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Abstract: Leaf senescence is a developmental process critical for plant fitness, which involves
genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients
to juvenile and reproductive organs. While natural leaf senescence is primarily associated with
aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic
stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common
thread in stress-dependent cell death and also increase during leaf senescence. Involvement
of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well
supported, with photosynthesis playing a crucial role in providing redox-based signals to this process.
While chloroplast contribution to senescence received less attention, recent findings indicate that
changes in the redox poise of these organelles strongly affect senescence timing and progress. In this
review, the involvement of chloroplasts in leaf senescence execution is critically assessed in relation to
available evidence and the role played by environmental and developmental cues such as stress and
phytohormones. The collected results indicate that chloroplasts could cooperate with other redox
sources (e.g., mitochondria) and signaling molecules to initiate the committed steps of leaf senescence
for a best use of the recycled nutrients in plant reproduction.

Keywords: senescence; reactive oxygen species; chloroplast; phytohormones; photosynthetic electron
transport chain

1. Introduction

Leaf senescence is an ordered physiological process in which cellular structures and biomolecules
are progressively broken down and the resulting products mobilized to other plant organs such as
fruits, seeds, tubers and/or more apical leaves [1–3]. The most visible manifestation of leaf senescence
is yellowing caused by destruction of the chloroplast pigment-protein complexes and conversion of
the constituent chlorophylls (Chl) into catabolic non-green derivatives after opening of the chlorin ring
system [4,5]. Natural leaf senescence as it occurs in the field is normally age-dependent and accelerates
upon transition of the vegetative into the reproductive growth phase [6,7].

Senescence is controlled by a genetic program involving major changes in expression patterns that
result in degradation of cells targeted for demise and reallocation of the resulting products to the newly
developing organs. Many genes induced during senescence (SAGs, for senescence-associated genes)
encode enzymes involved in protein degradation, underscoring the relevance of nitrogen recycling
during this process [8–10]. Mutants exhibiting delayed leaf senescence have been described in many
species and are extremely useful to identify gene products involved in cell aging, cell death and nutrient
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salvage [1,11–14]. While all these mutants preserve leaf greenness for extended periods, it is convenient
to distinguish functional mutants, in which the delay in senescence is coupled to preservation of
metabolic capacity, from those that retain green color but show normal aging behavior [15]. The latter
are just defective in Chl breakdown and were categorized as non-functional stay-green mutants,
also termed cosmetic [16,17].

The onset and progression of the senescence process respond to developmental cues but are
also affected by environmental factors (Figure 1) [18,19]. Indeed, senescence can be induced in
otherwise young leaves by darkness, abiotic stresses and microorganisms [20–24]. Endogenous
signaling molecules and pathways, including phytohormones, reactive oxygen species (ROS) and
other redox-based signals, mediate the plant responses to these inputs, which in turn lead to extensive
genetic, physiological and metabolic reprogramming.
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Figure 1. Overview of leaf senescence. The final stages of leaf development are basically determined
by plant age and transition into the reproductive stage, but are also modulated by endogenous
and exogenous cues which integrate into the developmental program. Environmental conditions
affecting senescence progression include biotic and abiotic stresses and nutritional status, whereas
hormones represent the most relevant endogenous factors. Many environmental stresses increase
propagation of reactive oxygen species (ROS) in leaf tissue, which act as signaling molecules. SAGs,
senescence-associated genes.

Involvement of ROS such as hydrogen peroxide (H2O2), singlet oxygen (1O2) and the superoxide
(O2

.−) radical in both natural and induced plant senescence is supported by many observations [25–28].
ROS can be produced in various cellular compartments through the activity of oxidases or as
byproducts of oxido-reductive processes (Figure 2), and the contributions of the different sources to
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plant senescence are still poorly understood. In animal systems, ROS associated to mitochondrial
metabolism play a central role in cell aging [29]. While a similar mechanism is likely to operate in
nonphotosynthetic tissues [30,31], chloroplasts are the main ROS-producing organelle in illuminated
leaves, whereas peroxisomes make a substantial contribution under photorespiratory conditions in C3
plants [32,33].
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Figure 2. Major sites of ROS generation in the plant cell. GO, glycolate oxidase; Pchlide,
protochlorophyllide; PETC, photosynthetic electron transport chain; RETC, respiratory electron
transport chain. Disproportionation of O2

.− into H2O2 may be spontaneous or mediated by a suite of
superoxide dismutases.

Although our knowledge on the participation of chloroplast redox chemistry in plant senescence
and programmed cell death lags behind that of animal mitochondria, an increasing number of studies
indicate that plastids might be playing a more important role than thought before during leaf senescence.
The aim of this article is to critically review the evidence that supports this connection and to identify
future research trends in the area. Since leaf senescence is not only a very interesting and significant
biological question [3,34], but also bears relevance for agriculture [1,35,36], understanding the molecular
mechanisms that underlie this developmental process might open new avenues to increase crop yield
through an extended provision of leaf photosynthates to fruits, seeds and tubers [6].

2. Leaf Senescence Is Modulated by Multiple Inputs

Several phytohormones influence leaf aging and cell death. Gibberellic acid (GA), auxins and
cytokinins have been shown to delay senescence, whereas ethylene, jasmonic acid (JA), abscisic acid
(ABA) and salicylic acid (SA) accelerate it (Figure 3) [18,37]. Cytokinins are able to retard senescence in
plants and detached leaves, preventing Chl degradation and destruction of metabolic activity [38,39].
Conversely, a decline of the cytokinin pool is often accompanied by a decrease of photosynthetic
activity and enhanced senescence. Auxins play a similar role by modulating expression of several
auxin-responsive transcription factors (ARFs, Figure 3), which affect several processes associated with
leaf senescence [40]. Moreover, increased expression of YUC6, a gene encoding a flavin-containing
monooxygenase that catalyzes the rate-limiting step of auxin biosynthesis, was shown to delay
senescence in transgenic Arabidopsis plants [41]. A different class of anti-senescence phytohormones
is represented by pentacyclic diterpenes of the GA family, which act in a defined time-frame as the
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active GA forms are progressively degraded with leaf aging [42]. Treatment with inhibitors of GA
synthesis led to increased ABA contents and promotion of senescence, suggesting that GA and ABA
have antagonistic functions during this process [43].
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Figure 3. Interactions between hormones and ROS during leaf senescence regulation. Plant hormones
can affect leaf aging either directly or via signaling cascades in which ROS are involved. Among
them, GAs, auxins and CKs delay senescence, whereas ethylene and JA favor it. Regulation of JA
accumulation via miR319 and lipoxygenase 2 (LOX2) is indicated. ROS might also act as independent
signaling molecules that are produced upon leaf aging and stress conditions. ROS trigger modifications
of gene expression that in turn result in reprogramming primary and secondary metabolisms involving
sugars, energy, amino acids and antioxidants. Examples of reported interactions between hormones and
ROS are given in the text. Abbreviations for hormones are also found there. AHK, Arabidopsis histidine
kinase; AP2, Apetala 2; CKs, cytokinins; EIN, ethylene-insensitive protein; ERF, ethylene-responsive
factor; ETR1, ethylene receptor 1; GNC, carbon-metabolism involved; GNL, GNC-like.

Besides ABA, ethylene and JA are emerging as key players in senescence induction. They act
directly or via interactions with each other, and involve various transcription factors and microRNAs
(miR319, Figure 3). The relationship between ethylene and senescence has been best studied using
Arabidopsis ethylene-insensitive mutants which display delayed leaf senescence [44]. Likewise, studies
using Arabidopsis mutants exhibiting reduced JA levels or insensitivity to JA signaling revealed that
the onset of natural and dark-induced senescence was delayed as the levels or sensitivity to this
hormone declined [45,46].

ROS, phytohormones and environmental inputs do not operate through independent pathways,
but instead display a significant degree of interaction and cross-talk. For instance, Merewitz et al. [47,48]
have shown that higher cytokinin contents, obtained by over-expression of rate-limiting biosynthetic
enzymes, resulted in induction of stress-responsive proteins such as antioxidants and chaperones,
and led to improved drought tolerance. Conversely, ethylene biosynthesis during age-dependent
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and dark-induced leaf senescence were mediated by phytochrome-interacting transcription factors in
Arabidopsis [49]. Interactions between ROS and phytohormones on the regulation of the senescence
process have been demonstrated for auxins [40], GA [50,51] and SA [52]. Finally, many plant
developmental programs depend on the combined action of several hormones that interact cooperatively
or antagonistically. Cytokinin, in particular, has been shown to participate in regulatory networks with
auxins, GA, ABA and strigolactones [53], and cross-talk between cytokinin and ethylene signaling
pathways regulates leaf abscission in cotton during chemically induced senescence [54].

3. Senescence and Cell Death

The ultimate outcome of senescence is cell death and the two terms are sometimes employed
indistinctly, but death is only the final stage of a complex and ordered physiological process. Indeed,
there is a clear distinction between the tightly regulated senescence program that requires living cells
and nutrient recycling, and the irreversible terminal phase of cell death, despite the common players
and pathways they might share [7]. Similar to senescence, cell death can be induced independently of
tissue age by many environmental stimuli including abiotic stress, pathogens, nutritional shortage and
xenobiotics [1,55]. Biotic interactions offer a particularly rich set of examples. Biotrophic pathogens
require living tissue to grow and manipulate host physiology to obtain nutrients, whereas necrotrophs
kill host cells and feed on them [56–58]. Plants exposed to invading microorganisms often elicit a
multigenic response termed the hypersensitive reaction (HR) that leads in most cases to localized
cell death (LCD) at the site of infection [56]. It is assumed that the LCD associated to the HR helps
to contain biotrophs by opposing a barrier of dead cells which deter their advance into the adjacent
living tissue [56]. Infection by necrotrophic pathogens, instead, is facilitated by cell death and some
necrotrophs may even promote host LCD in their own benefit [57].

As in the case of senescence, increased ROS production is a quasi-universal feature of cell death
induced by environmental stresses and the HR [59–63]. In leaves, a significant fraction of all ROS are
generated as byproducts of photosynthetic electron transport (Figure 2). Partial reduction of oxygen
at the level of photosystem (PS) I and PSII renders O2

.− and, after spontaneous or enzyme-mediated
disproportionation, H2O2 [64,65]. Singlet oxygen is usually produced in PSII by energy transfer from
excited triplet-state Chl moieties to basal triplet-state oxygen resulting in spin inversion and several-fold
increase in reactivity [66]. Under normal photosynthetic conditions, ROS build-up is limited by the
action of antioxidant enzymes and reductants, but whenever distribution of reducing equivalents
is perturbed by biotic or abiotic stresses, the rate of leakage increases dramatically, overcoming the
control devices and leading to ROS propagation [67,68].

Another major source of chloroplast ROS is Chl metabolism (Figure 2). Many biosynthetic
intermediates are loosely bound to the thylakoids without associating with reaction centers or
antenna [69]. They are unable to participate in photosynthesis but can still be excited to their triplet
state in the light, readily reacting with oxygen and propagating 1O2. Chl breakdown products released
from the photosystems can also engage in this energy transfer reaction [5], and have been proposed to
promote cell death during pathogen-induced HR [70].

The first report linking chloroplast redox processes to cell death came from the research of
Samuilov et al. [71], who observed that cyanide treatment caused light-dependent destruction of
chloroplast-containing leaf guard cells, whereas heterotrophic epidermal tissue was not affected.
Photosynthesis-associated events such as over-reduction of plastoquinone and ROS build-up were
proposed to mediate this effect [71]. Heat-induced cell death has also been linked to chloroplast
redox chemistry [72,73]. A complete death program is triggered by 1O2 via the plastidic proteins
Executioner 1 and 2, as revealed by experiments on the Arabidopsis flu mutants, which accumulate the
photosensitive biosynthetic intermediate protochlorophyllide in the dark and propagates 1O2 upon
illumination (Figure 2; [74]). Moreover, cell death associated to the HR is significantly reduced in the
absence of light [75,76], and can be abolished by targeting antioxidant proteins to chloroplasts [77].
In addition to these examples, many other reports identified chloroplast ROS as key players in the
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signaling events that lead to programmed cell death [69,78–80]. In contrast, little is known on the
nature of the death-promoting signals that exit the chloroplast, and the relationship of the cell death
executioners with the organelle.

4. Senescence and Chloroplasts

Results discussed in the preceding sections illustrate that the relationship between chloroplast
ROS propagation and stress-associated cell death is amply supported by experimental data. By contrast,
the empirical evidence linking plastid redox processes with natural senescence is scant. It should be
borne in mind, within this context, that while all plant organs senesce at the end of their life cycles,
most of them do not have chloroplasts, indicating that different types of signaling networks could be
invoked in the various plant tissues. Despite this basic difference, ROS bursts have been shown to
precede and accompany natural senescence of leaves, petals and fruits ([31], and references therein).

Initial evidence indicating that chloroplast-generated ROS could signal leaf senescence was
provided by Zapata et al. [81], who reported that tobacco ndhF mutants exhibited delayed senescence.
The plastome-located ndhF gene encodes a subunit of the NAD(P)H dehydrogenase-like complex
(NDH) of chloroplasts and its mutation resulted in loss of activity. The dehydrogenase is proposed to
mediate one of the cyclic electron transport (CET) routes existing in chloroplasts [82,83]. The authors
proposed that reducing equivalents delivered by NDH to the photosynthetic electron transport chain
(PETC) could be misrouted to oxygen in senescing leaves, leading to ROS production as it occurs with
Complex I in mitochondria [84]. NDH inactivation in the mutant line would prevent this effect and
generate a stay-green phenotype [81]. However, it is also likely that in the absence of NDH-dependent
CET, other electron transfer pathways are favored as safety valves for the excess of reducing power, as
illustrated by Krieger-Liszkay et al. [85]. Putative candidates might include lineal electron flow that
would ultimately deliver electron to the Calvin–Benson cycle, the PROTON GRADIENT REGULATION
1-PGR5-like Photosynthetic Phenotype 1 (PGR5-PGRL1)-dependent CET pathway where electrons
from ferredoxin (Fd) are cycled around PSI into the plastoquinone pool, and the plastid terminal
oxidase [85], all of which can generate alternative signals affecting senescence outcome.

Increased levels of antioxidants usually retard senescence, and vice versa. For instance, knock-down
of the rate-limiting enzyme of the tocopherol biosynthetic pathway homogentisate phytyltransferase by
RNA-directed silencing led to decreased tocopherol levels, ROS build-up and accelerated senescence
in tobacco [86]. About half of the total cellular tocopherol contents are associated to the thylakoid
membrane, suggesting that their decline could impose oxidative stress preferentially in chloroplasts
that might explain the early senescence of the transformants. Noteworthy, the differential effect
displayed by the transgenic plants was only evident after flowering [86].

Involvement of chloroplast ROS on senescence was also suggested by the phenotype of wheat
lines expressing a chloroplast protein kinase that inactivates thylakoid-bound ascorbate peroxidase
(tAPX) and exhibited anticipated leaf senescence [87]. Noteworthy, expression of tAPX, but not
the stromal APX isoform, specifically regulates cold priming of ROS signaling in Arabidopsis [88].
Suppression of dehydroascorbate reductase, responsible for regenerating ascorbate from an oxidized
state, led to a similar phenotype [89], and reduction of ascorbate levels in vtc1 (vitamin c1) mutants
enhanced senescence-associated gene expression [90,91]. Finally, transgenic Arabidopsis plants with
decreased chloroplastic glutathione reductase 2 activity (GR2) exhibited early senescence phenotypes
and increased levels of the senescence markers SAG12 and SAG13 [92].

The PETC, with its hazardous combination of high-energy redox intermediates and oxygen
evolving systems, is a prominent site of ROS propagation. Moreover, degradation of individual
photosynthetic components usually precedes Chl loss [85,93], aggravating the leakage of reducing
equivalents to adventitious electron acceptors such as oxygen. The order of disassembly during leaf
senescence varies between species or even cultivars [85], disrupting complete sections of the PETC.
Besides being particularly rich in detoxification systems, chloroplasts harbor a number of alternative
electron transport pathways [94]. They play secondary roles in young or mature leaves with an
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intact PETC, but become important during the senescence-associated collapse of the photosynthetic
apparatus, dissipating the excess of energy and reducing power while keeping ATP synthesis required
for nutrient recycling and export [73,85,95]. ROS generated at the PETC could act as retrograde signals
for senescence progression, either directly or through changes in hormone status, as has been reported
for the chloroplast synthesis of SA [96]. Alternative electron transports, in turn, might keep ROS
at signaling levels and prevent their build-up to a degree that can cause premature cell death and
compromise nutrient remobilization.

While selective elimination of photosynthetic components helped to confirm involvement of
the PETC redox poise in the development of the senescence program, introduction of alternative
electron carriers generating novel transport pathways could help to identify the molecular nature of
the retrograde signals transmitted by the chloroplast. A recent example of this strategy is provided
by tobacco transformants expressing a plastid-targeted flavodoxin (Fld) from cyanobacteria [97].
Flavodoxins are flavin-containing proteins which functionally replace Fd, the final acceptor of the
PETC, in cyanobacteria and some algae [98]. They are induced under situations of environmental
hardship as an adaptive response to the stress-dependent decrease of Fd levels [98]. Fld-encoding
genes are absent from plant genomes [99], but when expressed in plant chloroplasts the flavoprotein
can accept reducing equivalents from the PETC, bypassing the limitations imposed by Fd decline and
diverting these electrons from oxygen to productive pathways of the plastid. In doing so, it specifically
prevents chloroplast ROS build-up under adverse situations and keeps the PETC in a more oxidized
state, closer to physiological conditions [57,77,98,100].

Fd levels are also down-regulated during natural leaf senescence [101], and Fld was shown to
inhibit ROS accumulation during this developmental process. Senescence was significantly delayed
in the Fld transformants, with differential preservation of Chl, carotenoids, protein contents, cell and
chloroplast structures, membrane integrity and cell viability [97]. Fld also improved maintenance
of pigment-protein complexes, central metabolism including photosynthesis and levels of bioactive
cytokinins and auxins in aging leaves. Delayed induction of SAGs indicated that the entire genetic
program of senescence was affected by expression of the flavoprotein [97]. Not unexpectedly, chloroplast
Fld activity also prevented cell death associated to environmental stresses and pathogens [57,77,98,100].

In animal systems, where mitochondrial ROS make a key contribution, dissociation of cytochrome
c from the inner mitochondrial membrane of death-targeted cells results in over-reduction of up-chain
respiratory transporters and increased ROS propagation by adventitious electron transfer to O2 [102].
Fd decline could play a similar pro-oxidant role in senescing leaves by introducing an acceptor side
limitation on the PETC that could be circumvented by Fld expression [97].

Chloroplasts may also contribute to senescence-dependent cell death by releasing cytochrome f
from thylakoids [32,103,104], much as cytochrome c in animals and yeast. Surprisingly, cytochrome f is
translocated to the cytosol at an early stage of the senescence process in detached rice leaves, interacting
with components of the proteasome system and inducing caspase-like activity. Moreover, addition of
purified cytochrome f to cell-free extracts caused protease activation and DNA laddering resembling
apoptosis, and its over-expression triggered cell death in isolated protoplasts [32]. While many aspects
of the underlying mechanism still need to be worked out [79], the potential role of cytochrome f in
chloroplast ROS propagation and senescence development certainly deserves further studies.

Hormonal changes go along with the regulation of chloroplast ROS homeostasis during senescence.
ROS induce several hormone-responsive transcription factors during leaf senescence, such as those
belonging to the NAM, ATAF1/2, CUC2 (NAC) and WRKY domain-containing (WRKY) gene
families [105,106]. Interestingly, Guo et al. [52] have recently demonstrated that the interaction
between ROS and SA is dependent on WRKY75 that in turn promotes SA synthesis by inducing
expression of the SA-Induction-Deficient 2 (SID2) gene, and suppresses H2O2 metabolism by inhibiting
transcription of the gene-encoding peroxisomal catalase 2.

Thus, the evidence collected over the last years suggests an important function of chloroplast
redox metabolism along with ROS production and hormonal regulation in senescence initiation and



Plants 2019, 8, 495 8 of 18

progression. Depending on the leaf developmental stage, plant hormones might be the initial triggers
of leaf senescence followed by ROS production and concomitant activation of antioxidant metabolism.

5. Degradation of Chloroplast Components in Senescing Leaves Provides Most of the Nitrogen
Required for Reproductive Development

During leaf senescence, thylakoid, stromal and envelope components are degraded and their
catabolic products (mostly amino acids and lipids) are mobilized to sink organs. Nitrogen required
for fruit and seed development is largely provided by breakdown of Chl and resident proteins, most
conspicuously Rubisco [107], leading to a massive nutrient turnover involving more than 10 billion tons
of protein and pigments recycled per year from aging leaves ([108], and references therein). Rubisco
alone represents about 50% of total leaf nitrogen in C3 plants [85].

Chl degradation includes catabolic steps in both plastids and vacuoles, and needs to be tightly
controlled because, as indicated previously, intermediate products can cause oxidative damage
under excess light or other forms of stress [5]. The initial reactions leading to accumulation of
the primary fluorescent breakdown products take place in chloroplasts. These intermediates are
subsequently exported to the cytoplasm and the vacuole, where they are converted into phyllobilins,
the end-products of Chl degradation [109]. Carotenoids, on the other hand, are released from the
photosynthetic protein complexes of senescing leaves and integrated into plastoglobules where they
are degraded by committed dioxygenases [110].

As in the case of Chl, chloroplast proteases participate in the initial breakdown of Rubisco and
other plastidic proteins [111]. More than twenty of these proteases have been identified so far, some
of which are associated with senescence [112]. Aspartic protease CND41 cleaves Rubisco [113],
whereas degradation of the thylakoid D1 protein is mediated by stroma-localized serine endopeptidase
DEGP2 and metalloprotease FTSH [32]. At least one metacaspase was localized to plastids in
Arabidopsis, and reported to be upregulated upon exposure to biotic and abiotic stresses [114].

While this initial plastid-dependent protein degradation certainly plays a role in nitrogen salvage,
most of the proteolytic activity induced during leaf senescence localizes to small vacuoles that bud
off from chloroplasts, first identified in aging leaves from Arabidopsis [115,116]. These vesicles are
0.8–1 µm in diameter and were defined as senescence-associated vacuoles (SAVs) based on the presence
of a single membrane containing vacuolar H+-pyrophosphatase and a low pH lumen, although they
are even more acidic than the central vacuole [8,108]. The cysteine protease encoded by the SAG12 gene
localized to SAVs, as revealed by activity measurements [117], and the inhibition of proteolytic activity
in isolated SAVs by a cysteine protease inhibitor [115]. However, SAG12 is not the only protease
present in these vacuoles, since SAVs isolated from Arabidopsis SAG12 mutants still display significant
protease activity [117].

A second extrachloroplastic degradation pathway involves vesicles containing CV,
a plastid-targeted protein with a predicted transmembrane domain that interacts with endogenous
DEGP and FTSH proteases [32]. CV-containing vesicles projecting from chloroplasts carry thylakoid,
stromal, and envelope proteins, but apparently no plastoglobules, and are subsequently delivered
to vacuoles for degradation. CV expression is activated during senescence and abiotic stresses.
Overexpression of CV accelerated senescence and chloroplast dismantling, while knock-down of the
CV-encoding gene increased chloroplast stability under abiotic stress conditions [32].

Nitrogen salvage pathways involving SAVs and CV-containing vesicles do not depend
on autophagy, whereas other degradative routes, including formation and processing of
Rubisco-containing bodies, are autophagy-dependent [8,108,118] and respond to photosynthetic
sugar production [119]. Formation of these bodies, which are projected from chloroplasts as
stromules and contain both the large and small subunits of Rubisco, was shown to be upregulated
during natural and dark-induced senescence, suggesting that this pathway is important for nutrient
remobilization [107,120]. It is worth noting, within this context, that ROS significantly increase the
susceptibility of Rubisco to degradation by specific proteases [121].
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6. Senescence in Nonphotosynthetic Plant Organs

Chloroplasts progressively differentiate into chromoplasts during petal development and
fruit ripening [122,123], a transition that involves inactivation of photosynthesis, degradation of
Chl-containing complexes and de novo synthesis of the carotenoids and xanthophylls that lend these
organs their typical colors. The two processes, e.g., Chl breakdown and carotene synthesis, can be
genetically uncoupled as in the green flesh mutant of tomato, which accumulates Chl and lycopene in
the same plastid [123]. First visible symptoms of petal and fruit senescence are wilting and softening,
respectively, often accompanied by color changes [30,124]. As most chloroplasts have disappeared from
these organs long before the onset of senescence, the origin(s) of the ROS that normally accompany
this process need to be different, and ROS-dependent pathways may diverge significantly from those
operating in leaves [30,31].

Main sources of ROS in petals are likely to be mitochondria but also peroxisomes, as indicated
by experiments with amidotriazole, which stimulates peroxisomal H2O2 production [125]. Nutrient
remobilization from senescing petals is rather modest compared to leaves. Actually, petal senescence
proceeds rapidly in many species, suggesting that quick elimination of these energy costly organs
is the main goal of the program [126]. Cytokonins have an anti-senescence effect as in leaves [127],
whereas ethylene favors the process [128].

Mitochondria were also reported to be main players during dark-induced leaf senescence [129].
The study of senescence in nonphotosynthetic organs is at a preliminary stage. Comprehensive
reviews describing the most relevant findings and research trends in the field have been published
recently [30,31], and readers are referred to them for a more detailed description of this very important
aspect of plant physiology.

7. Redox Signaling and the Chloroplast Connection

A direct question arising from the correlation between chloroplast ROS build-up and leaf
senescence reviewed in the preceding sections is whether this correspondence actually reflects a
functional interaction. In other words, if the redox changes undergone by the plastid act as signals
required for senescence itself. To answer this question, several aspects should be considered, most
importantly the identity of the reactive species involved, the signaling routes and the potential targets
of this modulation.

In discussing the possible roles played by ROS during senescence, it is important to consider that
different ROS have distinct properties and stability [33]. Furthermore, they are expected to interact
with and modify other signaling molecules, reactions that depend on their chemical properties and
reactivity. The O2

.− radical displays a half-life of about 50 ms in living cells, resulting in a predicted
diffusion distance of ~40 µm [130]. Preferred targets include [4S-4Fe] clusters of hydrolyases [131].
Hydrogen peroxide, with a half-life that can reach several minutes in biological media, is able to cross
membranes by simple diffusion or through water-transport systems such as aquaporins. It reacts with
protein thiols and double bonds as those present in unsaturated fatty acids, whose oxidation leads
to the formation of organic ROS (mostly lipid peroxides) and self-propagating rounds of oxidative
reactions [130,132]. Singlet oxygen has a half-life in the order of 1 µs, but its site of formation usually
limits its potential targets to chlorophylls and membranes.

Genome-wide analysis of transcriptional profiles indicate that individual ROS (1O2, O2
.− and

H2O2 have been assayed) elicit specific changes in gene expression with both common and idiosyncratic
elements compared to the other reactive species [133–136]. Several ROS-responsive genes encode
transcription factors, which in turn regulate the expression of a large number of effector genes [137–139].
The well-defined stages of Arabidopsis leaf senescence were exploited to investigate the expression of
ROS-related genes along leaf aging [139,140]. Transcription factors belonging to the WRKY and NAC
families were particularly enriched among differentially expressed genes. When transcript patterns
were compared between senescing leaves and petals, two distinct sets of sequences were obtained
for the two tissues [30,133]. These unique signatures presumably reflect the different origin of the
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signaling ROS involved, chloroplastic versus mitochondrial. Accordingly, out of 23 ROS-responsive
transcription factors upregulated in Arabidopsis leaves during dark-induced senescence (when no
chloroplast ROS are expected to accumulate), 21 showed similar behavior or no change in senescing
petals [30,106], underscoring the role played by mitochondria during senescence in nonphotosynthetic
organs or conditions.

Senescence is coupled to the inactivation of photosynthesis through the ABA- and H2O2-responsive
transcription factor ACTIVATING FACTOR1 (ATAF1) which induces expression of the transcriptional
regulator ORESARA1 (ORE1) and represses the GOLDEN-LIKE1 (GLK1) gene by directly binding to their
promoters (Figure 4; [28]). ORE1 promotes senescence [141] whereas GLK1 is involved in chloroplast
maintenance [142]. Downstream targets of GLK1 include several genes encoding light-harvesting
Chl a/b-binding proteins, indicating that its repression results in faulty assembly of pigment-protein
complexes, inhibition of photosynthesis and increased ROS propagation in chloroplasts. Then, ATAF1
activity shifts the cellular balance against growth and metabolism and toward chloroplast ROS build-up
and the progression of senescence (Figure 4; [28]).
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Figure 4. Schematic model highlighting ACTIVATING FACTOR1 (ATAF1) regulatory network during
senescence. ATAF1 activates ORESARA1 (ORE1) and represses GOLDEN-LIKE1 (GLK1) expression
by directly binding to the promoters of both genes. ORE1 directly interacts with GLK1, which is
involved in the proper development and maintenance of chloroplasts. During senescence progression,
the expression of GLK target genes is impaired, while the expression of ORE1 target genes is enhanced,
promoting developmental senescence and programed cell death through a gene regulatory network that
involves BIFUNCTIONAL NUCLEASE1 (BFN1) and other direct target genes, including different SAGs.
BFN1 plays a role in nucleic acid degradation. Besides, ATAF1 also elevates the ABA levels by directly
interacting with the ABA biosynthetic gene NCED3, encoding 9-cis-epoxycarotenoid dioxygenase 3,
and the ABA transporter ABCG40.

Analysis of pro-oxidant and antioxidant activities during leaf aging indicates a decrease in
superoxide dismutase activity that converts O2

.− into H2O2, while the thylakoid NDH complex,
which favors the generation of 1O2 and O2

.− [81], and peroxidase activities consuming H2O2,
increased [143]. Then, the (1O2 + O2

.−)/H2O2 ratio is expected to rise during senescence previous to
cell death, and Sabater and Martín [143] postulated that changes in this ratio could determine the



Plants 2019, 8, 495 11 of 18

activation of the death network response of the cell. It should be noted, however, that ROS are able
to create localized oxidative environments that might facilitate signaling by other pathways, such as
calcium mobilization, thiol–disulfide exchange, protein–protein interactions, and differential binding
and activation of transcription factors. How the balance between ROS production and elimination is
regulated, and how signals are transmitted to the cell machinery to trigger senescence processes in
plant organs are key to understand this very intriguing biological process.

8. Concluding Remarks

Chloroplasts are main targets for degradation during leaf senescence and provide the bulk
of recycled nutrients for the development of reproductive organs, especially nitrogen compounds
resulting from protein and Chl breakdown. Results obtained in the last few years, however, indicate that
chloroplasts also contribute signals that affect leaf senescence at an early stage and at a hierarchically
high level of developmental decisions [32,86–89,97]. The nature of these signals remains yet to be
determined, but they could be linked to oxido-reductive pathways of the organelle, in particular to the
redox status of the PETC.

In this sense, intervention of the PETC with alternative electron shuttles from plants or
cyanobacteria (as exemplified by Fld) has shown promise to understand (and manipulate) the
retrograde signals transmitted by the chloroplasts that delay or accelerate leaf senescence. Various
electron transport pathways can be bolstered, attenuated or introduced de novo that exchange energy and
reducing equivalents with different components of the PETC. They include, among others, NDH, plastid
terminal oxidase, CET via the PGR5-PGRL1 complex, energy dissipation through nonphotochemical
processes, and flavin-diiron proteins. Depending on the redox partner(s) introduced, the interventions
will allow entire sections of the PETC to become more oxidized or over-reduced, suppress ROS
generation or favor particular species against others, providing customized tools to probe the effects of
these changes on leaf senescence. Application of this approach to model and crop plants will provide a
richness of new data on the connection between chloroplast redox status and leaf aging.

Cell death as the final stage of leaf senescence shares many features with those caused by
environmental stresses and pathogens. Identification of the common players involved in these
processes is a most rewarding objective, not only due to the scientific relevance of the biological
mechanisms involved but also to combine functional lifespan with stress endurance through minimal
genetic interventions. Also in this case, manipulation of the PETC offers opportunities for improvement,
as shown by Fld expression in tobacco plants which led to a stay-green phenotype, increased stress
tolerance and suppression of cell death during the HR elicited by a non-virulent microorganism.

Leaf senescence is of critical importance for crop yield. Premature senescence, as that caused by
environmental adversities, is known to negatively affect plant productivity. At the same time, nitrogen
recycling requires that some organs senesce and die for others to develop. Then, optimization of
senescence timing for defined species and growth conditions represents a major goal of crop breeding
programs. In a recent review, Krieger-Liszkay et al. [85] provided insights into the role played by
chloroplast ROS and alternative electron transports during senescence, and highlighted the relevance
of maintaining ATP synthesis at advanced stages of this process. We stress herein the possibilities
offered by manipulation of the PETC to generate crops with extended functional lifespans in the
fluctuating conditions faced by plants growing in the field.
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