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Abstract

Populus deltoides is an important forest tree, with elite genotypes propagated mainly as unrooted
dormant cuttings. Several areas where P. deltoides is planted periodically experience flooding episodes. The
aims of this work were to analyze the early rooting capability and flooding tolerance of a P. deltoides full-sib
family, and to identify growth, wood, and leaf traits correlating with flooding tolerance. We analyzed the early
rooting capability of the parental genotypes and 30 clones from their F; under greenhouse conditions. The
rooting percentage of the cuttings ranged from 50 to 100%. There was a positive genetic correlation between
shoot weight and root traits (number, biomass and total length). In a separate experiment, 2-month-old plants
growing in pots from the same genotypes were subjected to two treatments: watered (control) and flooded for
35 days. Most genotypes showed an intermediate flooding tolerance with respect to the parental clones.
Height, diameter, growth rate, biomass, plant leaf area, leaf number and leaf increase rate had a positive
phenotypic correlation with flooding tolerance, while wood density did not. Height and diameter are traits
recommended for selection because they correlate with flooding tolerance, are easy to measure, and have

moderate to high narrow sense heritability.

Key words: eastern cottonwood - greenhouse cuttings - early rooting - narrow sense heritability - genetic

correlation
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Introduction

Populus deltoides (eastern cottonwood) is widely cultivated in temperate regions worldwide because
of its fast growth, either as a pure species or as selected parents of interspecific hybrids (Dickman and
Kuzovkina 2014). Eastern cottonwood plantations are mainly established from unrooted stem dormant
cuttings (Zhao et al. 2014). Rooting ability is crucial for Populus asexual propagation, and it is influenced by
different factors such as pre-planting soaking, temperature, type of substrate, stock plant nutritional status,
original position in the stock plant, and length and diameter of cuttings (Zalesny and Zalesny 2009, Zhao et
al. 2014). The occurrence of clonal variation in terms of rooting capability in P. deltoides cuttings is extensively
documented (e.g., Desrochers and Thomas 2003, Zalesny et al. 2005, Zalesny and Zalesny 2009).

The earliest stages of rooting are crucial for the successful establishment of plantations, when cuttings
are developing their root system and leaf area (Zalesny and Zalesny 2009). The occurrence of a stress
episode during the early phase of growth may compromise the success and future growth of Populus
plantations. Drought altered the early rooting responses of hybrids poplars (Krabel et al. 2015), while an 18-
days waterlogging episode during initial rooting caused different responses in cuttings of 9 Populus genotypes
(Mc Carthy et al. 2018).

Flooding is likely to occur in areas where P. deltoides is planted, and the frequency and intensity of
flooding episodes will increase due to climate change (Kreuswieser and Rennenberg 2014). There are clonal
differences in flooding tolerance for eastern cottonwood and its hybrids (Gong et al. 2007, Guo et al. 2011,
Luquez et al. 2012). A higher flooding tolerance among P. delfoides genotypes during early establishment will
increase the success of plantations under climate change.

Traits like total leaf area, individual leaf area, leaf number and leaf number increment rate have shown
correlation with growth along a wide variety of Populus species and hybrids (Rae et al. 2004, Monclus et al.
2005, Marron and Ceulemans 2006). These leaf traits may be affected by flooding, eventually causing a
reduction in growth (Gong et al. 2007, Guo et al. 2011, Rodriguez et al. 2015). Wood density correlated with
xylem cavitation resistance across a broad range of species (Hacke et al. 2001), indicating a relation with
drought tolerance. But it is not known whether a similar relationship occurs between wood density and flooding

tolerance in Populus.
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The studies of quantitative genetics of flooding tolerance in poplar are scarce. Du et al. (2011) analyzed
the 3 best Findividuals and the parents of 5 full-sib hybrid poplar families (a total of 20 genotypes). In some
families, the F, individuals were more flood tolerant than the parents (Du et al. 2011). In a Populus deltoides
F, full-sib family, most individuals of the offspring had a higher flooding tolerance than the parental genotypes
(Rodriguez et al. 2020). Even when these results are limited to a few pedigrees, they indicate that it is possible
to increase flooding tolerance through breeding in poplar. To this end, it is important to analyze more families
and to identify traits that are relatively easy to measure and correlate with flooding tolerance. It is crucial the
knowledge of the heritabilities and genetic correlations of the traits to be selected. In particular, the narrow
sense heritability is a measure of the response to selection (Lynch and Walsh 1998). The genetic correlations
are important because traits increasing stress tolerance might be correlated with detrimental traits. It would
be desirable that the selection for increased flooding tolerance do not cause a reduction in tree growth or
fitness in eastern cottonwood.

To our knowledge, this is the first quantitative genetic study of both early rooting and flooding tolerance
on the same Populus family. We gathered data of growth, wood density and several root and leaf traits from
two P. deltoides parental clones and 30 genotypes of their full-sib F; representing a range of individual growth.
The aims of this work were: (1) to analyze the early rooting capability and the flooding tolerance under
greenhouse conditions; (2) to determine which of the studied traits correlate with flooding tolerance and could
be selected to increase tolerance to this stress in young P. deltoides plants obtained from cuttings; (3) to
estimate genetic correlations and narrow sense heritabilities for both destructive labor intensive and non-
destructive traits, to determine which ones could be adequate to select for productivity and for flooding

tolerance in eastern cottonwood.

Materials and Methods
Plant Material for both experiments
The parental genotypes were obtained as the open pollinated progeny of selected female clones. The

seeds were collected in the Mississippi Delta Area, introduced to Argentina between 1968 and 1979, and
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5
subsequently selected for the poplar breeding program from the Instituto Nacional de Tecnologia
Agropecuaria (INTA). The female clone was registered as Nandi INTA (https://inta.gob.ar/documentos/nandi-
inta-populus-deltoides, abbreviated Nandi) and the male <clone as Carabelas INTA
(https://inta.gob.ar/variedades/carabelas-inta, abbreviated CAR). The controlled cross was carried out in the
year 2011 as part of the INTA breeding program. A full-sib F; progeny was obtained, from which a subset
genotypes representing a range of growth (i.e., including genotypes with good and poor growth) was selected
for this work. The preliminary evaluation of growth of the F, progeny was done on plants growing on a stool
bed. Both parental clones and 30 genotypes of the progeny were used for the rooting experiment, and the
same genotypes minus one (31 in total) for the flooding experiment. This family was selected because the
flooding tolerance of the parents was analyzed in a previous work, Nandi being more sensitive to this stress

than CAR (Luquez et al. 2012).

Rooting Experiment description

One-year-old 20 cm dormant cuttings were collected from stool beds growing in the field at the INTA
Delta Research Station during July 2017, and kept at 4°C until the beginning of the experiment. Before
planting, the cuttings were soaked overnight in water and treated with fungicides to prevent diseases. The
cuttings were planted in rectangular plastic trays (dimensions: 50 cm long, 18 cm wide and 14 cm deep) filled
with vermiculite, which covered the lower half of the cutting. The planting took place on August 1st, 2017 and
the trays were placed in a greenhouse in the city of La Plata (34° 59’ 09” S; 57° 59’ 42” W), with natural light
(maximum irradiance 1500 umoles m2 s-') and photoperiod. Five cuttings belonging to the same clone were
arranged on each tray, and the trays were placed on benches on two different sites of the greenhouse: next
to the walls and in the center, the latter receiving more time of maximum irradiance than the former. These
two areas were treated as blocks, and the position of each tray within each block (= genotype) was completely
randomized (see Fig. S1). Each tray was treated as a plot, and the measurements of all five cuttings pooled
together. There were two trays of each genotype per block (4 trays and 20 cuttings per genotype in total). The
trays were watered daily to keep the substrate moist and no fertilizer was added to the substrate, so the growth

relied initially on the cutting’s own reserves, until leaves developed and photosynthesis started (Fig. S1B).

© The Author(s) or their Institution(s)
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The diameter of the cuttings was measured with a digital caliper as the average of two perpendicular
measurements in the middle of each cutting. After 35 days, the rooting of the cuttings was evaluated. Rooting
percentage (RP) was determined as the number of rooted cuttings over the total number of cuttings on each
tray. The number of roots (RN), the average root length (ARL) and the total root length (TRL, the sum of the
lengths of every individual root) were determined for each cutting. The shoot dry weight (SDW) and root dry
weight (RDW) were determined after drying them at 65°C to constant weight. Some cuttings did not produce
roots but developed callus tissue at the base from which roots could later develop (Zalesny and Zalesny 2009,
Fig. S2A and Fig. S2B). In consequence, two rooting percentages were determined: actual rooting (cuttings
with roots/total number of cuttings) and potential rooting (cuttings with roots or callus/total number of cuttings).
The actual rooting percentage was used for further analyses, unless is stated otherwise. The abbreviations

and units of all these traits measured in this experiment are summarized in Table 1.

Flooding Experiment description

Cuttings of 20 cm long were planted in 5 L pots with garden soil (one cutting per pot), obtained and
treated as described for the rooting experiment. The plantation date was 9™ and 10" August, 2016. The plants
were grown in a greenhouse under the natural irradiance and photoperiod of La Plata. The pots were watered
daily, keeping the substrate at field capacity. Before the beginning of the treatments, plants were pruned
leaving only one shoot per cutting and fertilized with 50 ml per pot of complete Hoagland solution. The flooding
treatment was applied 60 days after planting, by placing the plants in 7 L pots sealed with a plastic bag, and
filled with water up to 10 cm above soil level, as previously described (Luquez et al. 2012, Fig.S3). The flooding
treatment lasted for 35 days. There were six repetitions per genotype and treatment (31 genotypes x 2
treatments x 6 repetitions = 372 plants in total) in a completely randomized layout. The experiment was
surrounded with a border of plants that were not measured. An outline of the experiment is provided in Fig.
S3.

Plant height (H) was measured every week with a graduated stick. For each plant, the height values
were plotted vs. time and a linear function was adjusted. The growth rate in height (GRH) was determined as

the slope of the straight fitted line. The basal diameter (D) was determined with a digital caliper. At the end of

© The Author(s) or their Institution(s)
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7
the experiment, the total above ground dry weight (leaves plus stem, TDW) was determined after drying them
to constant weight at 65°C. The basic wood density (BWD) was determined on a 10 cm subsample obtained
from the basal part of the stem by fluid displacement as described in Achinelli et al. (2018). Before the
beginning of the treatment, the latest expanded leaf was tagged with a colored wire. The leaves above and
below the mark were counted, and the total leaf number (LN) was determined as the sum of both. The leaf
increase rate (LIR) was determined using the number of leaves above the mark, fitting a linear function in the
same way as described for growth rate. The abscission rate (AR) was determined with the number of leaves
below the mark, in the same way as LIR. The chlorophyll content of the tagged leaf was measured twice with
a SPAD Minolta Chlorophyll Meter SPAD 502 (Osaka, Japan). A linear function was adjusted as described
for growth rate, the leaf senescence rate (SEN) being the absolute value of the slope of the fitted line. At the
end of the experiment, the total leaf area per plant (TLA) was determined with a LICOR LI3100 area meter
(Lincoln, Nebraska, US). The individual leaf area (ILA) and specific leaf area (SLA) were determined on leaves
expanded during the flooding episode. The leaf stomatal conductance (gs) was determined with a porometer
Decagon SC1 on the abaxial side of the latest expanded leaf. The measurements were carried out on a
cloudless day (December 121, 2016) between 10.30 and 13.30 h, with an average irradiance of 1688 umoles
m2 s,

To quantify the flooding tolerance of the different genotypes, the Flooding Tolerance Index (FTI, Doffo
et al. 2018) was determined using the total average dry weight for the watered or control (TDW ) and

flooded or stressed (TDWsessed) treatments as follows: FTI= (TDWgyressed / TDWeontror) X 100.

Statistical analysis of the rooting experiment

The 30 F, full-sib genotypes subset was analyzed together with both parental clones. Prior to analyses,
the data were standardized to have zero mean and unit variance. The statistical analysis was carried on a
plot mean basis (i.e., the average of all five cutting from a given genotype within each block). Plot means were
considered appropriate for analyses because their use enabled improved normality of data for all traits
(Jansson and Danell 1993). To test the significance of the genotype effects for all the rooting variables an

analysis of covariance (ANCOVA) using a single-trait linear model that incorporated block and genotype as

© The Author(s) or their Institution(s)
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fixed effects as well as the trait initial cutting diameter (D) as a covariate, was performed. The variable D was
included in the linear model as a covariate, given that the cuttings had the same length, but their differences
in diameter could have affected the amount of carbohydrates and other reserves that influence rooting. The
Pearson correlation coefficient was used to determine phenotypic correlations using the mean values of each
genotype and treatment. The ANCOVA and correlation (Pearson) analysis were carried out with R 3.5.0 (R
Development Core Team 2017) using, respectively, the function Im from the base stats package and the
function correlation from the agricolae package version 1.2-8 (de Mendiburu 2017).

The narrow sense heritability (h?) for each rooting trait and genetic correlations between all pairs of
these traits were estimated using a multiple-trait mixed linear model with random block and genetic effects
and diameter as a covariate. The rooting percentage was not included in the multiple-trait mixed model
because the residuals were not normally distributed. All determinations were performed with the breedR R-
package (Mufioz and Sanchez 2018) using the function remlIf90, which is based on the programs REMLF90
and AIREMLF90 of BLUPF9O library (Misztal 1999). The narrow sense heritability (h?) was calculated as: h?
= o2,/ o’p, Where 2, is the additive genetic variance and o 25 is the phenotypic variance. The absence of
spatial patterns in the residuals was also checked with breedR R-package (e.g., Cappa et al. 2019) for each
rooting trait using a single-trait mixed linear model with random block and genotype effects and the trait D as
covariate (not shown).

The genetic correlations were determined with two methods, first, using the cov2cor function from the
base stats package, and second, calculating the Pearson correlation coefficient among the Best Linear
Unbiased Prediction (BLUPSs) of the genotype breeding values from the multiple-trait mixed linear model. Both
predictions had a correlation above 0.99, in consequence the significances for the correlations of the second
method are shown in the results.

A principal component analysis (PCA) was carried out to analyze the effects of the treatment and
genotypes on the traits measured. The PCA was performed with the software MVSP (Kovach Computing

Services, UK, https://www.kovcomp.co.uk/mvsp/), using the clonal phenotypic means for each treatment and

genotype.

© The Author(s) or their Institution(s)
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Statistical analysis for the flooding assay

The 29 F, full-sib genotypes subset was analyzed together with both parental clones. Prior to analyses,
the data were standardized to have zero mean and unit variance. An analysis of variance (ANOVA) using a
single-trait linear model with fixed effects of treatment (i.e., control and flooding), genotype, and the interaction
treatment x genotype, was performed for all the flooding variables to test the significance of these effects.
The ANOVA, phenotypic (Pearson) correlation and PCA analyses were carried out with the same statistical
programs as the previous experiment. The ANOVA showed significant statistical differences among the two
treatments and the PCA indicated that there were two distinct groups for control and flooded plants (see
results below), so genetic correlations and heritability values were calculated separately for each treatment
using a multiple-trait mixed linear model with a fixed trait mean and random genetic effects. To determine
whether a growth, wood, morphological or physiological leaf traits correlated with the flooding tolerance index
(FTI), these traits were correlated with FTI using the Pearson correlation coefficient. Bivariate plots of the FTI

against all these studied traits were plotted to further elucidate these correlations.

Results
Rooting experiment

There were significant genotypic differences for all the traits measured (Table 1). Most traits did not
differ among the parents, except for shoot dry weight (SDW), and they were higher on average in the F;
(Fig.1). The same can be appreciated in the PCA on a clonal basis, where root number (RN), rooting
percentage (RP), root dry weight (RDW), total root length (TRL) and SDW were higher in most F; genotypes
than in both parental clones (Fig. S5). The actual rooting percentage (RP) was similar in both parental clones,
60% for CAR and 65% for Nandi, while in the F4 progeny ranged from 51 to 100% (Fig. 1 and Fig. S4). The
potential rooting was 100% or very close for most genotypes (Fig. S4).

The narrow sense heritability (h?, Table 1) was high for SDW, RN and average root length (ARL), but

low to moderate for RDW and TRL.

© The Author(s) or their Institution(s)
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RP had a high and statistically significant (p < 0.01) phenotypic Pearson correlation with the rest of the

traits, the relationship was negative for ARL and positive for the rest (Table 2, above the diagonal). ARL had

a negative and statistically significant Pearson correlation with RN and no statistically significant correlation

with other traits. SDW had a positive and statistically significant correlation with RDW, RN and TRL, and
negative but no statistically significant correlation with ARL.

SDW had a positive and statistically significant genetic correlation with RN, RDW and TRL, and a

negative one with ARL (Table 2, below the diagonal). RN had a strong negative correlation with ARL and a

strong and positive correlation with TRL.

Flooding experiment

Flooding had a statistically significant effect (p < 0.05) on all variables measured except diameter (D),
while genotype was statistically significant (p < 0.001) for all variables except leaf increase rate (LIR),
senescence rate (SEN) and stomatal conductance (gs, Table 3). The interaction between genotype and
treatment was statistically significant (p < 0.01) for growth rate in height (GRH), total leaf area (TLA), individual
leaf area (ILA), specific leaf area (SLA) and gs, meaning that genotypic effects will be different according to
treatment.

H, D, GRH and total dry weight (TDW) were reduced by flooding in Nandi as opposed to CAR, in
which they did not change or were less reduced (Fig. 2). Basic wood Density (BWD) was increased by flooding
in both the parental genotypes and the progeny (Fig. 2). TLA, ILA, LIR, leaf number (LN) and gs (Fig.3) were
less affected by flooding in CAR than in Nandi. The F; progeny showed variability beyond the range of the
parental genotypes for all traits (Fig. 2 and 3). The effects of flooding are clearly shown in the PCA (Fig. S6).
The first component explains 39% of the variability, and mainly represents the effects of flooding, which
increased SEN, basic wood density (BWD) and AR compared to control plants, while reducing the other
variables. The second component reflects genotypic differences, because there were differences among
clones in some traits.

The narrow sense heritability (h?, Table 3) was higher for height (H) in both control and flooded

treatments. The variables with the lowest heritability were SEN and the abscission rate (AR). The other traits

© The Author(s) or their Institution(s)
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had moderate to low heritability, and sometimes the values were quite different between the control and the
flooded treatment as for SLA.

According to the flooding tolerance index (FTI, Fig. 4), the parental clones had different responses to
flooding, with clone Nandi being more flood-sensitive than clone CAR. FTI in the F; showed intermediate
values between the parents in most genotypes, with the parental clones almost at the extremes of the scale.

For the control treatment, the flooding tolerance index (FTI) had a negative and statistically significant
phenotypic correlation only with ILA (Fig. 5). In flooded plants, FTI had a positive and statistically significant
correlation with H, D, GRH, TDW, LN, LIR and TLA (Fig. 6). The SEN, SLA, BWD and gs traits did not show
statistically significant correlations with FTI in any treatment (i.e., control and flooding).

The phenotypic Pearson correlations were higher and statistically significant (p < 0.05) among the
plant growth traits (H, D, GRH, TDW), and with some leaf traits known to be related to productivity (TLA, LN,
LIR, Table 4). These correlations were significant in both control and flooded plants, but other traits had
different correlations according to the treatment. For instance, BWD correlated with LN and LIR in the control
treatment but not in the flooded treatment. Other variables like gs had a negative statistically significant
correlation with H and LN in control plants but a positive statistically significant correlation in flooded plants.
SLA correlated with TLA, ILA and TDW in control plants but not in flooded plants, and AR did not correlate
with any other variable.

There was a statistically significant genetic correlation between growth traits (H, D, TDW) and LN for
both control and flooded treatments (Table 5). TLA showed correlation with D, ILA and TDW for both control
and flooded treatments. Other variables had different correlations according to the treatment, like gs with a
negative correlation with H, LN and TDW for control plants, and a positive correlation for the same traits in
flooded plants. BWD had a low but significant positive correlation with H in control plants but not in the flooded

treatment. BWD had a negative correlation with AR, SEN and SLA in both control and flooded plants.

Discussion

© The Author(s) or their Institution(s)
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Poplar plantations are propagated from unrooted cuttings, and this is a crucial point for the deployment
of new genotypes (Zhao et al. 2014). In early stages of establishment from dormant hardwood cuttings,
Populus plantations are highly vulnerable to the occurrence of stresses, in consequence it would be desirable
to select new genetic material with increased flooding tolerance at this stage. The analysis of heritability and
genetic correlations are highly relevant for breeders to select for traits increasing the success of the
establishment of eastern cottonwood plantations. In this work, we analyzed the rooting capability and flooding
responses in cuttings of a full-sib F; progeny of P. deltoides. We estimated the heritability and genetic
correlations of relevant traits by means of multiple-trait mixed linear models. In addition, we identified several

traits correlating with flooding tolerance.

Early rooting of a full-sib family of P. deltoides.

In this work, we aimed to determine clonal differences in early rooting capability between dormant
rootless cuttings under environmental conditions that favor this process, except for the addition of rooting
hormones (Desrochers and Thomas 2003, Zhao et al. 2014). The possibility of easily propagated elite clones
is a key feature to realize genetic gains in poplar. P. deltoides rooting capability has a high genetic variation,
with great differences at clone level, but strong environmental x genotype (G x E) effects are present (Zalesny
and Zalesny 2009). Poplar cuttings could develop lateral roots from latent root primordia, or basal roots from
callus tissue originating at the base of the cutting as a wounding response (Zalesny and Zalesny 2009). In our
material, most clones produced lateral roots and this was quantified, but some cuttings developed callus that
may originate basal roots afterwards. The rooting percentage measured only with lateral roots (i.e., actual
rooting) was high, but it reached 100% in most clones when cuttings with callus were included (potential
rooting) (Fig.1 and S4). Overall, this family has a good rooting capability, since P. deltoides is more difficult to
root from cuttings compared with other poplar species (Zalesny and Zalesny 2009). These percentages may
be lower under field conditions, since the cuttings may suffer stresses that reduce rooting (Krabel et al. 2015,
Mc Carthy et al. 2018).

We found a negative and statistically significant correlation between Average Root Length (ARL) and

Root Number (RN) at both phenotypic and genetic levels (Table 2). This is different from previous results,

© The Author(s) or their Institution(s)
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where a high and positive phenotypic and genetic correlation between ARL and RN was found for P. deltoides
and some interspecific hybrids in a rooting field trial (Zalesny et al. 2005). The opposite result may be due to
the differences in the genotypes analyzed and the experimental design. Zalesny et al. (2005) found positive
genetic and phenotypic correlations between RDW, TRL and RN, as we did in our conditions (Table 2).

Our values for narrow-sense heritability (h?) for RN (Table 1) were inferior to the estimations of H? for
the same trait for a hybrid family of P.deltoides x P. euramericana, ranging from 0.80 to 0.85 (Zhang et al.
2009). This is due to the fact that h? takes into account only the additive genetic variance, while H? includes
other genetic variance components as well (Lynch and Walsh 1998). We had higher h? values for RDW and
SDW than the broad-sense heritabilities (H?) estimated by Zalesny et al. (2005), likely because the heritability
was estimated over different sites and years, increasing the environmental variance component.

Except for ARL, the rest of the traits had a positive genetic correlation with SDW (Table 2). This is an
interesting result, because these traits (RN, TRL, RDW) are laborious to measure, especially under field
conditions. The measurement of these traits by means of the shoot biomass is less time-consuming, and can
be used as a surrogate of those traits for selection. Heilman et al. (1994) found that above-ground weight
correlated positively with root weight in a set of 20 P. deltoides, 15 P. trichocarpa and 44 P. deltoides x P.
trichocarpa hybrids growing in the field. In order to use shoot biomass as a surrogate for roots traits, it will be

desirable to confirm whether this correlation holds for other P. delfoides pedigrees and under field conditions.

Flooding tolerance correlated with some growth and leaf traits

Previous results with poplar showed that some individuals in F, offspring could have a higher flooding
tolerance than the parental genotypes (Du et al. 2011, Rodriguez et al. 2020). The results for the Nandi x
CAR family were completely different, the flooding tolerance of the progeny (measured as FTI) was
intermediate among the parental genotypes (i.e., Nandi and CAR, Fig. 4). This is a strong indication of
variability at clone level in P. delfoides, since different pedigrees had contrasting results for flooding tolerance.
These results are in line with the occurrence of high genetic variability in the southern range of distribution of
eastern cottonwood (Fahrenkrog et al. 2017), which is the region from where the female parents of clones

Nandi and CAR were originally collected (Luquez et al. 2012).
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The Flooding Tolerance Index (FTI) had a significant positive correlation with H, D, GRH, TDW, LN,
LIR and TLA in flooded plants (Fig. 3). In another P. deltoides F full-sib family (Rodriguez et al. 2020), H and
D correlated with FTI in flooded plants, while there was no correlation of leaf traits in either control nor flooded
plants. Du et al. (2011) found that height and diameter were the most reliable traits to select under flooding. It
seems that H and D are more reliable for selection for early flooding tolerance than leaf traits, but it would be
desirable to evaluate more families to confirm these results.

The use of H and D has other advantages, they had a strong and statistically significant positive
phenotypic and genetic correlation with TDW in P. deltoides, and could be used as surrogates for plant
biomass (Tables 4 and 5, Du et al. 2011, Rodriguez et al. 2020). Both measurements are non-destructive and
could eventually be automated to screen a high number of genotypes in a breeding program. In our
experiment, H and D had a similar or higher h? (Table 3) than the reported for another P. deltoides pedigree
(Rodriguez et al. 2020). Our results are similar to the broad sense heritability determined for H and D in a
collection of 391 unrelated eastern cottonwood genotypes (Fahrenkrog et al. 2017).

Wood density correlates with xylem cavitation tolerance across a range of woody species (Hacke et
al. 2001). We found that wood density increased in flooded plants, but it did not correlate with flooding
tolerance (Fig.2 and 6). BWD had a moderate positive genetic correlation with H and a negative one with D
in control but not in flooded plants (Table 5). In 10-year old poplar clones, wood density had a significant
negative genetic correlation with both height and diameter (Pliura et al. 2007). These differences could be
attributed to the different age of the trees, since wood density changes with age in poplar (Pliura et al. 2006).

Leaf traits have shown significant phenotypic correlations with growth in several Populus pedigrees
(Rae et al. 2004, Monclus et al. 2005, Marron and Ceulemans 2006) and natural populations of different
species like P. nigra (Guet et al. 2015), P. balsamifera (Soolanayakanahally et al. 2009), P. trichocarpa
(Gornall and Guy 2007) and P. fremuloides (Kanaga et al. 2008), among others. In addition to the phenotypic
correlations, we determined the genetic correlations between these traits that are more relevant for breeding.
Some leaf traits had significant positive phenotypic and genetic correlations with H in both control and flooded
treatment, like LN and LIR, but other like TLA were significant only for flooded plants (Table 4 and 5). The gs

had a positive correlation (genetic and phenotypic) with H in flooded plants but a negative one in control
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plants. A possible explanation is that stomata close in flooded Populus plants, and the genotypes that keep a
higher gs are able to keep the photosynthetic activity and growth under stress conditions (Rodriguez et al.
2015, Du et al. 2011).

As a whole, the leaf traits have lower h? than the growth traits (H, D and TDW). The comparison with
published heritability values for leaf traits is not straightforward, because most works determined broad sense
heritability, but our results are within the range of those published for other Populus species and hybrids
(Marron and Ceulemans 2006, Kanaga et al. 2008).

A good rooting capability increases early growth of poplar plantations, and it is possible that clones
with a superior rooting could also have an increased flooding tolerance. Willow genotypes with a vigorous
early growth were better able to endure flooding than those with a lower growth rate, and consequently smaller
size (Rodriguez et al. 2018). We compared the FTI scores of the flooding experiment with the rooting traits in
the other experiment, but there was no statistically significant correlation with any of these variables (data not
shown). The likely explanation for this lack of correlation is that the rooting of cuttings under waterlogged and
non-waterlogged conditions is different, with genotypes that produced abundant roots under non-stress
conditions rooted poorly under waterlogging (Mc Carthy et al. 2018). Eventually, the rooting of cuttings under
waterlogging could be a predictor of the flooding tolerance of eastern cottonwood genotypes, but this
hypothesis needs further confirmation.

Flood tolerance is highly dependent on the age of the plant, the length of the flooding period, the depth
of the floodwater, and if the water is stagnhant or running (Kozlowski 1997). In consequence, our data are
relevant for field plantations of the same age, and with similar flooding conditions, and these results could not
be extrapolated for older field plantations. But increasing flooding tolerance in young plants is still relevant for
the establishment of poplar plantations. With more tolerant genotypes, a flooding episode at this early stage

will cause less damage and, in consequence, a reduction of the cost to replace the lost plants in the field.

Conclusions
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We found genotypic variation in the early rooting capability of a full - sib F, of eastern cottonwood and
moderate to high narrow sense heritability values for the traits measured. The above ground biomass had a
strong phenotypic and genetic correlation with the root traits of the cuttings. We could identify several traits
that correlated with flooding tolerance in eastern cottonwood. Among these traits, H and D are more
convenient for selection because they have a moderate to high heritability, are easy to measure, non-
destructive and could be automated to screen a large number of trees. From the phenotypic and genetic
correlations, we could determine that flooding tolerance does not imply a reduction of growth in this family.
Additionally, we could identify some easy-to-measure traits that show a robust correlation with other more
labor-intensive traits, like SDW with roots traits (RN, TRL, RDW) and H and D with above ground biomass
(TDW). Further confirmation in field experimental trials should be a next step to conclusively correlate

greenhouse results as a powerful tool of convenience to the breeder in poplar selection.
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Table 1. Trait full name, abbreviations, units, statistical significances of block, and genotype effects and the

covariable diameter, and narrow-sense heritability (h?) estimation (and standard errors) for the different traits

measured in the rooting experiment for the Nandi x CAR full-sib family.

Statistical significances 1

Trait name Abbreviation Unit h2 (SE)
Diameter Block Genotype

Shoot Dry Weight SDW g ok ** o 0.65 (0.10)
Root Number RN * * o 0.53 (0.10)
Root Dry Weight RDW mg ns * i 0.22 (0.09)
Total Root Length TRL cm ns * o 0.28 (0.10)
Average Root Length ARL cm ns ns el 0.66 (0.09)
Rooting RP % ns ns o Not estimated

NOTE: " Statistical significance: ns: non-significant, *: p < 0.05; **: p < 0.01; ***
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=
5§1 Table 2. Phenotypic Pearson correlation coefficients (upper part of the table, in italics, N = 32) and genetic
5§2 correlations (lower part of the table) between the traits measured in the rooting experiment for the full-sib
‘D
583 family Nandi x CAR. Statistically significant correlations in bold.
o
kS
b= Trait SDW RN RDW TRL ARL RP
E SDW 0.62*** 0.58*** 0.60*** -0.25 0.66***
Hé” RN 0.75*** 0.73*** 0.88*** -0.56*** 0.84***
gé RDW 0.41* 0.32 0.84*** -0.12 0.72***
%E TRL 0.60*** 0.81*** 0.35 -0.20 0.83***
S%  ARL 051  -0.80**  -0.08 -0.50* -0.47*
€E

4  NOTE: Statistical significances: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Table 3. Trait full name, abbreviations, units, statistical significances of genotype, treatment (i.e., control and flooding), and the interaction
treatment x genotype effects; and narrow-sense heritability (h?) estimation (and standard errors) for the traits measured in the flooding experiment

for the full-sib family Nandi x CAR.

Statistical significances'

Full name Abbreviation Units h? Control h? Flooded
Genotype Treatment Interaction

Final Height H cm e ** ns 0.58 (0.10) 0.80 (0.85)
Final Diameter D mm e ns ns 0.36 (0.09) 0.52 (0.07)
Growth Rate in height GRH cm day! e b b 0.38 (0.10) 0.62 (0.12)
Total Dry Weight TDW g o * ns 0.44 (0.10) 0.53 (0.09)
Basic Wood Density BWD gcm3 e e ns 0.45 (0.10) 0.48 (0.11)
Total Leaf Area TLA cm? o o > 0.28 (0.09) 0.24 (0.08)
Individual Leaf Area ILA cm? o o o 0.45 (0.10) 0.33 (0.07)
Final Leaf Number LN --- i > ns 0.32 (0.09) 0.49 (0.10)
Leaf Increase Rate LIR Leaf day-1 ns o ns 0.29 (0.09) 0.40 (0.08)
Abscission Rate AR Leaf day-1 i e ns 0.19 (0.07) 0.27 (0.08)
Leaf Senescence Rate SEN SPAD units day-" ns e ns 0.18 (0.08) 0.17 (0.05)
Specific Leaf Area SLA cm? g’ o o ** 0.43 (0.10) 0.15 (0.05)
Stomatal Conductance gs mmol m=2 s ns e b 0.24 (0.08) 0.20 (0.08)

NOTE: ' Statistical significance: ns non - significant, * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table 4. Phenotypic Pearson correlations coefficients for control (upper part of the table -in italics-) and flooded plants (lower part of
the table) between different traits measured in the flooding experiment for the Nandi x CAR full-sib family. N = 31. Statistically

significant correlations in bold. See Table 3 for traits full name and units.

H D GRH TLA ILA LN LIR AR SEN SLA TDW BWD gs
H 0.38* 0.67** 0.21 -0.20 0.51* 0.37* 0.02 -0.24 -0.11 0.56** 0.16 -0.43*
D 0.73** 0.41* 0.63*** 0.39* 0.42* 0.41* 0.27 -0.02 0.01 0.74*** -0.32 -0.26
GRH 0.92***  0.68*** 0.31 0.19 0.19 0.51* 0.03 -0.14 0.34 0.24 -0.21 -0.06
TLA 0.54***  0.66*** 0.45* 0.77** 0.41* 0.36 -0.08 -0.16 0.45* 0.54** -0.27 -0.35
ILA -0.06 0.04 -0.14 0.62*** -0.20 -0.08 -0.16 -0.06 0.49*** 0.23 -0.12 -0.07
LN 0.72**  0.77***  0.69*** 0.68*** -0.07 0.63** -0.05 -0.16 -0.07 0.49** -0.32* -0.46**
LIR 0.74***  0.74***  0.76*** 0.46** -0.29 0.78*** 0.34 -0.30 0.20 0.25 -0.44* -0.16
AR -0.23 -0.09 -0.17 -0.36 -0.27 -0.36 0.08 -0.07 0.07 -0.06 -0.11 0.01
SEN 0.09 0.12 0.09 0.27 0.35 -0.03 -0.09 -0.04 0.13 -0.20 -0.13 0.40*
SLA 0.14 -0.09 0.31 0.09 -0.08 0.14 0.10 -0.03 -0.02 -0.42* -0.25 -0.06
TDW 0.76***  0.83***  0.58*** 0.79*** 0.29 0.72***  0.62*** -0.30 0.18 -0.31 0.01 -0.37*
BWD 0.15 -0.02 -0.01 -0.05 0.04 -0.05 -0.08 -0.19 -0.23 -0.32 0.15 -0.17
gs 0.52** 0.45* 0.60*** 0.10 -0.29 0.46** 0.47* -0.01 0.17 0.36* 0.19 -0.06

NOTE: Statistical significances: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Table 5. Genetic correlations coefficients for control (upper part of the table -in italics-) and flooded plants (lower part of the table)

between different traits measured in the flooding experiment for the Nandi x CAR full-sib family. Statistically significant correlations

in bold. See Table 3 for traits full names and units.

H D GRH TLA ILA LN LIR AR SEN SLA TDW BWD gs
H 0.27 0.67** 0.10 -0.28 0.46™* 0.31 -0.04 -0.43* -0.14 0.51** 0.38* -0.55***
D 0.74** 0.44* 0.70*** 0.48** 0.36* 0.46* 0.34 0.09 0.02 0.73*** -0.36* -0.26
GRH  0.94**  0.72*** 0.39* 0.21 0.18 0.50* -0.11 -0.14 0.42* 0.24 -0.24 -0.08
TLA  0.76** 0.65***  0.51* 0.78** 0.37* 0.47* -0.03 0.01 0.34 0.53* -0.33 -0.42*
ILA -0.08 0.08 -0.18 0.56** -0.27 -0.12 -0.23 -0.08 0.34 0.28 -0.22 -0.05
LN 0.73***  0.78***  0.75*** 0.67*** -0.17 0.74** 0.18 -0.50** -0.04 0.38* -0.28 -0.61***
LIR 0.76***  0.86***  0.81*** 0.50** -0.41*  0.83*** 0.44* -0.31 0.27 0.21 -0.52** -0.17
AR -0.45* -0.09 -0.34 -0.46** -0.39* -0.40* 0.01 -0.07 0.03 -0.05 -0.12 0.170
SEN -0.06 0.11 -0.05 0.26 0.48** -0.15 -0.11 0.27 0.33 -0.50* -0.34 0.58***
SLA 0.21 -0.18 0.45* -0.07 -0.46** 0.31 0.33 0.01 -0.09 -0.51** -0.35* -0.03
TDW  0.80***  0.84**  0.64*** 0.81** 0.30 0.68***  0.62***  -0.47** 0.07 -0.30 0.11 -0.43*
BWD 0.20 -0.09 0.02 -0.07 0.14 -0.13 -0.21 -0.36* -0.40* -0.36* 0.17 -0.32
gs 0.68***  0.63***  0.73*** 0.17 -0.40*  0.65***  0.63*** 0.01 0.13 0.39* 0.37* -0.02

NOTE: Statistical significance: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Legends to the figures

Fig. 1. Phenotypic variability in the rooting experiment. CAR: male parental clone. NAN: female parental

clone. F1: genotypes of the F1 progeny.

Fig. 2. Phenotypic variability in the plant traits of the flooding experiment. CAR: male parental clone.

NAN: female parental clone. F,: genotypes of the F, progeny. C: control treatment. F: flooded treatment.

Fig. 3. Phenotypic variability in the leaf traits of the flooding experiment. CAR: male parental clone. NAN:

female parental clone. F4: genotypes of the F, progeny. C: control treatment. F: flooded treatment.

Fig. 4. Flooding Tolerance Index (FTI) of the parental clones and 29 genotypes of the F, from the full-sib
family Nandi x CAR. FTI calculation was described in Material and Methods. Black: CAR (male parental

clone). White: Nandi (female parental clone). Grey: genotypes of the F;.

Fig. 5. Bivariate plots and phenotypic Pearson correlation coefficients (r) between FTI and the different
traits measured for the control treatment, for the parental clones and 29 genotypes of the F, from the full-
sib family Nandi x CAR. N = 31. *: p < 0.05; **: p < 0.01, **: p < 0.001. Open symbols: non-significant
correlation with FTI. Closed symbols: significant correlation with FTI. Full names of the traits are detailed

in Table 3.

Fig. 6. Bivariate plots and phenotypic Pearson correlation coefficients (r) between FTI and the different
traits measured for the flooded treatment, for the parental clones and 29 genotypes of the F, from the
full-sib family Nandi x CAR. N = 31. *: p < 0.05; **: p < 0.01, ***: p < 0.001. Open symbols: non-significant
correlation with FTI. Closed symbols: significant correlation with FTI. Full names of the traits are detailed

in Table 3.
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