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For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run
equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite
design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and
sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs)
on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by
cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic
(EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized
using digital image processing (DIP) for particle counting (density estimation) and average diameter mea-
surement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges
of 0.1–30.0 μM and 30.0–330.0 μMwith a limit of detection (LOD) of 0.05 μM. This sensor selectively detects
nitrite even in the presence of high concentration of common ions and biological interferents therefore, we
found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability
and good antifouling properties. The proposed sensor was used to the determination of nitrite in several
foodstuff and water samples.

© 2014 Published by Elsevier B.V.
1. Introduction

Nitrite as a typical inorganic pollutant, has caused serious hazards to
public health and the environment, and its anthropogenic sources are
wastes from fertilizers [1]. Nitrite promotes the irreversible oxidization
of hemoglobin to methemoglobin and reduces the blood capacity
to transport oxygen [2]. In addition, it can react with amines to form
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N-nitrosamines, many of which are known to be carcinogens [3,4].
Hence, selective and sensitive determination of nitrite has become im-
portant. There are many analytical technologies for nitrite detection,
mainly containing spectrophotometry [5,6], chromatography [7,8], cap-
illary electrophoresis chemiluminescence [9] and electrochemistry
[10–13]. Electrochemical techniques have been proved to be one of
the most advantageous ways in the determination of nitrite.

Graphene is a single-atom-thick planar sheet of hexagonally arrayed
sp2-bonded carbon atoms packed in a 2-D honeycomb crystal lattice
[14]. Many desirable properties of graphene have been revealed such
as high surface-to-volume ratio, large surface area, high electrocatalytic
activity, fast electron transfer, low cost, robust mechanical properties,
flexibility and outstanding conductivity [15], making it a promisingma-
terial for applications in electronics/optoelectronics [16], sensors [17],
composites [15], batteries [18] and supercapacitors [19]. However, as
the existence of residual defects in graphene can exert a significant in-
fluence on its electronic properties, efficient reduction of oxygenated
species in graphene is necessary to prevent possible unwanted reactions
and electrostatic adsorptions. Numerous studies have focused on the
synthesis and applications of graphene inorganic nanocomposite mate-
rials [16,20]. However, undesirable excessive reducing agents used in
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these methods both increase the cost in mass production and possibly
remain and contaminate the synthesized materials. Meanwhile,
oxygen-containing functional groups (\OH, C\O\C in the basal
plane and \COOH on the edges) in graphene cannot be completely
eliminated by chemical reduction [21]. Therefore, it is of great interest
to look for a simple and environmentally friendly approach for synthe-
sis of graphene sheet-NPs composites. Electrochemical methods are
useful in reduction of graphene oxide (GO), strictly speaking an insula-
tor, to eliminate oxygenated defect sites and improve its electronic
properties [22].

Heterogeneous bimetallic alloy NPs have recently receivedmuch at-
tention as electrocatalysts with enhanced activities and electrochemical
reversibility for redox reactions. These bimetallic alloys can retain the
functional properties of each component and possibly offer synergistic
effects via cooperative interactions, resulting in important features
such as increased surface area, enhanced electrocatalytic activity,
improved biocompatibility, promoted electron transfer, and better in-
vulnerability against intermediate species [23]. Owing to these advan-
tages of bimetallic alloy NPs, our interest was shifted to develop CoNi
bimetallic alloy nanoparticles for application in electrochemical sensing
with appropriate characteristics such as high sensitivity, wide linear
range, better selectivity, repeatability and reproducibility. Electrodepo-
sition is the most controllable and robust technique for the synthesis
of metal NPs, in which the size, density, composition of alloys and
even the shape of NPs can be well-controlled by electrochemical condi-
tions of the procedure, concentration, and composition of metal precur-
sor solutions [24]. Herein, GO was firstly electrochemically reduced at a
glassy carbon electrode (GCE) with a process free of reducing agents.
The electrodeposited CoNi bimetallic alloy NPs were then used to
modify the ERGO.

The sizes of NPs are commonly linked to their physicochemical
properties [25], with different crystal nucleation and growth processes
giving rise to different particle size distributions (PSDs). In order to pro-
vide statistically meaningful size distributions from SEM images, many
particles should be analyzed. Image segmentation is an essential prelim-
inary step in most automated pattern recognition and scene analysis
problems. Segmentation is used to subdivide an image into its constitu-
ent regions, and its accuracy determines the eventual success or failure
of computerized analysis procedures. Manual segmentation of SEM
images can be time-consuming and subjective because, in most cases,
it is difficult to analyze an image locally to obtain only the desired infor-
mation from the particles. In order to address these issues, we have
used DIP based on a semi-automatic approach and adaptive local
thresholding that allows particles to be detected and characterized
with greater accuracy than using more conventional methods, in
which a global threshold is used.

The method of changing one factor at a time (COFAT) to investigate
the outcome of an experiment most likely dates back to the beginnings
of systematic scientific research. This method is time consuming and
requires a number of experiments to determine optimum levels,
which are unreliable. Statistical ED is a very useful tool for this purpose
as it provides statistical models, which help in understanding the inter-
actions among the parameters that have been optimized [26,27].
Table 1
The studied variables and responses.

Variables Range a

−1

(A) Volume of GO. 0.5
(B) Rate of scanning potential for reducing GO. 50
(C) No. of cycles applied for reducing GO. 25
(D) pH of the PBS used for reducing GO. 4
(E) No. of cycles applied for the electrodeposition of NPs. 10
(F) Rate of scanning potential for electrodeposition of NPs. 50
(G) [Co]/[Ni] 0.33
(H) pH of the PBS containing nitrite. 4
Awidely usedmethodology for developing, improving and optimiz-
ing systems, the so-called response surface methodology (RSM),
consists of the following general phases: 1) Screening: experiments
are designed with the purpose of discovering the vital few control vari-
ables that cause statistically significant effects of practical importance
for the goal of the study; 2) Modeling: experiments are designed with
the purpose of modeling the quality of interest response as a function
of control variables; 3) Optimization: response model is analyzed to
determine the variable settings at which optimum conditions of system
property are achieved. This methodology has inherent sequential
experimentation strategy that, if the technical and non-technical issues
in the experimental phases are properly managed, leads to a high level
of system knowledge. For an understanding of the assumptions and
conditions necessary to successfully apply RSM the reader is referred
to Refs. [28–30].

Literature survey revealed that graphene has catalytic effects on ox-
idation of nitrite [31]. Here, we wish to further modify graphene with
CoNi bimetallic alloy NPs and see its performance towards oxidation
of nitrite. The main aim of the present work was to develop, optimize
and validate a novel, highly selective and sensitive amperometric nitrite
sensor with the aid of ED. We have coupled computational approaches
with experimental ones to introduce a very attractive study which is
unique among the methods reported in the literature for constructing
the electrochemical sensors. To the best of our knowledge, this work
is the first report on using an advanced optimization procedure at the
field of electrochemistry and it will surely be a great base formore inter-
esting studies in near future.

2. Experimental and theoretical backgrounds

2.1. Chemicals and solutions

All chemicals used in this study were of analytical grade fromMerck
(otherwise those stated) and used without further purification. Graph-
ite flakes (150.0 μm flakes) were purchased from Sigma-Aldrich, USA.
Phosphate buffer solutions (PBS, 0.05M) at various pH values were pre-
pared using Na2HPO4, and NaH2PO4. Griess reagent was prepared by
mixing equal volumes of solutions of α-napthylamine (0.1 g dissolved
in 100.0 mL of double-distilled water (ddH2O)) and sulphanylamide
(1.0 g of the reactant, 5.9 mL of concentrated phosphoric acid solution
and dilution to 100.0 mL with ddH2O). Absorbance measurements
were performed at 534.0 nm. The ddH2O was used throughout the
study and high purity N2 was applied for deaeration.

2.2. Apparatus and softwares

Electrochemical experiments were performed using a μ-Autolab
TYPE III, Eco Chemie BV, Netherlands, equipped with PSTA 20 model
and driven by NOVA 1.8 software. A conventional three-electrode cell
was used with a saturated Ag/AgCl as reference electrode, a Pt wire as
counter electrode and a bare (with an area of 0.017 cm2) or modified
GCE as working electrode. Before the modifications, the GCE was care-
fully polished on a fine microcloth successively with 0.3 and 0.05 μm
nd levels Responses

+1

4 (μL) (R1) Peak current (A)
100 (mV s−1) (R2) Peak potential (V)
125 (cycles)
8 (pH)
50 (cycles)
100 (mV s−1)
3
8 (pH)



Table 2
The Min Run Res IV FD and experimental results.

Experiment Variables' levels Responses

A B C D E F G H R1 (A) R2 (V)

1 4 100 125 6 10 50 0.33 8 0.0000575 0.88
2 4 100 25 3 50 50 0.33 4 0.0000536 0.82
3 0.5 100 25 6 50 100 0.33 8 0.0000535 0.80
4 4 50 125 3 50 100 3 4 0.0000645 0.74
5 0.5 100 25 6 10 50 3 4 0.0000488 0.93
6 4 100 25 3 10 100 3 8 0.0000476 0.85
7 2.25 75 75 4 30 75 1.67 6 0.0000833 0.80
8 4 50 125 3 10 50 3 4 0.0000731 0.83
9 0.5 100 125 3 10 100 0.33 4 0.0000638 0.92
10 4 50 25 6 50 50 3 8 0.0000439 0.78
11 4 100 125 6 50 100 3 4 0.0000664 0.74
12 0.5 100 125 3 50 50 3 8 0.0000568 0.76
13 0.5 100 25 6 10 50 0.33 8 0.0000412 0.93
14 0.5 50 25 3 50 100 3 4 0.0000475 0.73
15 4 50 25 6 10 100 0.33 4 0.0000484 0.87
16 0.5 50 125 6 10 100 3 8 0.0000606 0.79
17 4 50 125 3 50 100 0.33 8 0.0000523 0.80
18 2.25 75 75 4.5 30 75 1.67 6 0.0000856 0.79
19 0.5 50 125 6 50 50 0.33 4 0.0000561 0.81
20 0.5 50 25 3 10 50 0.33 8 0.0000381 0.91

Table 3
Face centered central composite design and experimental results.

Experiment Variable levels Responses

C E F G H R1 (A) R2 (V)

1 25 50 50 0.33 8 0.0001310 0.71
2 25 10 100 3 4 0.0000835 0.73
3 75 30 75 1.665 6 0.0000723 0.71
4 125 50 100 3 4 0.0001200 0.74
5 125 10 100 3 8 0.0001330 0.70
6 125 10 100 0.33 8 0.0000867 0.72
7a 75 30 75 1.665 6 0.0000893 0.83
8 25 10 50 0.33 8 0.0001170 0.72
9 25 10 100 0.33 8 0.0000893 0.70
10 75 30 75 0.33 6 0.0001170 0.72
11 125 50 50 0.33 4 0.0000317 0.72
12 25 50 50 0.33 4 0.0000346 0.75
13 25 50 100 0.33 4 0.0000273 0.73
14 75 30 75 3 6 0.0000904 0.71
15 125 50 50 0.33 8 0.0000821 0.70
16 125 50 100 3 8 0.0000860 0.70
17 25 10 100 3 8 0.0000489 0.69
18 75 30 75 1.665 6 0.0000939 0.71
19 125 10 50 0.33 8 0.0000900 0.69
20 125 30 75 1.665 6 0.0000757 0.72
21 25 10 50 3 8 0.0000918 0.71
22 25 10 50 0.33 4 0.0000170 0.77
23 75 30 75 1.665 8 0.0000785 0.70
24 25 50 100 3 8 0.0000621 0.70
25 75 30 100 1.665 6 0.0000700 0.70
26 25 50 50 3 4 0.0000192 0.73
27 125 50 100 0.33 4 0.0000163 0.76
28 75 30 75 1.665 4 0.0000104 0.74
29 75 30 50 1.665 6 0.0000329 0.72
30 125 10 100 3 4 0.0001310 0.73
31 25 50 100 3 4 0.0000358 0.74
32 125 50 50 3 8 0.0000681 0.71
33 75 30 75 1.665 6 0.0000479 0.72
34 25 30 75 1.665 6 0.0000017 0.71
35 25 50 100 0.33 8 0.0000862 0.69
36 75 30 75 1.665 6 0.0000422 0.70
37 25 10 50 3 4 0.0000299 0.71
38 125 50 50 3 4 0.0000285 0.71
39 75 30 75 1.665 6 0.0000283 0.69
40 75 10 75 1.665 6 0.0000313 0.70
41 125 10 50 0.33 4 0.0000421 0.74
42 125 10 50 3 8 0.0000696 0.70
43 125 10 50 3 4 0.0000281 0.72
44 75 30 75 1.665 6 0.0000250 0.71
45 25 10 100 0.33 4 0.0000287 0.74
46 25 50 50 3 8 0.0000595 0.71
47 75 50 75 1.665 6 0.0000615 0.69
48 125 10 100 0.33 4 0.0000268 0.75
49 125 50 100 0.33 8 0.0000500 0.69
50 75 30 75 1.665 6 0.0000123 0.69

a Outlying.
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alumina slurry (Beuhler) until a mirror-shine surfacewas obtained, and
then rinsedwith ddH2O. A sonication stepwas performed consecutively
in ethanol and ddH2O andGCEwas then dried at room temperature. The
UVvis spectrophotometric measurements were performed on an
Agilent 8453 UVvis Diode-Array spectrophotometer controlled by the
Agilent UVvis ChemStation software. A JENWAY-3345 pH-meter
equipped with a combined glass electrode was used to pH measure-
ments. The SEM experiment was made on a KYKY-EM 3200 scanning
electron microscope. Energy dispersive X-ray spectroscopic (EDS) de-
tecting unit was used for elemental analysis. The EIS was carried out
using the same three-electrode configuration above on the mentioned
Autolab in a supporting electrolyte solution of 1.0 M KCl containing
equimolar [Fe(CN)6]4−/3− in a frequency range from 0.1 Hz to
100.0 kHz. The fit and simulation of equivalent circuit were analyzed
with FRA software. A licensed Design Expert software (Version 8.0)
waspurchased fromStat-Ease and applied for designing of experiments.
All the recorded electrochemical data was smoothed, when necessary,
and converted to data matrices by the use of several home-mademfiles
in MATLAB environment (Version 7.14, MathWorks, Inc.). The asym-
metric least squares splines regression (AsLSSR) algorithm was applied
for baseline correction inMATLAB environment. TheDIPwas carried out
on the SEM image of the surface of the modified electrode using a
MATLAB code and an adaptive thresholding algorithm. All computa-
tions were run on a DELL XPS laptop (L502X) with Intel Core i7-
2630QM 2.0 GHz, 8 GB of RAM and Windows 7–64 as its operating
system.

2.3. Synthesis of GO

The GO was synthesized using a modified Hummer's method [32,
33]. Typically, 3.0 g graphite flakes, 2.5 g K2S2O8 and 2.5 g P2O5 were
added to 12.0 mL concentrated H2SO4 solution and reacted at 80.0 °C
for 4.5 h. After graphite oxidation, the mixture was diluted with
500.0mL ddH2O and kept at 80.0 °C for another 12.0 h. The resulting so-
lution was then filtered, washed with ddH2O and left overnight for dry-
ing at room temperature, before re-dispersing in 120.0mL concentrated
H2SO4 with successive addition of 15.0 g KMnO4 at temperature kept
below 20.0 °C under stirring. The mixture was left stirred at 40.0 °C for
0.5 h and 90.0 °C for 1.5 h, followed by drop-wise addition of
250.0 mL ddH2O, incubation at 105.0 °C for 25.0 min and stirring at
room temperature for 2.0 h. 700 mL ddH2O and 20.0 mL 30.0% (w/w)
H2O2 were added to terminate the reaction. The resulting products
were then filtered, washed with 3.0 M HCl solution, and repeatedly
washed with water until the pH value of filtrate was neutral. It was fur-
ther purified by dialysis for oneweek to remove residual salts, acids and
metal species and was re-suspended by ultrasonication in water to ob-
tain a homogeneous GO solution.

For preparing the novel sensor according to the computationally
designed experiments we applied the following procedure: a distinct
volume (variable A (μL), Table 1) of 1.0 mg mL−1 of the above-
prepared GO solution was cast on the pretreated bare GCE surface and
dried in ambient condition. The electrochemical reduction of GO on
GCE was conducted by repetitive CV with scanning from 0 V to −1.5 V
at a distinct scan rate (variable B (mV s−1), Table 1) for a distinct number
of cycles (variable C, Table 1) in deaerated 0.05 M PBS with a distinct pH
(variable D, Table 1). The ERGO/GCE was then rinsed with ddH2O and
dried at room temperature. The modification of ERGO with CoNi bime-
tallic alloy NPswith a distinct ratio (variableG, Table 1)was achieved by
electrodeposition under repetitive CVwith scanning from0 V to−1.5 V
at a distinct scan rate (variable F (mV s−1), Table 1) for a distinct
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number of cycles (variable E, Table 1). Finally, by putting the construct-
ed sensor in a nitrite solutionwith a distinct pH (variableH, Table 1) the
CV response related to oxidation of nitrite was recorded. The studied
responses were peak current (R1) and peak potential (R2) of nitrite
cyclic voltammogram (Table 1).

2.4. Preparation of the real samples

To evaluate the accuracy andapplicability of theproposedmethodol-
ogy, the determination of nitrite in several real samples, i.e., Damavand
mineral water (Damavand Co., Tehran, Iran), hot dog sausage (Bisetoon
Co., Kermanshah, Iran), mortadella salami, (Bisetoon Co., Kermanshah,
Iran) and feta white cheese (Guilan Pegah Dairy Co., Guilan, Iran) was
performed. The extraction of nitrite from hot dog sausage, mortadella
salami, and feta white cheese samples (weights of samples taken were
50.0 g, 50.0 g and 30.0 g, respectively) was accomplished by leaving a
certain amount of crushed samples in deionized water at 70.0 °C
under stirring for 10.0 min and further filtering of the remaining liquid.
No preparation was required for mineral water sample.

2.5. Baseline correction

Baseline correction has been considered as a critical step for enhanc-
ing the signals and reducing the complexity of the analytical data [34].
Considering this aim, we used the method proposed by Eilers et al.
[35] for background elimination in two-dimensional signals based
on asymmetric least squares splines regression approach. In the asym-
metric least squares method [36] the following cost function is mini-
mized:

Q ¼
X
i

υi yi− f ið Þ2 þ λ
X
i

Δ2 f i
� �2 ð1Þ
Table 4
The results of ANOVA obtained by Min Run Res IV FD.

SS d.f.a MSb F-value P-value

R1
Model 1.096 × 10−9 2 5.482 × 10−10 4.61 0.0251
C 8.187 × 10−10 1 8.187 × 10−10 6.89 0.0178
H 1.791 × 10−10 1 1.791 × 10−10 1.51 0.0236
Residual 2.021 × 10−9 17

1.189 × 10−10

LOFc 2.019 × 10−9 16 1.262 × 10−10 47.7 0.1133
Pure error 2.645 × 10−12 1 2.645 × 10−12

Total SSd 3.11 × 10−9 19
R2 = 0.8676e

Adj-R2 = 0.8392f

Pred-R2 = 0.7744g

R2
Model 0.065 3 0.022 26.47 b0.0001
E 0.039 1 0.039 47.71 b0.0001
F 3.782 × 10−3 1 3.782 × 10−3 4.61 0.0475
G 0.012 1 0.012 14.4 0.0016
Residual 0.013 16 8.203 × 10−4

LOF 0.013 15 8.717 × 10−4 17.43 0.186
Pure error 5.000 × 10−5 1 5.000 × 10−5

Total SS 0.078 19
R2 = 0.9486
Adj-R2 = 0.9206
Pred-R2 = 0.8858

a Degrees of freedom.
b Mean square.
c Lack of fit.
d Sum of squares.
e Determination coefficient.
f Adjusted R2.
g Predicted R2.
where y is the experimental signal, f is a smooth approximation of base-
line trend (y), Δ is the derivative of f, i denotes successive values of the
signal, the positive parameter λ is a regularization parameter thatweigh
the second term and υ are weights. The positive deviations from the
estimated baseline (peaks) have low υ values while the negative devia-
tions (baseline) obtain high υ values. In themultidimensional extension
of baseline correction method, Eilers et al. proposed the splines-based
approach to smoothing instrumental signal (the penalty term in
Eq. 1). Details of the implementation of the mentioned method can be
found in the literature [35].

2.6. Statistical experimental design

2.6.1. Min-Run Res IV FD
In the presence of factors' interactions, only designs of resolution IV

FD or higher can ensure accurate screening [37]. The methodology of
Min-Run Res IV FD is a powerful and useful tool in rapidly searching
key variables from a multivariable system. If we are limited by time,
materials, or other experimental resources, in most cases Min-Run Res
IV FD offers savings in runs over the equivalent standard two-level frac-
tional factorial design [37].

A Min-Run Res IV FD was carried out to evaluate the effect of the
eight variables (Table 1) and their interactions on R1 and R2. The levels
of the variables were chosen based on previous works reported in liter-
atures and our experiments. Here, an experimental matrix containing
20.0 runs was designed and employed (Table 2). The experiments
were performed in a randomized order to assure the independence of
the results and minimizing the effects of uncontrolled factors.

2.6.2. Selection of the optimization design
Among Response-surface designs with a symmetrical experimental

domain, the following can be considered: three-level full-factorial
(3-FFD), central composite (CCD), Box–Behnken (BBD), and Doehlert
Matrix (DMD) designs [38].

The CCD is defined by the following polynomial model:

y ¼ β0 þ
Xk

i¼1

βixi þ
Xk

i¼1

βiix
2
i þ

Xk

1≠ j

βijxix j þ ε ð2Þ

where y is the dependent variable (Response); β0 is the constant term,
βi, βii and βij represent the coefficients of the first order terms, quadratic
terms and interaction terms respectively. The ε is residual associated to
the experiments and k is the number of variables.

The CCD includes: two-level factorial design points (Fp), axial or star
points (Sp) and central points (Cp). The Sp has all of the factors set to 0,
except one factor which has the value ±α. The value of α determines
the location of the Sp in the CCD and usually varies from 1 to

ffiffiffi
k

p
. In

order to model the responses with the significant variables a FCCCD
which is considered to be 1 in α, was carried out in this study. The
total number of design points needed (N) is determined by the follow-
ing equation:

N ¼ 2k þ 2 kþ CP: 3

Making replicates at the center point has two main objectives: to
provide a measure of pure error, i.e., the error to be expected in the
response if the experiment is repeated starting from scratch, and to sta-
bilize the variance of the predicted response in the design region. Here,
an experimental matrix was designed and employed (Table 3). The
experiments were performed in a randomized order to assure the inde-
pendence of the results, minimizing the effects of uncontrolled factors.
Then, the previously commented responses were evaluated.



Fig. 1. The half-normal plots of effects of variables on (A) R1 and (B) R2.
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2.6.3. Derringer's desirability function
The DF includes the researcher's priorities and desires on building

the optimization procedure. Its application involves creating a function
for each individual response (di) and finally obtaining a global function
D that should bemaximized or minimized choosing the best conditions
of the designed variables. The latter function varies from 0 (totally
undesirable value) to 1 (all responses are in a desirable range simulta-
neously), and can be defined by Eq. (4):

D ¼ dr11 � dr22 �…� drmm
� �

1X
r j¼

�
∏
m

j¼1
dr1j

�
1X
r j ð4Þ

where d1,.., dm correspond to the individual desirability functions for
each response being optimized, m is the number of responses, and r is
the relative importance of each response [39]. Remarkably, though
Fig. 2. The Pareto chart plots representing the si
this methodology presents considerable advantages in chemical analy-
ses, some applications can be found in the literature [39–43].
2.7. Digital image processing

The DIPwas carried out on the SEM image of the surface of themod-
ified electrode using aMATLAB code and an adaptive thresholding algo-
rithm. The contrast of the SEM images was inverted in order to display
darker particles on a brighter background, calibrated and converted to
bmp format suitable for further DIP. The program was designed with
an interactive user interface, to allow squares with sizes selected by
the user to be dragged to selected positions on the image in sequence
and segmented using Otsu's method. The automated steps include:
(1) thresholding each sub-image (the output from this procedure is a
binary image), (2) opening (dilation plus erosion pixel-by-pixel with a
chosen kernel size) and (3), combination and analysis of the processed
ze of variables' effects on (A) R1 and (B) R2.



Table 5
The results of ANOVA obtained by FCCCD.

SS d.f.a MSb F-value P-value

R1
Model 1.493 × 10−4 8 1.866 × 10−5 5.58 b0.0001
C 7.175 × 10−6 1 7.175 × 10−6 2.14 0.1507
F 5.489 × 10−6 1 5.489 × 10−6 1.64 0.2074
G 8.473 × 10−7 1 8.473 × 10−7 0.25 0.6174
H 7.333 × 10−5 1 7.333 × 10−5 21.92 b0.0001
FG 1.349 × 10−5 1 1.349 × 10−5 4.03 0.0513
GH 1.799 × 10−5 1 1.799 × 10−5 5.38 0.0255
C2 1.845 × 10−5 1 1.845 × 10−5 5.38 0.0237
G2 3.080 × 10−5 1 3.080 × 10−5 9.21 0.0042
Residual 1.371 × 10−4 41 3.345 × 10−6

LOFc 8.793 × 10−5 34 2.586 × 10−6 0.37 0.9763
Pure error 4.921 × 10−5 7 7.029 × 10−6

Total SSd 2.864 × 10−4 49
R2 = 0.8435e

Adj-R2 = 0.8167f

Pred-R2 = 0.7546g

R1
Model 1.493 × 10−4 8 1.866 × 10−5 5.58 b0.0001
C 7.175 × 10−6 1 7.175 × 10−6 2.14 0.1507
F 5.489 × 10−6 1 5.489 × 10−6 1.64 0.2074
G 8.473 × 10−7 1 8.473 × 10−7 0.25 0.6174
H 7.333 × 10−5 1 7.333 × 10−5 21.92 b0.0001
FG 1.349 × 10−5 1 1.349 × 10−5 4.03 0.0513
GH 1.799 × 10−5 1 1.799 × 10−5 5.38 0.0255
C2 1.845 × 10−5 1 1.845 × 10−5 5.38 0.0237
G2 3.080 × 10−5 1 3.080 × 10−5 9.21 0.0042
Residual 1.371 × 10−4 41 3.345 × 10−6

LOFc 8.793 × 10−5 34 2.586 × 10−6 0.37 0.9763
Pure error 4.921 × 10−5 7 7.029 × 10−6

Total SSd 2.864 × 10−4 49
R2 = 0.8435e

Adj-R2 = 0.8167f

Pred-R2 = 0.7546g

a Degrees of freedom.
b Mean square.
c Lack of fit.
d Sum of squares.
e Determination coefficient.
f Adjusted R2.
g Predicted R2.
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sub-images. This semiautomatic approach combining interactive selec-
tion of regions of interest with automated segmentation and analysis
fully exploits the concept of adaptive thresholding, allowing the refine-
ment of the results obtained using a fully automatic division of the
images.

3. Results and discussion

3.1. Screening by Min-Run Res IV FD

Table 2 describes aMin-Run Res IV FD on eight variables which have
been screened for evaluating their effects on R1 and R2. Table 4 shows
the results of analysis of variance (ANOVA) for R1 and R2.

According to the results of ANOVA for R1 (Table 4), themodel F-value
of 4.61 implies that the model is significant and there is only a 2.51%
chance that a large F-value of 4.61 could occur due to noise. A p-value is
a measure of how much evidence one has against the null hypothesis
and evidence against null hypothesis is more for smaller p-value. A
p-value of 0.05 or less rejects the null hypothesis at the 5% level,
that is, only 5% of the probability the supposed statistical model
will fail to predict the response. The p-values less than 0.05 indicate
that model terms are significant and in this case C and H are signifi-
cant model terms. Lack of fit (LOF) is a special investigative test for
adequacy of a model fit. If the model does not fit the data well, this
will be significant. The LOF F-value of 47.70 implies that the LOF is not
significant relative to the pure error. There is only 8.33% chance that a
large LOF F-value of 47.7 could occur due to noise. The model adequa-
cies were checked by the determination coefficients (R2), adjusted R2

(adj-R2), and predicted R2 (pred-R2). The R2 is a measure of how well
the regression equationfits the sample data. The adj-R2 is amodification
of R2 that adjusts for the number of explanatory terms in a model. A
pred-R2 is used to measure the amount of variation in new data ex-
plained by the model. The pred-R2 and the adj-R2 should be within
0.20 of each other. Otherwise there may be a problem with either the
data or the model. Here, the obtained values for adj-R2 and pred-R2

are 0.8392 and 0.7744, respectively. The pred-R2 of 0.8392 is in reason-
able agreement with the adj-R2 of 0.7744 and it might be also said that
the R2 of 0.8676 was in reasonable agreement with the experimental
results, indicating that 86.76% of the variability could be revealed by
the model. Adequate precision measures the signal to noise ratio and
a ratio greater than 4.0 is desirable. Here, a value of 4.717 for adequate
precision indicates an adequate signal and this model can be used to
navigate the design space.

According to the results of ANOVA for R2 (Table 4), themodel F-value
of 26.47 implies that the model is significant and there is only a 0.01%
chance that a large model F-value of 26.47 could occur due to noise.
According to p-values, E, F and G are significant model terms. The LOF's
F-value of 17.43 implies the LOF is not significant relative to the pure
error. There is a 1.6% chance that a large LOF's F-value could occur due
to noise. The obtained values for adj-R2 and pred-R2 were 0.9206 and
0.8858, respectively. The pred-R2 is in reasonable agreement with the
adj-R2 and it might be also said that the R2 of 0.9486 was in reasonable
agreement with the experimental results, indicating 94.86% of the vari-
ability could be revealed by the model. Here, a value of 13.698 for
adequate precision indicates an adequate signal and this model can be
used to navigate the design space.

On the other hand, in order to get a deeper insight, diagnostic plots
(half-normal plot and standardized Pareto chart) for both analyzed
responses were built, which allowed us to reach a similar conclusion.
The half-normal plots of effects of variables on responses are shown in
Fig. 1. Fig. 1A reveals two main effects from factors H and C on the R1
while, Fig. 1B reveals three main effects from factors E, F and G on R2.
The other (unlabeled) effects line up normally near low levels of effect
and, in all likelihood, they vary because of experimental error [37].

Standardized Pareto charts represent the estimated effects of vari-
ables and variables' interactions on responses. In order to determine
the importance of the significant variables, standardized Pareto charts
(Fig. 2) were employed. Tomake the Pareto chartmore robust to exper-
imental mishaps, it has been plotted with the t-values of the effects. A
more conservative t-value (Bonferroni limit) [37], takes the number of
estimated effects into account by dividing it into the desired probability
for the risk value [37]. These two values of t-test can help us to distin-
guish the significant variables from insignificant ones. The most signifi-
cant effects were towering over the Bonferroni limit, the significant
effects towering above the t-value limit, and the insignificant effects
towering under the t-value limit, Fig. 2A–B.

Therefore, as a conclusion of the screening step, C, E, F, G and H
variables must be considered as key variables affecting the responses
in the further optimization analysis. The other variables were detected
as insignificant variables and were held constant at their respective
optimal levels throughout all the experiments.

3.2. Developing mathematical models by FCCCD

By the use of FCCCD twomodels were developed. In eachmodel, the
variables were evaluated by ANOVA and a backward regression proce-
dure was applied to eliminate the insignificant ones. The obtained
results are shown in Table 5. As can be seen for R1, the p-value of LOF
was found to be 0.9763 and indicates that themodel fitted the response
well. The model F-value of 5.58 implies that the model is significant.
There is only a 0.01% chance that a large F-value of 5.58 could occur
due to noise. The pred-R2 of 0.7546 was in reasonable agreement with



Fig. 3.Response surface plots corresponding to the DFwhen optimizing the following pair of variables, whilemaintaining constant the remaining ones at their optimumvalues: (A)H-G; C
=75 cycles, E=10 cycles, and F=100mVs−1 (B)G-F; C=75 cycles, E=10 cycles, andH=7.98 (C) F-C; E=10 cycles,G=3andH=7.98 (D)H-F; C=75 cycles, E=10 cycles, andG
= 3 (E) G-E; C = 75 cycles, F= 100 mV s−1, and H = 7.98.
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the adj-R2 of 0.8167 and itmight be also said that theR2 of 0.8435was in
reasonable agreement with the experimental results. A value of 7.911
for adequate precision indicates an adequate signal and this model can
be used to navigate the design space.

According to the results of Box–Cox plot (not shown) a square root
transformation was chosen as the best possible transformation for R1.
This plot provides a guideline for selecting the correct power (lambda)
law transformation [44]. A recommended transformation is listed,
based on the best lambda value, which is found at the minimum point
of the curve generated by the natural log of the sum of squares of the
residuals.

The polynomialmodel for R1 was obtained by considering the signif-
icant terms and was expressed by:

ffiffiffiffiffiffi
R1

p
¼ −4:70738� 10−4 þ 1:44409� 10−4C–1:63163

�10−5 F–5:09710� 10−3Gþ 1:20182� 10−3H

þ1:94522� 10−5FG–2:80796� 10−4GH–9:01477

�10−7C2 þ 1:63400� 10−3G2
:

ð5Þ

The statistical significance of the polynomial model was checked by
F-test, and as can be seen the p-value is less than 0.01% which confirms
that themodel is highly significant. Themodel reveals thatH andG2 had
significant effects on R1 as they had the larger coefficient. Positive coef-
ficient ofH and C and quadratic terms FG and G2 indicated a linear effect
to increase. However, F, G and quadratic terms GH and C2 had negative
effects.

Table 5 shows the results of ANOVA for R2 aswell. As can be seen, the
LOF's p-value of 0.6322 indicates that the model fits the response well.
The model F-value of 0.89 implies that the model is significant. The
pred-R2 of 0.7554 was in reasonable agreement with the adj-R2 of
0.8036 and it might be also said that the R2 of 0.8334 was in reasonable
agreement with the experimental results. A value of 15 for adequate
precision indicates an adequate signal and this model can be used to
navigate the design space. The polynomial model for R2 was expressed
by:

R2 ¼ 0:90690−3:58676� 10−4C−2:77452� 10−4E þ 1:14118

�10−4 F−0:019885G‐0:045299H þ 4:5� 10−6CFþ 1:42790

�10−4EG−7:62500� 10−5FH þ 1:94288� 10−3GH

þ3:25882� 10−3H2

ð6Þ

The statistical significance of the polynomial model was checked by
F-test, and as can be seen the p-value is less than 0.01% which indicated
that the model is highly significant.

After building themathematicalmodelswith good statistical charac-
teristics, optimization of the procedure and finding the optimal levels of
the significant variables would be started in the next section.

3.3. Simultaneous optimization by Derringer's desirability function

It is not possible by a simple visual inspection of the response sur-
faces obtained with the fitted models, to find out the experimental con-
ditions (variables' levels) to reach simultaneously the optimal value for
all the evaluated variables. In such cases, the DF allows to obtain these
parameters including, moreover, the researcher's priorities during the
optimization procedure [45,46]. At the first step, a partial desirability
function for each individual response was created using the fitted
models and establishing the optimization criteria for each one. Vari-
ables' levels were also included in the optimization procedure, in
order to prioritize the use of certain suitable conditions within the



Fig. 4. (A) The EDS spectra of CoNi NPs/ERGO nanocomposite. Inset shows the weight and atomic percentages of C, Co, and Ni in the nanocomposite. (B) The EIS spectra of (a) bare GCE,
(b) ERGOmodified GCE, and (c) CoNi NPs/ERGOmodified GCE in 1.0 M KCl containing 5.0 mM K4[Fe(CN)6]/K3[Fe(CN)6]. The inset shows equivalent circuit Rs([RctCdl]Zw). Rs: solution re-
sistance, Rct: electron transfer resistance, Cdl: double layer capacitance, Zw: Warburg impedance.
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experimental region. Themost desirable ranges for each design variable
or response were selected, deciding if these responses or variables had
to be maximized (R1 and F), minimized (R2) or maintained in the
range (C, E, G and H). In addition, a weight or emphasis was given to
Fig. 5. (A) The original SEM image of CoNi NPs/ERGO/GCE, (B) the contrast of the original SEM i
and (D) a plot representing the PSDs.
each goal. The importance may vary from 1.0 for the least important
variable to 5.0 for the most important one. After that, the global DF
was obtained using the Eq. (4). Apart from optimizing the responses
to reach a suitable CV of nitrite, we also attempted to maximize F to
mage for detecting NPs, (C) detected NPs marked by pluses and surrounded by red circles,



Fig. 6.The CVs obtained at (a) bareGCE, (b)GO/GCE, (c) ERGO/GCE, (d)NiNPs/ERGO/GCE,
(e) Co NPs/ERGO/GCE and (f) CoNi NPs/ERGO/GCE under the identified optimal level of
the variables in 0.05 M PBS (pH = 7.98) containing 1.0 mM nitrite at the scan rate of
0.05 V s−1.
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reduce the time of fabrication. Following the conditions and restrictions
previously discussed, the optimization procedure was carried out and
the response surfaces obtained for the global DF are presented in
Fig. 3A–E. These plots were obtained for a given pair of variables,
while maintaining the other three fixed at their optimal values. Finally,
the values of the variables which maximize R1 and minimize R2 have
been chosen as the optimal experimental conditions. They resulted in
C = 75 cycles, E = 10 cycles, F = 100 mV/s, G = 3, and H = 7.98.
The global desirability resulted in 0.877; which could be considered as
highly acceptable taking into account the large number of variables
being simultaneously optimized.
3.4. Verification of the model

Under the optimal conditions, the predicted values of R1 and R2 were
0.00013868 A and 0.6987 V, respectively. With triplicate experiments,
Fig. 7. The CVs of CoNi NPs/ERGO/GCE at different scan rates in 0.05 M PBS (pH 7.98) containin
(g) 0.35, (h) 0.40, (i) 0.45 and (j) 0.50 V s−1. The inset shown above is Ip vs. (scan rate)1/2.
the mean values of R1 and R2 were (1.51 ± 0.21) × 10−4 A and 0.715
± 0.021 V, respectively, which are in an excellent agreement with the
predicted ones. As a result, the computed models were considered to
be accurate and reliable for predicting the R1 and R2.
3.5. Characterizations of CoNi NPs/ERGO nanocomposite

Elemental compositions of CoNi NPs/ERGO nanocomposite were an-
alyzed by EDS (Fig. 4 A). Signature peaks for C, Co and Niwere observed
for CoNi NPs/ERGO nanocomposite. Theweight percentage of C, Co, and
Ni in the nanocomposite was 8.25%, 68.81% and 22.94%, respectively.
This corresponded well to the molar ratio of metal precursors and indi-
cated Co and Ni can both be successfully electrochemically synthesized
under the given conditions and contribute [Co]/[Ni] = 3.0 towards for-
mation of bimetallic NPs during the synthesis.

The EIS is a useful tool to monitor modifications step-by-step using
[Fe(CN)6]4−/3− redox couple as electrochemical probe (Fig. 4 B). As
GCE was modified with ERGO (curve b), the charge transfer resistance
(Rct) drastically decreased compared to that of bare GCE (curve a).
This implied ERGO formed an interpenetrating network in favor of dif-
fusion of redox probes and interfacial electron transfers. Rct continued
to decrease as ERGO was further modified with CoNi bimetallic alloy
NPs (curve c). As expected, the decrease of charge transfer resistance
value for CoNi NPs/ERGO nanocomposite is due to acting these NPs as
conductive shreds and increasing the porous microcrystalline structure
of ERGO randomly ordered to improve electron transfer kinetic.

The surface morphologies of CoNi NPs/ERGO nanocomposite were
characterized by SEM, Fig. 5A. In order to provide statistically meaning-
ful PSDs from SEM images, many particles should be analyzed. Manual
segmentation of SEM images can be time-consuming because, in most
cases, it is difficult to analyze an image locally to obtain only the desired
information from the particles. Therefore, we have applied DIP for pro-
cessing and extracting meaningful information from the original SEM
image. Briefly, the original SEM image (Fig. 5 A) was processed for de-
tecting NPs using a semiautomatic segmentation including interactive
selection of particles, binarisation with adaptive thresholding (Otsu's
method) and finally deleting those particles that did not seem good,
Fig. 5B. Then this image was used for particle counting and average
diameter measurement. The DIP detected 1150.0 NPs marked by pluses
g 0.1 mM nitrite. Inner to outer are (a) 0.01, (b) 0.05, (c) 0.10, (d) 0.15, (e) 0.20, (f) 0.30,



Fig. 8.Amperometric response at CoNi NPs/ERGOmodified rotating disk GCE upon successive additions of nitrite (0.1–330.0 μM) into gently stirred 0.05 M PBS (pH 7.98), Eapp =
+0.715 V. Insets (A) and (B) are the linear calibration plots of response currents (μA) vs. concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM nitrite, respectively.
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and surrounded by red circles, Fig. 5C–D shows the PSDs which con-
firms a mean diameter of 15.0 ± 4.9 nm, a maximum size of 52.0 nm,
and a minimum size of 6.8 nm. Also the results of DIP confirmed
that the ERGO was modified with homogeneously dispersed CoNi bi-
metallic alloy NPs in a good size distribution having suitable density
(6.76× 104 NPs/cm2, computed from a 0.017 cm2GCE surface analysis).

3.6. Analytical characterization

Fig. 6 shows the CVs obtained at (a) bare GCE, (b) GO, (c) ERGO, (d)
Ni NPs/ERGO, (e) Co NPs/ERGO and (f) CoNi NPs/ERGO modified GCEs
in the presence of 1.0 mM nitrite under the identified optimal level of
the variables. CoNi NPs/ERGO modified GCE shows well defined,
enhanced nitrite oxidation peak at +0.71 V. It is worth noting that,
this oxidation peak potential was roughly 190.0 mV less positive than
unmodified GCE. Moreover, nitrite oxidation peak current noticed at
CoNi NPs/ERGOmodified GCEwas 3.72 fold higher than that of unmod-
ified GCE. Both decrease in overpotential and enhancement in catalytic
oxidation current indicate its promising catalytic activity towards ni-
trite. This superior catalytic performance of CoNi NPs/ERGO was attrib-
uted to the larger surface area, more electroactive sites, faster electron
transfer kinetics and the interpenetrating low-resistance 2-D network
of ERGO, favorable for dispersion and nucleation of CoNi bimetallic
alloy NPs, however we cannot neglect the excellent performance of ED
in optimization of the procedure.

Fig. 7, (a–j) shows the effect of scan rate on CoNiNPs/ERGOmodified
GCE. The anodic oxidation peak current increased linearly with square
root of scan rates (inset of Fig. 7), indicating a diffusion controlled
process. As reported by Guidelli et al. the nitrite oxidation is a second-
order homogeneous disproportionation process [47]. The overall reac-
tion can be expressed as follows:

NO−
2 þH2O→NO−

3 þ 2Hþ þ 2e: ð7Þ

Thus it is evident from the Eq. (7), NO3
− is the only plausible final

product.
Since amperometry under stirred conditions has a much higher cur-

rent sensitivity than cyclic voltammetry, it was used to estimate the
lower LOD. Fig. 8 displays typical amperogram obtained at the CoNi
NPs/ERGOmodified GCEwith successive injection of nitrite into contin-
uously stirred PBS (0.05M, pH 7.98) at an applied potential of 0.71 V vs.
Ag/AgCl (sat'd) electrode. As shown, during the successive addition of
nitrite a well-defined response was observed. The response current is
linear in the nitrite concentration ranges of 0.1–30 μM (inset A of
Fig. 8) and 30–330 μM (inset B of Fig. 8). The LOD (S/N = 3) using the
formula: LOD = 3.0Sb/S (Sb: standard deviation of blank signal and S:
analytical sensitivity) was found to be 0.05 μM. Therefore, according to
the calculated LOD it can be concluded that the CoNi NPs/ERGO modi-
fied GCE is highly sensitive.

3.7. Interference study

The effects of some possible interfering substances were studied
prior to the application of the proposed sensor for the assay of nitrite
in real samples. The anti-interference ability of the CoNi NPs/ERGO
modified GCE was investigated by adding various interferences into
a 0.05 M PBS (pH 7.98) containing 50 μM nitrite. It was found that
150-folds Ca2+, Mg2+, Ni2+, Cu2+, Al3+, SO3

2−, CO3
2−, SO4

2−, Na+, K+

and HSO4
−; 200-folds H2O2; 20-folds glucose and CuSO4; 100-folds

dopamine, uric acid and ascorbic acid did not give any significant inter-
ference on the response of the CoNi NPs/ERGOmodified GCE. Thus, this
study reveals that the developed sensor can tolerate a high concentra-
tion of interfering substances and, therefore, can be stated as highly
selective in the presence of the more common interfering substances.

3.8. Repeatability, reproducibility, stability and analytical application

The repeatability and reproducibility of the proposed sensor were
evaluated using differential pulse voltammetry. The repeatability of
one electrode to determine 50.0 μM nitrite was fairly good. The relative
standard deviation (RSD) was 0.95% for 8.0 successive assays. The
electrode-to-electrode reproducibilitywas estimated from the response
to 50.0 μMnitritewith 7.0 different sensors and this series yielded a RSD
of 4.45%. The obtained results confirmed good repeatability and repro-
ducibility of theproposed sensor. Such good repeatability and reproduc-
ibility of this sensor can be due to the less fouling effect of the CoNi NPs/
ERGOmodified GCE. In addition, long-term stabilitywas investigated by



Table 6
Comparison of the fabricated sensor with other reported sensors for nitrite.

Electrode Method Peak potential (V) Linear range (μM) LOD (μM) Ref.

TiO2 sol–gel/Aunano/Hba/GCE Amperometry 0.75 4–350 1.2 [48]
Nano-Pt/P3MTb/GCE DPV 0.77 5–170 1.5 [49]
Pt/PIc/CNTsd DPV 0.93 500–7000 5 [50]
Au–Pt NPs/ITO LSV 0.79 2.5–40 1 [51]
CRe-GO/GCE Amperometry 0.80 8.9–167 1 [31]
PtNPs/ITOf Amperometry 0.70 5–800 0.4 [52]
CPE modified with CoHCFg Amperometry 0.92 0.1–2.15 mM 1.19 [53]
PtNPs/DPANh/Au Amperometry −0.3 10–1000 5 [54]
Au NPs/SGi/GCE Amperometry 0.77 10–3.96 mM 0.2 [55]
Grj/PPk/CTl/GCE Amperometry 0.73 0.5–722 0.5 [56]
CoNi NPs/ERGO/GCE Amperometry 0.71 0.10–30 and 30–330 0.05 This work

a Hemoglobin.
b Poly(3-methylthiophene).
c Aromatic polyimide.
d Carbon nanotubes.
e Chemically reduced.
f Indium tin oxide.
g Cobalt hexacyanoferrate.
h 5-[1,2]Dithiolan-3-yl-pentanoic acid [2-(naphthalene-1-ylamino)-ethyl]amide.
i Solfonated graphene.
j Graphene.
k Ploy pyrrole.
l Chitosan.
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measuring nitrite concentration for one month. In dry conditions, cur-
rent response of the proposed sensor was maintained at 93.0% after
onemonth, whereas only 72.0% remained in wet conditions by keeping
the sensor in a humid place. Findings indicated that the sensor should
be stored in dry conditions for long-term use. Such a good performance
might be attributed to the fact that CoNi NPs/ERGO composite is firmly
attached onto the surface of GCE.

The obtained results by the proposed sensor with some reported
sensors [31,48–56] for the determination of nitrite were compared
and given in Table 6. The proposed sensor provides better results over
the most of the reported electrodes.

The sensor was applied for nitrite determination in several food-
stuffs and water samples by amperometry and the obtained results
are presented in Table 7.

Results on the nitrite content in the analyzed real samples were
comparedwith those obtained from theGriess protocol [57]. The results
from the sensor were similar to those obtained by the Griess method,
validating its suitability as a novel nanocomposite material for nitrite
determination.
4. Conclusion

In this study, a highly efficient optimization procedure based on the
statistical methodology by combiningMin-Run Res IV FD, face centered
central composite design and desirability function was developed and
demonstrated to be effective and reliable in selecting the statistically
significant variables and optimizing their levels. A simple, controllable,
computationally designed, fast, convenient and green approach was
proposed to synthesize CoNi NPs/ERGO nanocomposite. The SEM
image of themodified electrode was processed by DIP and the obtained
Table 7
Content of nitrite in real samples determined by the proposed and Griess methods.

Sample Detected

This work Griess method

Damavand mineral water (mg/mL) 0.20 ± 0.03a 0.19 ± 0.02a

Hot dog sausage (mg/g) 31.08 ± 0.51 32.65 ± 0.21
Mortadella salami (mg/g) 26.77 ± 0.11 26.98 ± 0.33
Feta white cheese (mg/g) 4.38 ± 0.49 4.66 ± 0.16

a Mean value ± standard deviation.
results confirmed that the ERGOhas beenmodifiedwith homogeneous-
ly dispersed CoNi bimetallic alloy NPs in a good size distribution having
suitable density. The prepared sensor exhibits a high sensitivity, high se-
lectivity, good stability, acceptable repeatability and reproducibility, and
can be successfully applied in determination of nitrite in different real
samples. The sensor was computationally designed and characterized
to introduce a new and advanced field in electrochemistry and without
any exaggeration this study is unique among the reportedworks in con-
structing electrochemical sensors and definitely could produce a great
base for more interesting studies in near future.
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