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Abstract

We present a formal model of decision-making under uncertainty, a
variant of Case-Based Decision Theory, in which the solution to a prob-
lem obtains in terms of the distance to previous problems. We formalize
this by defining a space based on an orthogonal basis of features of prob-
lems. New problems are evaluated in this setting, determining the best
available actions in terms of the distance to previous problems. This is
particularly relevant in the case of categorization and decision making, in
which information systems have to support e�cient ways of solving prob-
lems. We also show how this framework evolves upon the acquisition of
new information, namely features or values of them arising in new prob-
lems. We discuss how this can be useful to evaluate decisions based on
not yet existing data.

JEL Classification: D01, D81.
Keywords: Microeconomic Behavior, Decision-Making under Risk and Un-

certainty, Case Based Decision Theory.
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1 Introduction

Cognitive models of human decision making have enriched economic theory by
providing relevant insights on the psychological and computational process that
operate when the individual evaluates alternatives and makes a decision (Lip-
man, 1995). Behavioral approaches to individual decision making lend support
to the metaphor that human choices might be well represented as an informa-
tion processor that is influenced by elements of the decision context (Rubinstein,
1998).

Information processing is critically dependent on the accessibility to the
right sources and the accuracy of data. This is even more relevant when this
information is required for decision-making under uncertainty. Some important
questions in this respect are, What information is needed to solve a problem?,
How can the relevant factors be weighted in the search of solutions? and How
can new aspects in that search be learned or inferred? Recent contributions show
that these questions are still open and call for new concepts and methodologies
(Newell and Bröder, 2008; Lipshitz et al., 2001).

Our take on this subject is based on a particular model of Case-Based Deci-
sion Theory (CBDT). This approach assumes that the similarity with previous
problems is key in the way a new problem is addressed. Similar approaches in
judgment and decision making (JDM) literature refer to exemplar models for
the study of categorization strategies (Karlsson, Juslin, and Olsson, 2008), cue-
based inferences elaboration and example-based reasoning (Platzer and Bröder,
2013). In addition there are methodological questions common to both CBDT
and Naturalistic Decision Making (Lipshitz et al., 2001).

The canonical approach of individual decision making under uncertainty is
Expected Utility Theory (EUT), which assumes that rational agents enumerate
all the possible states of the world and the corresponding consequences asso-
ciated with them. Furthermore, they are able to assess the probabilities of all
possible relevant states of the world. In the real world, the agents are usually
unable to fully describe the class of states of the world, mainly because of the
complexity involved in this task.

Instead, when individuals face decision problems, they make their decisions
based on their previous experience, searching in their memories to recall what
they did in similar situations, in order to assess the convenience of choosing the
same actions as in the past. This intuition is captured by CBDT, as presented
by Gilboa and Schmeidler, 1995; Gilboa and Schmeidler, 2001; Gilboa and
Schmeidler, 2003 and Matsui, 2000. In CBDT the preferences of a decision-
maker over actions to be exerted to solve a new problem result from the history
of previous problems faced by her, which are stored in her memory.

A few assumptions ensure that those preferences can be captured in an utility
function over actions, defined as the sum of values of adopting them on previ-
ous problems. Each of these values is weighted up by the similarity between
the previous and current problem. Similarities are so crucial in this framework
that we can identify an agent at a new problem with the ensuing similarity
function. The original formulation of CBDT does not assume any particular
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shape of this function. But in other areas, analogous relations have been char-
acterized (Tversky, 1977; Lipman, 1995; Rubinstein, 1998; Mullainathan, 2002;
Kahneman, 2003; Johnson and Ratcli↵, 2014).

According to this, we can define similarity in terms of a “distance” between
problems, which can obtained, in turn, comparing the features characterizing
them. The closer are two problems in terms of such distance, the higher is their
similarity. In our framework we construct a graph embedded in a real metric
space. Each vertix is identified with a problem and the edges connecting pairs
of problems have an attached weight, namely the distance between them. When
a new problem arises, it becomes a point in the metric space. The problems
in the graph that are closer to it become relevant to determine the actions
to be carried out. Learning amounts to reconfigure the metric space and the
embedded graph upon the acquisition of new pieces of information.

The metric space in which the graph of problem is embedded is defined by
the features that constitute the dimensions on which the similarities of problems
are evaluated. This is close to the idea that decisions are made in terms of
those made previously by peers (Li, Sun, and Ettredge, 2017). Furthermore, we
evaluate how decisions are made in the presence of new values of the features
or in the face of the realization of the relevance of new features. Furthermore,
we consider how the anticipation of future new values or features a↵ect the
decisions.

In this paper we present the formal aspects of this decision-making frame-
work, starting with thorough description of CBDT. We add an extra axiom that
ensures the characterization of similarity in terms of the distance between prob-
lems. Then we introduce the metric space capturing this concept of distance
and analyze how it evolves in response to new information.

The work is structured as follows. Section 2 presents the formalism of CBDT.
Section 3 discusses how to represent CBDT’s similarity function in terms of
distances on graphs. Section 4 specifies those graphs in spaces determined by
features of problems. Section 5 studies how the previously presented formalism
can be adapted to new information. In turn, Section 6 discusses how agents can
learn the rate at which new data arises and use this to make decisions about
contexts that are not yet existing. Section 7 concludes.

2 Definitions and Axioms

Gilboa and Schmeidler (1995) assume a finite and nonempty set P which is
given as a primitive and contains all the possible problems that an agent may
face as well as a finite and nonempty set of actions A. To simplify they assume
that all the actions in A are available for any problem p P . In addition, there
is a set R R of results. The result of not choosing an action is denoted r0 R

(for simplicity, we assume that r0 0). Then, the set of cases is C P A R.
The agent is endowed with a memory set M C. Its projection over P is called
the history and is defined by H M q P a A, r R q, a, r M . The
set M has the following two properties:
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for all q H M a A !r rM q, a q, a, r M ;

for all q H M !a A rM q, a r0.

The first condition indicates that for every problem q in the history and an
action a there exists a unique result of applying this action to solve q. The
second condition states that for each problem q in the history, there exists a
unique action a that yields a non-void result. These two conditions together
ensure that for each pair of cases in H, q, a, r and q , a , r , q q and a a .

The agent makes a decision based both on the utility of the results of a given
action, and a similarity function s which assigns nonnegative values to pairs of
problems. In this way, when the agent faces a new problem p, he selects an act
a that maximizes the following expression:

U a Up,M a

q,a,r M

s p, q u r

where u R R is the instantaneous utility of results.
Gilboa and Schmeidler present an axiomatic system, representing some de-

sirable properties of the similarity function. Furthemore, they show that there
exists a unique s P

2 0,1 such that the function U is the representation
of a preference relation p,H , on the class of actions, where p is a new problem
not corresponding to any case in the history. In the statement of the axioms
each action x A is identified with a vector in RH , where each component of
the vector is the result of applying action x on a problem q for which a case
q, a, r exists in the history. We denote with x q the result of applying action
x to problem q. If x a, then x q r. Otherwise, x q r0.

Axiom 1 Comparability of Compatible Profiles. For every p P and every
history H H M , for every x, y RH , x and y are compatible if and only if
x p,H y or y p,H x.

Axiom 2 Monotonicity. For every p, H, x y and x y 0 implies that
x p,H y.

Axiom 3 Continuity. For every p, H, and x RH , the sets y RH
y p,H x

and
y RH

x p,H y are closed (in the standard topology on RH).

Axiom 4 Separability. For every p, H, and x, y, z,w RH , if x z y w

0, x p,H y, and z p,H w, then x z p,H y w .

Axiom 5 Similarity Invariance. For every p, q1, q2 P and every two memories
M

1
,M

2 with q1, q2 H
i

H M
i (i=1,2) and p H

i (i=1,2), let vi
j
stand for

the unit vector in RH
i

(i=1,2) corresponding to qj (j=1,2) (That is, vi
j
is a vector

whose qjth component is 1 and its other components are 0). Then denoting the
symmetric part of p,H by p,H ,

x, y RH
1

, z,w RH
2

, x p,H1 y, z p,H2 w
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and
x ↵v

1
1 p,H1 y �v

1
2

imply that
z ↵v

2
1 p,H2 w �v

2
2

whenever the compared profiles are compatible.

Given these axioms and using claims proven by Gilboa and Schmeidler, we
can show that the similarity between pairs of problems is representable in terms
of a connected graph G in which each problem in P is assigned a node. The
class of nodes of G is V and thus V P . To get there, we need first to consider
two extra axioms.

Axiom 6 Symmetric Similarity. For every r, p,m P and every three mem-
ories M

1
,M

2
,M

3 with m,r H
1

H M
1 , p H

1, m,p H
2

H M
2 ,

r H
2, p, r H

3
H M

3 , and m H
3; let v

i

j
stand for the unit vector in

RH
i

(i=1,2,3) corresponding to j (j=r,p,m) (That is, is a vector whose jth com-
ponent, which is the component associated with the case j, is 1 and its other
components are 0). Then denoting the symmetric part of p,H by p,H ,

x, y RH
1

, z,w RH
2

, l, h RH
3

, x p,H1 y, z r,H2 w, l m,H3 h

and
x ↵v

1
m p,H1 y v

1
r
, z �v

2
m r,H2 w v

2
p

imply that
l ↵v

3
p m,H3 h �v

3
r

whenever the compared profiles are compatible.

Axiom 6 guarantees that the similarity function is symmetric since it leads us
to Gilboa and Schmeidler’s necessary and su�cient condition for symmetric sim-
ilarity, namely that for all r, p,m P , s p,m s m, r s r, p s p, r s r,m s m,p .
More precisely,

Theorem 1 The following two statements are equivalent:
a) Axiom 1 to Axiom 6 hold.
b) There exist a unique and symmetric function s P

2 R such that for
all p P , every memory M with p H H M and every compatible x, y RH ,

x p,H y

q H

s p, q x q

q H

s p, q y q .

Now we introduce another axiom that requires that the similarity function
verifies the following inequality, i.e. s p, q s p,m s m, q . Intuitively,
this amounts to ask that the “direct” similarity between two problems cannot
be lower than the sum of the similarities of these problems mediated by another
one. More precisely:1

1Notice that this axiom, as shown through its consequences in Theorem 2, precludes the
possibility of, given three problems p,m and q, to define a similarity function such that
s p, q s p,m s m, q .
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Axiom 7 Triangular inequality. For every r, p,m P and every two memories
M

1
,M

2 with m,r H
1

H M
1 , p H

1, m,p H
2

H M
2 , and r H

2; let

v
i

j
stand for the unit vector in RH

i

(i=1,2) corresponding to j (j=r,p,m) (That

is, vi
j
is a vector whose jth component, which is the component associated with

the case j, is 1 and its other components are 0). Then denoting the symmetric
part of p,H by p,H ,

x, y RH
1

, z,w RH
2

, x p,H1 y, z r,H2 w

and
x ↵v

1
m p,H1 y v

1
r
, z �v

2
p r,H2 w v

2
m

imply that
y �v

1
r

↵v
1
m p,H1 x v

1
m

whenever the compared profiles are compatible.

The addition of this axiom leads to:

Theorem 2 The following two statements are equivalent:
a) Axiom 1 to Axiom 7 hold.
b) There exist a unique and symmetric function s P

2 R that verifies
that s p, q s p,m s m, q , such that for all p P , every memory M with
p H H M and every compatible x, y RH ,

x p,H y

q H

s p, q x q

q H

s p, q y q .

The proof of both theorems is given in the Appendix.

3 The Similarity Function Represented by a Graph

Given Axioms 1 to 7, and the results obtained in the previous section, we are now
in position to introduce a graph-theoretic version of the similarity function. For
this, consider an agent endowed with a memory set M and a connected graph
G with nodes V P .

We assume that the agent is able to compute a distance d p, q between
p, q V , which is defined as the length of the shortest path joining these two
nodes, and since G is connected, this distance is a metric (Harary, 1969).

In this context, length is defined as the number of occurrences of edges in
an alternating sequence of nodes and edges (walk) between p and q (Harary,
1969). In this way, the agent is able to compare any pair of problems in the
graph. Consider the adjacency matrix B bpq of G that is the n n matrix
( P n) in which bpq 1 if p is adjacent with q in G and bpq 0 otherwise.
Then, the distance between p and q for p q is the least integer l for which the
p, q , entry of Bl is nonzero.

Now, we are going to consider the following results.

Proposition 1 Consider SG V, d , where V is the set of nodes of graph
G and d is Harary’s minimal distance defined on G. Then, there exists ⇢

` SG R , where ` are all the expressions in the formal language in which
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the CBDT axioms are formulated, such that MG SG R ,⇢ is a model of
CBDT+Axiom 6+Axiom 7.

Proposition 2 CBDT+Axiom 6+Axiom 7 has only one model up to isomor-
phism.

Given these propositions we show that SG provides a valid representation of
the memory and the similarity function because expressions that are true of s
are true in G with distance d; and in addition, G is compatible with axioms 1 to
7. Furthermore, the representation of s using a graph G is unique up to isomor-
phism. Finally, all the expressions on utilities are interpreted as arithmetical
claims in R . The proofs of these propositions can be found in the Appendix.

In other words, these propositions show that there exists a unique graph
that represents the similarity function. This is an important addition to the
usual presentation of CBDT, since the similarity function is derived there from
the preferences over outcomes, while here it is furthermore associated to the
shortest path distance on a graph.

We will now consider a concrete definition of graph G and derive an explicit
specification of s.

4 A Specification of the Similarity Function

In order to present a concrete specification of the results of the previous section
we need to define a graph G in which the nodes correspond to problems. One
way to do that is by assuming that each problem can be identified to a point in a
space of features . More precisely, since we intend to find a way of maximizing
a preferential order p,H , we are only interested in a space that represents the
features of the problems corresponding to the finite number of cases in H. By
the conditions on H, all these problems are di↵erent, and thus each will yield a
di↵erent point in the space of features.

Suppose that a problem q H M is defined by jq features.2. Thus, the
total number of features to consider is J q H M jq. While it is clear that
some features are correlated to others, we will assume without much loss of
generality that the features are independent. This is the case when J is the
minimal number of features needed to describe any problem q H M . This
simplification allows us to consider that the J dimensions of the space of features
are orthogonal.

The remaining question is what spaces correspond to the di↵erent features.
While some features admit discrete values others require continuous ones. Since
we intend to use Harary’s distance, we need to be able to define the adjacency
between problems, and thus the range of values of each feature has to be discrete.

2If the problem amounts to, say, choosing a smartphone, we can consider that the relevant
features are the price, the brand, the size of its memory, the quality of the camera, etc. While
large, the number of features at the moment of making a decision, is finite.
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We assume thus that we identify each feature fj with its discrete range.3 That
is, fj f

j

1 , . . . , f
j

fj
, where fj is the (finite) number of possible values of fj .

Notice that this means that fj is a linearly ordered set. Then, the entire space
of features is J

j 1 fj .
G will consist of the points H M . We take then as edges all the

linear L1 (“taxicab” or “Manhattan”) segments between the points in , with
the proviso that the distance between two consecutive values in a feature, say
f
j

k
and f

j

k 1 is 1. Harary’s procedure gives us the minimal distance between
points on . Given two problems q, r , the ensuing distance according to
this procedure is d q, r . In turn, the maximal distance between any pair of
problems in H M (the so called “diameter” of graph G) is denoted DM .

Then, given two problems p H M and q H M , we take d̄ p, q
d p,q

DM

and define

s p, q 1 d̄ p, q

It is easy to see that:

Proposition 3 s p, q satisfies the conditions of the similarity function of The-
orem 2. Furthermore, for any statement about the similarity between any pair of
problems p and q, ⇤ p, q , ⇢ ⇤ p, q s p, q , where ⇢ is as defined in Propo-
sition 1.

Example 3 Consider the following context:

H M 0 qi
4
i 1

where each problem is identified with an element of 0 f1 f2, the space of
features of the problems in memory, all related to buying or not cellphones. Here
f1 is the space of screen sizes, f2 is the space of RAM memory sizes:

f1 5,5.5,7 ,

f2 16,32 ,

The corresponding graph has diameter DM 0
3.

A case ci M associated to a problem qi, i 1, . . . ,4, is then described as:

ci qi, ai, ri 0 0,1 R

where ai is the decision made (either “buy” or “not buy”) while ri R is the re-
sult, understood as a degree of satisfaction (a real number in the interval 0,10 .

3In the case of a continuous-valued feature this means that we determine a finite partition
of its range. In practical applications the partition would arise from the application of methods
like, for instance, CART.
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The cases are:

c1 5,16 ,1,5

c2 5.5,16 ,0,10

c3 5,32 ,0,7

c4 5.5,32 ,1,7

Now suppose a new problem p 0 appears, namely to buy or not a config-
uration 7,16 . The corresponding distances to the problems in H M 0 are:
d p, q1 2, d p, q2 1, d p, q3 3 and d p, q4 2. Then (see Figure 1),

s p, q1 1
2

3

1

3

s p, q2 1
1

3

2

3

s p, q3 1
3

3
0

s p, q4 1
2

3

1

3

Then, the agent has to choose between a 1 (“buy”) and a 0 (“not buy”).
The corresponding preferences are represented as (we assume u r r for every
r R):

U 1 s p, q1 u 5 s p, q4 u 7

1

3
5

1

3
7 4

U 0 s p, q2 u 10 s p, q3 u 7

2

3
10 0 7 6

2

3

Since U 0 U 1 the decision is not buy the object.

5 Acquiring New Information

Up to this point, we have taken the entireM as source for the similarity relation.
But new information may appear that could require to revise the decisions made
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Figure 1: Graph representation of CBDT.

previously and change the way of addressing new problems. There are two
instances that we want to consider:

(a) A problem p that may appear with a new set of salient features f1p , . . . fmp .
Each fj , j 1p, . . . ,mp is either included in a space orthogonal to and
to each fk for k j or there exists a feature of , say fl, such that fl fj ,
i.e. fj adds extra values to feature fl.

(b) p may not be compared to any other problem in H M but only to some
aspect of them.

Case (a) presents two subcases:

(a1) A feature incorporates a new value.

(a2) A new feature becomes relevant.

In these two instances the relevant space becomes p m

k 1 fkp , where p

are either the new features or the ones already in with the new values de-
tected in p. Then, a new s , , based on the corresponding distance in the new
graph, must be computed.

Example 4 (Case (a1)): consider the same M as in Example 3, where H M

f1 f2 = 5,5.5 16,32 . Recall that M c1; c2; c3; c4 is such that:
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q1 5,16

q2 5.5,16

q3 5,32

q4 5.5,32

with corresponding distances: d q1, q2 1, d q2, q3 2, d q3, q4 1, d q1, q4

2, d q1, q3 1 and d q2, q4 1. Then, since the diameter of the graph
is DM 2, the similarity function is such that: s q1, q2

1
2 , s q2, q3 0,

s q3, q4
1
2 , s q1, q3

1
2 , s q2, q4

1
2 and s q1, q4 0 (see Figure 2).

Figure 2: Example of H M in Case (a1).

Now assume a new problem p in which feature f1 presents a new value, 7.
In the new graph, corresponding to M M p , while the distances between
q1, . . . , q4 are the same, the similarity function changes since the diameter of the
graph is now DM 3. We have that: s q1, q2

2
3 , s q2, q3

1
3 , s q3, q4

2
3 ,

s q1, q3
2
3 , s q2, q4

2
3 and s q1, q4

1
3 (see, again, Figure 1).

Example 5 (Case (a2)): Assume again M as in Example 3, but now a new
feature f3 becomes relevant. Then, problems q1, . . . , q4 have to be redefined,
acquiring a new component. That is, qi q

f1

i
, q

f2

i
becomes q

i
q
f1

i
, q

f2

i
, q̄

f3

i
,

11



Figure 3: Example of Case (a2)

where q̄
f3

i
f3. in case q̄

f3

i
is not known with precision or it is not defined for

qi (for instance, the operating system of a an old cellphone), it is assigned an
arbitrary value in f3. We represent this in Figure 3, in which the redefined
problems get a non-null value in the third coordinate.

Case (b) poses a di↵erent question, namely to find aspects that are shared
with previous problems. It can be addressed assuming that, given a new prob-
lem p, it comes associated to a subspace 0 of and a distance � 0. For
each problem q H M we can define q

0
, its projection over 0. Then

H M
p

q H M s p
0
, q

0
� , will be the class of problems to be

taken into account for the choice of the optimal action. In case that H M
p ,

then by default we consider the entire H M .

Example 6 (Case (b)): Consider again M as in Example 3 and the problem of
buying or not a phone p 7,32,9 , but only in terms of the comparison with the
features 0 f1 f2. Then, for each qi H M , qi

0
qi while p

0
7,32 .

Figure 4 represents this case, where the similarity function is:
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s p, q1 1
3

3
0

s p, q2 1
2

3

1

3

s p, q3 1
2

3

1

3

s p, q4 1
1

3

2

3

If � 1
2 , H M

p
q4 and thus, since c4 q4,1,7 , the decision should be

“buy”.

Figure 4: Example of Case (b)

6 Learning

The question becomes now if agents can anticipate new features or values of
them, and consequently make choices taken those forecasts into account. This
can only be probabilistically defined, and requires some assumptions. The first
one we will make is that all the distributions are Poisson, as to capture the
intuition that the relevant events (new features and values) happen at a rate
independent of what happened at the previous period. This assumption can
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be criticized on di↵erent grounds, but disregard it amounts to accept either a
stronger regularity (a certain “law” of evolution of features and values) or a
weaker one, making harder to forecast future events.

The second, and perhaps more critical, assumption is that the intervals defin-
ing the Poisson distributions represent the time interval between the formulation
and solution of two di↵erent problems. While it does not need to be of a fixed
duration, it tends to have a certain regularity in itself.

Let us define what it means for values and features, in terms of cases (a1)
and (a2) (case (b) is of di↵erent nature and will not be treated here):

(a1) Any new problem p has a probability Prob fjp Poisson �j of adding
a new value to any feature fj , for a given parameter �j . Furthermore, we
assume that �j �k for any pair of features fj and fk already present in
H M .

(a2) A new feature appears in any problem p with probability Prob J

Poisson �J .

The parameters � represent the average number of changes in either the
amount of values in a feature or in the number of features per relevant interval.
To determine them, we have to compute some values. Given any new problem
p we denote with �jp the amount of new values of feature fj and by �Jp the
amount of new features in p.

Then, given two memories M and M , we define

�j

p M M �jp

M M
and �J

p M M �Jp

M M

In either case the probability of k new values or features is given by

f k,�
e

�
�
k

k!

The assessment of the values of �j and �J proceeds by progressive refinement,
reevaluating those parameters starting from M0 and computing them for
certain sizes of the memory. That is, every some fixed number of problems, the
parameters are calculated again.

This process of continuous updating does not necessarily converges to fixed
distributions. Agents will use the distributions they have at hand at the moment
of making their decision. Furthermore, since it would be in anticipation of events
that will happen at some time in the future, they have to discount the future
outcomes to make meaningful comparison with decisions to be made in present
time.

We can consider lotteries over a space M, t, p M is a memory, t
is the moment at which it is assumed to be available and p is a problem for
which a solution is sought . Assuming preferences vNM over , satisfying the
usual von Neumann-Morgenstern axioms, we can represent them by an expected
utility Ū . It is immediate that Ū M, t, p corresponds to a lottery in which the

14



probability of M, t, p is 1 and the probability of every other M , t , p

is 0. The value of Ū M, t, p can be identified with 
t t0Up,M a where a

is the action a that maximizes q,a,r M s p, q u r and t0 is the moment at

which the lotteries are evaluated.4

Example 7 : Consider again M as in Example 3 and the problem of buying
or not a phone p 7,32,9 now (period t) or wait until t 2 to buy a better
phone with a fourth feature f4 and one higher value in features f2 and f3. Since
t 2 is two intervals away, in terms of Poisson’s distribution, the probabilities
of those events are: f 1,2�j , for j 2,3 and f 1,2�J .

Taking �j
1
2 and �J

1
20 , we have that the probabilities of new (higher)

values in f2 and f3 are both 1
e
, while that of a new feature f4 is 1

10 e10
.

The similarities between p and the problems in H M are (DM 4):

s p, q1 1
4

4
0

s p, q2 1
1

4

1

4

s p, q3 1
3

4

1

4

s p, q4 1
2

4

1

2

While that of the potential p are (the new M has a diameter5 DM 7):

s p , q1 1
7

7
0

s p , q2 1
6

7

1

7

s p , q3 1
6

7

1

7

s p , q4 1
5

7

2

7

Consider the decision of buying a cellphone. We can compare two lotteries.
One yields the utility of buying p in t, denoted U

t

p
1 , with certainty.

The other lottery yields the expected utility of buying p in t 2, U
t 2
p

1 ,

with probability f 1,2�j f 1,2�j f 1,2�J
1
e

1
e

1
10 e10

1
10 e12

.
The first lottery yields:

U
t

p
1 s p, q1 5 s p, q4 7

7

2
3
1

2
4This is consistent with the two levels of inductive reasoning in learning and induction

presented in (Gilboa and Schmeidler, 2001; Gilboa and Schmeidler, 2003).
5In this case, the diameter is the maximal distance between q1 and p

15



while for the second lottery, we need to compute its expected utility, by taking
into account the aforementioned probabilities as well as the discount rate:6

U
t 2
p

1
1

10

1

e12
s p , q1  5 s p , q4  7

1

5 e12


Then, the decision to postpone buying a cellphone, waiting for a potential p
brand, makes only sense if  17.5 e

12, i.e. the future utility must be exceedingly
large to compensate the extremely low chances of obtaining p ( 6 10 7).

7 Conclusions

We have presented a graph-based definition of similarity to be used in the
framework of Case-Based Decision Theory. This allows us to compute easily
the actions that should be performed to maximize utilities based on comparing
problems with others solved in the past.

Our characterization allows to represent the acquisition of new information
and capture the learning process of agents in time. Our results indicate that
while no convergence can be ensured the assessment at some point of time allows
to compare current and future decisions.

This is particularly relevant in the context of judgment and decision-making
in categorization tasks, providing an optimization answer to the intuitions and
demands for methodological advances made by Newell and Bröder, 2008. Fur-
ther work involves refining this approach and running experiments to compare
with the decisions actually made by human agents.

A Proof of Theorem 1.

We are going to show only that a) implies b) since the converse is trivial. Gilboa
and Schmeidler (1995) showed that Axioms 1 to 5 are equivalent to the exis-
tence of a function s P

2 0,1 such that for all p P , every memory M with
p H H M , and every compatible x, y RH , x p,H y

q H

s p, q x q

q H

s p, q y q .

Now we are going to show that considering axiom 6 the function s p, can
be transformed in a symmetric function, i.e. we are going to show that there
exist a scalar �p such that we can rescale s p, , separately for each p, to convert

6Notice that it has to be applied as an interest rate, improving the future value of the
rewards.
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it in a symmetric function. Thus, it su�ces to show that there exist a function
s p, and a scalar �p such that:

s p, q �ps p, q

and that this function is going to verify:

s p, q s q, p

From axiom 6,

x, y RH
1

, z,w RH
2

, l, h RH
3

x p,H1 y

q H1 m,r

sH1 p, q x q sH1 p,m x m sH1 p, r x r

q H1 m,r

sH1 p, q y q sH1 p,m y m sH1 p, r y r

z r,H2 w

q H2 m,p

sH2 r, q z q sH2 r,m z m sH2 r, p z p

q H2 m,p

sH2 r, q w q sH2 r,m w m sH2 r, p w p

l m,H3 h

q H3 p,r

sH3 m,q l q sH3 m,p l p sH3 m,r l r

q H3 p,r

sH3 m,q h q sH3 m,p h p sH3 m,r h r

and

x ↵v
1
m p,H1 y v

1
r

17



q H1 m,r

sH1 p, q x q sH1 p,m x m ↵ sH1 p, r x r

q H1 m,r

sH1 p, q y q sH1 p,m y m sH1 p, r y r 1

z �v
2
m r,H2 w v

2
p

q H2 m,p

sH2 r, q z q sH2 r,m z m � sH2 r, p z p

q H2 m,p

sH2 r, q w q sH2 r,m w m sH2 r, p w p 1

then

sH1 p,m ↵ sH1 p, r and sH2 r,m � sH2 r, p

imply that

l ↵v
3
p m,H3 h �v

3
r

q H3 p,r

sH3 m,q l q sH3 m,p l p ↵ sH3 m,r l r

q H3 p,r

sH3 m,q h q sH3 m,p h p sH3 m,r h r �

then

sH3 m,p ↵ sH3 m,r �

whenever the compared profiles are compatible.

Therefore, axiom 6 implies that

sH3 m,p sH1 p, r sH2 r,m sH3 m,r sH2 r, p sH1 p,m

Using axiom 5 in the last expression we obtain:

s m, p s p, r s r,m s m, r s r, p s p,m

s m,p �m �ps p,m

s m,p s p,m
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B Proof of Theorem 2.

We are going to show that a) implies b), the converse is trivial. From axiom 7,

x p,H1 y

q H1 m,r

sH1 p, q x q sH1 p,m x m sH1 p, r x r

q H1 m,r

sH1 p, q y q sH1 p,m y m sH1 p, r y r

z r,H2 w

q H2 m,p

sH2 r, q z q sH2 r,m z m sH2 r, p z p

q H2 m,p

sH2 r, q w q sH2 r,m w m sH2 r, p w p

and

x ↵v
1
m p,H1 y v

1
r

q H1 m,r

sH1 p, q x q sH1 p,m x m ↵ sH1 p, r x r

q H1 m,r

sH1 p, q y q sH1 p,m y m sH1 p, r y r 1

z �v
2
p r,H2 w v

2
m

q H2 m,p

sH2 r, q z q sH2 r, p z p � sH2 r,m z m

q H2 m,p

sH2 r, q w q sH2 r, p w p sH2 r,m w m 1

then

sH1 p,m ↵ sH1 p, r and sH2 r, p � sH2 r,m

imply that
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y �v
1
r

↵v
1
m p,H1 x v

1
m

q H1 m,r

sH1 p, q y q sH1 p,m y m ↵ sH1 p, r y r �

q H1 m,r

sH1 p, q x q sH1 p,m x m 1 sH1 p, r x r

then

sH1 p,m ↵ sH1 p, r � sH1 p,m

whenever the compared profiles are compatible.
Therefore, axiom 7 implies that

sH1 p,m
sH1 p, r

sH1 p,m
sH1 p, r

sH2 r,m

sH2 r, p
sH1 p,m

Using axioms 5 and 6 we obtain:

s p,m s p, r s r,m

C Proof of Propositions.

Proof of Proposition 1.

The interpretation satisfies the following statements:

⇢
1

p p̄

⇢
2

s p, q d p̄, q̄

⇢
3

s d

⇢
4

u a ūa.

where p, q P , while p̄, q̄ V and ūa R.

d is a metric; that is for all p̄, q̄, m̄ V G ,

1. d p̄, q̄ 0, with d p̄, q̄ 0 if and only if p q

2. d p̄, q̄ d q̄, p̄

3. d p̄, m̄ d p̄, q̄ d q̄, m̄ ;

and that the similarity function satisfies
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1 . s p, q 0

2 . s p, q s q, p

3 . s p,m s p, q s q,m

Therefore,
s p, q s p,m d p̄, q̄ d p̄, m̄ .

That is, d is an interpretation of s , while V G is an interpretation of the
problems in memory plus the current problem. Then, SG provides an interpreta-
tion of both the memory set and the similarity relation. To see that SG R yields
a true interpretation of CBDT + Axiom 6 + Axiom 7, notice that the main
aim of axioms 1 to 4 is to show that the similarity function combined with the
U-maximization is derivable from observed preferences. Therefore, since that is
settled, now we have to show that the d defined over G satisfies axioms 5 to 7.

Axiom 5 implies that, given two nonempty sets H,H
0

P p , and m,q

H,H
0, then

sH p, q

sH p,m

sH0 p, q

sH0 p,m
.

Since d does not depend on the history because G contains all the p P

then trivially satisfies this axiom.

Axiom 6 implies that the similarity function is symmetric, i.e. that s m, p

s p,m . Since G is a connected graph then d is a metric. Therefore, it is
symmetric.

Axiom 7 implies that the similarity function satisfies s p,m s p, q

s q,m implying that d is a metric, since it satisfies the triangular inequality.

Proof of Proposition 2.

Notice that given a particular problem p , there exists a partition of P , de-
noted Ci i N (where N is the set of natural numbers) in which for each i N ,
Ci q P s p , q i .

Since any theory that determines a partition of a countable set in countable
classes is categorical (Keisler, 1977), there exists a single model for s up to
isomorphism. Furthermore, since there exists a single, up to linear transforma-
tions (i.e. isomorphisms), assignation of values of cardinal utilities into the real
numbers, there exists a single model for CBDT + Axiom 6 + Axiom 7, namely
MG.
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