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a  b  s  t  r  a  c  t

The  main  features  of  the  fluid  phase  behavior  of  a given  binary  system  can  be  grasped  at  a glance  by
looking  at  its  (binary)  characteristic  map  (B-CM),  which  is  made  of unary  and  binary  univariant  lines,
i.e.,  by  geometrical  objects  having  only  one  degree  of  freedom.  Binary  univariant  lines  are  critical  and
azeotropic  lines  and  liquid–liquid–vapor  equilibrium  lines.  These  lines  are  customary  shown  in the
pressure–temperature  plane  together  with  the pure-compound  vapor–liquid  equilibrium  lines  (unary
lines).  Similarly,  ternary  systems  also have  characteristic  maps  for  their phase  equilibrium  behavior.
Such  ternary  characteristic  maps  (T-CMs)  are  made  of  unary,  binary  and  ternary  univariant  lines. Pos-
sible  ternary  univariant  lines  are  the  following:  ternary  four-phase  equilibrium  lines  (T-4PLs),  ternary
critical  end  lines  (T-CELs)  and  ternary  homogeneous  azeotropy  lines  (T-ALs).  T-CMs  also  present  invari-
ant points  as  the  following:  pure  compound  critical  points,  binary  critical  endpoints  (B-CEPs),  ternary
critical  endpoints  of four-phase  equilibrium  lines  (T-CEP-4PLs),  ternary  tricritical  endpoints  (T-TCEP),
and all  possible  endpoints  of  binary  and  ternary  homogeneous  azeotropy  lines.  Analogously  to B-CMs
for  binary  systems,  T-CMs  make  possible  to  quickly  identify  the  main  features  of the  phase  behavior  of
a  given  ternary  system.  In other  words,  T-CMs  provide  key  information  on the  fluid  phase  equilibria  of
ternary  systems.  When  dealing  with  models  for the  fluid  phase  behavior  of ternary  systems,  it would  be
useful  to  generate  the T-CMs,  in a  way  as automated  as  possible,  once  a ternary  system  and  a  model  are
chosen,  and  the  model  parameter  values  are  set. This  would  make  possible,  among  other  outcomes,  to
quickly  evaluate  the main  features  of the  model  performance.  B-CMs  can  be  efficiently  generated,  when
using  a  model  of  the  equation  of  state  (EOS)  type,  by  applying  available  algorithms.  In this  work  we show
how  the  univariant  lines  of  T-CMs  can  be efficiently  computed  for a given  ternary  system,  given EOS  and
EOS  parameter  values.  In general,  a ternary  univariant  line (T-UVL)  is generated  in  this  work  by using
a  numerical  continuation  method  (NCM).  NCMs  are  able  to build,  in  their  full  extent,  highly  non  linear
T-UVLs,  with  minimum  user  intervention.  In  particular,  we describe  in  this  work  how  T-TCEPs  and  T-CEP-

4PLs  are  detected  and  computed,  and  how  the  calculation  of T-4PLs  is started  off.  Finally,  an  algorithm
for  the  generation  of computed  T-CMs  is  presented.  The  algorithm  relies  on previously  computed  critical
endpoints  of  the  binary  subsystems  of the ternary  system  under  study.  We  have  not  considered  yet the
detection  and  computation  of T-ALs  and  of closed  loop  T-CELs.  We  provide  examples  of  T-CMs  computed
over  wide  ranges  of  conditions.  The  results  of this  work  show  that  relatively  simple  models  can  generate

s  for 
highly  complex  topologie

. Introduction
The computation of the fluid phase equilibrium behavior of
inary and ternary systems is of great importance to characterize
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the performance of models and of their specified parameter values,
as a necessary step to intend the reproduction of experimental
information by the chosen model. Such characterization is best
carried out when focusing on key equilibrium lines and points.

The key lines and points for the fluid phase equilibria of binary

systems are those identified by Scott and Van Konynenburg in 1970
[1], i.e., critical, azeotropic and liquid–liquid–vapor lines, critical
endpoints and a variety of endpoints for azeotropic lines, all typ-
ically shown in their pressure-temperature (PT) projection. Only
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Table 1
Acronyms used throughout this work.

Acronym Meaning

B-3PL Binary three-phase (equilibrium) line
B-CEP Binary critical endpoint
B-CL Binary critical line
B-CM Binary characteristic map
B-QP Binary quadruple point
B-UVL Binary univariant line
I-T-3PE Isothermal ternary three-phase equilibrium
LLV-BL Liquid–liquid–vapour (equilibrium) binary line
LLLV-TL Liquid–liquid–liquid–vapour (equilibrium) ternary line
T-3PE Ternary three-phase equilibrium
T-3PL Ternary three-phase (equilibrium) line
T-3PP Ternary three-phase (equilibrium) point
T-4PL Ternary four phase (equilibrium) line
T-4PP Ternary four-phase (equilibrium) point
T-AL Ternary azeotropy line
T-AP Ternary azeotropic point
T-CEL Ternary critical end line
T-CEP Ternary critical endpoint
T-CEP-4PL Ternary critical endpoint of a four-phase (equilibrium) line
T-CM Ternary characteristic map
T-TCEP or T-TCP Ternary tricritical endpoint or ternary tricritical point

o
l
a
t
j
w
d
c

p
C
T
F
w
e
l
e
w
t
“
u

d
s
r
r
c
p
s
i
I
t
b
e

i
m
G
t
c
c
u

T-UVL Ternary univariant line
VP  Pure compound vapour pressure

ne degree of freedom is associated to the mentioned lines (i.e., the
ines are univariant objects). The mentioned endpoints are invari-
nt. Scott and Van Konynenburg [1] proposed a classification of
he fluid phase behavior of binary systems based on their PT pro-
ections. Bolz et al. [2] presented and alternative system of names

hich is able to describe all known and yet unknown binary phase
iagrams in a rational way. The meaning of the word “line” in the
ontext of this work is made clear in Appendix B.

The univariant lines and invariant points that characterize the
hase behavior of ternary systems are, e.g., the following: Ternary
ritical End Lines (T-CELs), Ternary Four-phase Lines (T-4PLs),
ernary Azeotropic Lines (T-ALs), Ternary Critical Endpoints of a
our-Phase line (T-CEP-4PLs), Ternary Tricritical Points (T-TCPs),
hich we also name Ternary Tricritical Endpoints (T-TCEPs), and

ndpoints of ternary azeotropic lines. The PT projections of such
ines and points, drawn all together, for a ternary system of inter-
st, including also the unary (pure compound) and binary lines,
ill be named “characteristic map  of the fluid phase behavior of

he ternary system”. We  will also name it, in a more compact way,
ternary characteristic map” (T-CM). Table 1 presents all acronyms
sed throughout this work.

Pisoni et al. [3] have computed T-CELs over a wide range of con-
itions and have listed their possible types. Other authors have
tudied T-CMs, but in all cases they have focused on relatively nar-
ow regions of the T-CMs. Di Andreth [4] has shown, within limited
anges of conditions, a T-CM for the system CO2 + H2O + Isopropanol
ontaining, such T-CM, T-CELs, T-CEP-4PLs, T-4PLs, T-TCPs and
hase equilibrium univariant lines of some of the binary sub-
ystems. Di Andreth [4] did not provide details on the algorithms
mplemented for calculating the T-CELs, T-CEP-4PLs and T-4PLs.
t seems that Di Andreth [4] developed algorithms for calculating
hree-phase and four-phase equilibria. Each point of a T-CEL would
e identified [4], when calculating a continuous set of three-phase
quilibria, when verifying the absence of convergence.

Gregorowicz and de Loos [5] have presented, within lim-
ted ranges of conditions, calculated T-CELs and T-TCPs for

ethane + propane + n-eicosane and ethane + propane + n-eicosane.
regorowicz and de Loos [5] have proposed to use the informa-
ion of calculated Binary Critical endpoints (B-CEPs) to initialize the
alculation of ternary critical endpoints (T-CEPs) where the third
omponent is at infinite dilution. In turn, such special T-CEPs were
sed [5] to start off the building of T-CELs. Gregorowicz and de Loos
ibria 362 (2014) 213– 226

[5] have not given details on how to initialize the concentration of
the third component in either phase (critical and non-critical) of
the mentioned special T-CEPs. In Ref. [5] it has been suggested to
always set the value of the temperature as the independent vari-
able for calculating a point of a T-CEL. In general terms, this could
eventually lead to a lack of convergence, if the T-CEL being built
had a highly non-linear behavior [3]. No details were given in Ref.
[5] on the calculation of T-TCPs.

Adrian et al. [6] studied the ternary system CO2 + H2O + 1-
propanol. They showed, within limited ranges of conditions, several
qualitative PT projections containing T-CELs, T-CEP-4PLs, T-4PLs
and T-TCPs. Later Adrian et al. [7] studied several CO2 + H2O + polar
solvent systems, which were modeled using the PR-EOS [8] cou-
pled to a number of mixing rules. Ref. [7] shows both, qualitative
and quantitative diagrams. In this last case, the diagrams consist
of PT projections of T-CELs, T-CEP-4PLs, T-4PLs an T-TCPs, within
limited ranges of conditions. The calculation algorithms have not
been described with sufficient detail in Ref. [7].

In summary, in the previously quoted contributions, i.e., Refs.
[4,6,7,9], which dealt with ternary systems, detailed descriptions
of systematic procedures for computing each type of line of a T-CM
are not available.

In this work, we describe a systematic method, of general appli-
cability, for the construction of T-CMs. We  apply such method to the
computation of T-CMs for a variety of ternary systems, over ranges
of conditons much wider than those that have been considered in
previous works on ternary systems. The models are of the EOS type.
The systems of equations to be solved are non-linear. For them, we
use the mulitavariate Newton’s method. We  include in this work
details on how to detect and initilize the points where the building
of ternary univariant lines is started off. In this work, every ternary
univariant line is computed using a numerical continuation method
(NCM). NCMs minimize the need for user intervention.

2. Calculation of ternary univariant lines and ternary
non-variant points

A T-CM may  have the invariant points and univariant lines men-
tioned in the previous section. We  provide below a more detailed
description of the phase equilibrium situation for each type of such
thermodynamic objects, together with information on how such
lines and points are calculated.

2.1. Ternary univariant lines

2.1.1. Ternary critical end lines (T-CELs)
A T-CEL (or hyper-line) is a continuous set of ternary critical

endpoints (T-CEPs). At a T-CEP a critical fluid phase is at equi-
librium with a non-critical fluid phase, being the system made
of three components. A T-CEP generally is the termination of a
ternary three-phase equilibrium line (T-3PL) (a discussion about
this statement is provided in Appendix D). A T-3PL (or hyperline)
may  be, e.g., isothermal or isobaric. At a T-CEL, a three-phase hyper-
surface and a critical hyper-surface meet. Appendix C gives details
on the meaning of the word “hyper-surface” in the context of this
work. It also explains that while an unrestricted continuous set of
ternary three-phase equilibria is a hyper-surface, a continuous set
of ternary three-phase equilibria satisfying a given single restric-
ction, e.g., constant temperature, is a hyper-line. There are T-3PLs
that have termination points of a nature different from the one of
a T-CEP. A given T-CEP is reached by different T-3PLs, for instance

by an isobaric T-3PL at the pressure of the given T-CEP, and by an
isothermal T-3PL at the temperature of the given T-CEP. Actually,
an infinite number of T-3PLs have a given T-CEP as their common
endpoint.
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eigenvector appearing in the tricritical conditions of Ref. [12] (see
Appendix A). w1, w2 and w3 are the components of a vector orthog-
onal to vector u. � is the eigenvalue associated to the mentioned
eigenvector. z1, z2 and z3, are the mole fractions of the components
G. Pisoni et al. / Fluid Phase

The name given by Michelsen [10] to T-CELs is “critical three-
hase lines” (see Fig. 5 in Ref. [10]). Michelsen calculated them by
olving Eqs. (12)–(15) of Ref. [10]. The name T-CEL seems more
xpressive than the name “critical three-phase line” because, on
ne hand, only two phases are present at a point of a T-CEL (a critical
hase, at equilibrium with a non-critical phase), and, on the other, a
-CEL sets the end of a ternary three-phase hyper-surface, in anal-
gy to B-CEPs which generally set the end of binary three-phase
ines.

Pisoni et al. [3] have listed the types of T-CELs that can be found
n a T-CM. A given type of T-CEL is defined by the nature of its
ndpoints. Besides, a T-CEL may  follow a path lacking a definite
ndpoint. A given ternary system may  have several T-CELs (Table 4)
f varying types. For computing a T-CEP it is necessary to add, to the
ritical conditions, the isofugacity conditions between the critical
nd non-critical phases, together with the condition of uniformity
f pressure and temperature throughout the heterogeneous sys-
em. In this work we have computed T-CELs by using the algorithms
f Pisoni et al. [3].

.1.2. Ternary four-phase equilibrium lines (T-4PLs)
A T-4PL (or hyper-line) is a continuous set of points, for a ternary

ystem, where four fluid phases are at equilibrium. A T-4PL orig-
nates a T-CEP-4PL and may  end at another T-CEP-4PL, or may
therwise have no definite endpoint. A ternary system may have
ero, one or more T-4PLs (Table 4). Binary systems might eventu-
lly present quadruple points (B-QPs, four binary fluid phases at
quilibrium) [2]. B-QPs are also points where a T-4PL originates.
ernary systems with binary subsystems having B-QPs have not
een considered in this work.

For computing a four-phase equilibrium point the isofugacity
ondition is set for a given component in the four phases. This is
one for all components. Other imposed conditions are the uni-
ormity of temperature and pressure throughout the heterogenous
ystem. Also the sumation of all mole fractions in a given phase is set
qual to unity. The resulting (not shown) four-phase equilibrium
ystem of equations has 17 equations and 18 variables. Indeed, the
ystem has one degree of freedom. The system variables are the
ollowing:

T, P, V˛, Vˇ, V�, Vϕ, x˛1 , x˛2 , x˛3 , xˇ1 , xˇ2 , xˇ3 , x�1 , x�2 , x�3 , xϕ1 , xϕ2 , xϕ3 ]

(1)

here ˛, ˇ, � and ϕ are superscripts that identify the phases, T is
he absolute temperature, P is the absolute pressure, V is the molar
olume of a phase, and xi is the mole fraction of component “i” in

 phase. The system of equations is solved by using the Newton-
aphson method. A NCM is used to build the complete T-4PL. The
rst converged point of the T-4PL is obtained as described in Section
.2.

.1.3. Ternary azeotropic lines (T-ALs)
A T-AL is a continuous set of ternary azeotropic points (T-APs). At

 T-AP a liquid phase and a vapor phase are at equilibrium, having
oth phases the same composition. The computation of T-ALs is
eyond the scope of this work.

.2. Ternary invariant points

.2.1. Ternary critical endpoint of a four-phase equilibrium line
T-CEP-4PL)

In a T-CEP-4PL a ternary critical phase is at equilibrium with two

ernary non-critical phases. A T-CEP-4PL sets the end of a ternary
our-phase equilibrium line. At such end two  of the four fluid
hases become critical. Although the acronym T-CEP-4PL refers to
n endpoint of a four-phase equilibrium line, a T-CEP-4PL is also an
ibria 362 (2014) 213– 226 215

endpoint of a T-CEL, i.e., a point where a system made of a critical
phase and a non-critical phase becomes globally unstable (appear-
ance of a third phase which is non-critical). Actually, two  T-CELs
meet at a T-CEP-4PL. This is because at a T-CEP-4PL two non-critical
phases are at equilibrium with a critical phase. In other words, a T-
CEP-4PL contains two  T-CEPs. In conclusion, three univariant lines
meet at a T-CEP-4PL, i.e., two  T-CELs and a T-4PL.

For computing a T-CEP-4PL we add to the criticality system of
equations proposed by Michelsen [11], i.e., to the critical condi-
tions that one of the phases must meet, the isofugacity conditions
between the critical phase and each of the two non-critical phases,
together with the condition of uniformity of pressure and temper-
ature throughout the heterogeneous system. Again the sumation of
all mole fractions in a given phase is set equal to unity. This results in
a (not shown) system with 19 equations and 19 unknowns. Indeed
the system has no degrees of freedom and it is thus invariant. The
system variables are the following:

[T, P, Vc, v0, V˛, Vˇ, xc1, xc2, xc3, x˛1 , x˛2 , x˛3 , xˇ1 , xˇ2 , xˇ3 , u1, u2, u3, �]

(2)

where  ̨ and ˇ, are superscripts that identify the non-critical
phases, while superscript “c” identifies the critical phase. v0 is the
molar volume of the critical phase, and Vc is certain total vol-
ume  involved in the implementation of the criticality conditions.
Variables u1, u2 and u3 are the components of certain eigenvector
appearing in the critical conditions proposed by Michelsen [11]. �
is the eigenvalue associated to the mentioned eigenvector. The sys-
tem of equations is solved by using the Newton–Raphson method.
The initializaiton of the variables of the T-CEP-4PL system of equa-
tions is discussed in Section 3.1, test [C].

2.2.2. Ternary tricritical point (T-TCP)
Since a T-TCP is always an endpoint of a T-CEL, we  also name it

Ternary tricritical endpoint (T-TCEP). In a T-TCEP three phases at
equilibrium become critical simultaneously. When a T-TCEP exists,
an infinite number of paths within a ternary three-phase equi-
librium hyper-surface, all leading to the T-TCEP, exist. However
not every path within a ternary three-phase equilibrium hyper-
surface contains a T-TCEP. Along a T-CEL (which as previously stated
connects T-CEPs where a critical phase is at equilibrium with a non-
critical phase), a T-TCEP is reached when the non-critical phase
becomes critical with the critical phase. It should be clear that at a
T-TCP the system is made of a single phase which is tricritical. Two
T-CELs meet at a T-TCP.

For computing a T-TCP we used the tricriticality criterion of Ref.
[12], which results, for a ternary mixture, in a system of 14 equa-
tions and 14 unknowns (see Appendix A). The system variables are
the following:

[T, P, V, v0, z1, z2, z3, u1, u2, u3, w1, w2, w3, �] (3)

v0 is the molar volume of the tricritical phase, and V is certain total
volume involved in the implementation of the tricritical condi-
tions [12]. Variables u1, u2 and u3 are the components of certain
in the tricritical phase. The system of equations for the ternary tri-
critical point calculation is presented in detail in Appendix A. The
initialization of the tricritical system of equations is discussed in
Section 3.1, test [B].
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Fig. 1. Flow sheet of the algorithm for the comput

. Strategy for the generation of complete characteristic
aps of the fluid phase behavior of ternary systems

The generation of a T-CM, for a given ternary system, model, and
odel parameters values, requires the quantitative knowledge of

he predicted phase behavior for the binary sub-systems. This has
een done in this work (Table 4) by using the algorithms proposed
or binary systems in Ref. [13]. Such algorithms lead to the knowl-
dge of all B-CEPs. This is important because B-CEPs are endpoints
f T-CELs. However, B-CEPs are not the only possible endpoints for
-CELs [3]. The endpoints, of all kinds, of the T-CELs, are the key in
he definition of a procedure for generating T-CMs.

.1. Algorithm for generating T-CMs and initialization strategies
Fig. 1 represents the algorithm used in this work for generating
he T-CMs. Using the information of an already computed B-CEP
Fig. 1, →I) [13], an infinite dilution T-CEP (inf-T-CEP) is calculated
of ternary phase equilibrium characteristic maps.

(Fig. 1, →II). If the T-CEL originates at a B-CEP of, say, components
1 and 2, then, a T-CEP is calculated where component 3 is infinitely
diluted (inf-T-CEP). All variables of the converged inf-T-CEP will
have values identical to those of the B-CEP, except for the mole
fractions of component 3 in both phases (z3 and x3), since z3 and x3
are variables that do not exist at the B-CEP. For converging the inf-T-
CEP we set, as initial values, z3 = 10−4 min  (z1, z2) and x3 = 10−4 min
(x1, x2). After obtaining the converged inf-T-CEP, the T-CEL is built
with the help of a NCM (Fig. 1, →III) similar in essence to the one
used in Ref. [13]. For each calculated T-CEP (Fig. 1, →III), i.e., for each
calculated point of the T-CEL, the following tests are performed:

[A] Is the calculated T-CEP close enough to a B-CEP different from
the B-CEP at which the T-CEL originated (O-B-CEP)? (Fig. 1, →A).
The answer is YES if the mole fraction of a component, which was

present in the O-B-CEP, falls below certain (small enough) value,
both, for the critical and non-critical phases.

[B] Is the calculated T-CEP close enough to a T-TCP (Fig. 1, →B)?
The answer is YES if the differences in composition and density
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all below certain (small enough) tolerances, both, for the critical
nd non-critical phases. In such a case the last computed T-CEP is a
uasi-tricritical T-CEP which provides excellent initial estimates for
alculating the T-TCP considered in Section 2.2.2. Once the T-TCP is
omputed, we have available an already calculated (complete) T-
EL. A second T-CEL originates at the found T-TCP. The first point of
he second T-CEL is calculated (Fig. 1, →V). Such first converged
oint of the second T-CEL could be probably obtained by using
omehow the information contained in the known T-TCP. We  have
ot yet developed such type of procedure. An alternative procedure

s described in Section 3.3, and used in subblock V of Fig. 1. Hav-
ng calculated the first point of the second T-CEL (Fig. 1, →V) the
lgorithm returns to subblock III.

[C] Is the calculated T-CEP close enough to a T-CEP-4PL? (Fig. 1,
C). To answer this question a stability test [14] is performed for

he converged T-CEP. The stability test consists of searching for
ocal minima of the tangent plane distance (tpd) function within
he space of (ternary) composition of the trial phase. A negative
pd is indicative of a globally unstable T-CEP, i.e., of the appear-
nce of a third (non-critical) phase. This indicates that the T-CEL has
eached a T-CEP-4PL. The information of the unstable T-CEP, includ-
ng the information corresponding to the new (third) phase, is used
o initialize the calculation of the T-CEP-4PL considered in Section
.2.1. The T-CEP-4PL has information on two solutions of the T-CEP
ystem of equations. One of them corresponds to the equilibrium
etween the critical and non-critical phases of the T-CEL that was
eing built until the T-CEP-4PL was reached. The other solution cor-
esponds to the same critical phase and the remaining non-critical
hase. The information on this last phase, together with that of the
ritical phase, is used to converge the first point of the second T-CEL
hat originates at the detected T-CEP-4PL (Fig. 1, →VII). For bringing
he computation of the second T-CEL to completion, the algorithm
eturns to subblock III.

[D] Do the calculated T-CEPs tend to high P, low P or low T?
Fig. 1, →D). The answer is “yes” if: (D1) the pressure P becomes
reater than a preset, high enough, value, or, (D2) the pressure P
ecomes lower than a preset, low enough, value, or, (D3) the tem-
erature T becomes lower than a preset, low enough, value. If the
nswer to subblock D of Fig. 1 is “yes”, then, the calculation of the T-
EL has been brought to completion. In such a case, the T-CEL has a
ath in the P vs T plane that extends indefinitely without finding an
ndpoint within the ranges of conditions considered (Fig. 1, →VI).
f the answer to subblock D is “No”, then, the algorithm returns to
ubblock III (Fig. 1, →III).

The algorithm within Block 1 of Fig. 1 is applied, in principle,
 number of times equal to the number of B-CEPs of the ternary
ystem. Actually, it is not necessary to calculate T-CELs originating
t B-CEPs that were previously detected as termination points of
lready calculated T-CELs (Fig. 1, →A, →IV).

In subblock C there is a bifurcation when the answer is “yes”. The
eason is that a T-CEP-4PL is not only a point where a pair of T-CELs
eet, but also an originating point of a T-4PL. Once the repeated

xecution of block 1 in Fig. 1 is finished, then, Block 2 is applied, i.e.,
he first point of the T-4PL asociated to the previously found T-CEP-
PL is calculated (Fig. 1, →VIII). We  identify the originating T-CEP-
PL as “O-T-CEP-4PL”. The information contained in the computed
-T-CEP-4PL is useful for calculating the first point of the T-4PL, as
escribed in Section 3.2. Once the first ternary four-phase point (T-
PP) is converged, the next T-4PPs are obtained using a NCM (Fig. 1,
IX).
For each calculated T-4PP (Fig. 1, →IX), i.e., for each calculated

oint of the T-4PL, the following tests are performed:

[E] Is the calculated T-4PP close enough to a T-CEP-4PL different

rom the O-T-CEP-4PL? (Fig. 1, →E).
[F] Do the calculated T-4PPs tend to low pressure or low tem-

erature? (Fig. 1, →F).
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The following considerations are relevant with regard to test [E].
Along the T-4PL, close enough to the O-T-CEP-4PL, the critical phase
of the O-T-CEP-4PL has splitted into two near-critical phases (Ph1
and Ph2) which are at equilibrium with two non-critical phases
(Ph3 and Ph4). For every calculated point (located far enough from
the O-T-CEP-4PL) of the T-4PL, it is tested whether two out of the
four phases become critical (Fig. 1, →E). This is considered to be so if,
for a couple of phases, the differences in composition and density
fall below certain (small enough) values. To fix ideas, the T-4PL
could reach, while being built, a point where a pair of phases, which
in our experience should not be the pair [Ph1, Ph2], become critical.
If this happens, then, a T-CEP-4PL different from the O-T-CEP-4PL
has been found (Fig. 1, →E, →yes).

If the answer to test [F] is “YES”, then, the T-4PL that originated at
a T-CEP-4PL has a path in the P vs T plane that extends indefinitely
without finding an endpoint (Fig. 1, →X). If the answer is “NO”, then,
the algorithm returns to subblock IX (Fig. 1,→IX). The termination
corresponding to subblock X in Fig. 1 is done if the pressure (or the
temperature) is lower than a preset low enough value.

When the answer to test [E] is “YES”, the following test is per-
formed:

[G] Has the found (second) T-CEP-4PL already been computed
(in subblock C of Block 1 of Fig. 1)? (Fig. 1, →G). If the answer is
“YES”, then, the calculation is terminated (Fig. 1, →XI). If the answer
is “NO”, then, two  T-CELs are calculated (Fig. 1, →XII and Fig. 1,
→XIII) and tested as prescribed in Block 1 of Fig. 1. This means that
Block 1 has to be executed again, from subblock III on. This could
lead to the finding of new T-CEP-4PLs.

Block 2 is executed a number of times equal to the number of
“YES” answers to subblock C minus the number of “YES” answers
to subblock G. Notice that the execution of subblocks XII and XIII
could lead to additional “YES” answers to subblock C.

3.2. Generation of a first converged ternary four-phase
equilibrium point

The NCM used to build a T-4PL requires the knowledge of a
converged ternary four-phase equilibrium point (T-4PP). This first
T-4PP (1st-T-4PP) is obtained by solving the system of equations
mentioned in Section 2.1.2. In this work, the 1st-T-4PP is chosen to
be very close to the T-CEP-4PL from which the T-4PL originates. In
other words, two  out of the four phases at equilibrium in the 1st-T-
4PP are quasi-critical. The variables of the 1st-T-4PP are initialized
as follows. The pressure and temperature, and compositions and
densities of the two non-quasi-critical phases, are set equal to those
of the T-CEP-4PL. For initializing the variables of the two  quasi-
critical phases, we  take advantage of the information contained in
the known eigenvector components (u1, u2 and u3) of the known T-
CEP-4PL (see Section 2.2.1). To initialize the compositions of the two
near-critical phases we proceed as follows. We  use the following
equation [11,15]

ni = zi ± s · ui ·
√
zi (4)

where ni is the number of moles of component “i” in the quasi-
critical phases and zi is the mole fraction of component “i” in the
critical phase of the T-CEP-4PL, ui is the ith component of the eigen-
vector of the T-CEP-4PL and “s” is a distance parameter. We  set
s = 10−4 and calculate two sets of variables ni. A set comes from
using the plus sign in Eq. (4), and the other set from using the
minus sign. The two  ni sets are easily transformed into a couple
of mole fraction vectors. Each vector corresponds to one of the
near-critical phases, and it is used as its initial composition esti-

mate. Such composition is used together with the temperature and
pressure of the T-CEP-4PL to calculate an initial density value of
the considered near-critical phase. At this stage and excellent ini-
tialization of the 1st-T-4PP has been obtained. Next, the system of
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Table 2
Interaction parameters used with the SRK-EOS [16].

System Interaction parameters

k12 k13 k23 l12 l13 l23

Ethane(1) + Propane(2) + 1-Propanol(3) 0 0 −0.1 0 −0.15 0
Ethanol(1) + n-Pentane(2) + n-Hexane(3) 0.17 0.24 0 0 0.108 0
CO2(1) + n-Pentadecane(2) + n-Eicosane(3) 0.11 0.11 0 0 0 0
Ethane(1) + Propane(2) + n-Eicosane(3) 0.0616 0.0263 0.0114 0.092 0.019 0.009
CO2(1) + H2O(2) + Isopropanol(3) (System A) 0.19 0.1215 −0.1727 0 0 0
CO2(1) + H2O(2) + Isopropanol(3) (System B) −0.053 0.017 −0.207 0 0 0

Table 3
Pure compound parameters [17].

Compound Critical temperature (K) Critical pressure (bar) Acentric factor

Ethane 305.32 48.72 0.0995
Propane 369.83 42.48 0.1523
n-Pentane 469.7 33.7 0.2515
n-Hexane 507.6 30.25 0.3013
n-Pentadecane 708 14.8 0.6863
n-Eicosane 768 11.6 0.9069
Ethanol 514 61.37 0.6436
1-Propanol 536.8 51.69 0.6204
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Notice that the scope of this work is the phase equilibria that
involves only fluid phases (interference by solid phases is not con-
sidered in this work).
Isopropanol 508.3 

CO2 304.21 

H2O 647.13 

quations mentioned in Section 2.1.2 is solved and the (converged)
st-T-4PP is obtained (Fig. 1, →VIII). Next, within the context of
he algorithm of Fig. 1, the T-4PL is built using a NCM (Fig. 1, →IX).
rom the phase rule, a ternary four-phase point has a single degree
f freedom. When computing T-4PPs located close enough to the
-CEP-4PL, we avoid the trivial solution by specifying the value of
he relative difference [(Vx − Vy)/Vx] between the molar volumes of
he two quasi-critical phases. Alternatively, a specification involv-
ng differences in mole fraction values could be set, but we have
ot considered such possibility in this work.

The procedure described above for initializing a quasi-critical
-4PP can be used also for initializing a quasi-critical three-phase
quilibrium point of a ternary three-phase line originated at a T-CEP
i.e., at a point of a T-CEL).

.3. Computation of a second T-CEL that originates at a T-TCP

For starting off the computation of a second (complete) T-CEL
hat originates at a T-TCP,  we need to find at least one converged
oint of such T-CEL.  For that, we calculate a ternary three-phase
quilibrium line (T-3PL), either at constant pressure or at constant
emperature. The variable kept constant is set equal to a convenient
alue. Such value is chosen assuming that the T-3PL will meet the
-CEL that we want to compute. This intersection happens when
wo of the phases of a point, of the T-3PL being computed, become
dentical (i.e., critical), i.e., when, for a couple of phases, the differ-
nces in composition and density fall below certain (small enough)
olerances. Such point of the T-3PL is very close to a converged point
actually a T-CEP) of the sought T-CEL. The values of the variables of
he found quasi-critical ternary three-phase point (T-3PP) are used
o initialize the variables of the system of equations mentioned in
ection 2.1.1, which is solved to compute a T-CEP. This is a con-
erged point of the T-CEL. Such point is used coupled to a NCM to
ompute the complete T-CEL according to Ref. [3].

. Results
In this work we computed complete T-CMs for the six ternary
ystems listed in Table 2. We  used the Soave–Redlich–Kwong equa-
ion of state (SRK-EOS) [16] coupled to quadratic mixing rules. We
47.64 0.6669
73.83 0.2236

220.55 0.3449

obtained the pure compound critical temperatures and pressures,
and acentric factors (Table 3), from de the DIPPR database [17]. The
values for the interaction parameters used in the calculations are
given in Table 2. Table 4 shows the predicted type of phase behav-
ior for the binary sub-systems according to the classification of Ref.
[1]. We obtained this last information, i.e., the binary univariant
lines and binary invariant points, using the algorithms proposed
in Ref. [13]. Table 4 also lists the thermodynamic objects (mainly
ternary univariant lines and ternary invariant points) computed in
this work for each system. Such objects are shown in the computed
T-CMs (see Fig. 2 and subsequent figures). Although the classifica-
tion by Bolz et al. [2] is superior to the one of Ref. [1], our use of
this last classification is adequate to the purposes of the present
work.
Fig. 2. Square: critical point of pure compound. Empty circle: binary critical endpoint.
See  Table 1.
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Table  4
Computeda type of phase behavior of the binary sub-systems, and computeda binary and ternary thermodynamic objects.

Ternary system Type of binary phase behavior Thermodynamic objects (number of)

Binary sub-system

1–2 1–3 2–3 B-CEPs T-CELs T-CEP-4PLs T-4PLs T-TCPs

Ethane(1) + Propane(2) + 1-Propanol(3) I II I 1 1 – – –
Ethanol(1) + n-Pentane(2) + n-Hexane(3) II II I 2 1 – – –
CO2(1) + n-Pentadecane(2) + n-Eicosane(3) III III I 2 1 – – –
Ethane(1) + Propane(2) + n-Eicosane(3) I IV II 4 3 – – 1
CO2(1) + H O(2) + Isopropanol(3) (System A) III III II 3 4 1 1 1
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computed (Fig. 1, →B, →V, →III). This last T-CEL ends at a B-CEP
(see Fig. 7) (Fig. 1, →A, →IV). Fig. 8 shows that the two  low-pressure
2

CO2(1) + H2O(2) + Isopropanol(3) (System B) III II I 

a Model: SRK-EOS [16] with parameters from Tables 2 and 3.

Fig. 2 shows the calculated T-CM for the system
thane + Propane + 1-Propanol. The phase behavior is relatively
imple. There is only one T-CEL. It originates at the only B-CEP
f the system (Table 4). The B-CEP corresponds to the binary
ubsystem Ethane + 1-Propanol.  The T-CEL extends indefinitely
oward low pressures and temperatures (Fig. 1, →A, →B, →C, →D,

VI).
Fig. 3 shows the calculated T-CM for the system Ethanol + n-

entane + n-Hexane. This system presents two B-CEPs (Table 4)
orresponding to the binary sub-systems Ethanol + n-Pentane and
thanol + n-Hexane. There is only one T-CEL which connects both B-
EPs (Fig. 1, →A, →IV). Notice that not every ternary three-phase

ine has T-CEPs. For instance, in Fig. 3, an isothermal T-3PL at 370 K
ould connect the two binary three-phase equilibrium points that

xist at such temperature, without ever intersecting the T-CEL in
ig. 3. Hence, such isothermal T-3PL does not have a T-CEP.

Fig. 4 shows the calculated T-CM for the system CO2 + n-
entadecane + n-Eicosane.  This system presents two B-CEPs (Table 4
nd Fig. 5) corresponding to the binary sub-systems CO2 +n-
entadecane and CO2 + n-Eicosane.  Again there is only one T-CEL
hich connects both B-CEPs, as shown in Fig. 5 (again: Fig. 1,
A, →IV). Figs. 2–4 correspond to relatively simple ternary phase

ehaviors.
Fig. 6 shows the calculated T-CM for the system

thane + Propane + n-Eicosane.  This system presents a total of

our B-CEPs (Table 4). Fig. 7 shows a zoom of part of Fig. 6 where
he two high-pressure B-CEPs (HP-B-CEPs) can be better visualized.
ig. 8 is a zoom of Fig. 6 in the low temperature range. From the

ig. 3. Square: critical point of pure compound. Empty circle: binary critical endpoint.
ee Table 1.
2 11 6 3 2

two HP-B-CEPs two T-CELs originate (one from each B-CEP). Both
T-CELs end at the same T-TCP (Fig. 7). The calculation of a T-CEL
began at the B-CEP of highest pressure. This T-CEL reached a T-TCP
(Fig. 1, →B, →V). From the found T-TCP, the second T-CEL was
Fig. 4. Square: critical point of pure compound. Empty circle: binary critical endpoint.
See Table 1.

Fig. 5. Zoom of Fig. 4. Square: critical point of pure compound. Empty circle: binary
critical endpoint. See Table 1.
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Fig. 6. Square: critical point of pure compound. Empty circle: binary critical endpoint.
See Table 1.

Fig. 7. Zoom of Fig. 6. Square: critical point of pure compound. Empty circle: binary
critical endpoint. See Table 1.
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Fig. 8. Zoom of Fig. 6. Empty circle: binary critical endpoint. See Table 1.
Fig. 9. Square: critical point of pure compound. Empty circle: binary critical endpoint.
See  Table 1.

B-CEPs are connected by a T-CEL with a highly non-linear behavior
(Fig. 1, →A, →IV).

Fig. 9 shows the calculated T-CM for the system
CO2 + H2O + Isopropanol (system A, Table 4). Figs. 10 and 11
are zooms of Fig. 9. This system has three B-CEPs (Table 4). The
phase behavior is quite complex.

Fig. 10 shows a T-CEL that originates at the B-CEP of highest
pressure. The calculation of this T-CEL is executed until a T-CEP-4PL
is found (Fig. 1, →A, →B, →C, →yes). At this point the calculation
of the 2nd T-CEL begins (Fig. 1, →VII). This line ends at the B-CEP
of lowest pressure (Figs. 10 and 1, →A, →IV). The found T-CEP-4PL
implies that block 2 of Fig. 1 will be executed (Fig. 1, →VIII).

Starting at the low-pressure B-CEP shown in Fig. 11 the calcu-
lation of a T-CEL is carried out until a T-TCP is reached, as shown
in Fig. 9 (Fig. 1, →B, →yes). From such T-TCP a second T-CEL is cal-
culated (Fig. 9) which extends indefinitely toward high pressures
(Fig. 1, →D, →VI). So far, the three B-CEPs have been considered.
Next, sub-block VIII of Fig. 1 is executed for calculating a T-4PL (sub-
block IX). In this case the T-4PL extends indefinitely toward low
pressures and low temperatures as Fig. 10 partially shows (Fig. 1,
→F, →X). Here the calculation of the T-CM ends, since there are no
more B-CEPs and T-CEP-4PLs left.
Fig. 12 shows the calculated T-CM for the system
CO2 + H2O + Isopropanol (system B, Table 4). Figs. 13 and 14
are zooms of Fig. 12. This system has two  B-CEPs (Table 4).

Fig. 10. Zoom of Fig. 9. Square: critical point of pure compound. Empty circle: binary
critical endpoint. Triangle: ternary critical endpoint of four phase line. See Table 1.
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Fig. 11. Zoom of Fig. 9. Empty circle: binary critical endpoint. See Table 1.

Fig. 12. Square: critical point of pure compound. Empty circle: binary critical end-
point. Triangle: ternary critical endpoint of four phase line. Full circle: Ternary
Tri-Ciritcal Point. See Table 1.

Fig. 13. Zoom of Fig. 12. Square: critical point of pure compound. Empty circle: binary
critical endpoint. Triangle: ternary critical endpoint of four phase line. Full circle:
Ternary Tri-Ciritcal Point. See Table 1.
Fig. 14. Zoom of Fig. 12. Triangle: ternary critical endpoint of four phase line. Full
circle: Ternary Tri-Ciritcal Point. See Table 1.

Figs. 12–14 show that the phase behavior is highly complex. For
illustration purposes we will focus on the phenomena shown in
Figs. 13 and 14. Fig. 13 shows the B-CEP of highest pressure. At
such point the T-CEL(a) originates. Such line ends (Fig. 14) at a
T-CEP-4PL (Fig. 1, →A, →B, →C, →yes), where T-CEL(b) originates
(Fig. 14). T-CEL(b) ends at a T-TCP (Fig. 1, →A, →B, →yes) from
which T-CEL(c) stems (Fig. 1, →V). This line extends up to a new
T-CEP-4PL where T-CEL(d) originates, whose full extent can be
seen in Fig. 12.

Notice in Fig. 14 that the two T-CEP-4PLs are connected by a
T-4PL. Block 1 of Fig. 1 is excuted again for the second B-CEP. A
total of six T-CEP-4PLs are found (Table 4). Next, block 2 of Fig. 1 is
excecuted as many times as required, always starting at sub-block
VIII, being the overall result the complete diagram of Fig. 12.

5. Conclusions

Characteristic maps of the fluid phase behavior of ternary sys-
tems (T-CMs) where computed in this work by using the algorithm
of Fig. 1 which relies, among other resources, on the use of numer-
ical continuation methods for calculating the univariant phase
equilibrium lines of which T-CMs are made of. Complete T-CMs
were obtained, i.e., the ranges of conditions considered were the
very wide ranges for which phase equilibrium calculations can be
carried out using models, for the fluid state, of the equation of state
(EOS) type. The solid state was not considered in this work, since
the goal was  to develop a strategy to completely characterize the
behavior of a fluid-state model, once the values for its parame-
ters are specified. Therefore, part of the T-CMs obtained here are
metastable with respect to the formation of solid phases.

Although the EOS used is a relatively simple model, it can gen-
erate highly complex ternary phase behavior topologies, which
seem not to have been previously documented in the literature.
The found ternary phase behavior ranges from a relatively simple
one, as in Fig. 2, to a highly complex behavior, as in Fig. 12.

The results of this work show that the features of a T-CM are
not univocally established by the number of B-CEPs, as it is clear
from Figs. 3 and 12: in both cases the number of B-CEPs equals two
(see Table 4). This, together with other results presented in this
work, suggests that the variety for the ternary fluid phase behavior

is wide. A classification for the ternary fluid phase behavior should,
on one hand, account for the mentioned wide variety, and, on the
other, be based on the number, type and behavior of the ternary uni-
variant lines, just as the classification for the binary phase behavior
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f Refs. [1] and [2] are based on the univariant binary lines. Bolz et al.
2] have estimated that the total number of binary phase diagram
lasses is about 210, with the warning that “yet to be discovered
estrictions on phase diagram topology” might decrease such num-
er to some extent. In our view, the classification of the binary fluid
hase behavior by Bolz et al. [2] is more a naming system than

 classification. The strength of such naming system is that it is
ble to cover all known and yet unknown binary behaviors. 210
lasses of binary phase behavior give an extremely large number
f combinations of binary classes taken 3 at a time. If each class,
mong the 210 classes, were designated using a Greek letter, then,
xamples of ternary combinations would be

{
˛, ˇ, �

}
,
{
ˇ, �, �

}
nd {ε, ε, ε}. From the large number of the mentioned combina-
ions, we should expect a huge variety for the qualitative behavior
f ternary systems, and just considering the univariant level alone
T-CMs). Such huge variety, together with the experience gained in
his work, makes, in our opinion, the search for a classification of
he ternary fluid phase behavior become an endeavor with no hope
f success. Rather, the efforts should be focused on the search for

 naming system, for the ternary fluid phase behavior, having the
eatures of the one that Bolz et al. [2] proposed for binary systems.
We  have verified that the strategies used in this work for obtain-
ng the first converged point of a ternary univariant line were
obust. This was also the case for the NCMs applied subsequently.
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An important part of this work was the definition and evalua-
tion of a methodology for computing a T-4PL, having, as the only
known information, the one contained in the computed T-CEP-4PL
at which the T-4PL originates. The basic idea of such methodology is
also used for computing (as an auxiliary calculation) ternary three-
phase equilibrium lines stemming from known T-CEPs. So far, we
have not developed a method for starting off the computation of a
T-CEL from a known (computed) T-TCP. This is the matter of future
work, as it is the full automation of the algorithm for generating cal-
culated T-CMs. We  also foresee the inclusion of computed ternary
azeotropic lines and of closed loop T-CELs. Such lines are neither
connected to B-CEPs nor to T-CEP-4PLs.
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Appendix A. System of equations for the ternary tricritical
point calculation

The system of equations to be solved for computing a ternary
tricritical point (T-TCP) is the following:
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P −  (T, v0, z1, z2, z3)

z1 + z2 + z3 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (A.1)

In system (A.1), the first equation, i.e., the equation F1 = 0, is the
equation for calculating the eigenvalues of the 3 × 3 matrix M*. I is
the identity matrix and � is the eigenvalue of matrix M* of minimum
absolute value. The elements of matrix M* are defined as follows:) ]
∧
f i
j

T,V,nm T,V,z

with m = 1 − 3 subject to m /= j (A.2)
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In Eq. (A.2) f̂i is the function of the absolute temperature (T),
otal volume (V), and numbers of moles of the components in the

ulticomponent mixture (ni, i = from 1 to number of components)
hat explicitly connects such variables with the fugacity of compo-
ent “i” in the mixture. The chosen equation of state (SRK-EOS in
his work [16]) imposes the form of function f̂i.

In the expression resulting from the differentiation process in
q. (A.2), vector n (whose elements are the numbers of moles of the
omponents) has to be replaced by vector z (whose elements, z1, z2
nd z3, are the mole fractions of the components in the tricritical
hase). It is thus clear that matrix M* is a function of T, V, and z;
nd that F1 depends on T, V, z and �.

In equations F2 = 0, F3 = 0, and F4 = 0, in system (A.1), u1, u2 and
3 are the components of the (normalized) eigenvector of matrix
*, associated to eigenvalue �. F2 = 0 and F3 = 0 correspond to the

tandard equations for computing the eigenvectors. F4 = 0 is a nor-
alization equation that imposes a unity module for eigenvector

.tpd*, which appears in equations F5 = 0 and F6 = 0, is defined as
ollows:

pd∗ = [tpd (T, V, n)]T,V,ni=n∗
i

(A.3)

here tpd is the tangent plane distance function, defined as follows:

pd (T, V, n) =
∑
i

ni
[
ln f̂i(T, V, n) − ln f̂i(T, v0, z)

]

− V

RT
( (T, V, n) −  (T, v0, z)) (A.4)

R is the universal gas constant. Function   connects the total
olume (V), the vector n, and the absolute temperature (T) to the
bsolute pressure. Function   corresponds in this work to the
ressure-explicit SRK-EOS coupled to quadratic mixing rules [16].

n Eq. (A.4), v0 is the molar volume of the tricritical phase. The
lements of vector n* [which appears in Eq. (A.3)] are defined as
ollows:

∗
i = zi + sui

√
zi (A.5)

here variable “s” is a distance parameter.
From Eqs. (A.3) and (A.4), it should be clear that tpd* is a func-

ion of T, V, z, u, v0 and s. The dependence of tpd* on variable “s”
mplies the existence of the partial derivatives of tpd* with respect
o “s”, which are required by equations F5 = 0 and F6 = 0 in system
A.1). Such equations prescribe that the partial derivatives have to
e evaluated at s = 0. For this reason, functions F5 and F6 do not
epend on “s”. We  used analytical (not numerical) expressions for
he derivatives ∂2tpd∗/∂s2 and ∂3tpd∗/∂s3, within equations F5 = 0
nd F6 = 0 of system (A.1).

Equation F7 = 0 in system (A.1) imposes the equality between
ariables V and v0.

Variable c, which appears in equations F10 = 0 and F11 = 0 of sys-
em (A.1), is defined as follows:

 = u1r1 + u2r2 + u3r3 (A.6)

otice that c is a scalar number. r1, r2 and r3 are the components of
ector r. Such components appear in equations F10 = 0 and F11 = 0 of
ystem (A.1). Vector r is defined with reference to vector g*, which
n turn is related to vector g. The components of vector g are the
ollowing:

i(T, V, n) = z1/2
i

[ln f̂i(T, V, n) − ln f̂ (T, v0, z)] i = 1. . .3  (A.7)
hile vector g* is given by:

∗ = [g (T, V, n)]T,V,ni=n∗
i

(A.8)
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where vector n* has its components defined by Eq. (A.5). Vector g*
depends on variables T, V, z, u, v0 and s. Vector r is defined with
reference to vector g* as follows:

r =
(
∂2g∗
∂s2

)
s=0

(A.9)

Vector r depends on T, V, z, u and v0 and it does not depend on
s.

Equations F10 = 0, F11 = 0 and F12 = 0 of system (A.1) define vec-
tor w, whose components are w1 w2 w3. From equation F12 = 0, it
should be clear that vectors w and u are orthogonal (uTw = 0).

In equations F8 = 0 and F9 = 0, tpd** is defined as follows:

tpd∗∗ = [tpd(T, V, n)]T,V,ni=n∗∗
i

(A.10)

The elements of vector n** [which appears in Eq. (A.10)] are
defined as follows:

n∗∗
i = zi +

(
sui + s2wi

)√
zi (A.11)

tpd** is a function of T, V, z, u, w,  v0 and s. The analytical expres-
sion of the fourth partial derivative, with respect to “s”, of tpd**
(∂4tpd∗∗/∂s4) is used in equation F8 = 0 of system (A.1). Notice that
(∂4tpd∗∗/∂s4)s=0, i.e., F8, depends on T, V, z, u, w and v0 but it does
not depend on “s”.

The expression of the fifth partial derivative, with respect to “s”,
of tpd** (∂5tpd∗∗/∂s5) used in equation F9 = 0 of system (A.1), corre-
sponds to a numerical differentiation recipe written in terms of the
analytical fourth partial derivative ∂4tpd∗∗/∂s4, evaluated at two
different values of “s” (centered finite-divided difference formula).
Notice that (∂5tpd∗∗/∂s5)s=0, i.e., F9, depends on T, V, z, u, w and v0

but not on “s”.
Equation F13 = 0 in system (A.1) is the relationship between the

absolute pressure (P), the absolute temperature (T), the molar vol-
ume  (v0) and the composition (z) of the tricritical phase. We  stress
that function   corresponds in this work to the pressure-explicit
SRK-EOS coupled to quadratic mixing rules. F13 depends on P, T, v0

and z.
Finally, equation F14 = 0 imposes that the mole fractions, in the

tricritical phase, must add up to unity. Thus, F14 depends only on z.
The T-TCP system of equations [system (A.1)] has 14 equations

an 14 variables. The list of variables is the following:

T P V v0 z1 z2 z3 u1 u2 u3w1w2w3 and �

Since the number of variables equals the number of equations,
system (A.1) has zero degrees of freedom. Thus, system (A.1) defines
a hyper-point in a 14D hyper-space. It should be clear that, for a
ternary system, a tricritical point is invariant.

Function tpd in Eq. (A.4), is a difference, i.e., the Helmholtz
energy at (T, V, n) minus the linear approximation to the Helmholtz
energy at (T, v0, z), evaluated, such approximation, also at (T, V, n).
In other words, the tangent plane distance function is the differ-
ence between the Helmholtz energy surface and the plane that is
tangent to the surface at (T, v0, z), being, such difference, a function
of (T, V, n).

In Eq. (A.4) the phase at (T, v0, z) is the tested phase and the
phase at (T, V, n) is the trial phase. A negative tpd value implies that
the tested phase is not stable.

In system (A.1), equations F1 = 0 to F14 = 0 are the tricriticality
conditions. They are essentially the same than those proposed in
Refs. [12] and [18]. The number (fourteen) of tricriticality condi-
tions in system (A.1) comes from the fact that the variables involved
are all considered explicitly. In this work, the tricritical equations

are solved simultaneously.

The actual calculations where performed in this work using log-
arithmically scaled variables (this scaling approach is applicable for
positive variables only).
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ppendix B. Meaning of the word “line” in the context of
his work

Each point of a binary critical line is defined by several coordi-
ates, i.e., temperature, pressure, mole fractions of the components,
nd molar density. The count is 5 coordinates. However, it is
ossible to add even more coordinates to a critical point, e.g.,
he fugacities of the components in the critical phase, the molar
nthalpy, entropy, Gibbs energy, etcetera. Thus, a binary critical
oint is actually a hyper-point (because of its several coordinates)
nd a binary critical line is actually a hyper-line. In this work, we
ften use the word “line” to actually mean “hyper-line”. Notice that
he prefix “hyper” is considered, in this work, to have the following

eaning: “existing in more than three dimensions”.
The situation of a binary critical line is analogous to that of,

.g., a binary liquid–liquid–vapor (LLV) line. Here the basic coor-
inates are temperature, pressure, both component mole fractions

n the three phases, and the molar densities of the three phases.
learly, a binary LLV line has more coordinates associated to it than

 binary critical line. Due to the great number of coordinates the
ord “hyperline” is also applicable to binary LLV lines. Evidently,

 binary LLV line exists in a space with more dimensions than the
pace associated to a binary critical line.

Binary critical and LLV hyperlines are real vector valued func-
ions on R, where R is the set of real numbers. “Vector functions”
s a topic considered in textbooks on multivariable calculus, e.g.,
ef. [19]. In general real vector valued functions on Rn are func-
ions F : Rn → Rm, which means that F has domain D ⊆ Rn and range

 ⊆ Rm. Function F assigns a (dependent) m-dimensional vector to
n (independent) n-dimensional vector. All components of either
ector are real numbers. A binary critical hyperline could be con-
idered to be a function F : R → Rmcrit . A binary critical point has

 single degree of freedom, which could be considered to be, e.g.,
he temperature T(Dcrit ⊆ R). Its dependent variables could be con-
idered to be the following: pressure (P), mole fractions of the
omponents (x1,crit and x2, crit), and molar density (�). In such a
ase mcrit = 4 and the range Rcrit of the binary critical line is such
hat Rcrit ⊆ R4. Notice that a binary critical line is a set of four 2-
imensional (2D) lines: P vs T, x1, crit vs T, x2, crit vs T, and � vs T. It

s also a set of 3D lines, one of which is, e.g., the one in the space of
he varialbes P, T and x1, crit . Besides, it is a set of 4D lines, e.g., the
ne with variables P, T, x2, crit and �. Finally, a binary critical line is

 single 5D line (or hyper-line).
Perhaps the reader does not feel at ease with the fact that in,

.g., the analysis of the previous paragraph, we have considered,
n the count of variables of a binary critical point, both, x1, crit

nd x2, crit . This might seem, at first sight, not to make sense,
ince x1,crit and x2,crit satisfy the equation [x1,crit + x2,crit − 1 = 0].
he argument would be that the relationship between x1, crit

nd x2, crit implies that both variables are not mutually inde-
endent and therefore it would have been enough to consider,
mong the variables of the problem, only x1, crit , or only x2, crit ,
ut not both. Such choice is in principle acceptable. However,

n the context of calculation algorithms, it may  be convenient
o make explicitly appear in the system of equations of interest
he mole fractions of all components. Actually, and with refer-
nce to the previous paragraph, once the temperature T is set,
hen, the values of all dependent variables become defined, i.e.,
he set made by the union of independent and dependent variables
s a set of variables which are not mutually independent, as it is
he case of the subset that contains only the variables x1, crit and
2, crit .
A binary LLV hyperline can be considered to be a vector val-
ed function F : R → R10 [independent variable: e.g., T; dependent
ariables: pressure (count = 1), component mole fractions in the
hree phases (count = 6), phase densities (count = 3); total count of
ibria 362 (2014) 213– 226

independent variables = 10]. Often the pressure at LLV is plotted as
a function of the temperature. This process considers only one of
the components of the dependent 10-dimensional vector, i.e., the
pressure. The same can be done with, e.g., x1,l1 [i.e., the mole frac-
tion of component 1 in one of the phases at LLV equilibrium (phase
l1)] plotted as a function of temperature. It is clear that three lines
can be plotted involving the mole fraction x1, i.e., x1,l1 , x1,l2 and x1,�
as functions of temperature. Since the nature of the mole fraction
concentration scale is unique, all three lines can be plotted together,
as customary done, in the Temperature vs x1 plane. Notice that the
pressure is a “field” variable while x1,l1 , x1,l2 and x1,� are “density”
variables [2].

Appendix C. Meaning of the word “hyper-surface” in the
context of this work

The variables of a ternary three-phase equilibrium (T-3PE)
can be considered to be temperature (T, count = 1), pressure (P,
count = 1), mol  fractions of the components in the phases at
equilibrium (count = 9), and the phase densities (count = 3) [total
count = 14 variables, including both, independent and dependent
variables]. According to the phase rule, a T-3PE has two  degrees
of freedom. Thus, we have 2 independent variables and 12 depen-
dent variables. Therefore, an unrestricted continuous set of ternary
three-phase equilibria can be seen as a real vector valued function
F : R2 → R12. Lets assume that the independent variables are T and
P. One of the components of the 12D dependent vector will then be
the density of the lightest phase at T-3PE (�light,T-3PE). If �light,T-3PE
is plotted as a function of T and P we  obtain a surface in the 3D “P,T,
�light,T-3PE” space. Such surface, when projected on the P–T plane,
defines a region in such plane. If we change the variable �light,T-3PE
by any other variable of the 12D dependent vector we obtain a new
surface. Thus, several surfaces in different 3D spaces are associated
to an unrestricted continuous set of ternary three-phase equilibria.
This is the reason for the use of the word hyper-surface associated
to ternary three-phase equilibria.

If we  wrote the system of equations for ternary three-phase
equilibrium (T-3PE), and added to that system the additional equa-
tion, e.g., “T-300 K = 0”, then, we would be writing a system of
equations valid for the isothermal ternary three-phase equilibria
(I-T-3PE) at 300 K. Thus, the I-T-3PE has one degree of freedom
less than the unrestricted T-3PE. Consequently, while the unre-
stricted T-3PE corresponds to a hyper-surface (or to a number of
hyper-surfaces), the I-T-3PE corresponds to a hyper line (or to a
number of hyper-lines). It should be clear that DT-3PE ⊆ R2 and that
DI-T-3PE ⊆ R. When we impose, e.g., a constant temperature on the
ternary three phase equilibria we cut the previously mentioned
surface in the 3D “P,T, �light,T-3PE” space with a plane at constant
temperature. This results in a line in the 2D “P, �light,T-3PE” space.

To fix ideas, Fig. 2 in page 189 of Ref. [6] shows a sequence of
three-phase equilibrium triangles at a constant temperature equal
to 333 K, for the system carbon dioxide–water–(1-propanol). The
information that such triangles provide is contained in the I-T-3PE
hyperline at 333 K for the mentioned system. In Figs. 6 and 7 of
page 26 of Ref. [10], Michelsen has presented a couple of calculated
ternary three-phase equilibrium hyper-lines. They do not corre-
spond to constraints that impose a constant value on a variable (e.g.,
constant temperature or constant temperature). Otherwise, they
were obtained imposing an equidistance constraint that involves
the mole fractions of component 1 in the three equilibrium phases
[ln(y1/x1) − ln(x1/w1) = 0]. Such constraint is convenient when
searching for an excellent approximation to a ternary tricritical

point, through a conceptually simple method.

As it is the case for a ternary three-phase equilibrium, a ternary
critical point also has two  degrees of freedom and several coordi-
nates that describe it. Therefore, an unrestricted continuous set of
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ernary critical points is a critical hyper-surface. As declared in the
ain text of this paper, at a T-CEL a three-phase hyper-surface and

 critical hyper-surface meet. Because a T-CEP has a single degree of
reedom, a T-CEL is a hyper-line, i.e., a vector function with domain
T-CEL ⊆ R.

Notice that if an equilibrium object (e.g., a ternary three-phase
quilibrium or a T-CEP) has a single degree of freedom, then, it
elongs to a hyper-line (e.g., a T-CEP is a hyper-point of a T-CEL). If
n equilibrium object has two degrees of freedom, then, it belongs
o a hyper-surface (e.g., a ternary three-phase equilibrium is a
yper-point of a three-phase hyper-surface).

Probably, the words hyper-point, hyper-line and hyper-surface
ave been used, in the literature, associated to meanings different

rom those considered in this work. Therefore these words should
e handled with care.

ppendix D. Situations where a T-CEP is not a termination
oint of a T-3PL

An isopleth is an equilibrium diagram at constant overall
omposition, typically shown in its pressure–temperature (P–T)
rojection. The isopleth has a line, named phase envelope, which

s the boundary between the homogeneous and the heterogeneous
egions. Since the phase envelope is in most of its points a bound-
ry between the homogeneous region and the two-phase region, it
ould also be named 2-phase envelope. Eventually the phase enve-
ope may  have, e.g., a three-phase equilibrium point (see, e.g., Fig.

 of Ref. [10]).
Since a ternary three-phase equilibrium hyper-surface is pro-

ected as a region in the P–T plane, a ternary isopleth of given overall
omposition may  have, within the heterogeneous region, a sub-
egion where three-phase equilibrium occurs. The boundary that
eparates the isopleth three-phase sub-region from the isopleth
wo-phase sub-region can be named 3-phase envelope (since such
oundary “envelops” the three-phase region). Actually, a ternary 3-
hase envelope may  eventually also enclose a T-4PL or a part of it.

 point of a 3-phase envelope can be computed through a special
hree-phase flash calculation [10]. The flash computation is per-
ormed at an overall composition equal to that of the isopleth, at
et P (or T), and setting the phase mole fraction of one of the three
hases equal to zero [10]. In other words, a point that belongs to

 ternary 3-phase envelope satisfies simultaneously the condition
f ternary three phase equilibrium and the condition of incipiency
or one of the equilibrium phases. That is to say that a point on a
ernary 3-phase envelope is represented, in the Gibbs (composi-
ion) triangle, as a three-phase equilibrium triangle such that the
verall (isopleth) composition falls on one side of the three-phase
riangle. Eventually, two of the three phases may  merge into a crit-
cal phase at some location along the 3-phase envelope, as shown,
.g., for the system methane + CO2 + H2S in Fig. 6 of page 308 of
ef. [15] (point labeled “CP” in the mentioned figure). Since at such
oint a critical phase is at equilibrium with a non-critical phase,
uch point is a T-CEP, according to our glossary.

Michelsen and Mollerup [15] have shown, in Fig. 7 of page
09 of Ref. [15], a dashed line which corresponds to the lower
ressure part of a 3-phase envelope of a 5-component mixture.

 point, labeled “CP”, is indicated on such dashed line [15]. Such
CP” point is a critical endpoint, because two of the three equi-
ibrium phases are critical at the “CP” point. It can be seen in
ef. [15] that the “CP” point has temperature and pressure values

ntermediate with respect to the temperature and pressure ranges

f existence of the 3-phase envelope. Clearly, the “CP” point is not

 termination point of the 3-phase envelope for the 5-component
ixture. This behavior should also be expected for ternary 3-phase

nvelopes, i.e., T-CEPs which are not termination points of ternary
ibria 362 (2014) 213– 226 225

3-phase envelopes. This would seem to be in contradiction with
the statement: “A T-CEP is the termination of a ternary three-phase
equilibrium line”.

For binary systems it is accepted that a critical endpoint is a ter-
mination point of a three-phase equilibrium line, as established,
e.g., in page 2237 of Ref. [2]: “A three-phase curve in a binary sys-
tem involving two or three fluid phases can be terminated in a (P,T)
projection by a so-called critical endpoint in case of coalescence of
two fluid phases (F = 1) in the presence of the third phase.” How-
ever, for binary systems it has been shown (see, e.g., Fig. 5a of Ref.
[2]) that when a critical line meets a three-phase line tangentially
(“osculation point” [2]), then, a B-CEP becomes some intermediate
point of the 3-phase line, and receives the name “double critical
end point” (DCEP) [2]. In conclusion, for binary systems, B-CEPs are
generally considered termination points, but it is known that there
might be situations where the “termination” nature of the B-CEP
is absent. When changing continuously a parameter of a chosen
model, a binary DCEP is obtained when “two critical endpoints of
the same nature and on different three-phase curves coincide, such
that the three-phase curves are joined” [2].

The T-CEL in Fig. 8 of the main text of this work has a tempera-
ture minimum (Tmin). If the system temperature T is in between
Tmin and the temperature of the B-CEP of propane + n-Eicosane
(TB-CEP,C3–C20), i.e., if Tmin < T < TB-CEP,C3–C20, then, the ternary system
presents two  T-CEPs at T. At such temperature, two different T-3PLs
exist, each one ending at one of the two  T-CEPs. When T approaches
Tmin, such that T > Tmin, the two T-CEPs become increasingly closer
until they coincide so that the two  associated T-3PLs are joined.
In other words, at T = Tmin there is and osculation point where the
isothermal ternary 3-PL meets tangentially the T-CEL, and the T-
CEP at T = Tmin will lie on some intermediate point of the isothermal
T-3PL at T = Tmin, thus loosing its termination nature. Clearly, the
situation for the ternary system at T = Tmin is analogous to the one
described in the previous paragraph for the DCEP of a binary sys-
tem. Therefore, it is acceptable to state in general that a T-CEP is the
termination of a ternary three-phase equilibrium line, but bearing
in mind that T-3PLs may  present osculation points where T-CEPs
do not really set the termination of the T-3PL. For the sake of com-
pleteness, we observe that a T-3PL at a temperature T such that
T < Tmin will not have T-CEPs, i.e., it will connect continuously the
two binary LLV points existing at such temperature.

Notice that while for an isothermal T-3PL at Tmin the correspond-
ing T-CEP in Fig. 8 looses its termination nature, the same T-CEP
does have such nature for an isobaric T-3PL at a pressure equal
to the pressure of the T-CEL at Tmin. In conclusion, whether a T-
CEP has a termination nature depends on how a T-3PL is specified,
e.g., isothermal T-3PL versus isobaric T-3PL, i.e., the presence or
absence of a T-CEP termination nature depends on how the T-CEP
is approached by the T-3PL. Perhaps, in view of the behavior of
ternary systems, it would be more appropriate to state that a T-CEP
is the termination of a ternary three-phase equilibrium line as long
as such line does not meet tangentially the T-CEL to which the T-
CEP belongs; or, more concisely, as long as the T-3PL and the T-CEL
do not have an osculation point.

With regard to the previously mentioned expectation of a
non-termination nature for T-CEPs present in “ternary 3-phase
envelopes”, our conjecture is that, at such T-CEPs, the 3-phase enve-
lope should meet the corresponding T-CEL tangentially.
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