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Laser-assisted photoionization: Streaking, sideband, and pulse-train cases
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We present a theoretical study of atomic laser-assisted photoionization emission. We consider an atom driven
by a linearly polarized extreme ultraviolet laser in two scenarios: (i) a single attosecond pulse (in both the
streaking and the sideband regimes) and (ii) an attosecond pulse train. The process takes place assisted by a
linearly polarized infrared laser field. In all these cases the energy- and angle-resolved photoelectron spectrum
(PES) is determined by a leading contribution, related to the intracycle factor [Gramajo et al., J. Phys. B 51,
055603 (2018)], complemented by other ones, derived from the periodicity and symmetry properties of the
dipole transition matrix with respect to the infrared field. Each of these terms imprint particular features in the
PES that can be straightforwardly understood in terms of generalized energy conservation laws. We investigate
in detail these PES structures, in particular, for the case of argon initially in the 3s quantum state. Our theoretical
scheme, based on the strong-field approximation, can be applied, however, to other atomic species and field
configurations as well.
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I. INTRODUCTION

Laser-assisted photoionization emission (LAPE) processes
take place when extreme ultraviolet (XUV) radiation and
infrared (IR) intense laser fields overlap in space and time.
Two different scenarios arise depending on the XUV pulse
duration: the streaking regime, if the XUV pulse is shorter
than one IR optical cycle; and the sideband regime, if the XUV
pulse is longer. In the first case, an electron wave packet is
put into the continuum by the XUV pulse in the presence of
the IR laser field. Provided that the fields of these two pulses
are controlled with a subfemtosecond temporal resolution, the
photoelectron spectra for different delays between the pulses,
referred to as spectrograms, contain information about both
the amplitude and the phase of both the XUV and the IR fields.
Applying a reconstruction algorithm, these parameters can be
straightforwardly retrieved [1–4].

On the other hand, in the second scenario, the simultane-
ous absorption of one high-frequency photon, together with
the exchange of several additional photons from the IR laser
field, leads to equally spaced “sideband” peaks in the energy-
resolved photoelectron spectra (PES), located on each side of
the XUV photoionization energy value [5,6]. Since the first
theoretical prediction of sideband peaks [7], an ample amount
of experiments and theoretical studies have been performed
in this area (see, e.g., [5,8–13] and references therein). From
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the theoretical point of view, the formation of these peaks
can be equivalently explained as the constructive interference
between electron wave packets emitted at different optical
cycles of the IR laser field [14,15].

Experimentally speaking, the production of a train of at-
tosecond pulses is easier than an isolated attosecond burst
generation [16]. An attosecond pulse train synchronized with
an IR laser pulse may assist a delay-dependent photoioniza-
tion probability as well as probe the dissociative ionization of
small molecules (e.g., H2) [17–20]. Furthermore, copies of the
nuclear wave packet can be produced by an attosecond pulse
train, during molecular ionization. These replicas, however,
are prone to be incoherently summed up, because of the en-
tanglement between the laser-ionized electron and its parent
molecular ion [21]. Recently, a combination of a circularly
polarized laser field and a train of XUV pulses was employed
to extract the carrier envelope phase of the latter, analyzing
the interference patterns that show up in the photoelectron
momentum distributions [22].

Within the context of laser-assisted potential scattering,
it has been shown that the differential cross section for the
collision process, accompanied by the positive (absorption)
or negative (stimulated emission) exchange of photons from
the dressing field, can be split as a field-free factor and a
function that accounts for the laser field, via the classical
excursion vector of a free electron and the peak amplitude of
the laser electric field [23]. In this approach, dubbed ‘soft-
photon’ approximation, it is assumed that the photon energy
of the laser field that ‘dresses’ the atomic continuum states is
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substantially lower than the kinetic energy of the photo-
electron. The soft-photon approximation can be adapted to
laser-assisted photoionization, under the condition that the
electron is freed by the XUV field; meanwhile the IR only
acts in ’dressing’ the electron continuum and does not play
any role in the laser-ionization process [9].

There exist two general nonperturbative approaches that
are nowadays widely used in strong-field atomic and molec-
ular physics. The first is based on the stationary treatment of
the time-dependent Schrödinger equation (TDSE). Here, the
so-called generalized Floquet formalism allows the reduction
of the periodical or quasiperiodical TDSE into a set of time-
independent coupled equations, also known as the Floquet
matrix eigenvalue problem. Floquet methods have been ap-
plied to an ample range of atomic and molecular multiphoton
and tunneling processes in the last three decades. The initial
limitations of Floquet-like methods, however, have already
been lifted, allowing stationary treatment of laser pulse ex-
citation problems (see, e.g., [24] and references therein). The
second scheme is to solve numerically the TDSE, discretizing
both the time and the spatial coordinates. The advantage of the
time-dependent approaches is that they can be applied directly
to many problems, ranging from multiphoton excitation to
tunneling ionization, and for fields of arbitrary shape and
duration. The main drawback, however, is the high compu-
tational cost, particularly for long-wavelength sources [25].

In previous works [15,26,27] we have employed a semi-
classical model (SCM), based on the strong-field approxima-
tion (SFA), to identify the electron trajectories and describe
the energy- and angle-resolved PES as the product of inter-
and intracycle interferences factors. The former accounts for
the sidebands’ formation and the latter appears as a modu-
lation of them. Additionally, we have also shown that it is
possible to write the PES as a function of the time-dependent
photoionization transition matrix for an XUV pulse in the
presence of one IR cycle [28]. These interferences were de-
rived using the saddle-point approximation in the temporal
integration of the transition matrix.

In this work we describe the PES in a more general way
without resorting to the saddle-point approximation. To this
end, we explore the photoionization of argon atoms for differ-
ent configurations of the XUV laser field, assisted by an IR
field. Specifically, we consider ionization by a single attosec-
ond pulse, in both the streaking and the sideband regimes and,
additionally, the case of an XUV pulse train. High-resolution
experiments, under the mentioned field arrangements, would
be desirable in order to confirm the PES structures identified
in the present study. Unlike other models, such as those based
on the Floquet theory or the soft-photon approximation, both
originally proposed for infinitely long pulses, the present ap-
proach is theoretically correct for any duration of both the IR
and the XUV pulses. One additional advantage, as every ap-
proximation with roots on the SFA, is the low computational
cost as well as its clear physical interpretation.

The paper is organized as follows: In Sec. II, we briefly
resume the SFA theory and analyze the properties of the tem-
poral integral of the transition matrix. In Sec. II A we consider
LAPE in the streaking regime, i.e., the high-frequency pulse
is shorter than the IR optical cycle. In Sec. II B we consider
the sideband regime, i.e., the XUV pulse is longer than one IR

optical cycle. Finally, in Sec. II C, a train of attosecond pulses
is studied. Concluding remarks are presented in Sec. III.
Atomic units are used throughout the paper, except where
otherwise stated.

II. THEORY AND RESULTS

We consider the ionization of an atomic system by the
combination of an XUV finite laser pulse assisted by an IR
laser, both linearly polarized. In the single-active-electron
approximation the TDSE reads

i
∂

∂t
|ψ (t )〉 = [H0 + Hint (t )]|ψ (t )〉, (1)

where H0 = p2/2 + V (r) is the time-independent atomic
Hamiltonian, whose first term corresponds to the electron ki-
netic energy and its second term to the electron-core Coulomb
interaction. The second term on the right-hand side of Eq. (1),
i.e., Hint = r · FX (t ) + r · FL(t ), describes the interaction of
the atom with both time-dependent XUV [FX (t )] and IR
[FL(t )] electric fields in the length gauge.

The electron initially bound in an atomic state |φi〉 is emit-
ted to a final continuum state |φ f 〉, with final momentum k
and energy E = k2/2. Then the energy- and angle-resolved
PES can be calculated as

dP

dEd�
=

√
2E |Tif |2, (2)

where Tif is the T -matrix element corresponding to the transi-
tion φi → φ f and d� = sin θdθdφ, with θ and φ the polar
and azimuthal angles of the laser-ionized electron, respec-
tively.

Within the time-dependent distorted-wave theory, the tran-
sition amplitude in the prior form and length gauge is
expressed as

Tif = −i
∫ +∞

−∞
dt 〈χ−

f (r, t )|Hint(r, t )|φi(r, t )〉, (3)

where φi(r, t ) = ϕi(r) eiIpt is the initial atomic state, with ion-
ization potential Ip, and χ−

f (r, t ) is the distorted final state.
Equation (3) is exact as far as the final channel, χ−

f (r, t ), is
the exact solution of Eq. (1), within the dipole approxima-
tion. However, several degrees of approximation have been
considered so far to solve Eq. (3). The most widely known
one is the SFA, which neglects the Coulomb distortion in the
final channel produced in the ejected-electron state due to its
interaction with the residual ion and discards the influence of
the laser field in the initial ground state [29,30]. The SFA, for
instance, is able to model the ’ring’ structures of the above-
threshold ionization photoelectron spectrum [31]. Hence, we
can approximate the distorted final state with a Volkov func-
tion, which is the solution of the TDSE for a free electron in
an electromagnetic field [32], i.e., χ−

f (r, t ) = χV
f (r, t ), where

χV
f (r, t ) = (2π )−3/2 exp{i[k + A(t )] · r}

× exp
i

2

∫ ∞

t
[k + A(t ′)]2dt ′ (4)

and the vector potential due to the total external field is defined
as A(t ) = − ∫ t

0 dt ′[FX (t ′) + FL(t ′)]. As the frequency of the
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XUV pulse is much higher than the IR field one, and consid-
ering that the strength of the XUV field is much smaller than
the IR one, the XUV contribution to the vector potential can
be neglected [33,34].

With the appropriate choice of the IR and XUV laser pa-
rameters, we can assume that the energy domain of the LAPE
processes is well separated from the domain of ionization
by the IR laser alone. In other words, the contribution of
IR ionization is negligible in the energy domain where the
absorption of one XUV photon takes place. Besides, we set
the general expression for the linearly polarized XUV pulse
of duration τX as

FX (t ) = −ε̂X FX0(t ) cos(ωX t ), (5)

where ε̂X and ωX are the respective polarization vector and
the carrier frequency of the XUV field. Furthermore, FX0(t )
is a nonzero envelope function during the temporal interval
(t0, t0 + τX ) and 0 otherwise, which we approximate as its
maximum amplitude, i.e., FX0(t ) ≈ FX0. Thus, the matrix ele-
ment of Eq. (3) can be written as

Tif = − i

2

∫ t0+τX

t0

FX0ε̂X · d[k + A(t )] eiS(t ) dt, (6)

where S(t ) is the generalized action

S(t ) = −
∫ ∞

t
dt ′

[
(k + A(t ′))2

2
+ Ip − ωX

]
, (7)

with the dipole moment defined as d(v) =
(2π )−3/2〈eiv·r|r|ϕi(r)〉. In Eq. (6) we have used the
rotating-wave approximation, which accounts, in this case,
for the absorption of only one XUV photon and, thus, neglects
the contribution of XUV photoemission. In addition, during
the temporal lapse the XUV pulse is acting, the IR electric
field can be modeled as a cosinelike wave, and hence the
vector potential can be written as

A(t ) = FL0

ωL
sin (ωLt ) ε̂L, (8)

where FL0, ωL, and ε̂L are the peak amplitude, carrier fre-
quency, and polarization vector, respectively. Considering the
T periodicity of the vector potential in Eq. (8), i.e., T =
2π/ωL, the dipole moment results so, i.e.,

d[k + A(t + NT )] = d[k + A(t )], (9)

with N a positive integer number.
Let us now analyze some features of the T matrix, Eq. (3).

To this end we note that the action S(t ) defined in Eq. (7) can
be written as

S(t ) = S0 + at + b cos(ωLt ) + c sin(2ωLt ), (10)

where S0 is a constant that results in a phase that can be
omitted and

a = k2

2
+ Ip + Up − ωX , b = −FL0

ω2
L

ε̂L · k, c = − Up

2ωL
,

(11)

where Up = F 2
L0

4ω2
L

defines the ponderomotive energy.

FIG. 1. (a) Squared modulus of the integral I (t ), Eq. (13), in
arbitrary units, as a function of the time and electron energy, for the
case of photoionization of Ar(3s) in the forward configuration; i.e.,
the electronic emission direction (yellow arrow) is parallel to both
polarization vectors [red (IR) and blue (XUV) horizontal arrows].
(b) Identical to (a), but for the perpendicular configuration; i.e., the
electronic emission is perpendicular to both polarization vectors.
The IR laser parameters are FL0 = 0.041 a.u. and ωL = 0.057 a.u.;
meanwhile for the XUV we take FX 0 = 0.01 a.u. and ωX = 41ωL .
For the IR, these values correspond to a laser intensity and wave-
length of IL = 6 × 1013 W/cm2 and λL = 800 nm; meanwhile for
the XUV, the intensity and wavelength are IX = 3.5 × 1012 W/cm2

and λX = 19.5 nm, respectively. (c) Scheme of different XUV + IR
photoionization cases (see the text for more details).

We then observe that [S(t ) − at] is a time-oscillating func-
tion with the same period T as the IR laser field, i.e.,

S(t + NT ) = S(t ) + aNT . (12)

In light of these periodicity properties, Eqs. (9) and (12),
we can rewrite the transition matrix, Eq. (6), in terms of the
contribution of the first IR cycle only. For this, let us introduce
the kernel quantity I (t ) as the contribution to the transition
amplitude from 0 to time t , i.e.,

I (t ) =
∫ t

0
�(t ′) eiS(t ′ ) dt ′, (13)

with

�(t ) = − i

2
FX0ε̂X · d[k + A(t )], (14)

providing that 0 � t � T . From its proper definition, it is clear
that I (t ) increases from 0 at t = 0 and depends on both the
electron energy and the geometrical arrangement between ε̂X ,
ε̂L, and the electron emission direction k̂. As an example, in
Fig. 1(a) we show |I (t )|2 for the photoionization of Ar(3s) in
forward (k̂ is parallel to both ε̂X and ε̂L) and perpendicular (k̂
is perpendicular to ε̂X as well as to ε̂L) emission configurations
[see the arrows in Figs. 1(a) and 1(b)]. Figure 1(c) depicts the
different schemes of the LAPE processes studied in this paper.
Here, in order to perform an example calculation we use an
Ar(3s) atom as a target and we consider that both the XUV and
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the IR pulses are linearly polarized in the same direction, i.e.,
ε̂X = ε̂L; however, we should stress that the present formalism
remains valid for all polarization configurations since Eqs. (6)
to (14) retain the vector character of both polarization vectors,
i.e., ε̂X and ε̂L.

By performing the transformation t ′ = t ′′ + NT , the tem-
poral integral I (t ) becomes delayed in N cycles. Keeping in
mind the T periodicity of both � and S [see Eqs. (12) and
(14)], it is straightforward to see that

I1(t ) =
∫ NT +t

NT
�(t ′) eiS(t ′ ) dt ′

=
∫ t

0
�(t ′′ + NT ) eiS(t ′′+NT )dt ′′

= I (t ) eiaNT (15)

for t � T . We note that when the integrals in Eqs. (13) and
(15) cover a whole IR cycle, they coincide with the laser-
assisted photoionization transition matrix for an XUV pulse
with a duration of one IR cycle [see Eq. (6)]. For this reason
we call |I (T )|2 the intracycle contribution.

Furthermore, when the XUV pulse covers several IR cy-
cles, the integral over each cycle can be summed up using
Eq. (15) as

I2 =
∫ NT

0
�(t )eiS(t )dt

=
N−1∑
n=0

∫ (n+1)T

nT
�(t )eiS(t )dt

=
N−1∑
n=0

I (T )eianT

= I (T )
sin (aT N/2)

sin (aT/2)
e(iaT (N−1)/2). (16)

Thus, the PES can be expressed as a product of the intracy-
cle factor |I (T )|2 and the factor | sin (aT N/2)/ sin (aT/2)|2,
which accounts for the intercycle contributions, since it is the
result of the phase interference arising from the N different
cycles [35–37].

The factorization of the transition amplitude in Eq. (16)
was previously obtained in LAPE [15] and above-threshold
ionization [35–37], within the SCM. In these works, each con-
tribution was recognized as the interference stemming from
electron trajectories within the same optical cycle (intracycle
interference) and from trajectories released at different cycles
(intercycle interference). However, here we prove its validity
beyond the SCM as a mere consequence of the periodicity of
the dipole element and the action through the vector potential
A(t) [see Eqs. (9) and (12)] [28].

The zeros in the denominator of the intercycle factor, i.e.,
the energy values satisfying aT/2 = nπ , are avoidable singu-
larities since the numerator also cancels out and maxima are
reached at these points. Such maxima are recognized as the
sideband peaks in the PES. They occur when

En = nωL + ωX − Ip − Up, (17)

FIG. 2. PES for an XUV with τX = T/6 as a function of the
delay t0 for the forward (a) and perpendicular (b) configurations.
The orange line corresponds to Eq. (19) in (a) and Eq. (20) in (b).
The laser parameters are the same as those used in Fig. 1.

corresponding to the absorption (positive n) or emission (neg-
ative n) of n IR photons, following the absorption of one XUV
photon. In fact, when N → ∞, the intercycle factor becomes
a series of delta functions, i.e.,

∑
n δ(E − En), satisfying the

conservation of energy. Instead, for a finite XUV pulse du-
ration τX (of the order of NT ), each sideband peak has a
width �E ∼ 2π/NT , thus fulfilling the uncertainty relation
�EτX ∼ 2π .

Now, we are interested in considering a general situation
with arbitrary delays (t0) and XUV durations (τX ). In order to
do so, we analytically express the transition matrix of Eq. (6)
in terms of the kernel integral I (t ) [Eq. (13)]. Therefore,
in the following sections we analyze the three XUV + IR
photoionization scenarios sketched in Fig. 1(c).

A. XUV 1: Streaking regime

In the case where the high-frequency pulse is shorter than
the IR optical cycle [see the XUV 1 scheme in Fig. 1(c)], i.e.,
τX < T , the integration of the transition matrix from the be-
ginning of the XUV pulse, t0, to its end, t0 + τX , in Eq. (6) can
be written as the subtraction of two integrals in the intervals
[0, t0 + τX ] and [0, t0], i.e.,

Tif =
∫ t0+τX

0
�(t )eiS(t ) dt −

∫ t0

0
�(t )eiS(t ) dt

=
{

I (t0 + τX ) − I (t0) if t0 + τX � T,

I (T ) + I (t0 + τX − T )eiaT − I (t0) if T � t0 + τX .

(18)

For simplicity, we have considered the case t0 � T .1 Then,
taking into account that I (t ) is given by Eq. (13), the PES is
obtained by inserting Eq. (18) into Eq. (2), which depends
on the delay time t0. As an illustrative example we show
in Fig. 2 the PES for Ar(3s) generated by a short XUV
pulse with τX = T/6 as a function of t0, for both the forward
[Fig. 2(a)] and the perpendicular [Fig. 2(b)] configurations.
We can observe that the PES for the two cases present the
typical streaking pattern [1,3]. A simple classical viewpoint
considers that the ionization is produced at only one particular

1If this is not the case, i.e., when t0 = MT + δ, we have to insert
the factor eiaMT before the bracket in Eq. (18) and replace t0 with δ.
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FIG. 3. Identical to Fig. 2, but for SFA and TDSE results for an
XUV with a trapezoidal envelope comprising a total of seven cycles,
with one-cycle ramp on and one-cycle ramp off.

instant, corresponding to the stationary time derived from the
saddle-point equation dS(t )/dt = 0. In this sense, the kinetic
energy at that instant of time, which we can adjudicate to the
middle of the time interval when the XUV pulse takes action,
t0 + τX /2, is

E (t0) =
[
v0 − AL

(
t0 + τX

2

)]2

2
, (19)

where v0 = √
2(ωX − Ip) represents the initial classical veloc-

ity of the ejected electron. As expected, we observe that the
PES for the forward emission configuration follows the shape
of the vector potential [Eq. (19)] shown by the orange line in
Fig. 2(a).

The classical viewpoint predicts that the energy maxima in
the perpendicular emission occur at

E (t0) =
[
v2

0 − A2
L

(
t0 + τX

2

)]
2

, (20)

at the mean time of the XUV pulse [3,5], which is plot-
ted as the orange line in Fig. 2(b). The PES then oscillates
around the classical prediction [Eq. (20)], as the orange line
in Fig. 2(b) illustrates. We note, however, that there exist
some structures in the PES beyond the classical prediction
[see, e.g., in Fig. 2(a) at t0 ≈ 3T/4 and energy 0.5 a.u.] that
do not strictly represent a classical streaking situation. These
structures correspond to the quantum nature of the photoion-
ization phenomenon and stem from the Fourier transform of
the XUV squared pulse shape. In fact, when we consider a
trapezoidal envelope comprising one-cycle ramp on and one
cycle ramp off these structures decrease in intensity, as shown
in Figs. 3(a) and 3(b). What is more, when we use Gaussian
or sin2 envelopes instead, these structures vanish (not shown).

In order to corroborate the precedent predictions, we have
additionally performed calculations by solving the TDSE ab
initio. In Figs. 3(c) and 3(d) we show the TDSE results for
the same field configurations as in Figs. 3(a) and 3(b). For the

computational feasibility of the TDSE calculations, both the
XUV and the IR field envelopes are modeled with a trape-
zoidal shape. We observe an excellent agreement between
SFA and TDSE approaches. For the numerical solution of
the TDSE we have employed the generalized pseudospectral
method combined with the split-operator representation of the
time-evolution operator, which was explained in our previous
works [15,26,27].

B. XUV 2: Sideband regime

When the XUV pulse is longer than one IR period [see
the XUV 2 scheme in Fig. 1(c)] we can sum up the contribu-
tion from different cycles as we have presented in Eq. (16).
However, in this work, we are interested in considering an
XUV pulse of arbitrary duration τX = NT + �, which starts
at time t0 = MT + δ, where �, δ � T and N and M are inte-
ger numbers. Then, using the result introduced in the previous
subsection, we can write

Tif =
∫ MT +δ+NT +�

MT +δ

�(t )eiS(t )dt

= eiaT M
∫ NT +δ+�

δ

�(t )eiS(t )dt

= eiaT M

[∫ NT

0
. . . +

∫ NT +δ+�

NT
. . . −

∫ δ

0
. . .

]

= eiaT M

[
I (T )

sin (aT N/2)

sin (aT/2)
eiaT (N−1)/2

+ eiaT N I (δ + �) − I (δ)

]
(21)

if δ + � � T or

Tif = eiaT M

[
I (T )

sin (aT (N + 1)/2)

sin (aT/2)
eiaT N/2

+ eiaT (N+1)I (δ + � − T ) − I (δ)

]
(22)

if δ + � � T . The transition matrices in Eqs. (21) and (22)
generalize the ones presented in our previous works [15,26–
28,38], which consider the particular case where the XUV
covers an integer number of IR cycles (� = 0), starting with
no delay, i.e., δ = 0. In this case the PES is proportional to

|Tif |2 = |I (T )|2︸ ︷︷ ︸
intracycle

[
sin (aT N/2)

sin (aT/2)

]2

︸ ︷︷ ︸
intercycle

. (23)

The latter expression is equivalent to that discussed sub-
sequent to Eq. (16) and was exhaustively studied in Refs.
[15,26–28,38]. Even though in the general case δ and � are
nonzero, we note that the first term within the brackets in
Eq. (21) determines the leading contribution to the PES when
N 
 1. This is so due to the increase in the intercycle inter-
ference term at aT = 2nπ [see the discussion after Eq. (17)].
In this case, the PES approximately behaves like Eq. (23).

In order to study the effect of nonzero δ and � for finite N ,
we present in Fig. 4 the PES for Ar(3s) using Tif in Eq. (21), as
a function of the parameter δ, for both � = 0 and � = T/6 [in
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FIG. 4. Ar(3s) PES in the sideband regime as a function of δ (see the text) for the forward (a), (c) and perpendicular (b), (d) emission
configurations. The XUV pulse has a duration τX = NT + � with N = 2. In (a) and (b) � = 0 and in (c) and (d) � = T/6. The laser
parameters are the same as those used in Fig. 1.

both cases we consider the I (t ) in Fig. 1]. We observe that at
the sideband positions (dashed lines) the intensity of the PES
remains constant as a function of δ, when � = 0 [Figs. 4(a)
and 4(b)]. This is so because for � = 0, according to Eq. (21),
we obtain

|Tif |2 =
∣∣∣∣ sin (aT N/2)

sin (aT/2)

∣∣∣∣
2

|I (T ) + I (δ) 2i sin(aT/2) eiaT/2|2.

(24)

Here, at the sideband positions (aT/2 = nπ ), the second term
vanishes and |Tif |2 results independent of the delay. This fact
can also be observed in Fig. 5, where we show the PES as a
function of the electron energy, for different values of δ: at
the sideband positions (dashed vertical lines) all the curves
agree with each other. Furthermore, the agreement extends to
other energies as N increases, where the PES is basically δ

independent [see Fig. 5(c)]. We note that the three curves in
Fig. 5(b) correspondingly correlate to cuts of Fig. 4(a) at δ =
0, T/8, and T/4, respectively.

Otherwise, in the perpendicular emission case [Figs. 4(b)
and 4(d)], there is very little difference in the PES for the
two values of � considered. Additionally, the dependence
on δ at the sideband energies is negligible. Hence, generally
speaking, the duration and delay of a noninteger number of
cycles do not significantly affect the PES.

1. Integration over the emission directions

In view of the precedent analysis, the doubly differential
PES can be considered to be approximately proportional to
Eq. (23) when the number of IR cycles N is not small. In this
case, we note that the dependence on the emission direction
is present only in the intracycle interference factor. This is so
because the intercycle factor does not depend on the emission
direction (it only relies upon the energy through the factor a).
As a consequence, the single differential PES (dP/dE ) can be
easily obtained integrating only the intracycle factor, i.e.,

dP

dE
=

√
2E

∫
d�|Tif |2

=
[

sin (aT N/2)

sin (aT/2)

]2

︸ ︷︷ ︸
intercycle

√
2E

∫
d�|I (T )|2. (25)

Let us note that not only the double [Eq. (23)], but also the
single [Eq. (25)] differential PES can thus be written as the
product of the intercycle interference factor and the contribu-
tion for N = 1, taking the role of an ‘intracycle’ factor. In this
sense, the factorization of the PES is still valid even for the
angular integrated spectra.

In Fig. 6 we show by the thick red line the single
differential PES for Ar(3s) for the case with N = 1, i.e.,
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FIG. 5. PES for Ar(3s), as a function of the electron energy for
forward emission and � = 0, for three values of δ [see Eq. (24)]. The
XUV pulse comprises N = 1 (a), N = 2 (b), and N = 7 (c) IR optical
cycles. The laser parameters are the same as used in the previous
figures.

√
2E

∫
d�|I (T )|2, as a function of the electron energy. As a

reference we also plot the PES for the forward and perpendic-
ular emission directions of Figs. 1(a) and 1(b), respectively,
corresponding to cuts at t = T and multiplied by

√
2E .

We observe that the angular integrated PES (thick red line)
presents several peaks, which do not necessarily match at the
sideband positions (dashed vertical lines). However, when the
XUV is longer than one IR cycle, the intercycle factor must
be considered. Then the PES thus presents maxima at the
sideband peak positions but modulated by this thick red curve
(see thin black line for N = 2).

FIG. 6. PES for Ar(3s), as a function of the electron energy, in-
tegrated over all the emission directions. Forward and perpendicular
emission cases are also shown (see the text for details). The XUV
pulse comprises N = 1 (thick red line) and N = 2 (thin black line)
cycles. The laser parameters are the same as used in the previous
figures.

2. Intra- and inter-half-cycle interferences

In this subsection we consider the particular situation
where the electron emission direction is perpendicular to the
IR laser polarization vector, ε̂L ⊥ k. Because of this configu-
ration, b = 0 in Eq. (10) and [S(t ) − at] has not only T but
also T/2 periodicity. Besides, we also consider that the dipole
element also satisfies

ε̂X · d[k + A(t + T/2)] = ±ε̂X · d[k + A(t )], (26)

i.e., it is symmetric or antisymmetric with respect to the mid-
dle of the IR cycle. Under these circumstances, the integral
I (t ) in Eq. (13) over one IR cycle can be written as

I (T ) =
∫ T/2

0
�(t )eiS(t )dt +

∫ T

T/2
�(t )eiS(t )dt

︸ ︷︷ ︸
±eiaT/2I (T/2)

= I (T/2)(1 ± eiaT/2), (27)

where we have split I (T ) as a sum over the two IR half-cycles.
Then, depending on the symmetric (+) or antisymmetric (−)
character of the dipole element with respect to T/2, we have

|I (T )| = |2 I (T/2) cos (aT/4)| if + (symmetric),

(28)

|I (T )| = |2 I (T/2) sin (aT/4)| if − (antisymmetric).

(29)

The factor cos(aT/4) [sin(aT/4)] in Eq. (28) [Eq. (29)],
cancels out odd [even] sideband peaks in the intercycle con-
tribution. As a consequence, the PES presents structures
corresponding to the absorption or emission of only an even
(symmetric dipole element) or odd (antisymmetric dipole
element) number of IR photons. Furthermore, the energy dif-
ference between two consecutive sideband peaks is 2ω instead
of ω, as the general conservation energy rule in Eq. (17)
indicates.

In the present work, we consider the Ar(3s) dipole element
from a hydrogenlike excited state, i.e., Eq. (A2), evaluated at
v = k + a(t ). Since both the XUV and the IR laser pulses
have the same polarization direction, the dipole element in
the perpendicular emission case is antisymmetric, i.e., the (−)
instance in Eq. (26) should be used. For antisymmetric dipole
elements |Tif |2 in Eq. (23) becomes

|Tif |2 = 4 |I (T/2)|2︸ ︷︷ ︸
intra-half-cycle

sin2(aT/4)

︸ ︷︷ ︸
intracycle

[
sin (aT N/2)

2 sin (aT/4) cos(aT/4)

]2

︸ ︷︷ ︸
intercycle

= |I (T/2)|2︸ ︷︷ ︸
intra-half-cycle

[
sin (aT N/2)

cos(aT/4)

]2

︸ ︷︷ ︸
inter-half-cycle

, (30)

which reaches maxima only for odd n and becomes sup-
pressed at energy values En with even n [see Eq. (17)]. In
particular, the absorption of only one XUV photon alone
(in the absence of absorption or emission of IR photons) is
forbidden.
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In Figs. 4(b) and 4(d) we note that the emission probability
vanishes along the dashed lines labeled SB0, SB2, SB-2, etc.
This absence of even-order sideband peaks indeed confirms
the selection rule that determines the presence of only odd
sideband orders even for nonzero δ and � values. We can also
observe that, effectively, in Fig. 6 the intracycle factor I (T )
for the perpendicular emission direction (solid green line)
vanishes at even sideband positions according to Eq. (29).

Alternatively, for symmetric dipole elements, the odd side-
band orders cancel out, whereas the even orders stay put [28].
In correspondence with our previous analysis within the SCM
(see Eq. (18) in Ref. [27]), Eq. (30) indicates that the PES can
be factorized in two ways: (i) as the product of intra- and inter-
cycle interference factors and (ii) as the product of intra-half-
and inter-half-cycle interference contributions. Obviously, the
two factorizations give rise to the same results.

C. XUV 3: Attosecond pulse train

We study the LAPE process for the case of a train of J
identical (in-phase) pulses of duration τX each [see the XUV
3 scheme in Fig. 1(c)]. Each pulse is repeated every D cycles
(clearly τX � DT ), where D is any positive integer number
and the jth pulse starts at t0 j = t0 + ( j − 1)DT with j =
1, . . . , J . Then the temporal integral of the transition matrix
in Eq. (13) becomes a sum of J integrals over the temporal
intervals [t0 j, t0 j + τX ], where the jth XUV pulse acts,

Tif =
J∑

j=1

T ( j)
if , (31)

and each individual transition matrix T ( j)
if corresponds to the

jth pulse and is given by

T ( j)
if =

∫ t j0+τX

t0 j

�(t ) eiS(t )dt = eia( j−1)DT T (1)
if . (32)

Following the same reasoning as in Eq. (16) and using
Eq. (31), we find that

Tif =
J∑

j=1

eia( j−1)DT T (1)
if = T (1)

if

J−1∑
j=0

eiaDT j

= T (1)
if e[iD(J−1)aT/2] sin(JDaT/2)

sin(DaT/2)
.

We can thus finally write

|Tif |2 = |T (1)
if |2︸ ︷︷ ︸

intrapulse

[
sin(JDaT/2)

sin(DaT/2)

]2

︸ ︷︷ ︸
interpulse

. (33)

As in the previous cases, we can split up |Tif |2 as a prod-
uct of two interference factors: the intrapulse interference,
which corresponds to the emission probability of an isolated
pulse, and the interpulse interference, which accounts for
the interference due to the coherent emission from different
pulses.

In Eq. (33), the intrapulse factor can be calculated consid-
ering the theory explained in Sec. II A or II B, i.e., T (1)

if must
be replaced by Eq. (18), I (T ), or Eq. (21), depending on the
case. For instance, if the repetition rate of the pulse train is

FIG. 7. (a) Pulse train with four pulses of duration τX = NT with
N = 2 and repetition rate DT with D = 5. (b) PES for perpendicular
emission configuration. The laser parameters are the same as used in
the previous figures.

every cycle [D = 1, as in the case plotted in Fig. 1(c)], the
interpulse factor looks exactly like the intercycle interference
one. Then T (1)

if corresponds to Eq. (18). For the special case
where τX = T , the transition probability, Eq. (33), becomes
equal to Eq. (23), considering that the number of IR optical
cycles covered by the XUV pulse, N , is equal to J , the number
of XUV pulses.

For D > 1 we observe that the interpulse factor reaches
maxima every time the denominator is 0, i.e., at aT/2 =
mπ/D. This means that there are D − 1 ‘interpulse’ sec-
ondary peaks between two consecutive sidebands [defined by
Eq. (17)] or, likewise, when

Em = m
ωL

D
+ ωX − Ip − Up. (34)

The energy values in Eq. (34) can be understood as a particular
energy conservation law for the exchange of m photons after
the absorption of one single XUV photon, where its energy
is a fraction of the IR photon energy, i.e., ωL/D, due to the
repetitive character of the pulse-train electric field. We note
that for D = 1 the interpulse and intercycle (or sideband)
peaks agree.

As an example, we show in Fig. 7(a) the temporal profile
of a pulse train consisting of four XUV identical pulses, each
of a duration twice the IR optical cycle, i.e., τX = 2T , and a
periodicity of five IR cycles. In Fig. 7(b) we depict the PES
corresponding to the electron emission from Ar(3s) in the
perpendicular direction (black curve), which can be regarded
as the multiplication of several factors: (i) the intracycle factor
|I (T )|2 (green curve), which is a cut of Fig. 1 at t = T , (ii) the
intercycle factor of Eq. (23) with N = 2 (orange curve), and
(iii) the interpulse factor (dashed gray curve), which presents
four narrow peaks between two consecutive sidebands. We
must point out that even sidebands vanish in the intracycle
factor as a consequence of destructive intra-half-cycle inter-
ference, as discussed before.
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FIG. 8. (a) XUV pulse train with D = 1 and four pulses, each
of duration τX = T/6. (+,+) indicates an ‘in-phase’ pulse train
and (+, −) indicates a counterphase one. (b) Ar(3s) PES for the
perpendicular emission configuration, using the (+,+) pulse train as
a function of the delay t0; (c) the same as (b), but for the (+,−) pulse
train. The dashed red line corresponds to the zero-order sideband
and the solid orange line represents the expected streaking energy,
Eq. (20). The laser parameters are the same as in Fig. 7.

Another interesting case is a pulse train of counterphase
pulses, i.e., identical pulses but with a phase that changes in π

between consecutive pulses. This kind of pulse train is created
where only odd harmonics of a given monochromatic field are
used to generate it [39]. Since the transition matrix, Eq. (6), is
proportional to the amplitude of the XUV pulse, we only need
to add a factor (−1) j in each term of the sum, Eq. (31), to
calculate the transition matrix,

Tif = T (1)
if

J−1∑
j=0

ei(aDT +π ) j . (35)

Therefore, we can write

|Tif |2 = ∣∣T (1)
if

∣∣2
[

sin(JDaT/2 + Jπ/2)

sin(DaT/2 + π/2)

]2

. (36)

This equation shows that interpulse peaks appear when
DaT/2 + π/2 = mπ , which means that there are D sec-
ondary peaks between two consecutive sidebands. They
appear at energies

Em =
(

m − 1

2

)
ωL

D
+ ωX − Ip − Up. (37)

Thus, the positions of the peaks appearing from ionization due
to a train of counterphase pulses are shifted with respect to the
positions of the ’in-phase’ secondary peaks, Eq. (34), by an
energy equal to ωL/2D.

In the following, we consider the particular case of a
repetitiveness of one IR cycle, i.e., D = 1, and compare the
ionization probability of Ar(3s) for both the in-phase and
the counterphase pulse train cases. In Fig. 8(a) we show the
time profile of two XUV pulse trains. The upper one, labeled

(+,+), is composed of four identical pulses, whereas the
lower one, labeled (+,−), has alternating 0 and π phases.
This means that the first and third pulses have opposite signs
with respect to the second and fourth ones. The correspond-
ing perpendicular emission PES are shown in Figs. 8(b) and
8(c), which result from the product of the spectrum shown
in Fig. 2(b) and the respective interpulse factor of Eq. (33) or
Eq. (36) for the in-phase and counterphase cases, respectively.
We include (orange line) in Figs. 8(b) and 8(c) the expected
streaking energy, Eq. (20). The dashed horizontal red line
indicates the position of the sideband of order n = 0 (SB0).
Note that in Fig. 8(c) there is no coincidence between the
peaks and the sideband positions because the interpulse peaks
in the counterphase case [Eq. (37)] are shifted with respect to
the in-phase one [Eq. (34)].

III. CONCLUSIONS

We have studied the electron emission produced by an
XUV pulse assisted by an IR laser field, emphasizing the
analytical properties inferred from the SFA transition matrix
element. We have covered a broad range of LAPE situations:
both the streaking and the sideband regimes for an isolated
attosecond pulse, as well as the case of a pulse train. In all
these cases, we have found that the integral of the transition
amplitude over the time when the XUV pulse acts can be
written as a function of a kernel I (t ), defined for only one
IR cycle. With this quantity, the PES can be easily built up for
several configurations of the XUV + IR fields. Furthermore,
we note that our scheme can be applied not only within the
SFA but also in other more elaborate approaches, e.g., the
Coulomb-Volkov approximation, as long as the dipole ele-
ment d[k + A(t )] maintains the T periodicity with respect
to the IR laser field and the depletion of the ground state is
negligible.

In particular, for the case of LAPE due to a pulse train,
we have shown not only that intra-, inter-, intra-half-, and
inter-half-cycle interferences arise, but also that intra- and
interpulse interference contributions are present as a direct
consequence of the periodicity and symmetry of the transition
matrix element. All these interference factors manifest as rec-
ognizable structures in the PES and would allow the extraction
of structural information from the target system.
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APPENDIX: DIPOLE ELEMENT

The dipole transition element is defined as

di(v) = 1

(2π )3/2

∫
dr exp[−iv · r] r φi(r), (A1)

where φi is a hydrogenlike bound state. For the case of a
hydrogenic 3s state we can write

d3s(v) = − i

π
27/2α5/2 v

(v2 + α2)5
(3v4 + 11α4 − 18α2v2),

(A2)

where α = √
2Ip. We have considered the ionization energy

Ip = 28.84 eV (1.06 a.u.) for the 3s state of Ar. Separating the
v2 dependence, the ẑ component of the dipole element can be
reduced to

d3s · ẑ = vz f1(v2), (A3)

where we have introduced the function f1, to explicitly indi-
cate the dependence on the modulus squared of its variable v,
i.e.,

f1(v2) = −i
27/2α5/2 (3v4 + 11α4 − 18α2v2)

π (v2 + α2)5
. (A4)
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