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Abstract: In this paper, a linear algebra-based controller design is proposed. 
This technique allows tracking, with minimum error, predefined optimal 
profiles in nonlinear and multivariable systems. To achieve this, control actions 
are obtained by solving a linear equation system. The controller parameters are 
selected with a Monte Carlo algorithm. The methodology is applied in a  
fed-batch penicillin production process, where the control action is the feed 
flow rate and the tracked profiles are the concentration of biomass, product and 
subtract inside the reactor. Different tests are shown to prove the good 
performance of the controller adding: parametric uncertainty and perturbations 
in the control action and in the initial conditions 
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1 Introduction 

The increasing interest in environmentally friendly processes has led to an intensive 
development of bioprocesses (Petre and Selişteanu, 2013). These biological processes 
consist in the use of diverse microscopic organisms in order to obtain different products. 
They are frequently used on food and drugs production, for environment bioremediation, 
for energy and biofuels production, and even for the synthesis of polymers (Chung et al., 
2015). There are several types of biological reactors designs and many operating modes 
for micro-organisms growth and metabolites production (Mohammadi et al., 2011).  
Fed-batch bioprocesses represent the biggest challenge among of them (Ashoori et al., 
2009). They consist in change one or more nutrients and other substances (inducers, 
inhibitors or catalysers) feed rate along the process while cells and products remain in the 
fermenter until the operation ends (Hecklau et al., 2015). This operation policy avoids 
microorganism starvation induced by underfeeding and the formation of unwanted 
products by overfeeding; furthermore, the introduction of appropriate feed rate strategies 
can minimise substrate inhibition and catabolite repression; this allows obtaining higher 
production yields (Jin et al., 2014) and minimising production costs (Ochoa, 2016; Liu  
et al., 2013; Jin et al., 2014). However, they have some challenges from the process 
control point of view: 

1 complex dynamic behaviour of microorganisms, represented with strong modelling 
approximations 

2 dynamics are usually nonlinear and sometimes unstable 

3 the presence of numerous external disturbances (Liang and Chen, 2003) 

4 online measurements of most representative variables are not always available. 

Because of all these difficulties, it is necessary to implement a control algorithms 
specifically developed for each bioprocess (De Battista et al., 2012). 

It is important to determine the feed policy that allows us to obtain the maximum 
production of the key product. Many researchers have developed optimisation methods to 
find it (Skolpap et al., 2008; Ochoa, 2015; Banga et al., 2005; Aghajani et al., 2014; 
Mutingi, 2016). However, once the optimal feed policy is known, it is of the utmost 
importance to develop specific control architecture. It should be noted that it is not 
recommended to use a PI, PID or another classic controller, because the controller 
parameters change over time (Arivalahan et al., 2013). Jin et al. (2014) propose a hybrid 
intelligent control method to enable automatic substrate feeding. De Battista et al. (2012) 
expose a control system based on the minimal model paradigm, requiring only biomass 
and volume measurement along with some bounds on the reaction rate. Ashoori et al. 
(2009) present a model predictive control based on a detailed unstructured model for 
penicillin production in a fed-batch fermenter. Many other authors have developed 
nonlinear controllers for bioprocesses too (Chang et al., 2016; Fu and Chai, 2007; 
Pantano et al., 2017a; Lehouche et al., 2012; Pantano et al., 2017b). 

In this paper, a controller design based on linear algebra for multivariable and 
nonlinear systems is proposed. To implement this technique, it is assumed that the 
mathematical model of the process is available, the desired concentration profiles (herein  
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called ‘reference’) and all the states variables are known in each instant of time. The 
controller structure arises from the mentioned mathematical model, so it can be applied in 
many systems, for example: Gandolfo et al. (2014) and Rosales et al. (2015). Moreover, 
the control actions are obtained as a solution of a linear equation system in each sampling 
time, therefore the controller design is fast and easy, because only algebra knowledge is 
needed to understand and apply this methodology. Furthermore, it is versatile against 
different disturbances, which is demonstrated through different tests: parametric 
uncertainty and perturbations in the control action and in the initial conditions. It is 
important to highlight the error convergence to zero in each test (the mathematical 
demonstration is also presented in the appendix). The controller parameters are selected 
with a Monte Carlo randomised algorithm. The controller is applied in a penicillin 
production process. 

The paper is organised as follows. In Section 2, the penicillin bioprocess and its 
mathematical model are described. Section 3 explains the controller design and the 
controller parameters selection. Section 4 presents some simulated test in order to prove 
the performance of the designed controller. Finally, conclusions are exposed. 

2 System and process description 

The system under study is a fed-batch bioreactor for penicillin production. The 
microorganism and the substrate used are Penicillum crysogenum and glucose, 
respectively. The dynamic system was originally proposed in Cuthrell and Biegler 
(1989), and many optimisation and control papers using this system have been written 
since then. It is a single input multi output system, where the input is the substrate feed 
rate, and the outputs are biomass, product (penicillin) and substrate concentrations. The 
optimal substrate feed rate for penicillin biosynthesis has been obtained in different ways: 
analytically (Lim et al., 1986), by dynamic programming (Luus, 1993), by an 
evolutionary approach (Ronen et al., 2002) and using orthogonal collocation (Riascos and 
Pinto, 2004), among others. Hereafter, the optimal profiles presented by Riascos and 
Pinto (2004) was taken as the reference. The mathematical model that represents the 
process is: 

( )
/ /

( ) ( , )

( ) ( )
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Here, the state variables are: biomass concentration (X), product per culture volume unit 
(P), and the culture glucose concentration (S). V is the culture volume. The control 
variable is the substrate feed rate (U). SF is the substrate feed concentration, µ(X, S) is the 
specific biomass growth rate and ρ(S) is the specific penicillin production rate. Note that 
µ is a function of biomass and glucose concentrations, and ρ is only a function of 
substrate concentration. These relations have been developed in order to provide 
information about the metabolic activity of the microorganism. 

Initial variable values are shown in Table 1, whereas parameter definitions and values 
are in Table 2. 
Table 1 Initial variable values for penicillin biosynthesis 

Variable Initial value 
X(g/L) 1.5 
P(g/L) 0.0 
S(g/L) 0.0 
V(L) 7.0 

Table 2 Parameters of penicillin biosynthesis model 

Parameter Definition Value 
µmax Maximum specific biomass growth rate (h–1) 0.11 
ρmax Maximum specific production rate (g P/g X h) 0.0055 
KXG Saturation parameter for biomass growth (g S/g X) 0.006 
KPP Saturation parameter for production (g S/L) 0.0001 
Kin Inhibition parameter for production (g S/L) 0.1 
Kdeg Product degradation rate (h–1) 0.001 
Km Saturation parameter for maintenance consumption (g S/L) 0.0001 
ms Maintenance consumption rate (g S/g X h) 0.029 
YX/S Yield factor for substrate to biomass (g X/g S) 0.47 
YP/S Yield factor for substrate to product (g P/g S) 1.2 
SF Feed concentration (g S/L) 500 

3 Controller design 

“Most control structures are based on the use of a design model. A mathematical model 
provides a map from inputs to responses and the quality of a model depends on how 
closely its responses match those of the true plant. Therefore, a model set which includes 
the true physical plant can never be constructed.” (Zhou et al., 1996). For this reason, it is  
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necessary the design of a controller that allows tracking, with minimal error, previously 
determined profiles (calculated with a model and specific initial conditions) even in 
presence of perturbations, and parameters or initial conditions variation. 

As it was aforementioned, to implement this technique it is assumed that the 
mathematical model of the process is available, the references profiles and all the states 
variables are known in each instant of time (Tan et al., 2017). The reference profiles to 
follow are the biomass and product concentration inside the reactor. Figure 1 shows the 
mentioned reference profiles and the feed flow rate used to obtain them, taken from 
Riascos and Pinto (2004). 

Figure 1 Reference profiles (Xref, Pref) (see online version for colours) 

  
(a)     (b) 

Source: Determined in Riascos and Pinto (2004) 

Now, the objective is to find the control action that allows us to reach those references. 
The steps to follow are: 

Step 1 Define the sample time, the references and the states variables. 

Step 2 Approximate the differential equations with a numerical method. 

Step 3 Propose an expression to approximate the states variables in the next sampling 
time. 

Step 4 Select the controller parameters. 

Step 5 Define and calculate the denominated sacrificed variable. 

Step 6 Calculate the control action using last squares. 

3.1 Controller design 

Initially, the model differential equations from equation (1) are approximated using Euler 
method: 

1n n

S

d
dt T
σ σ σ+ −  = 
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 (3) 
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where σ represents each state variable, σn is the state variable in the present sampling 
time, while σn + 1 is the value in the next measurement instant. TS is the sampling time; for 
this study is adopted a value of 0.1 h. The process lasts Tf = 125 h. 

The state variables values in n + 1 are approximated with: 

1

1 1 1 1( ) ( )
nn

ref n n ref n nσ σ

err

n ref n ref n n

errr ro o

σ σ σ σ σ σ σk k σ
+

+ + + +− = − → = − −  (4) 

Here, kσ represents the controller parameters kX, kP and kS. They take values between zero 
and one (0 < kσ < 1), which makes the tracking error tends to zero when n tends to 
infinity. Looking at equation (4), when kσ = 0, the real profile reaches the reference in 
only one step, and when 0 < kσ < 1, the error approaches gradually to zero. See the 
Appendix for the demonstration. 

Then, substituting equation (4) in equation (3), it is obtained the next expression: 
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 (5) 

Equation (5) approximates the derivatives and proposes a way of replacement for the 
state variables in the next sampling instant. This allows calculating the control action in 
an easy way. Replacing equation (5) in the mathematical model, equation (1): 
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This linear equations system can be expressed in a matrix form, where state variables are 
placed as a function of the control action: 
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Equation (7) is generically expressed as follows: 

1 1

2 2

3 3
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Then, from equation (8) could be obtained the control action. To achieve this, system 
equation (8) must have an exact solution. In order to assure this, A and b must be parallel 
(Strang, 2006). There are several ways to make the system satisfy this condition, one of 
them is: 
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Replacing in equation (9) each matrix component it leads to: 
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To solve equation (10) the ‘sacrificed variable’ is defined, denoted by the subscript ‘ez’. 
To select it, it is essential to examine and interpret the role of each variable in the 
process. In a bioprocess, the substrate concentration, which can be adjusted by varying 
the supply flow rate, directly affects the rate of substrate consumption, growth rate of 
cells, and the formation rate of products or by products (Öztürk et al., 2016). Considering 
this, S is chosen as sacrificed variable. Replacing Sref by Sez in equation (10) and 
operating, the sacrificed variable is obtained. 

Once Sez is known, the control action at any sampling time can be calculated from 
equation (8) using least squares (Strang, 2006): 
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3.2 Controller parameters selection 

The bioreactor performance is directly affected by the controller parameters (kσ). 
Consequently, those parameters must be selected carefully. To compare the performance 
between simulations the tracking error is defined as: 

( ) ( ) ( )2 22
n refn n refn n ezn ne X X P P S S= + +− − −  (12) 

From equation (12) is defined the ‘total error’ as: 

1

E =
M

C n
n

e
=
  (13) 

where C = 1, 2, …, N and M = Tf/TS. 
The problem of searching for an object in an unknown environment is central to many 

areas of computer science, optimisation, numerical analysis and operational research 
(Wang and Kao, 2014). Moreover, randomised algorithms are a useful tool for analysing 
the performance of complex uncertain systems (Calafiore, 2009). In this paper, a  
Monte Carlo randomised algorithm is applied. With this approach, the computational 
complexity can be reduced in comparison with other algorithms (Tempo and Ishii, 2007; 
Dimov et al., 2015). Furthermore, many authors choose this method because of its 
reliability and its simple application (Mohammadi et al., 2014; De Oliveira et al., 2012; 
Cheein and Scaglia, 2014). 

The procedure consists in simulate the process N times, using random sets of kσ 
values. For each simulation EC is calculated. Finally, the set of kσ that allow obtaining the 
minimal EC is selected. 

The number of simulations (N) is calculated with an appropriate accuracy and 
confidence, in order to limit the possibility of a wrong answer. To determine N, we use 
the next expression (Tempo and Ishii, 2007): 

1log

1log
1

δN

ε

 
 

≥  
 

− 

 (14) 

where δ is the confidence and ε is the accuracy. Depending on the precision to be 
obtained, δ and  ε values are selected. For this study, δ = 0.01 and ε = 0.005. Thus, by 
means of equation (14), N = 1,000. 
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Figure 2 Total error for 1,000 simulations (see online version for colours) 

 

Note: The lowest error is highlighted. 

Figure 2 shows the total error for the N simulations, where the lowest error is highlighted. 
It was obtained with the parameters presented in Table 3. 
Table 3 Optimal controller parameters 

kX 0.9798 
kP 0.976 
kS 0.8979 

4 Simulation results 

This section describes the controller behaviour. With the purpose of evaluate it, some 
simulation tests are made, which are explained in the next subsections. 

4.1 Controller operation under normal conditions 

To simulate under normal conditions, the initial state variables of Table 1, the process 
parameters of Table 2, and the controller parameters of Table 3 are used. It is considered 
that there are no disturbances in the external environment that could affect the process. 

 

 



   

 

   

   
 

   

   

 

   

   48 M.C. Fernández et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 Comparison between (a) reference and real cells concentration, (b) reference and real 
product concentration, (c) reference and calculated control action and (d) tracking error 
tending to zero as the process progress (see online version for colours) 

  

  

Figure 3 shows how the real cells and product concentration follow perfectly the 
references. Moreover, the control action profile obtained with the controller is compared 
with the reference of Riascos and Pinto (2004). Finally, note how the tracking error tends 
to zero as the process moves forward. 

4.2 Test under parametric uncertainty 

The difficulty in determining model parameters is a typical characteristic of bioprocesses. 
Moreover, they can change along the process (Wechselberger et al., 2010). With this test, 
the controller performance is verified when parameter uncertainty is present in the 
bioreactor. 

For this test, the Monte Carlo algorithm already presented is used. The experiment 
consists in simulate all the process N times, while the most sensitive system parameters 
are changed randomly in a +5 or 10% of their original values (Table 2). N is calculated 
with equation (14), with δ = 0.01 and  ε = 0.005. The system parameters affected with 
uncertainty are: Kp, Kin, Km, YP/S. 

Figure 4 shows how the concentration profiles vary when model parameters are 
modified N times. The deviation that profiles suffer regarding the references is practically 
nil. 
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Figure 4 Comparison between (a) references and biomass concentration and (b) references and 
product concentration, under parametric uncertainty (see online version for colours) 

  

4.3 Test with perturbations in the control action 

In any process exists unforeseen contingencies that must be solved in time to avoid 
production to be altered. Bioprocesses are not the exception. Therefore, in order to show 
the controller performance in this situation, the control action is affected in a ±20% of its 
original value with a random perturbation. This can be explained as a random noise that 
results in a non-zero-mean Gaussian disturbances (George, 2014). 

Figure 5 Comparison between (a) reference and perturbed control action, (b) reference and real 
cells concentration, (c) reference and real product concentration and (d) tracking error 
remaining at acceptable levels (see online version for colours) 
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Figure 5 shows the difference between the perturbed control actions and the reference 
one. Also, shows how the reference profiles are tracked though the perturbation added in 
the control action. It is important to highlight that the tracking error increases with the 
perturbation added but remains at acceptable levels. 

4.4 Test with perturbations in the initial conditions 

Any bioprocess operated in a fed-batch mode depends on the system starting conditions, 
because it has infinite memory. If initial conditions are different from the nominal ones, 
the system may never reach the steady state. When situation like this occur, the controller 
proposed modify the substrate feed rate in order to reach the desired concentrations. This 
fact is demonstrated with the following test. 

Figure 6 Comparison between (a) reference and biomass concentration with different initial 
conditions, (b) reference and product concentration with different initial conditions and 
(c) tracking error (see online version for colours) 

  

 

Here, the initial conditions of the process are changed in ±10%. Figure 6 shows how the 
cells and product concentrations follow the references and keep minimal the tracking 
error. 
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5 Results and discussion 

In the first experience, it can be observed that under normal operation conditions all the 
state variables reaches the reference profiles with minimum error (see Figure 3). 
However, in order to consider more realistic operating conditions, several tests were 
made: 

• Parametric uncertainties: applying the Monte Carlo method, 1,000 simulations were 
made adding ±5 or 10% of uncertainty in the most sensitive system parameters. 
Figure 4 shows the system response: the controller performance is remarkable 
though the existence of parametric uncertainty. 

• Perturbations in the control action: in this simulation, the control action is affected 
with ±20% of its original value with a random noise. As Figure 5 shows, the control 
action remains bounded and the tracking error do not greatly increased its value. 

• Perturbations of ±10% in the initial conditions: from Figure 6 can be seen that the 
system reaches the references, although the initial conditions differs from the 
nominal values, described in Table 1. 

6 Conclusions 

It was presented a control technique based on linear algebra. With this methodology, the 
control action is obtained in order to track optimal concentration profiles taken from the 
literature. As an example, the technique was applied in a penicillin production process in 
a fed-batch bioreactor. 

This controller has several advantages over others approaches: it has less 
mathematical complexity because it works with linear equations; it is independent of the 
operating point because it does not use the linearised model; it allows obtaining the 
control action as a solution of a linear equations system, in spite of the nonlinearities of 
the mathematical model. Moreover, this controller is versatile against different changes 
and disturbances; this was supported by the different tests made. One of the limitations of 
this technique is the availability of states online measurements at each sampling time 
however this can be solved by designing virtual sensors. In future publications, the use of 
state estimators based on neural networks and through Bayesian regression will be 
developed. 
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Appendix 

When equation (4) approximation form is used, the values of the kσ parameters must be 
between zero and one (0 < kσ < 1), because that makes the tracking error tends to zero 
when n tends to infinity. With the final purpose of demonstrate this fact, the next steps 
must to be followed: 

Replacing Srefn+1 by Sez in equation (7), and then expressing it in matrix form: 

1 1

2 2

3 3

n

f n

A b
UA b

S V
A b

   
   =   
   
   

 (A1) 

Then, solving equation (A1) with least squares 

( ) 1 1 1 2 2 3 3
2 2 2
1 2 3

n T T

f n

U A b A b A bA A A b
S V A A A

− + += =
+ +

 (A2) 

From equation (A1) 

1 1 3
3 1

3 3 1

2 2 2
2 1

3 3 1

A b Ab b
A b A
A b Ab b
A b A

= → =

= → =
 (A3) 

Substituting equation (A3) in equation (A2) 

( ) ( ) ( )( )

( )( )( ) ( )

2 2 2 2 2
1 1 1 1 1 1 1 12 3 1 2 3

2 2 2 2 2 2
1 2 3 1 2 3
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Replacing equation (A4) in equation (7) 

( ) ( ) ( )1 1 0 , ,n refn X refn n n n n ezn nX X k X X T μ X S μ X S X+ += − − + −    (A5) 

Then, the tracking error for the biomass concentration is 

1 1 1Xn refn ne X X+ + += −  (A6) 

Changing equation (A5) in equation (A6) 

( ) ( ) ( )1 0 , ,Xn X refn n n n n ezn ne k X X T μ X S μ X S X+ = − − −    (A7) 

The Taylor approximation of µ(Xn, Sn) in the desired value µ (Xn, Sezn) is 

( ) ( ) ( ) ( )
( )

,
, () ,

0 1
S S λ S S Sezn n ezn λ

n
n n n ezn n ezn

dμ X S
μ X S μ X S S S

dS
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= + − =

= + −

→ < <

 (A8) 

Replacing equation (A8) in equation (A7) 
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In the same way it is demonstrated for P. 
From equation (A1) 

2 2 3
3 2

3 3 2

1 1 1
1 2

3 3 2

A b Ab b
A b A
A b Ab b
A b A

= → =

= → =
 (A10) 

Substituting equation (A10) in equation (A2) 
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 (A11) 

Replacing equation (A11) in equation (7) 

( ) ( ) ( )1 1 0n refn P refn n n ezn nP P k P P T ρ S ρ S X+ += − − + −    (A12) 
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Then, the tracking error for the penicillin concentration is 

1 1 1Pn refn ne P P+ + += −  (A13) 

Changing equation (A12) in equation (A13) 

( ) ( ) ( )1 0Pn P refn n n ezn ne k P P T ρ S ρ S X+ = − − −    (A14) 

The Taylor approximation of ρ(Sn) in the desired value ρ (Sezn) is 
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Replacing equation (A15) in equation (A14) 
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The demonstration is similar for S. 
From equation (A1) 
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Replacing equation (A17) in equation (A2) 
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Replacing equation (A18) in equation (7) 

( )1 1n ezn S ezn nS S k S S+ += − −  (A19) 

Then, the tracking error for the substrate is 

1 1 1Sn refn ne S S+ + += −  (A20) 
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Changing equation (A12) in equation (A13) 

( )( )
( )

1 1 1
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= − =
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Finally, joining equation (A9), equation (A16) and equation (A21) 
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 (A22) 

In equation (A22), L represents a linear system that tends to zero when kσ values are 
between zero and one; while NL is a bounded nonlinearity that tends to zero because eSn 
has a tendency to zero, moreover, it is multiplied by a limited term (T0Xn). This proves 
that the tracking error tends to zero when n tends to infinity (Scaglia et al., 2010). 


