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ABSTRACT 23 

In central-western Argentina, a belt including marine metasedimentary rocks and mafic-24 

ultramafic bodies occurs throughout the western margin of the Precordillera. The belt is 25 

considered as the suture zone between the poorly known Chilenia terrane and the 26 

Cuyania terrane, part of the composite West Gondwana margin. It is assigned to the 27 

Late Neoproterozoic-Early Devonian based on fossil fauna and radiometric ages. In the 28 

southern sector of this belt, in the Peñasco area, two units crop out. The Peñasco 29 

Formation comprises metasandstone and metapelite spatially associated with mafic 30 

metavolcanic and metahyaloclastic rocks. Metagabbro bodies intrude the succession. 31 

The Garganta del León Formation consists of metasandstone and scarce metapelite 32 

where tractive and deformational sedimentary structures are preserved. Both units are 33 

affected by low-grade metamorphism, but the main foliation S1 and crenulation cleavage 34 

S2 are better developed in the Peñasco Formation rocks. U-Pb data on detrital zircon of 35 

two metasandstone samples from these units show a dominant detrital input from 36 

sources with 1.0-1.3 and 0.65-0.53 Ga ages. Detritus may come from reworked 37 

sedimentary units or from igneous/metamorphic complexes from the Cuyania terrane 38 

basement that was possibly exhumed in the Ocloyic orogen. A Gondwanan provenance 39 

for the late Neoproterozoic-Cambrian population would also be plausible. A ca. 460 Ma 40 

zircon population in the Garganta del León Formation is interpreted to be derived from 41 

the Famatinian Arc. This would imply that the deposition of the sediment occurred after 42 

the collision of the Cuyania terrane against West Gondwana, and that the Ocloyic 43 

orogen acted as a barrier for detritus from the Famatinian Arc and other rocks further 44 

east. 45 
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1. INTRODUCTION 48 

Provenance studies based on the morphological and geochronological analysis of 49 

detrital zircon have proven powerful to solve some geological uncertainties. This 50 

technique provides estimates for a maximum depositional age and establishes 51 

characteristics of sediment source areas, including their composition and age. 52 

Provenance studies can, thus, define depositional age limits for sequences that lack 53 

fossils, exhibit strong deformation, and/or have been metamorphosed (e.g., Gehrels, 54 

2014). Throughout the Central Andes (28º-34ºS) it is possible to find such sequences of 55 

poorly specified age that are related to the accretion of different terranes (Pampia, 56 

Arequipa-Antofalla, Cuyania, among others) during the configuration of West Gondwana 57 

(current western margin of the South American Plate) during Late Neoproterozoic-Early 58 

Paleozoic time. One of these, the Cuyania terrane, is located in central-western 59 

Argentina (Fig. 1a). It is generally accepted to have been rifted from the southern margin 60 

of Laurentia during the opening of the Iapetus ocean and break-up of the Rodinia 61 

supercontinent during Late Neoproterozoic-Early Cambrian time (Thomas and Astini, 62 

1996; Thomas et al., 2012, among others), and that it was accreted onto West 63 

Gondwana during the Late Ordovician (Astini et al., 1995; Ramos, 2004; among others).  64 

During the past decades, the eastern margin of Cuyania has been the subject of 65 

numerous studies and strong debate, but little is known about its western margin and its 66 

relation to the poorly exposed Chilenia terrane to the west (Fig. 1a; Ramos et al., 1986). 67 

There is a general consensus that the Cuyania and Chilenia terranes are separated by 68 

the Western Precordillera mafic-ultramafic belt, which can be traced for > 400 km north-69 

south, and this is so far the main support for the existence of Chilenia as a separate 70 

terrane. Collision processes have been suggested by different studies carried out along 71 
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this belt (Davis et al., 1999, 2000; Robinson et al., 2005; Massonne and Calderón, 2008; 72 

Willner et al., 2011; Boedo et al., 2016a-b), but still many aspects remain unsolved, 73 

including the provenance of the Chilenia terrane, such as whether all its Neoproterozoic-74 

Devonian sedimentary successions were deposited in the same ancient marine basin, or 75 

whether the western margin of Cuyania was affected by the Ordovician Ocloyic orogeny, 76 

i.e. the collision of Cuyania with West Gondwana. 77 

This contribution proposes the redefinition of two stratigraphic units from the southern 78 

sector of the Precordillera mafic-ultramafic belt (at the Peñasco locality, Fig. 1b) 79 

according to their geological features. We also provide U-Pb data for detrital zircon from 80 

these two units, estimate their maximum depositional ages, and characterize and assign 81 

possible source areas. 82 

 83 

2. GEOLOGICAL FRAMEWORK  84 

The Argentine Precordillera is a Miocene-aged fold-and-thrust belt located in central-85 

western Argentina within the Cuyania terrane (Fig. 1a-b). The basement to this belt is 86 

indirectly known from studies of xenoliths of metamorphic rocks hosted in Neogene 87 

volcanic rocks (Leveratto, 1968). The xenoliths yielded U-Pb zircon ages between 1000 88 

and 1100 Ma (Kay et al., 1996; Rapela et al., 2010).  89 

The Early Paleozoic stratigraphic sequence of the Precordillera mainly consists of 90 

platform limestone to the east and marine siliciclastic sedimentary rocks to the west, 91 

where mafic and ultramafic bodies, which are affected by very low-grade to low-grade 92 

metamorphism, are intercalated (Haller and Ramos, 1984; Astini et al., 1995; Thomas 93 

and Astini, 2003). 94 
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The western domain of the Argentine Precordillera consists of marine metasedimentary 95 

rocks. They occasionally host platform carbonate and siliciclastic olistoliths from the 96 

basement (Thomas and Astini, 2003, and references therein). These successions are 97 

spatially related to mafic and ultramafic bodies grouped together as the Western 98 

Precordillera mafic-ultramafic belt (PMUB). 99 

The PMUB crops out between 28 and 33°S and consists  of serpentinized ultramafic 100 

rocks, retrograded granulite, metagabbro and metabasalt that are tectonically 101 

juxtaposed and/or intrude the siliciclastic marine successions. The mafic rocks have 102 

mainly E-MORB (Enriched Mid-Ocean Ridge Basalt) signature and positive εNd values 103 

(+6 to +9.3), compatible with rocks from the oceanic crust (Haller and Ramos, 1984; Kay 104 

et al., 1984; Cortés and Kay, 1994; Fauqué and Villar, 2003; González Menéndez et al., 105 

2013; Boedo et al., 2013). The belt exhibits strong polyphase deformation. The 106 

vergence of the Early Paleozoic deformation is still a matter of debate. Some authors 107 

postulate a westward vergence based on major structures (Ramos et al., 1986; von 108 

Gosen, 1995; Cortés et al., 1999), whereas others propose an eastward vergence on 109 

the basis of only localized kinematic indicators in allochthonous granulite lenses (Davis 110 

et al., 1999; Gerbi et al., 2002). These lenses may have been rotated, as they show 111 

different orientations along strike with respect to the main foliation (S1) in 112 

metasedimentary rocks. Giambiagi et al. (2010) proposed a first event (D1) with east-113 

west maximum shortening and westward vergence, and a second event (D2) with 114 

northwest – west-northwest maximum shortening direction and double vergence. 115 

The PMUB can be divided into two sectors based on rock association and metamorphic 116 

grade: a northern sector, which comprises the localities of Jagüé, Rodeo, Tigre, 117 

Invernada, Calingasta, and Leoncito and a southern sector with the localities of 118 



7 
 

Peñasco, Pozos, Cerro Redondo, Cortaderas, and Bonilla (Fig. 1b). This latter sector of 119 

the PMUB can be correlated with the Frontal Cordillera mafic-ultramafic belt, which is 120 

located further south in the Cuchilla de Guarguaraz within the Argentine Frontal 121 

Cordillera (Fig. 1b). There, serpentinite, metaperidotite, massive orthoamphibolite, 122 

metagabbro, metabasaltic dikes, and pillow basalt are in contact with marble and schist 123 

(Villar, 1969, 1970; Gregori and Bjerg, 1997; López and Gregori, 2004; López de 124 

Azarevich et al., 2009; Gargiulo et al., 2011, 2013). The mafic bodies have N-MORB to 125 

E-MORB chemical signature (López and Gregori, 2004; López de Azarevich et al., 126 

2009), and the whole sequence is strongly deformed and metamorphosed. 127 

Very low- to low-temperature and low-pressure metamorphic conditions (2-3 kbar, 250-128 

350ºC) were estimated along the northern sector of the PMUB (Robinson et al., 2005), 129 

whereas a low- to medium-temperature and high-pressure conditions affected the 130 

southern sector (7-9 kbar, 345-395°C, Boedo et al., 2016a). Pressure-Temperature 131 

estimates by Davis et al. (1999) for the Cortaderas granulite yielded 850-1000°C at 11 132 

kbar, whereas even higher-pressure conditions were estimated for granulite from the 133 

Peñasco area (12-18 kbar, 650-910°C, Boedo et al., 2016b). Similarly, Massonne and 134 

Calderón (2008) and Willner et al. (2011) estimated high pressure conditions in 135 

metabasite and metapelite of the Guarguaraz area (Argentine Frontal Cordillera), 136 

followed by a decompression path with slight heating (clockwise metamorphic path). 137 

Dating of the metamorphic event generally yielded Middle-Late Devonian ages (Cucchi, 138 

1971; Buggisch et al., 1994; Davis et al., 1999; Willner et al., 2011). 139 

The PMUB, considered as an almost complete but dismembered ophiolite sequence, 140 

represents oceanic crust that may have been subducted shortly before the collision of 141 

the Chilenia terrane with the West Gondwana margin during the Middle Devonian (Haller 142 
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and Ramos, 1984; Ramos et al., 1986). Davis et al. (2000) challenged this interpretation 143 

and, based on U-Pb ages and geochemical data, proposed that the mafic and ultramafic 144 

bodies formed in different tectonic settings, such as a mid-ocean ridge setting (for E-145 

MORB basalt), and the roots of a magmatic arc developed above a west-dipping 146 

subduction zone (for mafic granulite). In an earlier interpretation based on the detrital 147 

and geochemical features of the sedimentary rocks, Loeske (1993) postulated that the 148 

PMUB represents the floor of a back-arc basin. 149 

 150 

3. METHODOLOGY 151 

We studied two metasandstone samples from the Peñasco area, the northernmost 152 

locality of the southern PMUB (Fig. 1b). Metasandstone M-36 represents the Peñasco 153 

Formation and was taken west of the Cerro Pozo area (32°13'16.8"S-69°8'33.6"W, Fig. 154 

2). Sample M-50 from the Garganta del León Formation was obtained in the Quebrada 155 

del Río Montaña (32°9'53.6"S-69°4'16.9"W, Fig. 2). Both samples were studied with a 156 

Nikon Optiphot2-Pol microscope, and protoliths were classified according to Folk et al. 157 

(1970). 158 

The samples were prepared and analyzed following standard procedures. They were 159 

milled with a crusher and an agate mortar at the Departamento de Geología of the 160 

Universidad Nacional de Río Cuarto (Córdoba, Argentina). Detrital zircon grains were 161 

separated using standard preparation methods at the Departamento de Ciencias 162 

Geológicas of the Universidad de Buenos Aires (Argentina). Grains were randomly 163 

selected by hand-picking using a Leica EZ5 binocular microscope. Morphological 164 

analysis of detrital zircon grains was conducted with a FEI QUANTA 450 scanning 165 

electron microscope (SEM) at the Laboratório de Geoquímica Isotópica e Geocronologia 166 
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of the Universidade de Brasília (UnB, Brazil). Different populations of detrital zircon 167 

grains were identified based on shape, habit, size, color, and aspect ratio. Back-168 

scattered and secondary electron, and cathodoluminescence imagery obtained with the 169 

FEI QUANTA 450 SEM provided information about internal structures, fracture patterns, 170 

and solid inclusions. 171 

U-Pb analyses of zircon were performed with a New Wave 213 µm Nd-YAG solid state 172 

laser attached to a Thermo Finnigan Neptune Multi-Collector Inductively Coupled 173 

Plasma Mass Spectrometer (LA-MC-ICP-MS) at UnB following the procedure outlined 174 

by Bühn et al. (2009). The laser operated with a fluency of 2.0–2.3 J/cm2 and a 175 

frequency of 10 Hz; ablation spots were about 30 µm in diameter. Blanks were 176 

measured before and after each sample analysis for blank correction. An external 177 

standard of 600.4 ± 1.8 Ma age (GJ1, Jackson et al., 2004) was analyzed after every 8 178 

unknown measurements to correct for mass bias and fractionation of U and Pb. An 179 

internal standard of 1063.4 ± 0.6 Ma was analyzed after 15 unknown measurements 180 

(reference zircon 91500; Wiedenbeck et al., 1995, 2004) to check analysis 181 

reproducibility. 182 

Data reduction was completed with an in-house Excel worksheet at UnB (Chronus, 183 

Valença, 2015). Analytical data for the analyzed zircon grains are listed in Appendix 1. 184 

Cumulative probability plots were constructed employing ISOPLOT v.3.70 (Ludwig, 185 

2009), using analyses within 20% of concordance and reporting 207Pb/206Pb ages for 186 

analyses >1.0 Ga and 238U/206Pb ages for analyses < 1.0 Ga (Dickinson and Gehrels, 187 

2003). Discordance was calculated as [1-(206Pb/238U age/207Pb/206Pb age)]·100 188 

(Appendix 1). 189 



10 
 

A total of 96 analyses were performed on 80 zircon grains from metasandstone M-36, 190 

but 20 results were discarded due to 207Pb/235U error > 5%, Rho < 0.5, and 206Pb 191 

contents > 3%. The remaining 76 zircon ages were concordant. For sample M-50, a total 192 

of 91 analyses were performed on 78 zircon grains. Ten results were discarded, and 81 193 

zircon ages were concordant. To estimate the maximum depositional ages, we used (1) 194 

the youngest graphical peak and (2) the weighted mean of the coherent group of 195 

youngest ages that overlap at 2σ analytical error. 196 

 197 

4. STRATIGRAPHY OF THE STUDY AREA 198 

We propose a new nomenclature scheme for the upper part of the Villavicencio Group of 199 

the PMUB (Table 1). The unit names that are used throughout this study are based on 200 

this new subdivision. 201 

Our proposal is based on the distinction of different lithological associations and 202 

structural features that were until now combined into one geological unit (Table 1). We 203 

redefined the Peñasco Formation after Cortés et al. (1999), which consists of a 204 

succession of metasandstone and metapelite spatially associated with mafic 205 

metavolcanic rocks and metahyaloclastite. Metagabbro dikes and sills frequently intrude 206 

the metasedimentary succession. The main metamorphic foliation (S1) is conspicuous 207 

along sedimentary and igneous protoliths, and a crenulation cleavage (S2) is generally 208 

well developed in fine-grained rocks. In contrast, the Garganta del León Formation, in 209 

part correlative to the Peñasco Formation after Cortés et al. (1999), includes 210 

metasandstone and scarce metapelite where tractive and deformational sedimentary 211 

structures are preserved. Metamorphic foliation S1 is robust and S2 is rarely developed. 212 

We also suggest modifying the unit range of the lower part of the Villavicencio Group 213 
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according to the Código Argentino de Estratigrafía (Comité Argentino de Estratigrafía, 214 

1992), as the current name is not valid. Therefore, the former ‘Cortadera facies’ 215 

(Harrington, 1971) is renamed as ‘Cortadera Complex’ (Table 1). This modification is 216 

based on the different lithologies combined into this unit that also includes a complex 217 

structure without recognizable original rock succession. The Cortadera Complex crops 218 

out over ca. 30 km from the Cordón del Peñasco area to the Sierra de las Cortaderas 219 

area, where it reaches a maximum width of 3.6 km (Fig. 2). It comprises highly 220 

serpentinized ultramafic rocks (dunite, harzburgite, lherzolite, wehrlite and websterite), 221 

ultramafic cumulate, retrograded mafic granulite, and garnet-quartz-feldspar gneiss 222 

bodies that are in contact with gray to light blue phyllite and slate; the contact is marked 223 

by brittle, reactivated, ductile shear zones (Harrington, 1971; Davis et al., 1999; Gerbi et 224 

al., 2002). Metagabbro bodies intrude the serpentinite and phyllite. Listvenite is 225 

frequently associated with serpentinite margins (Boedo et al., 2015). Mafic granulite and 226 

gneiss register a complex polymetamorphic evolution from high-pressure granulite 227 

facies to greenschist facies (Boedo et al., 2016b). The base, top and thickness of the 228 

unit are unknown due to intense deformation. The contacts with the Peñasco and 229 

Garganta del León formations are tectonic (Fig. 2, Table 2). 230 

 231 

4.1. Peñasco Formation 232 

The Peñasco Formation was earlier cataloged by Harrington (1971) as the Normal 233 

Facies of the Villavicencio Group (Table 1). Later, Cortés et al. (1999) defined the 234 

Peñasco Formation as the siliciclastic metasedimentary succession intruded by mafic 235 

bodies that crops out in the Cordón del Peñasco, Pozos and Cortaderas localities. We 236 

define the “Peñasco Formation” as the siliciclastic metasedimentary succession intruded 237 
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by metagabbro bodies that is spatially associated with mafic metavolcanic and 238 

metahyaloclastite bodies. The formation crops out along the Cordón del Peñasco, to the 239 

west of the Cerro Pozo, and in the western part of the Sierra de las Cortaderas area 
240 

(Fig. 2, Table 2). 241 

The formation consists of olive-green, medium-fine metasandstone and metapelite 242 

intruded by metagabbro and/or metabasalt dikes and/or sills (Fig. 3a-c). Mafic 243 

metavolcanic and metahyaloclastite are frequently intercalated (Fig. 3d-f). The base, top 244 

and thickness of the unit are unknown due to intense deformation. The contacts with the 245 

Cortadera Complex are always tectonic. Metasedimentary rocks usually have a marked 246 

main foliation (S1) that frequently coincides with original stratification (S0). When 247 

recognized, crenulation cleavage (S2) is better developed in fine-grained rocks (Fig. 3c). 248 

Metagabbro and metabasalt bodies vary from a few meters to tens of meters in extent. 249 

They exhibit porphyritic to fine-grained texture, with 1-3 mm large plagioclase crystals, 250 

and dark green to black pyroxene crystals. Thicker bodies show margin-to-core crystal 251 

size variation. The primary assemblage of plagioclase, clinopyroxene and minor 252 

ilmenite, apatite and brown amphibole has been partially replaced by a high-pressure 253 

greenschist-facies mineral association (chlorite + albite + white mica (phengite) + 254 

epidote + titanite + actinolite + quartz + magnetite, Boedo et al., 2016a). Ophitic and/or 255 

subophitic arrays and graphic texture are also recognized. They are tholeiitic in 256 

composition and have an E-MORB chemical signature (Boedo et al., 2013). 257 

The mafic metavolcanic and metahyaloclastic rocks are lenticular in shape and usually 258 

one meter thick. The mafic metavolcanic rocks are black, aphanitic, and composed of 259 

devitrified vitreous material and quartz-filled or carbonate-filled vesicles (Fig. 3d-e). 260 

Under the microscope, they have aphyric texture, whereby the groundmass of devitrified 261 
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vitreous material is totally altered to a fine aggregate of albite, chlorite, opaque minerals 262 

and epidote. The metahyaloclastic rocks are groundmass-supported and brecciated. 263 

They consist of up to 7 cm large, angular to subangular, mafic metavolcanic and minor 264 

grey phyllite clasts (Fig. 3f) in a fine-grained matrix composed of deformed vitreous 265 

shards. 266 

The depositional setting of the Peñasco Formation corresponds to a continental margin 267 

facing a shallow marine basin to the west (Harrington, 1971; Cortés et al., 1999). A 268 

depth of < 200 m can be inferred from a high percentage of vesicles in mafic 269 

metavolcanic rocks (Moore and Schilling, 1973) and the presence of metahyaloclastic 270 

rocks (fragmentation due to cooling) in the Cordon del Peñasco area. 271 

The metasedimentary rocks and mafic igneous bodies of the formation have been 272 

affected by a high-pressure greenschist facies metamorphism (345-395ºC, 7.0-9.2 kbar, 273 

Boedo et al., 2016a). 274 

 275 

4.2. Garganta del León Formation 276 

We define the Garganta del León Formation as the siliciclastic metasedimentary 277 

succession that lies along the eastern sector of the Cordón del Peñasco (Fig. 2). Similar 278 

to the Peñasco Formation, it was early on grouped by Harrington (1971) into the Normal 279 

Facies of the Villavicencio Group and redefined by Cortés et al. (1999) as part of the 280 

Peñasco Formation (Table 1). We propose to separate it from the Peñasco Formation, 281 

as it consists only of metasedimentary rocks (see Table 2 for summary). Metamorphic 282 

foliations S1 and S2 are less developed than in the Peñasco Formation. 283 

The Garganta del León Formation comprises up to 2 m-thick layers of olive-green, 284 

medium to fine-grained metasandstone that alternates with scarce olive-green 285 
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metapelite (Fig. 4a-b). Occasionally, amalgamated medium-grained metasandstone, 1 286 

m-thick coarse-grained metasandstone, and fine-grained metaconglomerate occur. In 287 

some places, up to 0.8 m-thick lenticular-shaped metasandstone layers occur. In other 288 

places, metasiltstone and 0.5 m-thick, tabular, massive, fine-grained metasandstone 289 

dominate. Fining-upward cycles and sedimentary structures such as flute and tool marks 290 

on bases, inverse grading, load casts, cross stratification, horizontal lamination and 291 

ripples are observed (Fig. 4c-d). Hummocky cross stratification-like structures are also 292 

recognized (Fig. 4e). Despite deformation, sedimentary features are still well-preserved 293 

along the Quebrada del Río Montaña. The main foliation S1 is exclusively recognized in 294 

the fine-grained rocks and frequently coincides with stratification (S0, Fig. 4b).  295 

The top and thickness of the unit are unknown due to intense deformation and the 296 

absence of key beds. To the west, the contact with the Cortadera Complex is tectonic 297 

(Fig. 2). To the east, the formation conformably overlies the Alojamiento Formation 298 

(Banchig, 2006). This is consistent with the presence of limestone clasts in fine-grained 299 

metaconglomerate beds of the Garganta del León Formation (Fig. 4f).  300 

The preserved strata and sedimentary structures suggest deposition in proximal areas, 301 

probably as a wave-modified turbidite (Myrow et al., 2002). The strata belong to a 302 

continental margin facing a marine basin to the west (Harrington, 1971; Cortés et al., 303 

1999). 304 

 305 

5. PETROGRAPHY AND U-PB GEOCHRONOLOGY 306 

5.1. Petrography 307 

Sample M-36 is a fine-grained metasandstone with an incipient spaced cleavage (S1) 308 

(Fig. 5a-b). The lithology mainly consists of quartz grains (50%) up to 0.5 mm in size, 309 
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with undulatory to patchy extinction. They appear rounded due to partial recrystallization 310 

during metamorphism and show pressure solution effects parallel to S1. Lithic fragments 311 

(30%) correspond to low-grade metasedimentary rocks. Feldspar grains (10%) can 312 

reach 0.3 mm in size. Detrital white-mica laths (8%) reach 0.3 mm in size. Opaque 313 

minerals, zircon, tourmaline and pyroxene grains are also recognized (2%). The scarce 314 

matrix shows incipient recrystallization and consists of chlorite, white mica and opaque 315 

minerals. The protolith is classified as litharenite (Folk et al., 1970).  316 

Sample M-50 is a clast-supported metasandstone (Fig. 5c-d). It is composed of quartz 317 

grains (55%), with undulatory to patchy extinction and a size range from <0.1 to 0.9 mm. 318 

Lithic fragments (25%) are 0.2-1 mm in size and correspond to low-grade 319 

metasedimentary rocks (mainly phyllite and slate). Detrital feldspar (15%) is 0.1-0.4 mm 320 

in size. Detrital white-mica, zircon, apatite, biotite, and opaque minerals (5%) are also 321 

recognized. The scarce matrix has been affected by incipient recrystallization and is 322 

composed of chlorite, white mica, and opaque minerals. The protolith is classified as 323 

feldspathic litharenite (Folk et al., 1970). 324 

 325 

5.2. Detrital zircon morphology and U-Pb geochronol ogy 326 

The detrital zircon grains from both samples can be divided into 3 main groups 327 

according to color, aspect ratio, habit, length, and internal structure. 328 

i) Colorless to light pink, subrounded grains of prismatic habit, with lengths of 110-329 

210 µm. Aspect ratios are up to 2:1. Grains comprise homogeneous or faintly and broad 330 

oscillatory growth as internal structures, compatible with an igneous origin. Inclusions 331 

and microfractures are common. This is the most abundant zircon group in 332 

metasandstone M-36. It is less abundant in sample M-50. 333 
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ii) Colorless to light pink, idiomorphic grains with aspect ratios between 2:1 and 3:1. 334 

The length ranges from 150 to 300 µm. The grains have faint, broad oscillatory zoning, 335 

compatible with an igneous origin. This type forms the most abundant detrital zircon 336 

group in metasandstone M-50. Zircon grains from sample M-36 are prismatic, whereas 337 

those from sample M-50 are bipyramidal. Microfractures are recognized only in zircon 338 

grains of M-50. Both samples yield grains with acicular and/or prismatic inclusions. 339 

iii) Pink, rounded grains with aspect ratios of about 1:1. Sizes range from 80 to 155 340 

µm, with some exceptional cases up to 200 µm. This group of grains exhibits complex 341 

zoning compatible with a metamorphic origin. This type is more abundant in sample M-342 

36 than in M-50. 343 

Concordant zircon ages for sample M-36 define 3 main intervals (Fig. 6a): 530-830 Ma 344 

(55%, maximum age peak at ca. 630 Ma), 0.9-1.4 Ga (29%), and 1.7-1.9 Ga (13%). The 345 

ca. 630 Ma age peak is represented by grains from group (i). The youngest zircon 346 

population (ca. 530 Ma) is represented by idiomorphic zircons from group (ii). A 347 

weighted mean maximum depositional age is 533.9 ± 4.7 Ma. In contrast, concordant 348 

zircon ages for metasandstone M-50 define a bimodal distribution (Fig. 6b): 455-910 Ma 349 

(37%, maximum age peak at ca. 460 Ma) and 1.0-1.5 Ga (48%, maximum age peak at 350 

1.2 Ga). The youngest maximum peak at ca. 460 Ma is given by idiomorphic zircon 351 

grains with bipyramidal habit and oscillatory zoning (group ii). This population is not 352 

registered in sample M-36. A weighted mean maximum depositional age of the cluster is 353 

458.1 ± 1.5 Ma. 354 

Mesoproterozoic zircon grains from both samples fall into the 1.0-1.3 Ga range. Both 355 

metasandstone samples exhibit a peak at ca. 1.2 Ga produced by zircon grains from 356 

groups (i) and (ii). Both samples also yield a Paleoproterozoic time interval (1.6-2.0 Ga) 357 
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with a minor peak at ca. 1.9 Ga for zircon grains from group (ii) (M-36) and (iii) (M-50). 358 

Some of these grains are homogeneous or show faint, broad oscillatory zoning. Older 359 

zircon grains (ca. 2.5 and 3.2 Ga) recognized in metasandstone M-36 are rounded 360 

crystals with complex metamorphic zoning (group iii). 361 

 362 

6. DISCUSSION 363 

6.1. Source areas 364 

The zircon ages show that the marine basin in the southern sector of the PMUB 365 

received sediment from areas where mainly rocks of Mesoproterozoic and 366 

Neoproterozoic ages were exposed. Paleoproterozoic and Early Paleozoic rock bodies 367 

were also exhumed and provided material to a lesser extent. These detrital ages can be 368 

compared with ages derived from the basement of the Cuyania and Chilenia terranes as 369 

well as from the basement of Gondwana. 370 

The small proportion of Late Paleoproterozoic (1.6-2.0 Ga) zircons and its correlation 371 

with group (i) and (iii) morphologies (round to oval grain shapes with homogeneous and 372 

complex zoning) lead us to interpret this as reworked grains coming from rocks of 373 

previous sedimentary cycles. If we consider a Laurentian affinity for the Cuyania terrane, 374 

the detrital ages are comparable to the ages of the Yavapai-Mazatzal province (1.65-375 

1.80 Ga) and/or the Trans-Hudson orogen (1.8-1.9 Ga; Whitmeyer and Karlstrom, 376 

2007). A provenance from the Sierra de Maz (1.8-1.9 Ga) and further north, the 377 

Arequipa-Antofalla terrane (1.7-2.1 Ga) and the Río Apa block (1.77-1.95 Ga; Loewy et 378 

al., 2004; Casquet et al., 2012), can also be considered. However, the northern 379 

boundary of the Cuyania terrane has been a matter of debate, and its tectonic 380 

relationship with the Arequipa-Antofalla terrane is still not clearly determined. Similarly, a 381 
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provenance from the Río de la Plata craton and other basement blocks of southern 382 

Brazil is not straightforward, as their typical 2.0-2.2 Ga age range (e.g., Hartmann et al., 383 

2002; Rapela et al., 2007) is practically absent in the analyzed samples. The 2.0-2.2 Ga 384 

detrital age has not been registered in other Early Paleozoic units of the Cuyania terrane 385 

either (Finney et al., 2005; Gleason et al., 2007; Naipauer et al., 2010; Abre et al., 386 

2012). This would imply the presence of an exhumed area (e.g., the Pampean and/or 387 

Ocloyic orogen) that acted as a barrier for detrital input coming from cratonic areas 388 

(Augustsson et al., 2015). 389 

The dominance of Mesoproterozoic detrital zircon ages in the 1.0-1.3 Ga range is 390 

comparable to the age range of the presumably Grevillian basement rocks of the 391 

Cuyania terrane (ca. 1.24-1.03 Ga, Varela et al., 2011, and others therein) and to the 392 

Las Yaretas gneiss exposed to the south of the study area at the Cordón del Portillo of 393 

the Argentine Frontal Cordillera, considered a part of the poorly exposed basement of 394 

the Chilenia terrane (1.07-1.08 Ga, Basei et al., 1997). The 1.0-1.3 Ga detrital age is 395 

also comparable to ages from the Gondwanan Sunsás belt, located further north in the 396 

southwestern Amazonian craton, and also from the Arequipa-Antofalla terrane (Ramos, 397 

2010, and others therein). However, considering the mostly elongated to oval zircon 398 

grains analyzed here, and their moderate degree of roundness, we interpret that they 399 

are derived from eroded or covered igneous/metamorphic complexes and/or recycled 400 

sedimentary rocks exposed in the vicinity of the depositional basin (i.e., the Cuyania 401 

basement) rather than from remote Gondwanan locations.  402 

The strong presence of this 1.0-1.3 Ga population in the analyzed samples and also in 403 

other Neoproterozoic-Early Paleozoic units from the Cuyania and Chilenia terranes 404 

(Finney et al., 2005; Gleason et al., 2007; Willner et al., 2008; Naipauer et al., 2010; 405 
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Abre et al., 2012; Ramacciotti et al., 2015) suggests the existence of a constant source 406 

area that provided material throughout the basins that developed in the Cuyania terrane 407 

during the Neoproterozoic and Early Paleozoic.  408 

The common late Neoproterozoic (ca. 650-600 Ma) and minor early Neoproterozoic (ca. 409 

830-710 Ma) age population of both samples, as well as the age peak at ca. 530 Ma for 410 

the Peñasco Formation, are comparable to both Laurentian and Gondwanan sources, all 411 

related to the break-up of Rodinia. The typically subrounded grains with oscillatory 412 

magmatic zoning (group ii) are in accordance with igneous sources. The ca. 650-600 Ma 413 

population may have been derived from the igneous rock bodies related to the 414 

Brasiliano-Pan-African Orogen (e.g., Brito Neves et al., 1999), as interpreted for some 415 

Early Paleozoic Gondwanan units that show a similar detrital age (e.g., Collo et al., 416 

2009; Adams et al., 2011). A provenance from Late Neoproterozoic intrusive rocks from 417 

the Arequipa-Antofalla terrane (Loewy et al., 2004) may also be possible. Another 418 

source for the Neoproterozoic populations could be reworked sedimentary units 419 

exhumed in the Ordovician Ocloyic orogen that host zircon related to the magmatic 420 

pulses during the opening of the Iapetus ocean (760-700 Ma, 620-550 Ma, Aleinikoff et 421 

al., 1995). A-type magmatism related to the early phase of the Rodinia break-up is 422 

registered both in the current Pie de Palo (774 Ma, Baldo et al., 2006) and Maz ranges 423 

(845 Ma, Colombo et al., 2009). The peak of ca. 530 Ma in the Peñasco Formation is 424 

close to the time of the synrift volcanism along the Ouachita rift and Alabama-Oklahoma 425 

transform in the Ouachita embayment of Laurentia (539-530 Ma, Thomas et al., 2012), 426 

where Cuyania supposedly rifted (Astini et al., 1995; Thomas and Astini, 1996). 427 

However, the 530 Ma age peak is also similar to the time of the collision of the Pampia 428 
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terrane with the Rio de la Plata craton (Pampean orogeny, 550-520 Ma, e.g., Rapela et 429 

al., 1998). 430 

The youngest ca. 460 Ma zircon population only recognized in the Garganta del León 431 

Formation can be correlated to the late stages of the Famatinian Arc due to the 432 

presence of elongated and subrounded grains with igneous oscillatory zoning. The 433 

Famatinian Arc (530-460 Ma) developed due to east-dipping subduction of the ocean 434 

crust beneath West Gondwana, and magmatic activity ended with the collision of the 435 

Cuyania terrane (e.g., Ramos et al., 1986; Thomas and Astini, 1996). This detrital age is 436 

scarce along the Argentine Precordillera and points to the existence of a positive area, 437 

such as the Ocloyic orogen, that acted as a barrier for more important detrital input from 438 

the arc into the Ordovician to Silurian marine basins of central and western Cuyania 439 

(Gleason et al., 2007; Abre et al., 2012). The presence of this ‘Famatinian’ population 440 

suggests that deposition in a marine setting still occurred in the studied area after the 441 

collision of the Cuyania terrane with West Gondwana. 442 

 443 

6.2. Tectonic implications 444 

The extensional regime registered in the current southern PMUB and in the Frontal 445 

Cordillera mafic-ultramafic belt since the Late Neoproterozoic-Middle Cambrian (Basei et 446 

al., 1997; Davis et al., 2000; López and Gregori, 2004; Banchig, 2006; López de 447 

Azarevich et al., 2009) was widespread along the PMUB and also further south (current 448 

San Rafael Block, Abre et al., 2011) during the Ordovician.  449 

This is evidenced by the dominant siliciclastic deposits that frequently host marine fauna 450 

and that are spatially related to E-MORB magmatism (Haller and Ramos, 1984; Kay et 451 

al., 1984; González Menéndez et al., 2013; Boedo et al., 2013). Extensional structures 452 
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caused by gravitational collapse related to submarine sliding and carbonate olistoliths 453 

within Tremadocian slope facies register resedimentation processes along the margin of 454 

the basin (Benedetto and Vaccari, 1992; Banchig and Bordonaro, 1994; Alonso et al., 455 

2008). 456 

The sediments of the Peñasco and Garganta del León formations were deposited in this 457 

extensional context. According to their lithological association, it can be interpreted that 458 

the studied formations were deposited in different sectors of the marine basin. Their 459 

Mesoproterozoic and Neoproterozoic detrital zircon ages are similar to those from other 460 

Early Paleozoic units of the Cuyania terrane (Finney et al., 2005; Gleason et al., 2007; 461 

Naipauer et al., 2010; Abre et al., 2012). This implies that an important source area 462 

provided detritus of mostly Meso- and Neoproterozoic age to the entire Early Paleozoic 463 

marine basin. The transport of this material would have been mainly west-directed, as 464 

suggested by the east-west polarity of the Cuyanian Early Paleozoic successions 465 

(carbonate platform facing continental-slope and deep-water facies to the west) and 466 

paleocurrent directions (Abre et al., 2012, and others therein). The Late Ordovician 467 

‘Famatinian’ source registered in the Garganta del León Formation reinforces the 468 

hypothesis that the Ocloyic orogen prevented detrital input coming from the arc and also 469 

from other areas further east, such as the Pampean orogen or the cratonic areas. This 470 

also favors the interpretation of a Cuyanian source for Meso- and Neoproterozoic zircon 471 

over a population of Gondwanan origin. 472 

 473 

7. CONCLUSIONS 474 
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During the Early Paleozoic, a continental margin facing a shallow (< 200 m-deep) 475 

marine basin to the west developed in the Peñasco area. The Peñasco and Garganta 476 

del León formations represent sedimentation in different parts of the basin.  477 

Detrital zircon patterns of metasandstone from the Peñasco and Garganta del León 478 

formations show a dominant input from Late Mesoproterozoic (1.0-1.3 Ga) and Late 479 

Neoproterozoic-Cambrian (650-530 Ma) sources. Material may have been derived from 480 

eroded and/or covered igneous/metamorphic complexes and from recycled sedimentary 481 

rocks exposed in the vicinity of the depositional basin, such as the Ocloyic orogen. 482 

The youngest zircon population of the Garganta del León Formation (ca. 460 Ma) can 483 

be correlated to the late stages of the Famatinian Arc. The presence of this ‘Famatinian’ 484 

population suggests that deposition of the sediment in a wave-dominated proximal 485 

setting still occurred in the studied area after the collision of the Cuyania terrane with 486 

West Gondwana. 487 

The scarcity of a ‘Famatinian’ detrital age along the PMUB implies that the Ocloyic 488 

orogen prevented detrital input from the arc and from positive areas located further east. 489 

 490 
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Highlights: 

 

Two stratigraphic units are redefined: the Peñasco and Garganta del León formations. 

Detrital zircon dating constrains source rock ages to the Meso- and Neoproterozoic.  

The Ocloyic orogen acted as source and as a barrier for detrital input from Gondwana. 

Cuyania accreted to Gondwana before the deposition of the Garganta del León Formation. 

The Famatinian arc provided detritus to the western Cuyania marine basin. 

 


