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Late Pleistocene South American megafaunal
extinctions associated with rise of Fishtail points
and human population

Luciano Prates® "24™ & S. lvan Perez® 134

In the 1970s, Paul Martin proposed that big game hunters armed with fluted projectile points
colonized the Americas and drove the extinction of megafauna. Around fifty years later, the
central role of humans in the extinctions is still strongly debated in North American
archaeology, but little considered in South America. Here we analyze the temporal dynamic
and spatial distribution of South American megafauna and fluted (Fishtail) projectile points to
evaluate the role of humans in Pleistocene extinctions. We observe a strong relationship
between the temporal density and spatial distribution of megafaunal species stratigraphically
associated with humans and Fishtail projectile points, as well as with the fluctuations in
human demography. On this basis we propose that the direct effect of human predation was
the main factor driving the megafaunal decline, with other secondary, but necessary, co-
occurring factors for the collapse of the megafaunal community.

TConsejo Nacional de Investigaciones Cientfficas y Técnicas, Buenos Aires, Argentina. 2 Divisién Arqueologfa, Facultad de Ciencias Naturales y Museo,
Universidad Nacional de La Plata, La Plata, Argentina. 3 Divisién Antropologia, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La
Plata, Argentina. “These authors contributed equally: Luciano Prates, S. Ivan Perez. ®email: Iprates@fcnym.unlp.edu.ar; ivanperezmorea@gmail.com

| (2021)12:2175 | https://doi.org/10.1038/541467-021-22506-4 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22506-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22506-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22506-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22506-4&domain=pdf
http://orcid.org/0000-0001-6858-3837
http://orcid.org/0000-0001-6858-3837
http://orcid.org/0000-0001-6858-3837
http://orcid.org/0000-0001-6858-3837
http://orcid.org/0000-0001-6858-3837
http://orcid.org/0000-0002-6543-5545
http://orcid.org/0000-0002-6543-5545
http://orcid.org/0000-0002-6543-5545
http://orcid.org/0000-0002-6543-5545
http://orcid.org/0000-0002-6543-5545
mailto:lprates@fcnym.unlp.edu.ar
mailto:ivanperezmorea@gmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

great number of megafaunal species became extinct all

over the planet—except for Africa—during the end of

Pleistocene as their ecological niches experienced sig-
nificant changes. The impact of diverse factors that may have
potentially triggered these extinctions is debated, with the pri-
mary causes varying according to the continent under con-
sideration and the scientific discipline involved in the research.
Some argue that only human hunting mattered, others argue for
the role of climate change, hyperdisease, habitat modification, or
even extraterrestrial impact!~10, In the Americas, most extinc-
tions occurred towards the end of the late Pleistocene, after the
Last Glacial Maximum and near the time of the first widespread
dispersal of humans from northeast Asiall. Because the loss of
biodiversity in the Americas was severe and happened nearly
synchronous with significant climatic changes and the initial
influx of humans, the debate regarding the main factor(s) driving
extinctions has been more controversial and persistent than for
any other continent>%12,

In recent years, it has become increasingly clear that extinc-
tions were not homogeneous in the Americas®®8, and the debate
around this process was quite different in North America and
South America. In North America, 70% (37 genera) of mammals
with an average body mass over 44 kg (megafauna sensu Martin!3
or large mammals sensu Cione et al”) disappeared mainly
between 13 and 12 k cal BP2. This period corresponds with an
abrupt cooling episode, the Younger Dryas, and the dispersal of
Clovis culture, the earliest recognized widespread archeological
techno-complex in the continent! 4. Clovis is characterized by a
unique technology of fluted projectile points, strongly associated
with the hunting of large mammals. In the span of a single
millennium, Clovis spread rapidly over most of North America.
Based on Clovis and Fishtail projectile point evidence, Paul
Martin!3 formulated the challenging hypothesis of the “Pleisto-
cene overkill”, which postulated that the appearance of humans in
the Americas was principally responsible for megafaunal collapse.
At present, although this model has been strongly criticized?, and
the combined effect of climatic change and human action has
been the most widely argued cause of extinctions, many scholars
maintain that humans could have been the principal or necessary
driver of the extinctions>!°.

The situation is somewhat different in South America. There,
late Pleistocene extinctions were more acute than in North
Americal%7, with the loss of 82% (over 40 genera, sensu Cione
et al”) of megafaunal species, but less importance has been
attributed by archeologist to humans as driving the process. The
end of the Antarctic Cold Reversal, a South American post glacial
cooling period earlier and less marked than the North American
Younger Dryas!®, is synchronous with the beginning of the
spread of the South American Fell or Fishtail projectile points
(henceforth, referred to as FPP), which occurred during a time
span that is similar to the Clovis period but followed a few cen-
turies later!”-1°. FPP, usually but not always fluted, present a
fainter and more irregular spatial distribution than Clovis in
North Americal720-22 and, although they are usually claimed to
be linked with local megafauna, South American sites with
remains of large mammals and clear evidence of direct exploi-
tation by humans is elusive and restricted to a few species®®23.
Based on such limited evidence, and assuming humans reached
South America in “pre-Clovis” times?4, South American arche-
ologists (1) maintain that FPP played an important but non-
central role during the colonization process—unlike Clovis in
North America—, and (2) do not place humans squarely within
the debate on the Pleistocene megafaunal extinction. Never-
theless, because climatic changes do not fully explain extinctions
by themselves!22°, a number of paleoecological and paleontolo-
gical studies have increasingly credited humans as having a major

role in the extinction process-”. In this sense, it is remarkable that
the megafaunal extinctions occurred just after the spread of FPP24
and almost simultaneously with a significant slowdown of the
human population growth rate. Although the new perspectives
are seriously calling for the abandonment of the strict dichotomy
between climate and humans as premier extinction drivers, the
archeological and paleontological data have not been fully inte-
grated using a quantitative approach. An updated study inte-
grating both lines of evidence is necessary to rigorously evaluate
the relationship between megafaunal and human dynamics, as
well as to better define the actual role of humans in South
America’s late Pleistocene extinctions.

In this paper, we explore the temporal changes in the density of
megafaunal species, including large and mega quaternary mam-
mals, and FPP, as well as the variation in the potential distribu-
tion in geographical space. Although other projectile heads could
have been used for hunting megafauna, FPP are the most abun-
dant and widely distributed in early South Americal’-1%, and
seem to have been a specialized weapon for that purpose°. So, we
consider this artifact as a good empirical proxy for exploring the
interaction between extinct large mammals and humans. On this
basis, we evaluate with updated evidence and, from a continuous
temporal and spatial perspective, the direct impact of human
agency on the late Pleistocene extinctions in South America. If
humans were the main drivers of the extinctions, we expect to see
an inverse association between human and megafaunal popula-
tion densities in time and a positive association in space.

Here, we investigate the temporal changes in density using
Sum Probability Distribution of radiocarbon dates of arche-
ological and paleontological samples (SCPD method?7-28),
whereas we explore the differences in potential for distribution in
geographical space by employing Species Distribution Models
(SDM)2:30 and Stack Species Distribution Models (SSDM)3!. For
the last analyses, we explore the distribution of the FPP and ten
species that present records of physical (stratigraphic) association
with humans in the archeological record (Hippidion saldiasi,
Milodon darwini, Lama gracilis, Equus neogeus, Doedicurus cla-
vicaudatus, Megatherium americanum, Glossotherium robustum,
Notiomastodon platensis, Notiomastodon waringi, and Cuvier-
onius hyodon) during the end of the late Pleistocene. Except for G.
robustum and D. clavicaudatus, evidence of having been subject
to human consumption or processing®?3 is associated with all
species. We compare megafaunal dynamics with the changes in
human density and distribution using a screened database of
archeological radiocarbon dates?*. If megafauna were a central
resource in human economy, we not only expect that humans
impact megafaunal population dynamics; we also expect that
changes in megafaunal density and distribution impact the
human population. We also discuss changes in the archeological
record in the framework of environmental and climate change
inferred by previous work in South Americal®32:33, We explore
changes in density for the whole South America®4, but we focus
our analyses on three relatively independent areas where evidence
of coexistence between humans and megafauna is strongest:
Pampa (including the Argentinean Pampas, South Brazil, and
Uruguay), Southern Patagonia, and Andes (Supplementary
Fig. 1). On this basis, we re-examine the main hypotheses
regarding the late Pleistocene extinctions in South America and
the importance of direct human impact on this process.

Results

Summed probabilities distributions of radiocarbon dates of
megafauna, FPP, and all archeological sites. The temporal
changes in the density of megafauna and FPP were explored using
the Sum Probability Distribution method (SCPD method)?28.

2 | (2021)12:2175 | https://doi.org/10.1038/s41467-021-22506-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Max. FIIDP density

1.0} )
zZ All smgs\
2 N
S osh Large mam J \\/ ”\
8 - % [
o
°
£ 0.6
€
>
(%]
T 04}
& /
el
s Pz
g 0.2 VAN p
& P - N
— J
00 T —_ — T T T
18000 16000 14000 12000 10000
Years cal BP

Fig. 1 Summed probability distribution curves for South America. The
temporal change in the density of large mammals (or megafauna) (light
green shading), FPP (light-blue shading), and archeological sites (beige
shading) reflected in the SCPD curves for all of South America. X axis
represents Calibrated years BP and Y axis the standardized summed
probability.

These SCPDs were compared against the curve of human density
in South America based on dates of archeological sites compiled
by Prates et al.>4. Our results (Fig. 1), show that the radiocarbon
signal of large mammals around 18k cal BP is extremely low in
South America, but clearly increases from 17,5k cal BP, and
grows rapidly and steadily between 15,3 and 12,9 k cal BP. After
12,9k cal BP, the SCPD curve shows a dramatic decline until
11,6 k cal BP. From this date onwards, only a few genera of
extinct large mammals have been recorded and most of the
alleged early Holocene dates have recently been called into
question®® (Supplementary Fig. 2). Fishtail projectile point tech-
nology appeared in South America at ca. 13 k cal BP and shows a
rapid amplification of density until reaching the distribution peak
between 12,4 and 12,2 k cal BP (Fig. 1). From this time onward, a
deep decline continues until the technology virtually disappears at
ca. 10,9k cal BP. Figure 1 also shows that the archeological—
human—signal is low from the earliest appearance, ca. 15k cal
BP, to ca. 13 k cal BP, when it clearly increases. Around 12,5k cal
BP, the SPD curve for all archeological sites shows a peak fol-
lowed by a slight decline that extends to 11,6 k cal BP before
rising again (Fig. 1).

If we consider South America’s main geographical regions
separately (Supplementary Fig. 1 and Fig. 2), we observe
significantly similar changes in density of megafauna (Fig. 2a)
and FPP (Fig. 2b) when compared with the permutation test
proposed by Crema et al.28. The density of megafaunal species
displays differences among regions only in the earliest and latest
dates, but a general agreement in the main density peaks is
observed between ca. 13,5 and 12,5k cal BP. The FPP’s densities
are almost identical among the regions (Fig. 2b). The changes in
density for all archeological dates display some correlations with
the megafaunal densities, with an apparent impact of the large
mammal’s density decline stronger in Patagonia than in the other
regions, and a lower impact in Andes (Fig. 2c). Figure 2c also
shows that the density of human signal after 11,5k cal BP was
significantly lower in Patagonia than in the other regions in
relation to what can be observed in the previous millennium
(12,5-11,5k cal BP), with the highest values of density observed
in the Andes.

Spatial distribution of megafauna, FPP, and all archeological
sites. The potential spatial distribution of megafaunal species and
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Fig. 2 Regional differences in summed probability distribution curves
within South America. The temporal change in the density of large
mammals (a), Fishtail projectile points (b), and all archeological sites (c)
described using SCPD curves. Different regions are indicated in shading
colors: Andes (light blues), Pampa (light red), Patagonia (light green).

X axis represents Calibrated years BP and Y axis the standardized summed
probability.

FPP was explored using a Species Distribution Modeling
approach as implemented in MaxEnt3’, considering species and
FFP occurrences between 18 k and 9 k cal BP, and the bioclimatic
variables available in PaleoClim38-3%. Figures 3-5 show the esti-
mated distribution of the extinct megafaunal species with strong
evidence of direct stratigraphic association with humans in
archeological sites. The predictive capacity of the distribution
models was high for all species, FPP, and archeological sites, with
AUC values above 0.9 (M. americanum: 0.99; G. robustum: 0.98;
D. clavicaudatus: 0.97; E. neogeus: 0.98; L. gracilis: 0.99; M. dar-
winii: 0.99; H. saldiasi: 0.99; N. platensis: 0.99; N. waringi: 0.97;
C. hyodon: 0.91; FPP: 0.92; all archeological sites: 0.92). The
modeled potential distribution maps for almost all megafaunal
species display high values for Pampa and Patagonia. Based on
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Fig. 3 Spatial distribution of southernmost megafaunal species. Potential distribution maps of the Mylodon darwinii, Hippidion saldiasi, and Lama gracilis
during the late Pleistocene-early Holocene (18 k-9 k cal BP). Values of potential distribution vary from O (light beige) to 1 (dark green). Empty dots
represent species occurrence sites. The taxonomy of Lama gracilis is under discussion. It has been mainly considered a vicariant of Vicugna vicugna in the
low plains, but some morphological and molecular studies suggest that L. gracilis and V. vicugna may be the same species®>-¢.

the values for the species, we can group them into three patterns:
M. darwini, H. saldiasi, and L. gracilis with a predominant dis-
tribution in Patagonia and L. gracilis also in Pampa (Fig. 3);
E. neogeus, D. clavicaudatus, M. americanum, and G. robustum,
with a predominant distribution in Pampa (Fig. 4); and N. war-
ingi and C. hyodon with a wider distribution than the other
species, reaching most of Andes and northern South America,
whereas N. platensis is distributed in Pampa and central Andes
(Fig. 5).

Considering the modeled potential distributions of the
megafauna, the local richness for all species together was
estimated employing Stack Species Distribution Modeling?! as
implemented in SSDM. As Fig. 6a shows, higher values of species
richness (>4) were estimated for Pampa, with intermediate values
(2-4) in Southern Patagonia and Northeast Brazil, as well as
lower values in Northern Patagonia, South-Central Andes, and
North-Central Andes. The potential distribution of FPP also
shows the highest values (between 1 and 0.6) in Pampa, with
intermediate values in Patagonia, South, and Central Andes
(Fig. 6b). The distribution of all archeological sites shows a
similar pattern with FPP and species richness, but the values of
potential distribution are lower in Pampa (Fig. 6¢). The spatial
density estimated from a kernel method in QGIS 3.1440 displays a
very similar pattern with relation to FPP and all archeological
sites distribution (Supplementary Figs. 3 and 4). Particularly, in
the 13-11 k cal BP period, the higher date density is observed for
Pampa, Southern Patagonia, and South-Central Andes, where we
describe the maximum values for species richness (Fig. 6 and
Supplementary Fig. 4).

Niche overlapping analysis: megafauna vs. FPP and all arche-
ological sites. We estimated niche overlapping using the I simi-
larity index*!, which varies between 0 (no overlap) and 1
(identical distributions). The similarity index of all archeological
sites and FPP with megafaunal species (Supplementary Table 1),
as well as among them, is plotted in Fig. 7. Moreover, a non-
metric multidimensional scaling analysis (nm-MDS) was per-
formed to summarize the similarity matrix. The boxplot of I
similarity index (Fig. 7a) shows on average larger similarity values

between FPP and each large mammal species than observed
among all species. M. americanum, G. robustum, D. clavicauda-
tus, N. platensis, L. gracilis, and E. neogeus, with high values of
potential distribution in Pampa, display the highest/similarity
values with the FPP distribution (Supplementary Table 1). The
nm-MDS plot shows that the FPP distribution is intermediate
among all species, being closer to the species with high values of
potential distribution in the Pampas (Fig. 7b). The nm-MDS
scores also show a clear separation between three clusters of
species grouped according to their main distribution areas:
Patagonia (M. darwinii and H. saldiasi), Pampa (M. americanum,
G. robustum, D. clavicaudatus, and N. platensis), and northern
South America (N. waringi and C. hyodon; Figs. 6 and 7b). E.
neogeus and L. gracilis are close to the Pampa and Patagonia,
respectively. All archeological sites are closer to the FPP position,
but they are closer overall to the N. waringi and C. hyodon species
distributions (Figs. 6 and 7b).

Discussion

The SCPD curves of the density of megafauna through time
(Figs. 1, 2 and Supplementary Fig. 2) reflect a significant increase
of the fossil record all over South America shortly after the Late
Glacial Maximum (ca. 17,5k cal BP). Although this pattern is
probably linked to the expansion of large herbivorous mammals
and their predators during the end of the late Pleistocene®?, it
could be also influenced by taphonomic biases or the loss of fossil
specimens over time. If the expansion was real, it could be related
to the favorable environmental condition for herbivores after
the end of the Last Glacial Maximum®?43, and especially in the
Pampas and Patagonia regions. According to our results, this
expansion continued ~4,5 k years until a sudden and deep decline
of the radiocarbon dated fossil record at ca. 12,9k cal BP.
Interestingly, when we compare the FPP and megafaunal SCPD
curves, we observe that the sudden decline of the megafauna’s
density started right after the appearance of FPP technology in
South America, ca. 13k cal BP. Moreover, as shown by Figs. 1
and 2, from that moment an explosive increase of the FPP occurs
closely followed by a steep decline of the megafauna. The fre-
quency of FPP increases for ~600 years (until ca. 12,4k cal BP)
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Fig. 4 Spatial distribution of Pampean megafaunal species. Potential distribution maps of Equus neogeus, Doedicurus clavicaudatus, Megatherium
americanum, and Glossotherium robustum during the late Pleistocene-early Holocene (18 k-9 k cal BP). Values of potential distribution vary from O (light

beige) to 1 (dark green). Empty dots represent species occurrence sites.

before declining rapidly, similar to what is observed for the
megafaunal curve. Fishtail projectile points and megafauna vir-
tually disappear together from South America ~10,9k cal BP,
supporting the hypothesis that FPP technology was directly
linked to megafauna extinction.

The changes in the density of FPP over time not only seem to
be related to the density of megafauna, but also to important
demographic changes in South American human populations?4.
As shown in Fig. 1, during the initial peopling of the continent,
between 15 and 13 k cal BP, the archeological signal (and prob-
ably human population density?#) stayed extremely low, until an
irruptive growth dynamic occurred just after the FPP spread over
southern South America. The tight fit between the behavior of
both late Pleistocene phenomena, FPP and human population
expansion (Fig. 1), may indicate that rapid and successful dis-
persal of FPP technology drove the high rate of population
growth of the earliest hunter-gatherers. Or, from a more con-
servative perspective, that users of FPP technology were the first
colonizers of South Americal4. Either way, the explosive popu-
lation growth of the human population stopped suddenly at ca.

12,5 k cal BP, just before FPP reached the peak of the distribution
curve and started to decrease, a few centuries after the initial
decline of megafauna. These temporal patterns resemble what is
observed in North America for Clovis technology!® although FPP
technology is somewhat younger and overlaps with the end of
Clovis, as recently observed by Waters et al.1%. However, whether
FPP technology is a southern cultural expression of Clovis or a
result of independent innovation is an open question. What is
clear in our temporal density results is that human demography
in South America during the end of the late Pleistocene was
related to the changes in the density of several megafaunal species
and to the expansion of FPP technology.

The potential distribution models generated for the different
species of megafauna and for the FPP (Figs. 3-6) show large
spatial overlapping in South America, except for some gom-
photheres (C. hydon and N. waringi) whose distribution does
not coincide with FPP. This may suggest these species were not
the principal prey of FPP hunters. The largest values of potential
overlap are in the Pampas (including Argentina, Uruguay, and
Southeast Brazil) and Southern Patagonia, but with smaller values
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Fig. 5 Spatial distribution of northernmost megafaunal species. Potential distribution maps of Notiomastodon platensis, Notiomastodon waringi, and
Cuvieronius hyodon during the late Pleistocene-early Holocene (18 k-9 k cal BP). Values of potential distribution vary from O (light beige) to 1 (dark green).
Empty dots represent species occurrence sites. Mothé et al.68 has proposed that N. platensis and N. waringi are the same species, but we follow Prado and
Alberdi®® who suggest they represent two different species or two geographic variants.
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in the latter. The Andes appear as a marginal area for both FPP
and the megafauna species analyzed here. This correspondence is
clearly observed in Fig. 6, which shows that the largest potential
distribution values for FPP (Fig. 6b and Supplementary Fig. 3)
coincides with the areas with the largest local richness of mega-
fauna species (Fig. 6a), as well as the areas where high density of
human occupation is observed (Fig. 6¢c and Supplementary
Fig. 4). However, the human populations are distributed more
widely than FPP technology in South America. Although dis-
tributional overlap is only an indirect estimation of trophic
interaction?4, this measurement strongly supports the importance
of FPP technology for hunting species of large mammals during
the late Pleistocene.

The areas with higher values of potential for FPP distribution
and species richness are characterized by the predominance of
open environments: grassland steppes in the Pampas and

grassland cold steppes in Patagonia, to which the large mammal
species analyzed here were better adapted and which they occu-
pied with greater concentration at the end of the Pleistocene”-4>43,
Moreover, the results of the niche overlap analysis show that the
distribution of FPP is focused in a central geographic sector with
respect to the spatial distributions of the large mammal taxa. They
show greater proximity to the Pampean species as well as to
Patagonian ones. This implies that the FPP, in addition to
expanding rapidly and with a distribution similar to that observed
for megafauna, did so mainly in the open environments. This
reinforces the hypothesis that FPP were designed and used for
hunting megafauna.

On this basis, we suggest that: (1) if South America were colo-
nized ca. 15k cal BP, when the abundance of megafauna was rela-
tively high, their populations were unaffected because humans must
have been generalist hunter-gatherers; (2) when megafauna was at
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Fig. 7 Similarity in the spatial distribution of FPP, humans, and
megafaunal species. Boxplot (a) of the values for | similarity index
describing niche overlap between FPP and extinct large mammals (n =10),
as well as all extinct large mammal species (n = 45). This graph shows the
minimum and maximum values (whiskers), the first and third quartiles
(bounds of box), and the median (centerline). nm-MDS ordination (b)
describing the similarity in niche among all archeological sites, FPP, and all
extinct large mammal species. The minimum spanning tree describing the
| similarity matrix is shown.

maximum density in the open grassland steppe environments,
mainly Pampa and Patagonia, the hunter-gatherers started to prey
on them using FPP; and (3) a little later, ca. 12,9k BP, the growth
trend in number and density of megafaunal species stopped abruptly
and began to decline. This drop in the density of megafauna had
effects a few centuries later, ca. 12,4k BP, in the adaptive pattern of
the hunter-gatherers who used the FPP technology, which dimin-
ished rapidly until it completely disappeared when the megafauna
became almost extinct. Other types of projectile heads (e.g., projectile
points made of bone and El Jobo projectile points)*>40, which were
probably used at the same time in preying on some species of

gomphotheres, also disappeared after megafaunal extinction. It is
remarkable that when megafauna and FPP disappear, an abrupt
deceleration and subsequent decline occurred in the growth of the
human population throughout the continent. Although this process
is observed in all regions of South America, in Patagonia it seems to
have been more drastic, with a stronger and longer decline over time
(Fig. 2). This process could be related to the occurrence of a
population overshoot, in which humans exceeded carrying capacity
in the late Pleistocene ecological community. This could have gen-
erated a population collapse of the megafaunal prey, with the con-
sequent drop in the carrying capacity of the environment for big-
game hunters and the subsequent demographic decline in the
populations of the main predator species in the trophic network, the
humans.

Several important changes in climatic and environmental
conditions occurred at about the same time as the extinction of
large mammals and the widespread dispersal of hunter-gatherers
carrying FPP technology in South America. An increase in tem-
peratures began after the Last Glacial Maximum, ca. 18-17 k cal
BP16:32.47 and ended with the Antarctic Cold Reversal (ACR;
Fig. 8; ca. 14,7-13 k cal BP)!1647, This post glacial cooling period
occurred when the megafauna reached their maximum growth in
density (Fig. 8) and coincided with the North American
Bolling-Allerad warm stage®S. After the ACR, a warming period
began at ca. 13k BP, which coincided with the Younger Dryas!®
cooling period in North America. Terrestrial paleovegetation
proxies do not suggest an abrupt environmental change in
southern South America at the end of the ACR, but cold/cool and
wet conditions persisted until 11,8 BP4%>0. Open grasslands, the
preferred habitat of the megafauna”4243, seem to have retracted
and reached their current distribution after 12,4-11,5k cal BP in
different areas of Patagonia”32334251 and probably later in the
Pampas®2. In addition, Pampa and Patagonia suffered a sig-
nificant reduction of territory due to the rise in sea level4243,

All these climate and environmental changes could have played
the central role in Pleistocene extinctions together with humans,
but there are several aspects to consider. First, the gradual effects
of the end of the ACR climatic event in Pampa and Patagonia
(Fig. 8)16:32:49.50 do not seem congruent with a sudden decline of
megafauna ca. 12,9 k cal BP (Fig. 8). Second, the shrinking of the
grasslands steppes—the most favorable environmental conditions
for large mammals—from southern South America occurred
between 12,4 and 11,5k cal BP3233:51 1400-500 years after the
megafaunal decline (12,9k cal BP) in South Patagonia; in the
Pampas the change seems to have occurred even later. Finally,
whereas in North America the initial decline of the megafauna at
13k cal BP is contemporaneous with the beginning of the
Younger Dryas post glacial cooling period at 13-11,7 k cal BP, in
South America the initial decline of megafauna (12,9 k cal BP) is
contemporaneous with the beginning of the warming period
starting after the ACR, at ca. 13k cal BP. Although this change
could have affected the megafauna by exerting under high eco-
logical stress, the animals did not become extinct until humans
using Fishtail projectile points appeared, suggesting again that
human agency could have been a determining factor driving their
extinction.

Our results support the hypothesis that early hunter-gatherers
were an important driver of the megafauna’s extinctions in South
America. Nevertheless, there are some still unanswered questions:
(1) if human arrived in South America ca. 15.5 cal BP24, why did
they not have an impact on the megafaunal expansion until 12,9k
cal BP, despite having coexisted with them for ~2500 years;
(2) why is direct archeological evidence of megafaunal exploita-
tion so rare®®23>3; and (3) why would so many megafaunal
species become extinct during the end of the Pleistocene when
they do not seem to have been exploited by humans, and why
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Fig. 8 Summary of spatial (map) and temporal (inset graph) results. Local species richness map of extinct large mammals and the calculated potential
distribution of FPP, together with the temporal change in the density of both variables for all of South America and the climatic changes following Pedro
et al.1®. Striped areas in the map represent the potential distribution of FPP. Local species richness of extinct large mammals varies on the map from 1 (light
green) to >5 (dark green). Relative climatic changes (temporal temperature curves) are indicated in beige (0-30° S) and gray (>40° S), and the ACR

period in dark beige. The temporal change in the density of large mammals is represented by light green shading area (lower and upper bounds of the
simulated envelope) and dashed green line (observed summed probability). The temporal change in the density of FPP is represented by light-blue shading
area (lower and upper bounds of the simulated envelope) and blue line (observed summed probability). In the inset graph X axis represents Calibrated

years BP and Y axis the standardized summed probability.

guanaco, probably the most heavily preyed-upon species, did not
suffer extinction. Regarding the first questions, our analysis
suggests that humans rapidly and strongly affected the mega-
faunal population, not from the time of the first arrival, but after
the FPP big-game hunters came onto the scene. A simpler
explanation for why archeological sites are so rare and why
megafaunal populations are unaffected until 12,9 k cal BP could
be that pre-Clovis in South America is not real. But it seems more
reasonable to us that the food preferences of the -earliest-
dispersing humans have involved a broad spectrum foraging
behavior, and their initial population density may have been too

low to affect the large mammals. Regarding the second and third
questions, recognizing that humans played a principal role in the
extinction process requires neither high archeological visibility of
hunting nor massive predation on all the extinct species. Large
mammal populations were already adaptively vulnerable because
of climatic and environmental changes, partly because most of
these large-bodied species had low reproductive rates’, factors
that were compounded by deleterious anthropogenic effects on
the environments!»>*. Relatively moderate or even low levels of
human predation on a few species could have strongly impacted
trophic networks. Thus, the environmental imbalance could have
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contributed to the extinctions of hunted species and others
impacted by the compounded changes. As Pires et al.>>¢ have
shown, the arrival of human and their predation of a few species
of large mammals in Southern Patagonia, or even on a single one
(e.g. Lama guanicoe) would have created multiple indirect effects
on species, such as M. darwini and L. gracilis, probably driving
them to extinction. Specialized hunting of only a few species,
employing FPP technology, could have set the baseline for the
massive collapse of the megafaunal community and almost all
large mammals. This process, together with the low likelihood
that large prey would have been transported by early humans to
remote camps®>’, and the extremely low probability of finding
evidence of predation by humans on megafaunal species due to
sampling/taphonomic issues, including diffusion due to the pro-
cessing of carcasses®%8, could partially explain the apparent
contradiction between our results and the lack of larger and
stronger archeological evidence of megafaunal exploitation in
South America. Although we are unable to explain why the
guanaco has not gone extinct, this species was more geo-
graphically dispersed during the final Pleistocene®® than most of
the other large mammal species. This probably made the animal a
better survivor than others. Furthermore, some have suggested
that the endemic Patagonian guanaco did indeed become extinct
but the region was re-populated by a subspecies from the Central
Andes®, similar to what might have happened if Lama gracilis is
really a subspecies of Vicugna vicugna.

In conclusion, since Martin’s proposal!? regarding the rapid
spread of big-game hunters in the Americas armed with fluted
points (Clovis in the Northern Hemisphere and Fishtail in the
South), the central role of humans as agent of megafaunal
extinction had been little considered by South American arche-
ology. The strong evidence of pre-FPP occupation and the weak
direct evidence of interaction between humans and extinct large
mammals in the archeological record has led to a consensus
among archeologists that humans played a secondary role or
none at all in the process. Here, however, we have shown that the
available archeological and paleontological evidence is compatible
with a significant impact of human hunting on megafaunal
depopulation, not necessarily an overkilling effect. Particularly,
we have demonstrated there is a strong spatial and temporal
relationship between FPP technology, which appears to be
directly related to large mammal hunting, with the density and
distribution of large mammal species, as well as with the dis-
tribution and fluctuations in human demography during the
critical period. Moreover, the decline in megafaunal density seems
not to fit well with the timing of significant climatic and envir-
onmental changes in southern South America.

On this basis, we propose (1) that human predatory behavior
was the main factor driving the megafaunal decline in South
America, and (2) that the late Pleistocene environmental changes
and the indirect effect of humans on the ecological web probably
generated the conditions resulting in the massive collapse of the
megafaunal community. Future studies are necessary to explore
in-depth the individual demographic trajectories of all extinct
megafaunal species and their relationships with climatic, tech-
nological and human demographic changes, as well as the relative
importance of direct and indirect effects of human hunting.

Methods

The temporal changes in density and the spatial variation in the potential dis-
tribution of megafaunal species and FPP during the late Pleistocene and early
Holocene were explored employing radiocarbon dates compiled by Prates et al.24,
These radiocarbon dates were complemented with dates for paleontological
megafauna recently published>!:00-%2 (Supplementary Data 1 and 2). The radio-
carbon dataset was built in agreement with standard validation criteria used in
archeology, such as it was described in Prates et al.>4. In addition, we compiled a
dataset of megafauna and FPP without absolute dates, but with relative date (end of

late Pleistocene) and precise geographic location using as a reference several recent
works$20-22,60-63 and Paleobiology Database (https://paleobiodb.org/), but
checking and expanding the data in the original publications (Supplementary
Data 3 and 4).

The temporal changes in the density of FPP and megafauna were explored by
using the SCPD method?”-28. The SCPD was reconstructed using calibrated dates
binned by site in intervals of 200 years, as well as 500 years for the window size of
the moving average for smoothing. The FPP and megafauna SCPDs were com-
pared against the curve of human density in South America based in the complete
dataset for archeological sites compiled by Prates et al. 24 Moreover, the differences
in SCPD among the three geographical regions studied in human density, FPP and
megafauna were explored with the permutation test proposed by Crema et al.28,
using 1000 permutations. The radiocarbon dates were calibrated using the
Southern Hemisphere SHCal 20 curve and all SPD estimated with the package
rcarbon for the R software 4.064. Because almost all megafaunal records occur
between 18 and 9 k cal BP, we restricted the plots to this period.

The spatial variation in the FPP and megafauna was explored by using an SDM
approach’?. These models are widely used in paleoecology®®%3. For comparative
purposes we also explored the potential distribution for human archeological sites
dated between 13 and 11 k cal BP, as well as the spatial kernel density of dates using
QGIS 3.14%0, We used a maximum entropy approach to species and projectile
point distribution modeling based on presence-only data, as implemented in
MaxEnt?%37, We consider as predictor the bioclimatic variables available in
PaleoClim for the 14,7-12,9 k cal BP interval (http://www.paleoclim.org/)3%39, The
performance of each model was evaluated using the AUC statistic (i.e., area under
curve)3, which measures the explicative power of the model varying between 0 and
1 (the better predictive value). We also explored the combined distribution of
megafaunal species to produce a community-level model by using an SSDM
approach?%. The species distribution and stacked species distribution models
were generated using the MaxEnt algorithm implemented in the packages dismo
and SSDM for the R software 4.04404, The local map of species richness was
estimated using the method of summing continuous habitat suitability maps
(pSSDM)*4.

Finally, we estimated the niche overlapping using the I similarity index proposed
by Warren et al.4l. This statistic is based in the Hellinger distance that quantifies
the similarity between two probability distributions, being related to the Euclidean
distance for discrete distributions. The I similarity index is a modification of this
distance to compare Hellinger-based results to more conventional ecological
measures of niche overlap, varying between 0 (no overlap) and 1 (identical dis-
tributions). The values of similarity indexes for potential species and FPP dis-
tributions were plotted and a no-metric Multidimensional Scaling (nm-MDS) was
performed to summarize the similarity matrix. The I niche overlap similarity index
was estimated using the package dismo for the R software 4.044%4 The nm-MDS
analysis was performed in the software PAST 4.0.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All relevant data are within the paper and its Supplementary Data files.

Code availability
R scripts to analyze the radiocarbon and occurrence species data are available as
Supplementary Code 1.
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