM (f2)]. Then, w ∈ �W (f2) ∩ W ′. By (12),
w ∈ Ch(�(f2) ∪ O(f2), P(f2)). By substitutability of P(f2), w ∈ Ch(OkM (f2) ∪ �(f2), P(f2)). Hence,

[�W (f2) ∩ W ′ ∩ OkM (f2)] ⊆ Ch(OkM (f2) ∪ �(f2), P(f2)).

By (a), |�(f2)| = qf2 . Moreover, �(f2) ⊆ OkM (f2) ∪ �(f2) holds trivially. By individual rationality of � and quota qf2 -separability
of P(f2),

|Ch(OkM (f2) ∪ �(f2), P(f2))| = qf2 . (13)

By Claim 5, w1 /∈ OkM (f2). Hence, w1 ∈ �W (f2) ∩ W ′ implies

|[�(f2) ∩ (W \ W ′)]| + |[�W (f2) ∩ W ′ ∩ OkM (f2)]| < qf2 . (14)

To see that (14) holds, observe that, by (a), |[�(f2) ∩ (W \ W ′)]| + |[�(f2) ∩ W ′]| = |�(f2)| = qf2 . By (b), |�(f2) ∩ (W \ W ′)| +
|�W (f2) ∩ W ′| = qf2 . Since w1 ∈ �W (f2) ∩ W ′ and w1 /∈ OkM (f2) we have that | �W(f2) ∩ W′ ∩ OkM (f2) |<| �W(f2) ∩ W′ |. Hence,
(14) holds. Thus, by (13), the statement of Claim 6 holds. �
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Let

w̃ ∈ Ch(OkM (f2) ∪ �(f2), P(f2)) \ {[�W (f2) ∩ W ′ ∩ OkM (f2)] ∪ [(�(f2) ∩ W \ W ′]} /= ∅. (15)

By Claim 6, such w̃ exists. We will show that w̃ /∈ W ′. Assume otherwise; i.e., w̃ ∈ W ′. If w̃ ∈ �(f2) then w̃ ∈ OkM (f2). Hence,
w̃ ∈ �W (f2). Thus, �(w̃) = f2 = �W (w̃), which contradicts that w̃ ∈ W ′. If w̃ ∈ OkM (f2) then w̃ ∈ �W (f2). Thus, w̃ ∈ �W (f2) ∩ W ′ ∩
OkM (f2). But (15) says that w̃ /∈ �(f2) ∩ W ′ ∩ OkM (f2), a contradiction. Hence, w̃ ∈ W ′.

By (15), w̃ /∈ �(f2) ∩ (W \ W ′). Since w̃ /∈ W ′,

w̃ /∈ �(f2). (16)

By (15) again, w̃ ∈ Ch(OkM (f2) ∪ �(f2), P(f2)). Hence, by substitutability of P(f2),

w̃ ∈ Ch(�(f2) ∪ {w̃}, P(f2)). (17)

By w̃ ∈ Ch(OkM (f2) ∪ �(f2), P(f2)) and (16), w̃ ∈ OkM (f2). Hence,

f2R(w̃)�W (w̃). (18)

Moreover, by w̃ /∈ W ′,

�W (w̃)R(w̃)�(w̃), (19)

and by (16), �(w̃) /= f2. Hence, by (18) and (19),

f2P(w̃)�(w̃). (20)

Thus, since f2 ∈ �(W′) and w̃ /∈ W ′, (16), (17) and (20) say that the conclusion of the Blocking Lemma holds.

Appendix B. Proof of Theorem 2

⇒) Assume that the Blocking Lemma holds on P̃ = S̃F × TW and suppose, to get a contradiction, that hW : P̃ → M is not
strategy-proof for the workers; namely, there exist P ∈ P̃, a nonempty subset of workers Ŵ, and P ′

Ŵ
∈ TŴ such that for all

w ∈ Ŵ ,

�′
W (w) = hW (P ′

Ŵ
, P−Ŵ )(w)P(w)hW (P)(w) = �W (w).

We first show that �′
W ∈ IR(P). Since �′

W ∈ S(P ′
Ŵ

, P−Ŵ ) and P′(i) = P(i) for all i ∈ (F ∪ W) \ Ŵ, �′
W (i)R′(i)∅ if i ∈ W \ W′ and

�′
W (i) = Ch(�′

W (i), P ′(i)) if i ∈ F. Moreover, for all w ∈ Ŵ , �′
W (w)P(w)�W (w)R(w)∅. Hence, �′

W ∈ IR(P). Since all matchings
� ∈ S(P) have the property that �W R(w)� for all w ∈ W and there exists at least one w ∈ Ŵ with �′

W (w)P(w)�W (w), we
conclude that �′

W /∈ S(P). Since ∅ /= Ŵ ⊆ W ′ = {w ∈ W |�′
W (w)P(w)�W (w)} and the Blocking Lemma holds at P ∈ P̃, there

exists a pair (f̄ , w̄), where f̄ ∈ �(W ′) and w̄ ∈ W \ W ′ such that (f̄ , w̄) blocks �′
W at P. But w̄ ∈ W \ W ′ implies P ′(w̄) = P(w̄).

Thus, (f̄ , w̄) blocks � at (P ′
Ŵ

, P−Ŵ ), contradicting that �′
W ∈ S(P ′

Ŵ
, P−Ŵ ).

⇐ ) Assume that hW : P̃ → M is group strategy-proof for the workers and suppose, to get a contradiction, that the Blocking
Lemma does not hold on P̃; namely, there exist P ∈ P̃ and an individually rational matching � such that

W ′ = {w ∈ W |�(w)P(w)�W (w) = hW (P)} /= ∅.

For all w′ ∈ W ′, consider the preference relation P ′(w) ∈ T, where

P ′(w) : �(w),∅.

Since hW is group strategy-proof for the workers, there exists w′ ∈ W ′ such that

hW (P ′
W ′ , P−W ′ )(w′) = ∅;

otherwise, if for all w ∈ W ′, hW (P ′
W ′ , P−W ′ )(w) = �(w), W′ would manipulate hW at P. Let f ′ = �(w′). Then, f′ ∈ �(W′).

Let �′
W = hW (P ′

W ′ , P−W ′ ) and �W = hW(P) be the corresponding workers-optimal stable matchings in S(P ′
W ′ , P−W ′ ) and

S(P), respectively. Let P ′ = (P ′
W ′ , P−W ′ ). For all f ∈ F, we denote by

OP(f ) = {w ∈ W |fR(w)�W (w)}

and

OP′ (f ) = {w ∈ W |fR′(w)�′
W (w)}
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the set of workers that make an offer to f along the deferred-acceptance algorithm in which workers make offers applied to
P and P′, respectively. Let Ok

P(f ) denote the set of all workers that make an offer to f along the deferred-acceptance algorithm
applied to P at k or at earlier steps. Then,

O1
P(f ) ⊆ . . . ⊆ Ok

P(f ) ⊆ . . . ⊆ OK
P (f ) = OP(f ).

Similarly,

O1
P′ (f ) ⊆ . . . ⊆ Ok

P′ (f ) ⊆ . . . ⊆ OK ′
P′ (f ) = OP′ (f ).

Then, for all f ∈ F, �W(f) = Ch(OP(f), P(f)) and �′
W (f ) = Ch(OP′ (f ), P(f )).

Claim 7. For all w /∈ W ′, �′
W (w)R(w)�W (w).

Proof of Claim 7. Assume otherwise; i.e., there exists w̄ /∈ W ′ such that �W (w̄)P(w̄)�′
W (w̄). Let km ≤ K′ be the first step

in the deferred-acceptance algorithm in which workers make offers applied to P′ in which there exist a firm and a worker
w ∈ �W (f ) such that w is rejected by f. Namely,

km = min{k ≤ K ′|∃(f, w) s.t. w ∈ Ok
P′ (f ), w ∈ �W (f ), and w /∈ Ch(Ok

P′ (f ), P(f ))}. (21)

Note that P(w̄) = P ′(w̄). The assumption that �W (w̄)P(w̄)�′
W (w̄) implies that there exists 1 ≤ k < K′ such that w̄ is rejected by

f̄ = �W (w̄) along the deferred-acceptance algorithm in which workers make offers applied to P′; i.e., f̄ = �W (w̄), w̄ ∈ Ok
P′ (f̄ )

and w̄ /∈ Ch(Ok
P′ (f̄ ), P(f̄ )). Let f̄1 and w̄ be the pair satisfying (21) at step km. Assume Okm

P′ (f̄1) ⊆ OP(f̄1). Then,

w̄ ∈ �W (f̄1) = Ch(OP(f̄1), P(f̄1))

and

w /∈ Ch(Okm
P′ (f̄1), P ′(f̄1)),

which contradicts substitutability of P(f̄1) since P(f̄1) = P ′(f̄1). Hence, Okm
P′ (f̄1) � OP(f̄1). Let w̄1 be such that

w̄1 ∈ Okm
P′ (f̄1) (22)

and

w̄1 /∈ OP(f̄1). (23)

By the definition of OP(f̄1), (23) implies that

�W (w̄1)P(w̄1)f̄1. (24)

By (22),

f̄1R′(w̄1)�′
W (w̄1). (25)

If w̄1 ∈ W ′ then, by definition of P ′(w̄1), f̄1 = �(w̄1). Hence, f̄1 = �(w̄1)P(w̄1)�W (w̄1), contradicting (24). Then, w̄1 /∈ W ′. Hence,
P ′(w̄1) = P(w̄1). Thus, (25) can be written as

f̄1R(w̄1)�′
W (w̄1). (26)

Thus, (24) and (26) imply

�W (w̄1)P(w̄1)f̄1R(w̄1)�′
W (w̄1)R(w̄1)∅.

Hence, there exists f2 such that f2 = �W (w̄1). Therefore, there exists k̂ ≥ km such that w̄1 ∈ Ok̂
P′ (f2), w̄1 ∈ �W (f2) and w̄1 /∈

Ch(Ok̂
P′ (f2), P(f2)). Since f2P(w̄1)f̄1 and w̄1 ∈ Ok̂

P′ (f2), w̄1 makes an offer to f2 along the deferred-acceptance algorithm in which

workers make offers applied to P′, and w̄1 is rejected. But later, w̄1 makes an offer to f̄1. Hence, k̂ < km. A contradiction. Thus,
for all w /∈ W ′, �′

W (w)R(w)�W (w). �

Claim 8. Let w′ ∈ W ′ be such that hW (P ′
W ′ , P−W ′ )(w′) = ∅ and �(w′) = f ′. Then, Ch(�(f ′) ∪ OP′ (f ′), P(f ′)) � �(f ′).

Proof of Claim 8. Assume Ch(�(f ′) ∪ OP′ (f ′), P(f ′)) ⊆ �(f ′). Since � ∈ IR(P), Ch(�(f ′) ∪ OP′ (f ′), P(f ′)) = �(f ′). Hence, by
assumption,

w′ ∈ �(f ′) = Ch(�(f ′) ∪ OP′ (f ′), P(f ′)),

and, by substitutability of P(f′),

w′ ∈ Ch(OP′ (f ′) ∪ {w′}, P(f ′)).

By definition of P ′(w′), w′ ∈ OP′ (f ′). Hence, w′ ∈ �′
W (f ′), which contradicts that �′

W (w′) = ∅. Thus, Ch(�(f ′) ∪ OP′ (f ′), P(f ′)) �
�(f ′). �
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Let w1 ∈ Ch(�(f ′) ∪ OP′ (f ′), P(f ′)) \ �(f ′). Assume w1 ∈ W ′. Since w1 /∈ �(f ′), w1 ∈ OP′ (f ′). Therefore, w1 ∈ OP′ (f ′) ∩ W ′. But
w1 ∈ W ′ means that P ′(w1) : �(w1),∅. Hence, w1 makes an offer to f′ along the deferred-acceptance algorithm in which
workers make offers applied to P′ (i.e., w1 ∈ OP′ (f ′)). Hence, by definition of P ′(w1), w1 ∈ �(f ′), a contradiction. Thus, w1 /∈ W ′.
By substitutability of P(f′),

w1 ∈ Ch(�(f ′) ∪ {w1}, P(f ′)) (27)

and

w1 ∈ �′
W (f ′) = Ch(OP′ (f ′), P(f ′)). (28)

Since w1 /∈ W ′, �W (w1)R(w1)�(w1). By (28),

f ′ = �′
W (w1)R(w1)�W (w1)R(w1)�(w1). (29)

By assumption, �(w1) /= f ′. Thus, (29) implies

f ′P(w1)�(w1). (30)

Conditions (27) and (30) imply that (f ′, w1) blocks �, and f′ = �(W′) and w1 /∈ W ′. Hence, the Blocking Lemma holds at P. �
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