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We test the principle of majorization [J. I. Latorre and M. A. Martín-Delgado, Phys. Rev. A 66, 022305
(2002)] in random circuits. Three classes of circuits were considered: (i) universal, (ii) classically simulatable,
and (iii) neither universal nor classically simulatable. The studied families are: {CNOT, H, T}, {CNOT, H,
NOT}, {CNOT, H, S} (Clifford), matchgates, and IQP (instantaneous quantum polynomial-time). We verified
that all the families of circuits satisfy on average the principle of decreasing majorization. In most cases the
asymptotic state (number of gates→ ∞) behaves like a random vector. However, clear differences appear in
the fluctuations of the Lorenz curves associated to asymptotic states. The fluctuations of the Lorenz curves
discriminate between universal and non-universal classes of random quantum circuits, and they also detect
the complexity of some non-universal but not classically efficiently simulatable quantum random circuits. We
conclude that majorization can be used as a indicator of complexity of quantum dynamics, as an alternative to,
e.g., entanglement spectrum and out-of-time-order correlators (OTOCs).

PACS numbers: 03.67.-a, 03.67.Lx,

I. INTRODUCTION

Majorization is a mathematical concept that allows one
to decide whether a probability distribution is more disor-
dered/spread than another. Offering an answer to such a fun-
damental question, the notion of majorization has found appli-
cations in many fields of social and natural sciences [1]. The
first known use of the majorization notion dates back to the be-
ginning of the twentieth century, and it is due to the economist
Max Otto Lorenz who used it as a measure for wealth concen-
tration [2].

Within physics and information theory, the concept of ma-
jorization precedes that of entropy. If a probability distribu-
tion associated to a random variable X majorizes the prob-
ability distribution of a random variable Y (see definition in
Sec. II), then the (Shannon) entropy of Y is bigger than that
of X . However, the reverse statement is not necessarily true:
if the entropy of Y is bigger than that of X , it is not neces-
sarily the case that X majorizes Y . The majorization relation
is thus a finer criteria to compare the spread of probability
distributions than the entropy comparison [3]. With that in
mind, Ruch and collaborators proposed a stronger version of
the second law of thermodynamics, known as the principle of
increasing mixing character [3–5]: the time development of
a statistical ensemble of isolated systems proceeds in such a
way that the probability distributions at earlier times majorize
those at later times.

As expected, this intuition remains true in the quantum
arena, with the majorization concept also playing an impor-
tant role in quantum and nano thermodynamics (see, e.g., [6–
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10]). Within quantum information theory, Nielsen & Vidal’s
theorem [11] asserts that majorization determines the possible
transformations between bipartite entangled states by means
of local operations and classical communication. One recent
example related to quantum computation: in the context of
boson sampling [12], Chin and Huh explained quantitatively
that the complexity of the computation relates to the majoriza-
tion ordering of the input and output particle-distribution vec-
tors [13].

While generic dynamics proceeds in the direction of grow-
ing disorder, Orús et al noticed that in many quantum algo-
rithms the opposite is true: in the course of the computation
the state of the system is step-by-step majorized, with the fi-
nal result being maximally ordered [14, 15]. Later on, by
carrying a systematic analysis of a variety of quantum algo-
rithms, these authors concluded that fast and efficient algo-
rithms (quantum Fourier transform, Grover’s algorithm, the
algorithm for the hidden affine function problem, and others)
obey a majorization principle (MP), i.e., satisfy step-by-step
majorization. Supporting this conjecture, they gave examples
of some quantum algorithms not showing any computational
speed-up which violate the MP [16]. Further evidence sup-
porting the MP came from adiabatic algorithms [17]. Recently
step-by-step majorization for the Fourier Transform was ob-
served experimentally in photonic circuits [18]. A detailed
analysis of the Grover algorithm can be found in [19].

In recent years random quantum circuits have grown in
importance. Besides various applications in quantum infor-
mation and communication [20–22], random quantum cir-
cuits are becoming the test-bed for the so called quantum
advantage. Even within the noisy intermediate scale quan-
tum (NISQ) era, when quantum computers are composed of
around hundred qubits and are still not amendable to error cor-
rection, sampling from random quantum circuits was proved
a hard task for classical simulations [23, 24], and as such it is
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a clear demonstration of quantum advantage. Using random
quantum circuits of 53 qubits, such quantum advantage was
experimentally reported in Ref. [25].

To determine properties of quantum random circuits that
help to characterize their “complexity” is thus an important
task. Recently, in a series of articles [26–28], it was estab-
lished an apparent connection between the entanglement spec-
trum statistics of the output of a random circuit and its com-
plexity – as defined by the universality of the gate set deter-
mining ensemble. More concretely, let G be a set of quan-
tum gates, and take an ensemble of N qubit quantum cir-
cuits formed by uniformly sampling from G. Initiating the
circuit with a random product state, the authors observed that
the level spacing statistics for the entanglement spectrum (the
Schmidt values of the balanced partition) at the end of the cir-
cuit follows the random matrix theory (RMT) prediction if G
forms a universal set of gates, and a Poissonian distribution in
the opposite case [27]. The authors go one step further and
suggest a connection between the impossibility of returning
from a stationary entangled state to a separable state (via a
Metropolis like algorithm) and the complexity of the random
circuit: universal set of gates would lead to an effectively irre-
versible entanglement dynamics (when the sequence of gates
leading to the stationary state is forgotten).

Another characteristic of complex quantum dynamics is
that local information spreads quickly over the whole sys-
tem. Widely used indicators of this process are the out-of-time
ordered correlators (OTOCs): Exponentially fast changes of
OTOCs have been taken as a sign of “quantum chaos”, i.e.,
quantum complexity [29–31].

It is the aim of the present work to analyze the majorization
principle in different ensembles of random quantum circuits.
Here we show that not only the majorization principle holds
(on average) for random circuits, but the fluctuations of cumu-
lant vectors (see below) do seem to correctly identify complex
computation. In addition, we show that non-universal but clas-
sically non-simulatable quantum circuits might also lead to a
RMT entanglement spectrum. Our calculations demonstrate
that this intermediate class of circuits can be identified by the
majorization criteria.

II. MAJORIZATION & RANDOM CIRCUITS

In the following we define majorization, succinctly describe
the various types of quantum random circuits used, and touch
upon some related questions.

A. Majorization

Let x and y be real vectors of length N . It is said that x is
majorized by y (or y majorizes x), denoted by x ≺ y, if, for
all k < N ,

k∑
i=1

x↓i ≤
k∑
i=1

y↓i , (1)

and

N∑
i=1

x↓i =

N∑
i=1

y↓i , (2)

where x↓ means that the components of x have been arranged
in nonincreasing order. The partial sums in the equations
above will be called cumulants. The k-th cumulant of x will
be denoted Fx(k). Here we will always use majorization
for comparing probability vectors, i.e., real vectors of non-
negative components and normalized to unity: xi ≥ 0,∀ 1 ≤
i ≤ N and F (N) = 1.

A very useful way of visualizing the majorization (partial)
ordering x ≺ y is by plotting the Lorenz curves Fx(k) and
Fy(k) vs k/N [2]. Then, one has that x ≺ y iff the Lorenz
curve for y is above the curve for x for all values of k/N .
Some examples of Lorenz curves can be seen in Fig. 1. Note
that there exist vectors x and y for which neither x majorizes
y, nor y majorizes x.

B. The random circuits

We consider unitary quantum circuits with n qubit lines
(n = 8 in our numerical calculations). The total system di-
mension, and the dimension of the probability vectors, is thus
N = 2n. The system evolution through the quantum circuit
is given in unit time steps. Fixed a gate set G, at each time
step a gate from G is chosen and it is applied to a selected
set of qubits. In a quantum random circuit the choice of gate
to be applied at a given time, and the selection of qubits to
which this gate is going to be applied, are both probabilistic –
as defined by preset measures. For each step we evaluate the
state in the computational basis, the associated probabilities,
and the cumulants F (k), k = 1, . . . , N . This is repeated for a
number Ns of time steps.

We always use completely factorized initial states, i.e.,
|ψ〉 = |ψ1〉 ⊗ . . .⊗ |ψn〉. Each |ψi〉 may be random or a fixed
state. In the first case, we chose each factor state indepen-
dently and uniformly distributed on the Bloch sphere (Haar
measure for vectors). Diagonal-gate circuits (IQP) use always
|0〉⊗n as input. In some cases we tested both kinds of initial
states for a given type of circuit.

Starting from a separable state, the successive application
of gates eventually leads to highly entangled states showing
statistical properties typical of random vectors. This is clearly
true for the universal sets, e.g., G3 (see below). Likewise,
most families of circuits considered here show a similar be-
havior. In particular, the Lorenz curves associated to asymp-
totic (large number of gates) states are very close to those cor-
responding to random complex vectors. We denote the en-
semble of n-qubit states, with the induced Haar measure, as
Haar-n.

When speaking of classical simulatability of quantum cir-
cuits one can distinguish between two main notions: strong
(all output probabilities are calculated) or weak (only a sample
of the output probability is required). It is said that a simula-
tion by classical means is efficient if it runs in polynomial time
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in the input size. The efficiency of a classical simulation may
depend on the input type (arbitrary product state or computa-
tional basis state), and on how many output lines are measured
(single-line or multiline measurement). Other ingredients like
intermediate measurements, post-selection, etc., will not be
considered. We have given a very compact definition of (ef-
ficient) classical simulatability. Thorough definitions may be
found in the references: [32–36] (Clifford circuits), [37–39]
(IPQ/diagonal circuits), [40–42] (matchgates).

We employed seven classes of circuits: G1, G2, G3, MG,
D2, D3, Dn. They are described in the following three sec-
tions.

1. Circuits constructed from a few generators

We considered the three sets used in Ref. [27], i.e.,
G1={CNOT, H, NOT}, G2={CNOT, H, S}, and G3={CNOT,
H, T}, where CNOT is the controlled-NOT gate, H stands for
Hadamard, and S and T are π/4 and π/8 phase gates, respec-
tively. The set G3 is universal and thus approximates the full
unitary group U(N) to arbritary precision. Both sets G1 and
G2 contain only Clifford gates, thus are nonuniversal and clas-
sically simulatable (in the setting of the Gottesman-Knill the-
orem [32, 35]). The circuits constructed from G2 generate the
Clifford group [32]. The gates in G1 generate a subgroup of
Clifford, then the simulatability of G2 implies the simulata-
bility of G1 (in the same settings).

The probability for a gate to be selected at given time is
always 1/3 for the four families above. We also choose with
equal probability the qubits or pairs of qubits to which a se-
lected gate is applied.

2. Matchgate circuits (MG)

Matchgates are two-qubit gates formed from two one-qubit
gates A and B with the same determinant: A acts on the even
parity subspace (spanned by |00〉 and |11〉) and B acts on the
odd parity subspace (spanned by |01〉 and |10〉). A and B are
randomly chosen according the Haar measure in the unitary
group U(2). All pairs of qubits are equiprobable. Circuits of
matchgates acting on nearest-neighbor lines only are classi-
cally simulatable; however, if the nearest-neighbor restriction
is lift, the resulting circuits are universal for quantum compu-
tation [41, 42].

3. Diagonal-gate circuits (D2, D3, Dn)

These circuits are made up from gates which are diagonal
in the computational (Z) basis. The initial state is set to |0〉⊗n
and Hadamard gates are placed at the beginning and ending
of each line [37]. This class of circuits is also called IQP
(instantaneous quantum polynomial-time): As diagonal gates
commute, they can be applied simultaneously and thus there
is not a natural time ordering of gates for a given circuit.

Diagonal circuits cannot perform universal computation,
however, in general, they are not classically simulatable
[37, 43].

We shall deal with a particular subclass of diagonal circuits:
the r-qubit phase-random circuits [44]. In this case, each gate
acts upon r qubits and has the form

Wr = diag{eiφ1 , eiφ2 , . . . , eiφ2r } , (3)

with the φ’s independent random uniform in [0, 2π). The gates
are applied on all combinations of r (out of n) qubits, the
ordering being random. Here we use only three values for r,
namely r = 2, 3, n. For r = 2 the circuits contain n(n− 1)/2
gates, while for r = n the circuits consist of only one random
gate. So, our diagonal circuits have a well defined number
of gates. On the contrary, G1, G2, G3 and MG may have an
arbitrary length.

In the case r = 2 we also consider the situation of gates
acting on nearest-neighbor qubits. Assuming a ring topology,
these circuits contain only n gates, and they are classically
simulatable [39].

C. Abbreviations

As we are considering various types of circuits, connectiv-
ity, and initial states, for the sake of compactness, we shall
employ abbreviations to designate the different possibilities.
To a triplet {circuit, connectivity, initial state} we shall asso-
ciate the word A-B-C. A stands for the type of circuit: G1, G2,
G3, MG, D2, D3, Dn; B may equal nn (nearest neighbor), rn
(random neighbors), or all (all combinations of r qubits –only
for diagonal circuits); and C may be rs (random initial state)
or 0 (|0〉⊗n as input).

For instance, MG-rn-rs, denotes a circuit composed from
matchgates acting on arbitrary neighbors, with random initial
state. Analogously, D3-all-0 denotes a diagonal 3-qubit ran-
dom phase circuit.

Before proceeding with the numerical calculations, we note
that, for our purposes, the various families of circuits to be an-
alyzed can be split into three categories: (i) universal, (ii) clas-
sically simulatable, and (iii) neither universal nor classically
simulatable. We shall try to correlate the different features in
our calculations with these three classes.

III. NUMERICAL CALCULATIONS

We start by giving an example of Lorenz curves for a par-
ticular realization of a circuit G1 and a random initial state.
In Fig. 1(a) we plot a set of Lorenz curves for different times.
We see that, as time grows, there is an overall tendency to
decreasing majorization. For example, if xt denotes the prob-
ability vector at time t, then we have x0 � x25 � xt, for
t = 50, 75, 100, . . .. However, there are cases of increasing
majorization (curve swapping, e.g., x125 ≺ x150) as well as
cases of no definite majorization order (curve crossing, e.g.,
x75 and x100). We have observed analogous behavior for other
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(a)

(d)(c)

(b)

k/N k/N

FIG. 1. (a) Lorenz curves for a single realization of a circuit belong-
ing to the family G1={CNOT,H,NOT}. The topmost curve corre-
sponds to the initial state. The other curves were calculated after the
action of 25/50/75/100/125/150/175 gates (the color scheme for the
different numbers of gates is shown in the inset). (b) Lorentz curves
for the family G1 but now averaged over 500 realizations. The num-
bers of gates are the same than in (a). (c) Same as (b) but for diagonal
D3-all-0 circuits. The curves were calculated after the application of
2/3/4/5/7/12/16/56 gates. (d) Same as (b) but for matchgates MG-rn-
rs circuits. Number of gates are 1/3/5/9/13/17/30. All circuits have 8
qubit lines.

realizations of G1, and also for circuits belonging to other
families.

Not surprisingly, crossings and swappings vanish by aver-
aging over realizations and/or initial conditions, and then ma-
jorization order appears. This can be clearly seen in Fig. 1
[panels (b)-(d)], where we exhibit Lorenz curves for selected
times, but now averaged over 500 circuits/initial states. Re-
sults for families G1-rn-rs, D3-all-0, and MG-rn-rs are qual-
itatively similar, all showing decreasing majorization as the
number of gates is increased.

Though the rate of change of the Lorenz curves depends of
the type of circuit, the asymptotic curves are almost identical.
From here on, we focus on the asymptotic Lorenz curves –
asymptotic meaning large number of gates for circuits G1, G2,
G3, MG or the maximum number of gates for D2, D3, Dn.

Figure 2 depicts averages of the asymptotic Lorenz curves
for all classes of circuits considered. Most curves coincide
(within visual resolution) with that corresponding to random
vectors of 8 qubits (Haar-8).

We have verified numerically that the Lorenz curves asso-
ciated with random vectors tend to a limiting curve, Haar-∞,
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FIG. 2. Average Lorenz curves for asymptotic states generated by
various families of random circuits of 8 qbits. For circuits G1, G2,
G3, MG we used 500 gates to ensure convergence. For the diago-
nal ones, i.e., D2, D3, Dn, the maximum number of gates was used
(see Sec. II B 3). Inset: circuit names ordered to correspond to curve
ordering (decreasing majorization), except for G1-rn-0 (broken blue
line).

as the dimension increases. In Fig. 2 we see that this limit is
reached already for 7 qubits.

Some comments about Fig. 2 are in place. We have also
plotted Haar-7 because matchgates preserve the symmetry of
the initial state, then, if we start from |0〉⊗n, the final states
will live in the positive parity subspace. This subspace has
dimensionality 2n/2, i.e., the final state-vector has 2n/2 null
components. We discarded these null components, thus con-
sidering state-vectors of half the dimension of the initial state.
Because of this, results for MG-rnd-0 and MG-nn-0 must be
compared with Haar-7.

The circuits D2-nn-0 and G2-rn-0 produce average Lorenz
curves which deviate the most from the universal, random
vector, behavior (presumably D2-nn-0 has too few gates for
scrambling the initial state).Note that both circuits are classi-
cally simulatable under fairly undemanding settings [32, 39].
G1 and G2 (Clifford) circuits acting on the state |0〉⊗n pro-
duce states with highly degenerate amplitudes [34, 45]. Then,
the corresponding Lorenz curves are piece-wise linear.

Having seen that average Lorenz curves fail to differentiate
universal from nonuniversal families, we decided to look at
the fluctuations of the Lorenz curves, i.e., the fluctuation of
each cumulant F (k) for each class of circuits, averaged over
many realizations. The result of this calculation is shown in
Fig. 3.
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FIG. 3. Fluctuations (standard deviation) of Lorenz curves for
asymptotic states generated by various families of random circuits
of 8 qubits. For each family we considered 5000 samples of 500
gates, except for diagonal circuits which have fixed lengths. Inset:
circuit names. Name ordering corresponds to curve ordering. The
families G1-rn-0 and G2-rn-0 show much larger fluctuations; their
Lorenz curves are piecewise quadratic (not shown).

Here we observe a larger spread of the Lorenz curves, with
a partial removal of the coalescence of Fig. 3: G1 and G2
(both nonuniversal) have separated off the main group, ex-
hibiting larger fluctuations. The smallest, universal fluctua-
tions correspond to the circuits G3-rn-rs, MG-rn-rs, DN-all-
0, D3-all-0 (coincide with Haar-8), and MG-rn-0 (coincides
with Haar-7).

The family D2-all-0 stands as a special case because,
in spite of showing very small fluctuations does not match
the universal prediction for circuits without symmetries, i.e.,
Haar-8. We return to this point below.

We have verified numerically that the fluctuations corre-
sponding to random vectors decrease as the number of qubits
grows (cf. Fig. 3). This raises the questions: What is the as-
sociated scaling law? Do the fluctuations of the various fami-
lies obey different laws? Answering these questions, though a
source of potentially valuable information, lays outside of the
scope of the present paper.

A. Entanglement spectra

Following [27] we considered a 50-50 bipartition and cal-
culated the spectra of the asymptotic reduced matrices. Let
us denote the eigenvalues λ1, λ2, . . . , λN/2, in decreasing or-
der. Use the gaps εi = λi+1 − λi to form the quotients
ri = εi+1/εi. Then construct the histogram P (r) by sampling
within each class of circuit. If the distribution of gaps follows
a Wigner-Dyson law (characteristic of Gaussian random ma-
trix ensembles [46]), the theoretical prediction for P (r), in the

0 1 2 3 4 5
0 . 0

0 . 2
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0 . 6

0 . 8
1 )  P o i s s o n
2 )  G 1 _ r n _ r s
    G 2 _ r n _ r s
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    M G _ r n _ 0
    M G _ n n _ r s
7 )  M G _ n n _ 0

 P(r
)

r

1
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3

4

5
6

7

FIG. 4. Entanglement spectra for asymptotic states generated by
various families of random circuits. Shown are averages of 5000 cir-
cuits of 500 gates. Diagonal circuits have fixed lengths. All circuits
have 8 qubits.

limit of large matrices, is [47]

PWD(r) =
1

Z

(
r + r2

)β
(1 + r + r2)

1+3β/2
, (4)

where Z = 8
27 for the Gaussian Orthogonal Ensemble (GOE)

with β = 1, and Z = 4
81

π√
3

for the Gaussian Unitary Ensem-
ble (GUE) with β = 2.

On the other side, if the spectrum is uncorrelated, then the
corresponding statistics if Poissonian:

PPoisson(r) =
1

(1 + r)
2 . (5)

Given that the circuits considered here do no exhibit time-
reversal symmetry, their spectral statistics should follow the
predictions of GUE – provided they exhibit complex dynam-
ics. In fact, it was shown in [27] that P (r) for the universal
family G3 agrees with GUE, i.e., Eq. (4) with β = 2. On
the other side, the families G1 and G2 showed Poisson-like
fluctuations.

Our matrices are not large enough to use the asymptotic ex-
pressions above. So, in order to account for finite dimensions
effects, we resorted to numerical calculations. In the case of
GUE statistics, instead of employing Eq.(4), we used the spec-
tra of reduced density matrices obtained via partial trace of
Haar random vectors of n qubits. The results obtained from
these spectra will be labeled Haar-n. In the other side, we
generated Poissonian spectra simply by choosing N/2 levels
∈ (0, 1) independently and random-uniformly.

We extend the spectral calculations of P (r) in [27] (re-
stricted to G1, G2 and G3) to matchgates and diagonal cir-
cuits. In Fig. 4 we show histograms representing P (r) for
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all the circuits. We observe that they can essentially be di-
vided into two groups: (a) Poisson-like, i.e., decreasing prob-
ability distributions (G1-rn-rs, G2-rn-rs, D2-all-0, D2-nn-0),
and (b) GUE-like, i.e., peaked histograms. The latter cate-
gory includes the circuits G3-rn-rs, D3-all-0, DN-all-0, MG-
rn-rs, which show excellent agreement with the GUE pre-
diction (Haar-8), and MG-rn-0 which coincides with Haar-6
(this was to be expected because MG-rn-0 is universal but has
parity symmetry [48]).

The spectra corresponding to the families G1-rn-0 and G2-
rn-0 consist of several multiply degenerated levels. Thus, the
associated P (r) are singular (nor Poisson- neither GUE-like)
and were not plotted.

In the previous sections we have limited ourselves to pre-
senting the results of our calculations, reserving the discussion
thereof for the next, concluding section.

IV. DISCUSSION & FINAL REMARKS

The purpose of this paper was to characterize the com-
plexity of quantum random circuits using majorization crite-
ria. The authors of [27] had showed that the entanglement
spectrum could be used to distinguish universal from non-
universal families of circuits, using as examples the families
G1, G2, G3. Here we extended the analysis of [27] in two
directions. First, we considered additional families of cir-
cuits, i.e., those constructed either from matchgates or diag-
onal gates.

Second, we inquired about the complexity (according to
majorization criteria or entanglement spectrum) of the fami-
lies that, in spite of being non-universal, cannot be efficiently
simulated in a classical computer. We found that some fami-
lies of diagonal circuits (non-universal) must be classified as
complex according to the above mentioned criteria.

After verifying that all circuit families satisfy the principle
of decreasing majorization (on average), we focused on the
Lorenz curves of the output states. Our results, displayed in
Figs. 2, 3, 4, are summarized in Table I. The last two columns
exhibit the agreement, for all the circuits, between both com-
plexity indicators considered. Also included in the table are
the settings for efficient classical simulatability (fourth col-
umn). The third column displays the settings for which a given
family is known to be not simulatable. Altogether we have
considered eight possible settings, corresponding to three bi-
nary choices: weak vs strong simulation, single- or multi-line
tasks, and the input being either |0〉⊗n or a random product
state (the latter information makes part of the circuit name).
So, when we state that a family is “always" or “never" simu-
latable, we mean as far as the eight above-mentioned settings
are concerned.

These settings present different degrees of difficulty for
efficient classical simulation, ranging from OUT(1)-WEAK
(easiest) to OUT(MANY)-STRONG (hardest). Circuit fam-
ilies that are simulatable under the hardest settings are far-
thest from performing universal quantum computation. Ac-
cordingly, these families are expected to deviate most from

the universal behavior described by random matrices/vectors.
This correspondence is clearly exemplified by G2-rn-0 and
MG-nn-0, which exhibit the lowest complexity records [both
are OUT(MANY)-STRONG simulatable]. In spite of being
simulatable under weaker conditions, MG-nn-rn and D2-nn-0
also rank as the lowest complex circuits (however, these fam-
ilies might be simulatable in stronger settings [51] [52]).

We have written a clear-cut YES/NO in the last three
columns of Table I based on the strict agreement (or not)
between our data and the predictions for random outputs.
If we descend to the semi-quantitative level, the complex-
ity indicators may become in conflict. For instance, MG-
nn-rs [OUT(1)-STRONG simulatable] has indeed a GUE-like
spectrum but intermediate-size cumulant fluctuations. On
the other side, D2-all-0 [OUT(1)-WEAK simulatable] has
Poisson-like spectrum, however its fluctuations are close to
universal. The case of MG-nn-0 [OUT(MANY)-STRONG]
is clearer: mildly GUE-like spectrum and large fluctuations.
In the previous cases both indicators cooperate to characterize
the respective circuit families as not complex.

Some unexpected behaviors, e.g., MG-nn-rs having a spec-
trum close to GUE, or, D2-all-0 having Poisson-like spectrum
and small cumulant fluctuations, call for further studies. In
particular one should analyze how the cumulant fluctuations
decrease as the system size increases. In this respect, it would
be very useful to have analytical results for the fluctuations of
Lorenz curves in the case of complex random vectors, which
seems feasible [53].

We verified that the fluctuations of the Lorenz curves qual-
ify as an indicator of complexity, producing essentially the
same classification as the entanglement spectrum. Both mea-
sures, therefore, not only discriminate between universal and
non-universal classes of random quantum circuits, but they
also detect the complexity of some non-universal but not clas-
sically efficiently simulatable quantum random circuits. It
should be noted, however, that the fluctuations of the Lorenz
curves are more easily obtained than the entanglement spec-
trum. The former requires simple evaluation/measurement of
the probabilities of the computational basis, while the latter
requires full tomography of half the qubits and further diago-
nalization of the obtained reduced density matrix.

To conclude, we have introduced a criterion based on ma-
jorization (fluctuations of Lorenz curves) as an indicator of
complexity of quantum computations/dynamics. This indica-
tor is intended to serve as an alternative or complement to the
well known entanglement spectrum and OTOCs.
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Circuit name UNIV? Non classically simulatable? Classically simulatable? Ave-H? Fluc-H? Spec-RMT?
G3-rn-rs Yes Always Never Yes Yes Yes
G2-rn-rs No OUT(MANY) WEAK [35] OUT(1) STRONG [33] Yes No No
G1-rn-rs No (?) OUT(1) STRONG Yes No No
G2-rn-0 No Never OUT(MANY) STRONG [33] No No No
MG-rn-rs Yes Always Never Yes Yes Yes
MG-rn-0 Yes Always Never Yes Yes Yes
MG-nn-rs No (?) OUT(1) STRONG [41, 42] No No No∗

MG-nn-0 No Never OUT(MANY) STRONG [40, 49, 50] No No No
DN-all-0 No OUT(MANY) WEAK [37] OUT(1) WEAK [37] Yes Yes Yes
D3-all-0 No OUT(MANY) WEAK [37] OUT(1) WEAK [37] Yes Yes Yes
D2-all-0 No OUT(MANY) WEAK [37] OUT(1) WEAK [37] Yes No∗∗ No
D2-nn-0 No OUT(MANY) STRONG [39] OUT(MANY) WEAK [39] No No No

TABLE I. Summary of the results. The first column lists the circuits. The second column says if the circuit family is universal or not. The third
and fourth columns inform about the classical simulatability (or not) and the settings of the corresponding proofs. The acronyms STRONG
and WEAK refer to the tasks of calculating or sampling from the output probability, respectively (see II B). OUT(1) and OUT(MANY) say
whether the task is single- or multi-line. Ave-H: average cumulants of the final states coincide with those of random vectors (Haar measure);
Fluc-H: same as before, but for the fluctuations of the cumulants; Spec-RMT: reduced density matrix spectra well described by random matrix
theory; (?): No results, to best of our knowledge; No∗: RMT-like, coincides with Haar-6, but for this non-symmetric case RMT predicts
Haar-8; No∗∗: Very close to Haar-6, however, as before, the prediction of RMT is Haar-8.
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