
Boundary-element method to analyze acoustic scattering

from a coupled swimbladder-fish body configuration

J. D. Gonzalez1,2, E.F. Lavia1,2, S. Blanc1,2, M. Maas3, A. Madirolas4

December 30, 2019

1 Acoustic Propagation Department. Argentinian Navy Research Office (DIIV), Laprida 555
Vicente Lopez, (1638) Buenos Aires, Argentina

2 UNIDEF (National Council of Scientific and Technical Research – Ministry of Defense)
3 Computational Simulation Center - CONICET, Godoy Cruz 2390 C1425FQD, Buenos Aires,

Argentina
4 National Institute for Fisheries Research and Development (INIDEP). Paseo Victoria Ocampo

1. Escollera Norte. B7602HSA Mar del Plata. Argentina

Abstract

A model for computing acoustic scattering by a swimbladdered fish with coupling
to surrounding fish tissue that is assumed to behave as a homogeneous fluid, is pre-
sented. Mathematically, this corresponds to considering the problem of two penetrable
scatterers immersed in a homogeneous medium, one of which is wholly embedded in
the other. The model is formulated in the frame of boundary integral equations whose
solution is achieved using the Boundary Element Method (BEM) for a planar trian-
gle mesh. The numerical implementation is verified against benchmark solutions re-
ported in the literature. The model is then applied to a specimen of Merluccius hubbsi,
whose morphometry was determined by CT scanning, for evaluating its forward and
backscattering responses. From the acoustic scattering viewpoint, the swimbladder
is considered as a gas-filled object while the flesh constituting the fish body acts like
a weak scatterer. The numerical results suggest the swimbladder and the fish body
responses, when fully coupled, can lead to substantial differences with respect to the
simplified models normally in use in the area of aquatic ecosystem research.
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1 Introduction

Modelling of the acoustic scattering from a single fish is a problem which has been exten-
sively studied over the past decades [1, 2, 3]. Since the swimbladder plays a fundamental
role from the acoustic viewpoint [4], many models for the evaluation of scattering by indi-
vidual fish, which exclusively consider the swimbladder and neglect any other contribution,
have been reported [5, 6]. The swimbladder has been modelled as a non-penetrable body
with a pressure-release (Dirichlet) condition on its boundary or as a fluid (gas-filled) body
with a canonical geometry (cylinder, sphere or spheroid) [7, 8]. This last case requires
the solution of a substantially more involved transmission problem since the acoustic field
inside the object representing the swimbladder is required.

More realistic models explicitly include the contribution of the swimbladder and the
surrounding body (fish flesh, bones and internal organs) by adding both contributions
either coherently or incoherently. This kind of approach does not take into account the
interaction between the aforementioned scattering components [2, 3, 9] which, as shown
in [7], is inadequate under certain conditions. In fact, the body of the fish and the
swimbladder should not have to be considered separately but as a coupled acoustic system.
On the other hand, in some other references [2, 9, 10, 11], exact or approximate methods
are applied to simplified geometries such cylinders and prolate spheroids which are used
to model the scatterers.

The Boundary Element Method (BEM) has also been widely used to predict scattering
by fish [5, 12]. Among its advantages, it can be pointed out the fact that this method
can handle complex geometries and the solution space is one dimension lower than that
the scatterer object since field values over surfaces instead of field values over volumes
are required [13]. However, fish scattering predicted by BEM has mainly been applied to
individual targets (i.e. considering either the fish body or the swimbladder) [5, 8].

Moreover, there are reported articles where both contributions, fish bones and swim-
bladder, are taken into account in acoustic scattering by fish, through the method of
fundamental solutions [11]. The scattering from a fish with complex geometry, acquired
through CT-scan technology, is computed in [6]. Their authors consider two types of mod-
els. At first, only the swimbladder response is taken into account and the computations
are carried out by the conformal mapping-based Fourier Matching Method (FMM) [14],
which is suitable exclusively for axi-symmetric bodies. Secondly, in order to take into
account the swimbladder and fish body, they use the Kirchhoff Ray Model (KRM) [15, 3],
where both contributions are coherently added.

As far as the authors are aware, there seems to exist a relative void of studies that
account for the interaction between the fish flesh and the swimbladder, without simplify-
ing hypotheses about the shape of the bodies. This problem can be modelled by a BEM
formulation that considers a double transmission scattering problem (i.e. a penetrable
scatterer inside another). In this work a BEM approach is used for the double transmis-
sion scattering problem that is suitable to handle complex geometries represented by an
ensemble of triangular facets but still keeping the simplification on the complex anatomy
of a real fish by assuming homogeneous material properties within each scatterer volume.

This paper is structured as follows. In Section 2 the complete integral-equation for-
mulation of the problem is provided. Section 3 presents comparisons with benchmark
solutions previously reported in the literature [16] as a means to get a model verification.
In the Section 4 the model is applied to a complex geometry acquired from computer
tomography of the fish specimen Merluccius hubbsi. Finally, the Section 5 summarizes the
main conclusions of the work.
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Figure 1: Scheme for the acoustic scattering of an incident field uinc by two homogeneous
objects immersed in an unbounded domain, with boundaries Γ1 and Γ2 which define three
volumetric regions Ri (i = 0, 1, 2) with physical properties ki, ci, ρi (wavenumber, sound
speed and density, respectively).

2 BEM Model formulation

2.1 Acoustic problem and integral formulation

The problem of harmonic acoustic scattering by two fluid (i.e. acoustically penetrable)
objects, one of which is wholly embedded in the other is schematically shown in Figure
1. An incident acoustic pressure field uinc, a plane wave propagating with frequency ω
and direction k̂0, interacts with two penetrable objects delimited by boundary surfaces
Γ1 and Γ2, whose respective exterior normals are n̂1 and n̂2. These boundaries delimit
three volumetric regions Ri (i = 0, 1, 2) whose physical properties ci, ρi (sound speed
and density) determine the corresponding wavenumbers ki = ω/ci. The region R0 is the
medium where the field uinc propagates and is the only one that is unbounded.

In each region Ri the resulting pressure field ui is a solution of the scalar Helmholtz
equation

(∇2 + k2
i ) ui = 0. (1)

This field ui is the complex valued space-dependent part of the sound pressure field in
the time-harmonic case. In the unbounded region R0 the total field is u0 + uinc, where
u0 is the so called scattered field which must satisfy a Sommerfeld radiation condition at
infinity [17].

At the boundaries Γj (j = 1, 2) the transmission boundary conditions must be fulfilled,
i.e. the total field and its normal velocity, vn = −1/(iωρ) ∂nu where i2 = −1, must be
continuous across the interfaces Γj between the regions.
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For the acoustic problem under consideration, these continuity conditions lead to

uinc(x) + u0(x) = u1(x)

1

ρ0
∂nu

inc(x) +
1

ρ0
∂nu0(x) =

1

ρ1
∂nu1(x)

 for x ∈ Γ1

u1(x) = u2(x)

1

ρ1
∂nu1(x) =

1

ρ2
∂nu2(x)

 for x ∈ Γ2

(2)

where uinc(x) = eik0k̂0·x (an unitary incidence amplitude is assumed).
Now, to recast this problem in a manner suitable to a BEM formulation (which is a

method based on boundary integration), the first step is to write the field u in each region
as linear combinations of certain kind of surface integrals S,K called the single layer
potential operator (SLP) and the double layer potential operator (DLP), respectively. An
integral operator U applied over a function ϕ implies integration on a surface Γ according
to

U [ϕ](x) =

∫
Γ

Φ(x, y) ϕ(y) dSy,

where the kernel function Φ(x, y) gives the x-dependence (the integration variable is y).
Typically the ϕ-values on the surface Γ will be the unknown quantities of an integral
formulation for a boundary value problem. It should be noted that if Φ(x, y) satisfies Eq.
(1) with regarding the x-variable then U [ϕ](x) also does it, as long as the interchanging
between the integral symnbol and the laplacian is possible. In the formulation presented
here the Φ(x, y) is taken as the Green function or their derivatives, both choices satisfying
Eq. (1). More precisely, in terms of integral operators the fields ui in each region are
written as

u0(x) = d01 K0[ ψ1 ](x) + s01 S0[ φ1 ](x) for x ∈ R0

u1(x) = d11 K1[ ψ1 ](x) + s11 S1[ φ1 ](x) + d12 K1[ ψ2 ](x) + s12 S1[ φ2 ](x) for x ∈ R1

u2(x) = d22 K2[ ψ2 ](x) + s22 S2[ φ2 ](x) for x ∈ R2,
(3)

where

Si[ φj ](x) =

∫
Γj

Gki(x, y) φj(y)dSy

Ki[ ψj ](x) =

∫
Γj

∂nyGki(x, y) ψj(y)dSy,

(4)

are the SLP and the DLP operators, respectively, evaluated on the unknown functions
φj , ψj . The subscript j identifies the boundary Γj (j = 1, 2) where the surface’s integration
is carried out. The kernel Gki(x, y) is the free-space 3D Green function for the Helmholtz
equation in the wavenumber ki, namely,

Gki(x, y) =
eiki|x−y|

4π|x− y|
,
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and the subscript i identifies the region Ri (i = 0, 1, 2). The coefficients dij , sij are real
constants which will be fixed later.

Notice that in regions R0 and R2 two operators (i.e. two degrees of freedom) are
necessary to represent the related fields u0 and u2, whereas in the region R1 four operators
are required to represent u1. This is because each field must fulfill two boundary conditions
(b.c.) at each boundary that delimits its corresponding region. The fields u0, u2 must only
verify the b.c. at Γ1 and Γ2, respectively, therefore two degree of freedom are sufficient
in this case. On the contrary, the field u1 must verify the b.c. simultaneously at both Γ1

and Γ2, requiring four degrees of freedom instead.

In order to build the normal velocity it is necessary to take the derivative with respect to
the exterior normal of the fields ui, which are now expressed in terms of integral operators
according to Eq. (3). This procedure leads to two new operators,

K ′i[ φj ](x) = ∂nx

(∫
Γj

Gki(x, y)φj(y)dSy

)

Ti[ ψj ](x) = ∂nx

(∫
Γj

∂nyGki(x, y)ψj(y)dSy

)
,

generically known as the normal derivative operators [18].

The next step in the integral formulation of the problem is to evaluate the transmission
conditions, Eq. (2), using the field prescription according to Eq. (3). This process must
be done considering the operator’s jump conditions [17] (i.e. its behavior in the limit when
the evaluation point belongs to the integration surface). Then a system of four boundary
integral equations for the four unknowns φj , ψj (j = 1, 2) is obtained. By selecting the
coefficients {dij , sij} according to

d01 = ρ0, d22 = ρ2, s01 = ρ2
0, s22 = ρ2

2,
d11 = ρ1, d12 = ρ1, s11 = ρ2

1, s12 = ρ2
1,

(5)

the resulting boundary integral equation system is

(ρ0K0 − ρ1K1 + α01)[ ψ1 ](x) + (ρ20S0 − ρ21S1)[ φ1 ](x) +

−ρ1K1[ ψ2 ](x)− ρ21S1[ φ2 ](x) = −uinc(x)

−M01[ ψ1 ](x) + (α01 − ρ0K ′
0 + ρ1K

′
1)[ φ1 ](x) +

+ T1[ ψ2 ](x) + ρ1K
′
1[ φ2 ](x) =

1

ρ0
∂nu

inc(x)


for x ∈ Γ1

ρ1K1[ ψ1 ](x) + ρ21S1[ φ1 ](x) + (ρ1K1 − ρ2K2 + α12)[ ψ2 ](x) +

+ (ρ21S1 − ρ22S2)[ φ2 ](x) = 0

−T1[ ψ1 ](x)− ρ1K ′
1[ φ1 ](x)−M12[ ψ2 ](x) + (α12 − ρ1K ′

1 + ρ2K
′
2)[ φ2 ](x) = 0

 for x ∈ Γ2,

(6)

where α01 = (ρ0 + ρ1)/2, α12 = (ρ1 + ρ2)/2 and M is another operator, called the Müller
operator and defined as

Ms`[ ϕ ](x) ≡ Ts[ ϕ ](x)− T`[ ϕ ](x). (7)
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The particular choice of constants in Eq. (5) is aimed to force the turning up of the
Müller operator, Eq. (7), since its behavior regarding the singularity degree is advan-
tageous over the use of the T operator, which is hypersingular [18]. Consequently, its
numerical evaluation can be managed without special techniques (as mentioned by Ref.
[19] in section 5.2.1, for example).

The system of boundary integral equations of Eq. (6) obtained in this section is based
on Refs. [20] and [21]. The reader is referred to these references for a more detailed
treatment.

In summary, the solution of the acoustic scattering problem previously given in terms
of the fields ui has been transformed in the search of the functions φj , ψj for each boundary
Γj . These functions are called densities in the literature and are now the unknowns.

2.2 Numerical method

The system of Eq. (6) can be solved through a discretization process over the boundaries
Γj , which turns it in a finite-size matrix system. This leads to a BEM formulation. For
this step the standard procedure is to assume the following two approximations.

1. Each surface Γj is approximated by a planar triangular mesh (i.e., a set of triangles

{∆j
`} with ` = 1, 2, ..Nj), so that

Γj =

Nj⋃
`=1

∆j
` ,

where ∆j
` is the `-th triangle whose centroid is xj` and Nj is the total number of

triangles of the mesh that represents the Γj boundary.

2. The unknown densities ψj and φj are considered as piecewise constant functions in
each triangle, that is,

ψj(x) =

Nj∑
`=1

ψj
`I∆`

(x) φj(x) =

Nj∑
`=1

φj`I∆`
(x), (8)

where ψj
` , φ

j
` are unknown complex numbers and I∆`

(x) is the indicator function of
the `-th triangle, defined as

I∆`
(x) =

{
1 if x ∈ ∆`

0 otherwise

In order to find the densities, the prescription given in Eq. (8) is introduced in the
system of Eq. (6). This procedure transforms each integral over the boundary Γj into a

sum of integrals over each triangle ∆j
` .

The resulting system remains, of course, valid for all x ∈ Γj , so that in particular is

valid for the set of centroids {xj`}(` = 1, 2, .., Nj) belonging to the boundary Γj . When
these discretized equations are evaluated in both sets ({x1

`}, {x2
`}), a matrix system of size

m×m is obtained, with m = 2(N1 +N2). The unknown values are the complex quantities
{ψj

` , φ
j
`}.
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These equations can be expressed as a square matrix system, namely,

A


ψ1

φ1

ψ2

φ2

 =


f
g
0
0

 (9)

where the square matrix A has 2(N1 + N2) rows, and the unknowns ψj ,φj and data
vectors f , g are defined as

ψj =



ψj
1

ψj
2

...

ψj
Nj


φj =



φj1

φj2

...

φjNj



f = −



uinc(x1
1)

uinc(x1
2)

...

uinc(x1
N1

)


g =

1

ρ0



∂nu
inc(x1

1)

∂nu
inc(x1

2)

...

∂nu
inc(x1

N1
)


. (10)

The A-matrix full expression is given in the next subsection.

2.2.1 Matrix definition

The matrix system has a symmetry which is emphasized in the four-block structure of
submatrices Bi, Di and Ii (i = 1, 2), namely,

A =

(
D1 B1

B2 D2

)
+

(
α01I1 0

0 α12I2

)
. (11)

The matrices I1 and I2 are identities with dimensions 2N1 and 2N2, respectively. Each
Di is a matrix of 2Ni × 2Ni size and has the form

D1 =

(ρ0K0 − ρ1K1)[1,1] (ρ2
0S0 − ρ2

1S1)[1,1]

−M [1,1]
01 (−ρ0K

′
0 + ρ1K

′
1)[1,1]

 (12)

D2 =

(ρ1K1 − ρ2K2)[2,2] (ρ2
1S1 − ρ2

2S2)[2,2]

−M12
[2,2] (−ρ1K

′
1 + ρ2K

′
2)[2,2]

 .

The matrices B1,B2 have size 2N1×2N2 and 2N2×2N1, respectively, and its expressions
are

B1 =

−ρ1K
[1,2]
1 −ρ2

1S
[1,2]
1

T
[1,2]
1 ρ1K

′[1,2]
1

 ,
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B2 =

ρ1K
[2,1]
1 ρ2

1S
[2,1]
1

−T [2,1]
1 −ρ1K

′
1

[2,1]

 .

The discrete version of a generic operator U
[a,b]
q ∈ CNa×Nb (a, b = 1, 2) with kernel

Φ(kq;x, y) follows the notation

(U [a,b]
q )`s =

∫
∆b

s

Φ(kq;x
a
` , y)dSy

for the `s−element. Thus, the first superindex (a) refers to the boundary where the
evaluation point is located whereas the second (b) refers to the boundary to which the
triangle ∆b over which the surface integration is carried out belongs. The matrix row-
index ` is associated with a particular evaluation point x` while the column index s is
associated with the particular element ∆s. The subindex q identifies the corresponding
wavenumber kq. For example,(

S
[1,2]
1

)
`s

=

∫
∆2

s

Gk1(x1
` , y) dSy,

implies integration over the s-th triangle of the boundary Γ2 and evaluation on centroid
x1
` belonging to the boundary Γ1, all for the wavenumber k1

2.3 Scattered field and TS computation

Once the densities {ψj , φj} have been obtained, the scattered field at an exterior point
x can be calculated by evaluating the first Eq. in (3) with the piecewise approximation
made at Eq. (8). Therefore, the discretized version of the external field is

u0(x) =

N1∑
`=1

(
ρ0 ψ

1
`

∫
∆`

∂nyGk0(x, y) dSy + ρ2
0 φ

1
`

∫
∆`

Gk0(x, y) dSy

)
. (13)

When the exterior point x is located far away the scatterer object (|x| → ∞), it is
possible to use the asymptotic expression of the Green function and its normal derivative,
namely,

Gk0(x, y) =
eik0|x|

4π|x|

[
e−ik0x̂·y +O

(
1

|x|

)]
∂nyGk0(x, y) =

eik0|x|

4π|x|

[
∂e−ik0x̂·y

∂ny
+O

(
1

|x|

)]
,

where O(f(x)) means that there exists a positive constant C such that O(f(x)) ≤ Cf(x),
thus, if f(x) goes to zero when |x| → ∞, then O(f(x)) also does it.

Subtituting the above expressions into Eq. (13) the scattered field turns out

u0(x) =
eik0|x|

|x|

[
f∞(x̂) +O

(
1

|x|

)]
,

where x̂ = x/|x| is the unit vector in the direction of observation –pointing towards the
observer–, k0 is the wavenumber of the incident field and f∞ is the farfield scattering
amplitude (a quantity with length’s units) whose expression is

f∞(x̂) =
1

4π

N1∑
`=1

(
−ik0ψ

1
`ρ0

∫
∆`

e−ik0x̂·yx̂ · ny dSy + ρ2
0φ

1
`

∫
∆`

e−ik0x̂·y dSy

)
. (14)

8



Thus, the usual cases of back-scattering and forward-scattering are obtained by con-
sidering x̂ = −k̂0 and x̂ = k̂0, respectively, i.e.

fbs
∞ ≡ f∞(x̂ = −k̂0) f fw

∞ ≡ f∞(x̂ = k̂0). (15)

In fisheries acoustics, as well as in other SONAR applications, sound scattering by an
object is analyzed in the logarithmic scale using the target strength (TS) parameter that
can be expressed as

TS = 10 log10

(
|f∞|2

)
dB re 1 m2. (16)

As a summary, once ψ1 and φ1 from Eq. (9) are known, the TS parameter can be
computed by using the numerical evaluation of Eq. (14) in the formula given by Eq. (16).

3 Model verifications

In order to verify the formulated model, identified from now on as the Coupled BEM
model, two types of tests are conducted, by comparisons between model predictions and
benchmark results derived from exact solutions.

In first place, the acoustic scattering problem corresponding to a single penetrable
obstacle, a prolate spheroid, is considered. Consequently only a scattering boundary Γ is
present and the formulation of the problem is simplified (a brief description of this case
is worked out in the Appendix). In second place, the acoustic problem of two concentric
spheres is considered. This allows to explicitly test the system of Eq. (9).

3.1 Single fluid acoustic problem

For a single fluid obstacle, Coupled BEM model predictions are compared with a bench-
mark solution previously reported [16]. These authors compute backscattering TS as a
function of the incidence angle θ for a gas-filled prolate spheroid with semi-axis a = 0.07
m and b = 0.01 m, at 38 kHz. In order to compute the scattering response of the same
prolate spheroid using the model, a spheroidal mesh with N = 44480 triangular elements
is used. The number of elements in the mesh is selected in order to guarantee that the
acoustic wavelength would be several times greater than the distance between vertices
(usually five or six times greater) following the recommendation reported in [5].

The comparison between the modelled TS and the TS computed for the exact prolate
spheroid solution [22], is exhibited in Figure 2, where a good agreement is observed. The
assumed sound speed and density for the gas inside the prolate spheroid were c1 = 345.0
m s−1 and ρ1 = 1.24 kg m−3, respectively; whereas the corresponding values in the
surrounding medium (water) were c0 = 1477.4 m s−1 and ρ0 = 1026.8 kg m−3. These
values were taken from the literature (see Table II from Ref. [16]) and corresponds to
realistic values in aquatic ecosystem research applications.

3.2 Two fluids acoustic problem

The acoustic scattering problem for two 3D bounded fluid objects has no exact analytical
solution, except in the case of two concentric spheres. In this case, the solution is given
in terms of an analytical modal series (partial wave decomposition) coming from the
separation of the wave equation in spherical coordinates [23].

In order to compare the values predicted by the Coupled BEM model against the
benchmark modal solution, two concentric spheres of radii r1 = 0.06 m and r2 = 0.016
m are considered, where the subscript 1 refers to the external sphere and the subscript

9
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Figure 2: Comparison of TS vs. incidence angle θ for a gas-filled prolate spheroid with
aspect ratio 1:7, evaluated according to the Coupled BEM model (solid line) and to the
benchmark solution (dotted line).

2 to the internal one. Keeping in mind, as in the previous example, applications to
fisheries acoustics, the values of sound speed c and density ρ of the material media are
taken from [2], and they are also listed in Table 1. The medium “0” corresponds to
the surrounding water, while media “1” and “2” correspond to the external and internal
spheres, respectively.

Medium c (m s−1) ρ (kg m−3)

0 (water) 1477.4 1026.8
1 1.04 c0 1.04 ρ0

2 0.23 c0 0.00129 ρ0

Table 1: Material properties (sound speed c and density ρ) for the media 0, 1, 2 in the
two spheres acoustic scattering problem.

For modelling this problem under the Coupled BEM approach, two spherical meshes
were built. The number of triangular elements were N1 = 1142 and N2 = 2274, for the
spheres of radii r1 and r2 respectively. Backscattering TS values for the frequency range
0.01 − 38 kHz, were computed using the modal series and the BEM implementation.
Results of their comparison are shown in Figure 3, where a good agreement is again
evident.

3.3 Error in TS computations

The criterion reported in Ref. [16] is used to estimate the error level of the modelled TS
in the previous examples. In that work the authors quantified the error as the mean of
the absolute deviation between the modelled TS and the TS computed in the benchmark
case (exact solution), i.e.

|∆TS| = 1

L

L∑
i=1

|TSi(prediction)− TSi(benchmark)|,

10
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Figure 3: Comparison of TS vs. frequency for two concentric spheres evaluated according
to the Coupled BEM model (solid line) and to the benchmark solution computed through
the modal series (dotted line).

where L is the total number of frequency or angle calculated values. Values for |∆TS| were
0.066 dB and 0.12 dB for the prolate spheroid and the two concentric spheres, respectively.

4 Application to fish tomography

The Merluccius hubbsi is one of the most important fishing resources of the Argentine
Sea. Moreover, it is the most abundant species of demersal fish (living near the seabed)
in the southwestern Atlantic Ocean. Therefore, it plays a prominent role in the marine
ecosystems of the Argentinian continental shelf. It is also important to note that their
extraction crucially depends on the possibility of detection of fish schools using underwater
acoustics. For this reason, a better knowledge of the backscattering of this species, as well
as its acoustic scattering in other directions is very important both for fishing activity and
for scientific research purposes.

4.1 Meshes and scattering parameters

Computerized tomography (CT) scans performed on a Merluccius hubbsi specimen, with
spatial resolution of 1.5 mm, allowed for building two 3D triangular meshes to represent
the fish body and its swimbladder having N=8983 and N=11474 elements, respectively.

Meshes are exhibited in Figure 4. Top panel shows the fish head and part of the
swimbladder. Triangle edges that constitute the fish body-mesh are visualized. In the
middle panel both scatterers are exhibited and it can be noticed that their relative locations
are not concentric. Moreover, the swimbladder longitudinal axis is approximately 10◦

tilted head-up respect to the main body axis. The swimbladder is presented in detail in
the bottom panel, its geometry is rather complex and cannot be strictly represented by a
simple shape such as a sphere, a finite-length cylinder or a spheroid.

The material properties of the surrounding medium (water), the fish flesh constituting
the body and the gas in the swimbladder are taken from the Table 1. All the simulations
were computed at f = 38 kHz, since it is a usual frequency in fisheries acoustics. The
body length is 382.5 mm and the scattering can be characterized by the dimensionless
parameter k0a ≈ 31. For the swimbladder, whose length is 81.8 mm, there are two
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Figure 4: 3D meshes generated from Computer Tomography scan.The top panel shows a
detailed view of the fish’s head where individual triangular facets are appreciable. The
middle panel displays the body-mesh and the swimbladder-mesh inside it so that their
relative locations can be visualized. A more detailed view of the swimbladder mesh is
shown in the bottom panel, where for clarifying purposes the view has been rotated.

relevant parameters, namely, k1a ≈ 6.3 and k2a ≈ 28.7. In both cases a is the appropriate
semi-longitude of the scatterer.

4.2 Backscattering and forward scattering TS computations

Since at 38 kHz both scatterers (body and swimbladder) have an acoustic length of several
wavelengths it is expected that the scattering, mainly the backscattering, strongly depends
upon morphology and orientation. Keeping these considerations in mind, backscattering
and forward scattering evaluations as a function of the observation angle θ are conducted
for dorsal-ventral aspect (incidence contained in the y = 0 plane, see scheme in Figure 5
left) and lateral aspect (incidence contained in the x = 0 plane, see Figure 5, right), for
the entire rotation 0 ≤ θ ≤ 360◦ in both cases.

The observation angle θ corresponds to the observation direction x̂, as it is stated
in the Figure 5. Thus, according to Eq. (15), for the backscattering case the incidence
direction k̂0 is opposite to x̂ while in the forward scattering both directions are coincident,
namely k̂0 = x̂.
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Figure 5: Schematic grid for evaluation of TS by fish in the dorsal-ventral aspect (left)
and lateral aspect (right). The angle θ is associated to the observation direction x̂ as it is
illustrated in both panels. To emphasize the swimbladder relative location respect to the
fish body, the latter is shown with transparency.

4.2.1 Backscattering computations

The resulting patterns for backscattering TS are presented in this section. As stated in
the Section 1, other investigators [5, 6] have modelled the TS of a fish considering only
the swimbladder and neglecting the body contribution. This formulation implies

TS = 10 log10(|fbs
∞,Sb|2), (17)

where fbs
∞,Sb is the farfield backscattering yielded by the swimbladder. On the other hand,

TS has been also modelled by computing both contributions separately and then adding
them incoherently [2] or coherently [9, 6]. In particular, the coherent addition leads to

TS = 10 log10(|fbs
∞,Sb + fbs

∞,B|2), (18)

where fbs
∞,B is the corresponding farfield pattern exclusively from the body. It should be

emphasized that a formulation like the proposed in (18) is an approximation because each
f∞ is calculated independently, i.e, without interaction between the scatterers. The BEM
approach presented in this work treats the problem including both contributions jointly,
within a rigorous framework for a coupled system.

In order to compare the results of the Coupled BEM approach with the aforementioned
approximated models, it is useful to establish the following nomenclature: All the TS
calculated by using the Coupled BEM approach, which is derived from Eq. (14), will
be labelled “Model”; TS patterns obtained considering only the acoustic response from
the swimbladder, derived from Eq. (17) and computed through the single scatterer BEM
approach (see Appendix) will be labelled “Sb” and, finally, patterns obtained for the
coherent sum of the body and swimbladder acoustic responses, according to Eq. (18)
and calculated through the evaluation of each f∞ separately, both using the single scatter
BEM approach, will be labelled “Sb + B”.

The resulting patterns for backscattering TS according to the three types of evaluation
are shown in Figure 6 as a polar plot. In the left panel (dorsal-ventral aspect) it is clear
that the presence of TS maxima at 99◦ and 277◦ is associated with orientations where
the swimbladder yields a greater normal surface (see Figure 5, left) with respect to the
incidence direction. Those orientations are precisely the directions where the swimbladder
contribution and the fish body plus the swimbladder as a whole, shows the best match.
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However, that match deteriorates near the longitudinal axis of the fish, i. e. in the head-
tail direction, where the interaction between body and swimbladder, explicitly considered
by the coupled BEM approach, is relevant and therefore the coherent sum does not provide
a good match of the corresponding curves.

-50 -40-30 dB

90◦

0◦

Coupled BEM
Sb

Sb + B

-50 -40-30 dB

90◦

0◦

Coupled BEM
Sb

Sb + B

Figure 6: Backscattering TS as a function of angle θ in the dorsal-ventral aspect (left panel)
and lateral aspect (right panel). Swimbladder and fish body are considered as a gas-filled
and weakly scattering objects, respectively. Both contributions are taking into account
in different ways. In the Coupled BEM approach (solid line) the interaction between
swimbladder and fish body is explicitely considered. The curve “Sb” shows exclusively
the response of the swimbladder (dotted line) while the curve “Sb+B” shows the response
of the swimbladder coherently added to the fish body one (dashed line).

When the lateral aspect of the fish is considered (Figure 6, right panel), it is found
that the curve that exclusively represents the contribution of the swimbladder differs from
the curve generated by the model to a great extent in comparison with the previous case
(i.e. dorsal-ventral aspect). This observation can be justified because the insonified area
that the swimbladder offers to the acoustic incident wave is undoubtedly smaller at the
fish lateral aspect than at the fish dorsal-ventral one.

Model results of the TS parameter are traditionally presented as 2D polar plots as
shown in Figure 6. A proper 3D plot visualization of the scattering phenomenon has been
reported (e.g. see [24]). An alternative type of visualization for backscattering responses is
proposed in this work for all possible incidence k̂ directions, as it can be observed in Figure
7, where each direction is identified with a point on the surface of a sphere surrounding the
scatterer and its colour provides a measure of the backscattering TS magnitude. With the
purpose of helping the visualization of the results in the corresponding plots, the sphere has
been divided into six patches which are shown in pairs in Figure 7. These pairs of patches
are identified with the names that appear above them (i.e. Dorsal/Ventral, Left/Right and
Head/Tail). Additionally, within each sphere the mesh of the fish has been plotted in order
to indicate its relative location. For example, maximum TS is achieved at the directions
whose colour has the highest value in the colour-bar scale located at the bottom side of
the figure. That happens when swimbladder is approximately orthogonal to the incident
wave front. The ranges of TS values obtained for each pair of patches were [−82.1,−29.9]
dB, [−89.02− 32.1] dB and [−63.1− 45.1] dB, respectively.
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Figure 7: 3D Vizualization of backscattering TS by fish for incident angles represented on
the surface of a sphere. Each direction is identified with a point on the surface of a sphere
surrounding the scatterer and its colour provides a measure of the backscattering TS
magnitude. The sphere is divided into six patches that are shown in pairs Dorsal/Ventral
(left panel), Left/Right (middle panel) and Head/Tail (right panel). Within each sphere
the mesh of the fish is plotted in order to indicate its relative location.

4.2.2 Forward scattering computations

Although forward scattering has been studied less extensively than backscattering (partly
because of its greater experimental difficulty) it also has interesting applications. The
forward scattering can be applied in fish detection methodologies [25], therefore it has
been addressed with simplified models [7], [26]. Furthermore, the estimation of attenuation
through the medium is related to the forward scattering f∞ [27].

The corresponding patterns for the forward scattering case are shown in Figure 8 where
a curve “B”, representing exclusively the acoustic response from the fish body –calculated
using the single scatterer’ BEM approach–, has been added.

The left panel of Figure 8 displays the dorsal-ventral aspect pattern whereas the right
panel shows the lateral aspect. The forward scattering has a smooth behavior regards to
the angle. In a weakly scattering situation, which occurs certainly for the fish body given
the parameters used (c1 = 1.04c0 and ρ1 = 1.04ρ0, c.f. Table 1), the forward response
is almost independent of orientation because it is mainly a volume phenomenon. For the
dorsal-ventral and lateral aspects the model predicts practically the same patterns. The
swimbladder response “Sb”, which has two lobes under both aspects, is remarkably smaller
than all the others and it can be seen that the coherent sum “Sb + B” always exceeds the
response obtained from the model.

The minimum and maximum difference between coherent sum and the model are 0.84
and 2.08 dB (dorsal-ventral aspect) or 0.56 and 2.11 dB (lateral aspect), respectively.
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Figure 8: Forward scattering TS as a function of angle θ in the dorsal-ventral aspect
(left panel) and lateral aspect (right panel). Swimbladder and fish body are considered
as a gas-filled and weakly scattering objects, respectively. Both contributions are taken
into account in different ways. In the Coupled BEM approach (solid line) the interac-
tion between swimbladder and fish body is explicitely considered. The curve “Sb” shows
exclusively the response of the swimbladder (dotted line); the curve “Sb+B” shows the
response of the swimbladder coherently added to the fish body (dashed line) and the curve
“B” shows exclusively the response of the fish-body (dotted-dashed line).

4.3 Near-field and internal field calculations

In Section 3 the predictions derived from the formulated model were verified for the farfield
case whereas in this Sub-Section, the near-field and internal fields are evaluated over a
plane that cuts longitudinally in two halfs the parallelepid in which the swimbladder is
inscribed. This plane is illustrated in the Figure 9 (left), where the intersection curves
between the fish body and the swimbladder with the plane can also be seen.

The right panel of the Figure 9 shows the the absolute value of the acoustic field on
the plane. Again, the curves intersecting body and swimbladder with the plane, have been
indicated. The plotted fields are u = u0 + uinc in the exterior to the fish (the total field),
u1 in the fish flesh and u2 inside the swimbladder. An arrow indicating the incident field
direction, a plane wave, has also been illustrated.

It can be clearly observed in the figure that the acoustic field verifies continuity across
the different media. It should be noted that the changes in the field produced by the
fish flesh are very weak while those due to the swimbladder lead to a high contrast (i.e.
the field barely changes when entering the fish flesh from the exterior but this is not
the case when the field enters the swimbladder from the fish internals) as it can be seen
in the figure. This state of affairs is undoubtedly tuned by the impedance mismatch
between the corresponding media; the data in Table 1 prescribe a high contrast between the
swimbladder and the fish body and a minor one between the fish body and the surrounding
water.

5 Conclusions

A model has been formulated to describe the scattering produced by two penetrable ob-
jects immersed in an homogeneous medium. This model is based on a BIE formulation,
subsequently discretized and solved numerically through a coupled BEM method. Verifi-
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Figure 9: Diagram of fish and its intersection with a plane that cuts in two halfs the
parallelepid in which the swimbladder is inscribed (left). Evaluation of the absolute value
of the near-field and the internal fields over this plane (right). The resulting contour of
the intersection between the plane and the mesh-scatterers can be observed in both panels
(solid line). The plane wave incidence direction is indicated by an arrow.

cation of the good agreement between the model predictions and the results obtained by
exact solutions in some benchmark cases was accomplished (Section 3).

In particular, the model has been applied to compute the scattering produced by a
fish of the hake type, Merluccius hubsi (Section 4) whose morphology was obtained from
a CT tomography while the estimated values assumed for its physical properties (c and ρ,
sound speed and density, respectively) are typical values reported in the literature for real
fish. From the standpoint of the model, fish flesh and swimbladder are considered as two
penetrable and interacting objects. However, it is emphasized that any extension of the
model to enable the incorporation of other parts of the fish (e.g. spine) does not require
further development and can be done following the same lines.

Results for backscattering and forward scattering TS have been obtained and com-
pared with the individual responses of the swimbladder and the body as well as with its
coherent sum (swimbladder and body contributions considered separately, i.e. without
interaction between them). For the physical situation under consideration, it was found
that the relative contributions of the swimbladder and the fish body vary depending of
the scattering direction.

In the backscattering case it turned out that for the directions where the swimbladder
presents its greater area to the incident wave, the coherent sum and the model do not show
significant differences. On the other hand, in the case of forward scattering the behavior
is totally different. The swimbladder is not dominant as in the previous case and the
coherent sum always overestimates the interacting field provided by the coupled BEM.
In this scenario the body-swimbladder interaction should be taken into account explicitly
since if it is not considered, errors up to 2 dB could appear in the calculated TS.

The model is also capable of computing the acoustic field within the fish as it is
presented in Section 4.3 for a particular plane.

The correct modelling of the interaction between the various constituent parts of a fish,
in the idealization that each of them can be characterized by constant values of sound speed
c and density ρ, allows to progress in the further understanding of the acoustic response
of individual specimens. The model can be useful for determining specific characteristics
that allow to discriminate one species from another. Then, based on the knowledge of
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the most relevant characteristics that describe the acoustic scattering behavior, simplified
models aimed to predict the response by schools of fish can be formulated.

The original computational codes are released and can be downloaded from one of the
author’s github repository, so that the reproducibility of the results obtained is guaranteed
[28].
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Appendix: BEM applied to a single fluid scatterer

The acoustic scattering by a single fluid object can be considered as a particular case of
the two objects problem in which the inner object in Figure 1 is suppressed. Therefore,
the natural boundary conditions lead to

uinc(x) + u0(x) = u1(x) for x ∈ Γ1

1

ρ0
∂nu

inc(x) +
1

ρ0
∂nu0(x) =

1

ρ1
∂nu1(x) for x ∈ Γ1

The acoustic fields are expressed as

u0(x) = d01 K0[ ψ1 ](x) + s01 S0[ φ1 ](x)
u1(x) = d11 K1[ ψ1 ](x) + s11 S1[ φ1 ](x)

(19)

where the constants dij and sij are chosen as

d01 = ρ0, s01 = ρ2
0, d11 = ρ1, s11 = ρ2

1.

By straightforward calculations similar to the ones performed in Section 2, the dis-
cretized versions of densities ψ1 and φ1 of (19) are ψ1 and φ1, respectively. They should
satisfy the system

(D1 + α01I)

(
ψ1

φ1

)
=

(
f
g

)
, (20)

where α01 = (ρ0 + ρ1)/2, matrix D1, f and g depend only on Γ1. They are defined in
Eqs. (12) and (10).

The TS values are obtained by computing f∞, according to Eq. (14) where the ψ1

and φ1 are now the solutions of the system in Eq. (20).
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