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Abstract
Inflammatory responses are elicited after injury, involving release of inflammatory mediators

that ultimately lead, at the molecular level, to the activation of specific transcription factors

(TFs; mainly activator protein 1 and nuclear factor-kB). These TFs propagate inflammation by

inducing the expression of cytokines and chemokines. The neuroendocrine system has a

determinant role in the maintenance of homeostasis, to avoid exacerbated inflammatory

responses. Glucocorticoids (GCs) are the key neuroendocrine regulators of the inflammatory

response. In this study, we describe the molecular mechanisms involved in the interplay

between inflammatory cytokines, the neuroendocrine axis and GCs necessary for the control

of inflammation. Targeting and modulation of the glucocorticoid receptor (GR) and its

activity is a common therapeutic strategy to reduce pathological signaling. Poly (ADP-ribose)

polymerase 1 (PARP1) is an enzyme that catalyzes the addition of PAR on target proteins,

a post-translational modification termed PARylation. PARP1 has a central role in

transcriptional regulation of inflammatory mediators, both in neuroendocrine tumors and

in CNS cells. It is also involved in modulation of several nuclear receptors. Therefore, PARP1

and GR share common inflammatory pathways with antagonic roles in the control of

inflammatory processes, which are crucial for the effective maintenance of homeostasis.
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Introduction
The inflammatory response is a physiological process that

protects the organism against infection and pathogens

and repairs tissue damaged by injuries. It is normally

beneficial to the organism, provoking the activation of

various proinflammatory mediators in order to remove

the damaging agent and restoring tissue function

and structure (1). Biologically, inflammation advances
through several stages. At the cellular level there is

a marked response to proinflammatory stimuli, and as

a result cytokine and chemokine cascades are initiated (2).

The increase in these inflammatory mediators – cytokines,

chemokines, growth factors, receptors, enzymes,

and adhesion molecules – is considered pivotal for

the progression and propagation of inflammation.
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On a molecular level, the appearance of proinflammatory

signals culminates predominantly in the activation of

activator protein 1 (AP1) and nuclear factor-kB (NF-kB). In

turn, both transcription factors (TFs) induce the expression

of the aforementioned inflammatory mediators, thus

propagating cellular inflammation (3, 4, 5).

However, return to homeostasis – in which the

neuroendocrine system has a paramount role – is necessary,

considering that if the inflammatory process itself is

prolonged it can lead to tissue injury and states of chronic

inflammation and autoimmunity (6). This dysregulation

has been identified as one of the major pathophysiological

mechanisms underlying life-threatening human diseases

(6, 7). Because of this determinant role in disease and also

because inflammation is activated not only by infectious

but also by environmental, behavioral, and psychological

stimuli, inflammation is emerging as a main player

controlling the balance between stress experience and

human health (8). Indeed, there are mechanisms for the

appropriate termination of the inflammatory response,

and deficiencies in these mechanisms contribute to the

appearance of inflammatory diseases.

After an injury, an important feature of the inflam-

matory response is the local release of a number of

inflammatory mediators such as cytokines (interleukin 1

(IL1), IL6, and tumor necrosis factor a (TNFa)), which then

act in the CNS activating the hypothalamic–pituitary–

adrenal (HPA) axis, the main component of the endocrine

stress response. IL1 and other cytokines act on the brain

via several communication pathways: i) primary afferent

neurons that innervate the periphery; ii) a humoral

pathway that involves production of proinflammatory

cytokines by macrophage-like cells and posterior diffusion

across the blood–brain–barrier; and iii) cytokine receptors

on endothelial cells of brain venules which mediate local

production of prostaglandins (9, 10). This results in a

neuroendocrine cascade of hormone signals that begins in

the brain and ends with glucocorticoid (GC) secretion

(cortisol in humans and corticosterone in rats, mice, and

other species). When stimulated, neurons in the para-

ventricular nucleus of the hypothalamus release cortico-

tropin-releasing hormone and arginine vasopressin. These

factors cause secretion of adrenocorticotropic hormone in

the anterior pituitary, which is released into the systemic

circulation causing synthesis and secretion of GCs by the

adrenal cortex (11, 12). The inflammatory response is

mainly terminated by GCs, the end product of HPA axis

activation, by a well-defined mechanism we describe

below (13, 14, 15, 16, 17).
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Glucocorticoids

GCs are key neuroendocrine regulators of the inflam-

matory response. In a neuroendocrine-inflammatory feed-

back pathway, activation of the HPA axis leads to a rise in

systemic GC levels which feedback and control the

inflammatory response. Through this loop, GCs have an

active participation in the interaction between the cellular

components of the immune system and the neuroendo-

crine system, thus assuring maintenance of homeostasis

avoiding excessive inflammatory effects that could be

deleterious (10, 18). GCs are vital hormones that regulate a

wide array of functions. Among others, they regulate

metabolism, the immune response, neuronal survival, and

neurogenesis, so also regulating behavioral function

(11, 19). Thus, GCs are released in response to physical,

emotional, and/or metabolic stress, and their effects serve

as adaptive responses to stressful circumstances.

GCs belong to the steroid hormone family, a group of

small lipophilic compounds derived from cholesterol, its

common precursor. Steroid hormones are generally

grouped according to the receptors they bind and their

biological activity: progestins, androgens, estrogens, and

corticoids. In turn, corticoids can be divided in miner-

alocorticoids, which regulate ion transport, and GCs,

which have a wide variety of activities, including

resistance to stress and immunosuppressive and anti-

inflammatory actions (11, 19). Owing to their lipophilic

nature, steroid hormones can freely diffuse through the

cell membrane and bind to their cytoplasmic receptors. At

the cellular level, the action of GCs is first regulated by

activity of the enzyme 11b-hydroxysteroid dehydrogenase

type 1 (11b-HSD1), which interconverts inactive GCs to

their active counterparts, thus determining activation of

GC before receptor binding. It has been reported that

TNFa and IL1b increase the expression and activity of

11b-HSD1 in mesenchymal stromal cells, and combined

treatment with GCs enhances this effect synergically

(20, 21, 22). This further stimulation of 11b-HSD1

expression by GCs may be a mechanism to selectively

increase local GC action during inflammation (23, 24).

GCs exert their biological effects binding to the gluco-

corticoid receptor (GR), which is a ligand-activated TF that

regulates the expression of target genes, either positively

or negatively (18, 25). In an uninduced state, the GR

resides predominantly in the cell cytoplasm in an

inactivated form as part of a multimeric chaperone

complex, consisting of several heat shock proteins and

immunophilins. This complex keeps the ligand-binding

pocket of the GR receptive to hormone binding and
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inactivates the nuclear localization signal (NLS). Once GCs

bind to the GR, there is a conformational change in the

receptor that allows the GR to dissociate from some

components of the chaperone complex and expose the

NLS, so the GR is able to move freely and translocate into

the nucleus (26, 27). Consequently, ligand-bound GR

gives rise to positive or negative transcriptional effects.
Transcriptional regulation

Promoter activation of GR transcriptional targets can be

elicited by different mechanisms: binding of dimeric,

activating GR into GC response elements (GRE); DNA

binding of the GR in a concerted manner with TFs; or

binding of the GR to a TF by means of a tethering

mechanism. The transactivation results in the expression

of a number of anti-inflammatory proteins such as NF-kB

inhibitor a (IkBa), GC-induced leucine zipper (GILZ), and

dual-specificity phosphatase (DUSP) and IL10 (4, 28).

However, the anti-inflammatory effects of GCs are mostly

mediated via the interference elicited by a monomeric GR

with the transactivation capacity of TFs, such as NF-kB and

AP1, via a tethering mechanism named transrepression

(18, 29, 30, 31). Also, GR can negatively regulate

transcription by competing for an overlapping binding

site (competitive GRE) or via DNA-binding with another

TF (composite GRE), or else sequestering a DNA-bound TF

(25). Thus, several TFs – NF-kB, AP1, Sp1, STAT3 among

others – can work in concert with the GR regulating the

fine-tuning of transcription, either in a positive or

negative manner (32). The most prominent anti-

inflammatory effects of GCs are elicited mainly by

inhibiting the activity of TFs such as AP1 and NF-kB,

which are involved in the activation of proinflammatory

and immunoregulatory genes such as inflammatory

cytokines (e.g. IL1b, IL6, and TNFa), cytokine receptors,

adhesion molecules (e.g. ICAM1, VCAM, and E-selectin),

and chemotactic proteins and thus are indispensable for

the propagation of inflammation (29, 33). All of these

genes have one or more NF-kB and/or AP1-responsive

elements in their promoters (18, 29, 34). Indeed, the first

described anti-inflammatory activity of GCs involving

transrepression was the physical interaction between GR

and AP1 (35), which results in the inhibition of inflam-

matory cytokine IL2 expression (36). NF-kB regulates a

wide array of inflammatory cytokines, such as TNFa and

IL1b. Thus, inhibition of NF-kB activity mediated by GCs

is a main feature of the GR-elicited anti-inflammatory

action (4, 31, 37). It also inhibits NFAT-dependent IL2

transcription, by a mechanism involving the cooperative
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binding between NFAT and AP1 dimers by protein–protein

interaction (38). The main mechanism of the GR action

over these TFs is via the transrepression mechanism: the

activated GR tethers to the TF, modulating transrepression

of the targeted genes, thereby inhibiting gene expression.

The GR does not inhibit the binding of NF-kB or AP1 to

their responsive elements in the gene promoter. Instead,

GR binds proximal to the NF-kB or AP1-binding site and

interacts with these TFs: for example, interaction of the GR

with the C-terminal activation domains of NF-kB p65 is

determinant for its repressive effect on NF-kB-regulated

gene expression (39). The cross-talk mechanism is not

restricted to these well known TFs, but has been expanded

in the past years to other factors including CREB, NFAT,

STAT, T-bet, and GATA-3 (40, 41, 42).
GCs anti-inflammatory effects and
therapeutic applications

The interplay mentioned between cytokines, HPA axis

activation and GCs modulation has an important role in

the control of inflammation, given the fact that the

increase in GCs levels elicited after HPA-axis activation

by proinflammatory cytokines contributes to maintain

homeostasis during immune response (43). A situation

of an excessive tissue inflammation plays a critical role

in the development of chronic inflammatory disorders.

The administration of GC analogs is often employed in the

clinic in situations of unresolved inflammatory processes,

representing the first line of drugs used to help control the

homeostasis of organism in allergic, inflammatory, and

autoimmune disorders (44, 45, 46). It is generally accepted

that the transrepression mechanisms mediated by the GR

sustain the beneficial anti-inflammatory action of GCs,

whereas their side effects are due to direct binding of GR

to responsive promoter elements as depicted before. Along

with this notion, the ideal GC analogs for therapeutic

purposes should be those that have only high transrepres-

sion but very low residual transactivation properties,

therefore, causing minimal side effects. Several steroidal

and nonsteroidal ligands of GR have been reported to have

this dissociated function between transactivation and

transrepressive mechanisms (44, 45, 46, 47). Thus, these

compounds repress activity of not only NF-kB and AP1 but

also other TFs, showing anti-inflammatory and immuno-

supressive activities in vivo (48, 49, 50, 51). However, GCs

can induce gene transcription not only by binding GRE

elements but also in combination with other TFs and via

promoter elements that do not involve GR dimerization

or DNA interaction; therefore, unexpected secondary side
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effects might appear (52). Consequently, the future search

for GR ligands should balance between undesirable

transactivation and efficient transrepressive properties

in vivo (44, 46). Considering the high percentage of GCs

resistance seen daily in the clinical practice, it would be

important to know whether these selective GR modulators

are more efficient than traditional GCs to overcome

resistance minimizing side effects (53).
Hormone receptor modulation for the
control of inflammation

Members of the family of steroid hormones, as is the case

for GCs, have a big influence on a wide variety of

physiological responses, leading to homeostasis, including

maintenance of neuroendocrine circuits, both in health

and disease. These effects are mediated by specific receptor

activation. Steroid receptors are members of the nuclear

receptor (NR) superfamily. They can be grouped into four

classes according to their ligand-binding, DNA-binding,

and dimerization properties: steroid receptors –

progesterone receptor (PR), androgen receptor (AR),

estrogen receptor (ER), mineralocorticoid receptor, and

GR – RXR heterodimers – including retinoic acid receptor

(RAR) and thyroid hormone receptor – and orphan

receptors (54). As previously detailed for the GR, the

other members of the NR superfamily also contribute both

positively and negatively to gene expression after a

stimulus, as well as interacting and interfering with

other signaling pathways (e.g. inhibition of gene acti-

vation by NF-kB or AP1), thus representing an important

regulatory link between the endocrine and immune

system (34). Dysregulation of these processes can lead to

disease. As such, dysregulation of GR, as well as other NRs,

have consequences in the control of inflammation. The

functional interaction between NRs and NF-kB has been

proposed to play a role in tumorigenesis in vivo (55, 56).

Over the past few years, an increasing body of evidence

reveals that NF-kB plays a critical role in tumor develop-

ment. The potential of NRs to modulate the activity of this

widespread TF has been reported and their therapeutic

potential has been illustrated (34, 57).

Treatments targeting each hormone receptor are

generally employed to reduce pathological signaling

through these receptors thereby to inhibit malignant cell

proliferation. Although these treatments are effective

for many patients, resistance is also a common feature of

these therapies (58). Thus, new treatment strategies are

needed in these cases. Specific intracellular modulation of

receptor activity may be one feasible alternative. In this
http://www.endocrineconnections.org
DOI: 10.1530/EC-13-0079

� 2014 The authors
Published by Bioscientifica Ltd
regard, NRs are known to be modulated by different

mechanisms and molecules, involving regulation of its

expression, post-translational modifications, and activity

modulation by coregulators (34, 59, 60, 61, 62).

In this matter, one specific molecule that has caught

the attention of researchers in the last few years is poly

(ADP-ribose) polymerase 1 (PARP1). This long-known

protein is starting to reveal new and exciting functions,

some of them related with endocrine pathologies, by

means of interaction and modulation of NRs activity.
PARP: introduction and transcriptional
regulation

PARP conform a family of 18 proteins that were identified

by homology searching and characterization in silico

(63, 64). Members of this family share a highly conserved

PARP signature motif in the catalytic domain. These

enzymes catalyze the addition of PAR on target proteins.

PAR is a large and negatively charged polymer that works as

a post-translational modification. The cellular content of

PAR is produced by PARP’s catalytic activity, which

polymerizes ADP-ribose units from donor NADCmolecules

on target proteins (65, 66). This modification most likely

occurs on glutamate, aspartate, and lysine residues. There

has been some progress on elucidating the specific sites of

PAR addition (67). The covalent PAR attachment alters the

activity of the modified proteins by means of charge and

steric effects, thus altering protein–protein interactions,

nucleic acid–protein interactions, enzymatic activity, and

subcellular localization (68). The most studied member of

the family is PARP1, a nuclear enzyme with a wide variety of

functions. It was originally described as capable of binding

to damaged DNA and thus become activated, and was

therefore described as an important mediator of the

responses to DNA damage (69). Over the last decade, it

has been shown that PARP1 not only mediates DNA repair,

but it also has important roles in different nuclear

processes such as replication, chromatin remodeling,

transcription, and maintenance of genomic stability (70).

The number of proteins known to be targets of PARP1

enzymatic activity is on permanent growth. It has been

shown that PARP1 modifies histones, TFs, nuclear enzymes,

and nuclear structural proteins. PARP1 parylates histones,

thereby regulating chromatin structure (71). It also

parylates a number of DNA repair proteins such as p53

(72). PARP1 has also been reported to parylate and alter

the function of numerous TFs, including AP1, NF-kB,

CTCF, and YY1 (73). Thus, the cellular functions of

PARP1 are ultimately defined by protein parylation.
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However, functions of PARP1 are not only mediated by

its intrinsic activity of parylation but also due to association

with different proteins, such as transcription-related factors

(73). In particular, the role of PARP1 in gene regulation

has received considerable attention (73, 74, 75), and it

has been established that it can modulate gene expression

under basal, signal-activated, and stress-activated

conditions at different levels: i) modulating chromatin

structure, ii) serving as a coregulator with DNA-binding TFs,

and iii) modulating DNA methylation (70).
Modulation of chromatin

The first reported effects of PARP1 on the genome were

chromatin structure modulation and parylation of

histones (76, 77) and were afterwards validated (78, 79).

PARP1 binds to nucleosomes and interacts dynamically

with different types of chromatin domains, thereby

modulating chromatin structure (71). Activation of

PARP1 promotes chromatin decondenzation and restor-

ation of transcription (78). PARP1 localizes to the

promoters of almost all actively transcribed genes (80),

suggesting a role in promoting the formation of chromatin

structures that are permissive to transcription (78, 80, 81).
Transcriptional coregulation

Regulation of gene expression by PARP1 may also be

accomplished by serving as a coregulator, acting together

with the transcription machinery, other coregulators with

enzymatic activities, and with sequence-specific DNA-

binding TFs, such as NF-kB, Elk1, NFAT, Oct1, and Sox2.

Interestingly, PARP1 can interact with NRs such as ER, PR,

and RAR (65, 71, 73). The effect of PARP1 over these

activators may be stimulatory or inhibitory and may

require or not its enzymatic activity. PARP1 is enriched

around the transcription start sites of the genes that are

actively expressed, therefore is an excellent marker of

active promoters. Remarkably, PARP1 was previously

identified as the basal TFIIC (82) that coregulates RNA

polymerase II preinitiation complex formation before

TFIID binding, therefore enhancing gene transcription.

Also, several reports have shown that PARP1 is responsible

for assembling coregulator complexes at the promoter of

target genes, functioning as a scaffold protein, without

binding to DNA or requiring its catalytic activity,

promoting the recruitment of other coregulatory enzymes

required for transcription (70). For example, in response to

proinflammatory stimuli, PARP1 facilitates direct physical

interaction and functional cooperation between the
http://www.endocrineconnections.org
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acetyltransferase p300/CBP, the p50 subunit of NF-kB

and the mediator complex (83, 84). In other cases, PARP1

has been described as a promoter-specific ‘exchange

factor’, releasing inhibitory factors and recruiting stimu-

latory factors to TFs bound to these promoters (81, 85).
Modulation of DNA methylation

It has been shown that PARP1 can affect the methylation

of genomic DNA (86, 87). PARP1 regulates both the

expression and activity of the DNA methyltransferase,

Dnmt1 (88), and it was also described to directly interact

with Dnmt1 after attachment of new PAR polymers,

inhibiting Dnmt1 DNA methyltransferase activity (89).
PARP1 and neuroendocrine mediators

PARP1 has been linked with the regulation of the activity

of several NRs, specially in the modulation of endocrine

processes. Particularly, it has been shown that PARP1 is

involved in several NRs-mediated transcription (Fig. 1).

PARP1 acts as a coregulator in the concert of a wide variety

of transcriptional regulators that give temporal and spatial

specificity to gene expression.

PARP1 has been described to be recruited to chromatin

areas surrounding the estrogen response element present

in the pS2 promoter in 17b-estradiol (E2)-treated MCF7

cells as part of a specific coactivator complex recruited to

the liganded ERa (81). In this regard, a rapid increase in

PARP1 recruitment together with coactivators and Pol2

and the elimination of corepressors in response to E2 was

reported, events that were necessary for transcriptional

activation. Furthermore, pharmacological or genetic

inhibition of PARP1 blocked ERa-dependent gene

expression (81).

Another study (85) focused on PARP1 effects over RAR-

dependent transcription. This study demonstrated a

functional and physical interaction between PARP1 and

RAR leading to RAR-mediated transcriptional activation,

thus concluding that PARP1 is an essential coregulator for

RA-induced gene expression in vivo. More specifically,

PARP1 is a cofactor that makes the switch from inactive to

active RAR-dependent promoters. This switch is determi-

nant for the transcriptional status and constitutes an

additional mechanism for gene regulation.

PARP1 coregulation of NRs activity has been shown to

have a role on cancer growth and progression of endocrine

tumors. In this line, PARP1 is involved in prostate and

breast cancer, by means of modulating AR and PR

respectively. In a recent report (90), it was shown that
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Figure 1

PARP1 regulation of nuclear receptors (NRs) in endocrine tissues. PARP1

regulates NRs transcriptional activity through different mechanisms

depending on cell context. PARP1 induces the transcriptional activity of

ligand-activated ER in the breast cancer cells by recluting transcriptional

coactivators to ER target genes. PARP1 modulates AR–chromatin

interaction in prostate cancer cells, thereby increasing AR-mediated

transcription, in a parylation-independent manner. PARP1 induces

ligand-activated PR-mediated transcription in breast cancer cells in a

parylation-dependent manner. The effect of PARP1 on GR-mediated

transcription in the neuroendocrine system has yet to be addressed.
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PARP1 has protumorigenic effects on positive-AR prostate

cancer cells. PARP1 seems to be recruited to AR-dependent

promoters, where it promotes AR occupancy and tran-

scriptional function, by modulating AR–chromatin

interaction. PARP1 inhibition reduced prostate-specific

AR target genes. It is important to note that PARP1

regulation of AR activity is not attributable to parylation.

There also seems to be a correlation between prostate

cancer progression and PARP1 enzymatic activity, because

this activity is enhanced on advanced prostate cancers.

Furthermore, PARP1 activity is required for tumor cell

growth in vivo and its targeting potently suppresses tumor

cell proliferation, suggesting that PARP1 can be targeted

on human prostate cancer to suppress tumor growth (90).
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PARP1 also has a role in breast cancer, mediated by its

interaction with the PR. It was first discovered that PARP1

was part of a protein complex that could interact in vitro

with ligand-activated PR and assist on DNA binding (91).

When the effects of PARP1 over the PR were evaluated in

breast cancer cells treated with progestin, there was an

enhanced PARP1 enzymatic activity (92). PARP1 activation

also led to a global increase in PAR levels, essential for the

modulation of the majority of progesterone-regulated

genes. Inhibition of PARP1 blocked the downstream

activation or repression of 85% of progestin target

genes. As a consequence, given the multiplicity of genes

affected, PARP1 could be a potential target for the pharma-

cological management of breast cancer. Along this line,
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new therapeutic approaches targeting breast cancer which

involve PARP1 have been proposed (93, 94).

As mentioned, PARP1 interacts and regulates multiple

NRs involved in endocrine maintenance. Interestingly,

the putative interaction of PARP1 with the GR has not

been explored yet. This interaction could be relevant in

the maintenance of neuroendocrine circuits as PARP1

could be modulating the effects of the GR (Fig. 1).

The review highlights that PARP1 is important in the

inflammatory response, hence the coregulation with

the GR might be relevant for their function.
PARP1 in inflammation

As described previously for the GR, immune and

inflammatory responses are the best-characterized PARP1-

dependent biological responses (95). PARP1 is heavily

automodified upon bacterial infection (96) and Parp1K/K

mice have proven to be resistant to inflammation in

different experimental models, such as LPS-induced septic

shock and streptozotocin-induced diabetes (97, 98). Inter-

estingly, PARP-dependent proinflammatory responses

are not limited to cells of the immune system: PARP is

implicated in the pathological proinflammatory responses

to stress in cells of the CNS as well. In contrast to the well

characterized GR anti-inflammatory action, PARP1 acti-

vation in glial cells mediates the function of TFs that control

the expression of genes of the inflammatory response,

such as NF-kB and AP1. In models of cerebral ischemia,

expression of genes such as IL6, IL1B, COX2, iNOS, and

ICAM1 is elevated, while in PARP1 knockout mice or after

the administration of PARP inhibitors, expression of these

genes is significantly reduced (99, 100, 101, 102, 103).

These findings led to the notion that PARP1 is an

important mediator of inflammatory responses on cells

subjected to different stimuli. In this aspect, it was already

recognized almost two decades ago that PARP1 inhibitors

haveanti-inflammatoryproperties (104),being this a subject

of still intense research. A considerable number of TFs

known to be involved in the regulation of expression of

inflammatory mediators have been shown to interact with

PARP1. The first one to be identified was NF-kB (105, 106).

Upon PARP1 deletion, gene expression induced by NF-kB

was abolished, thus reducing proinflammatory cytokines

(TNFa and iNOS) expression after LPS injury (106). These

effects were also observed in the CNS. PARP1K/K glial cells

showed a diminished DNA-binding activity of NF-kB, with

the subsequent reduction in expression of proinflammatory

mediators includingIL6, IL1b, TNFa,COX2,and iNOS(100).

Afterwards, other TFs and cofactors that are involved in the
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regulation of inflammation were found to be modulated

by PARP1, such as AP1 (97, 107), NFAT (108, 109), SIRT1

(110), and Sp1 (100). The precise mechanism of regulation

of these TFs is still a matter of intense research, being

a common point the fact that PARP1 activity enhances

DNA-binding capacities of TFs. By regulating their

activity, PARP1 ultimately regulates the expression of

inflammatory cytokines such as TNFa, IL1b, IL6, and IL12,

which in turn activate the expression of other cytokines,

chemokines, iNOS, and COX2, suggesting that PARP1

plays an important role in several pathophysiological

inflammatory responses.

As described earlier, PARP1 regulates transcription in a

wide array of systems, including immune cells, endocrine

tumors, and glial cells. As such, PARP1 involvement in

neuronal and glial physiology is proving to be quite

important. The relevance of PARP1 in the CNS is receiving

considerable attention. PARP1 has been shown to be

involved in different injury mechanisms affecting

neurons. As previously described for GC-mediated apop-

tosis (30), it is already recognized that PARP1-mediated

cell death is one of the dominant cell death process in

many disease settings (111). PARP1 activation has been

detected in various neurodegenerative disorders (112),

with a role also identified for the GR in these pathologies

(113, 114). It has been shown that elevated PARP1

activation levels are sufficient for neuronal death (115)

and astrocyte death (116). In more chronic CNS disease,

such as experimental autoimmune encephalomyelitis

(EAE) model where there is an important inflammatory

component, PAR accumulation has been found not only

in astrocytes surrounding demyelinated EAE plaques but

also to a lesser extent in microglia, oligodendrocytes, and

neurons (117). Finally, autopsy samples from Alzheimer

patients showed PAR accumulation in cortical pyramidal

neurons and in astrocytes, suggesting PARP1 activation,

with no PAR accumulation in microglia (118). PARP1

activation drives neuronal death elicited by fragments of

peptide b-amiloid, implicating PARP1 in the pathogenesis

of Alzheimer’s disease (119). Astrocytic PARP activation

seems to be quite a common feature of chronic neuro-

degenerative disorders, suggesting a key role for PARP1 in

these inflammatory diseases.

Taking into account the data reviewed so far, both

PARP1 and GR share common pathways. To explore the

putative interaction between these two molecules, one

interesting pathway to explore would be their opposing

role in the transcription of proinflammatory cytokines, by

means of antagonically regulating TFs activity such as

NF-kB and AP1 (Fig. 2).
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Figure 2

GR and PARP1 in inflammation. GR and PARP1 regulate inflammatory

responses. GR inhibits the expression of inflammatory mediators through

the modulation of the transcriptional activity of inflammatory transcrip-

tion factors and expression of anti-inflammatory genes. On the contrary,

PARP1 induces the expression of inflammatory mediators through

stimulation of the transcriptional activity of inflammatory transcription

factors. The interplay between GR and PARP1 in the final outcome of

inflammatory responses remains to be elucidated.
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For example, interaction between PARP1 and GR may

be involved in anti-inflammatory mechanisms driven by

the GR. Upon ligand binding and traslocation to the

nucleus, GR may reduce inflammatory effects mediated by

PARP1 on NF-kB. One feasible mechanism for this could be

that GR interaction with PARP1 reduces its activity on

NF-kB or that GR competes with PARP1 for NF-kB binding.

This last alternative is rather appealing, since it would

provide a fast fine-tuning for NF-kB-mediated transcrip-

tional regulation of inflammatory cytokines. Another

possibility is that PARP1 may be modulating GR activity

over NF-kB activation. This effect may be accomplished

by means of GR parylation or physical interaction

between these two molecules. These alternatives remain

to be explored.
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Conclusion

The neuroendocrine system has a determinant role in the

control of inflammatory mechanisms, in order to allow

the organism to return to homeostasis and therefore avoid

pathological situations of exacerbated inflammation. In

this context, both GR and PARP1 have prominent

antagonic roles in the regulation of inflammatory

processes. Although PARP1 and NRs have been reported

to functionally interact, there have not been reports so far

showing interaction between PARP and GR. It would be of

interest to address this issue, in order to confirm either a

direct or indirect interaction as it is the case between

PARP1 and other NRs, where PARP1 is a component of the

transcriptional complex that mediates steroid-driven
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transcription. Considering that PARP1 and GR do share

common targets involved in inflammatory responses, the

possibility that PARP1 may have a role in the regulation of

cytokine and other inflammatory mediators expression

mediated by GCs at the CNS level arises. In this context, it

would also be interesting to explore whether through the

mechanisms discussed above PARP1 may be playing a role

in mediating the well-known patient GC resistance in

inflammatory disease. The understanding of the molecular

mechanism leading to the antagonic effect of these two

regulators may provide novel targets in the neuroendo-

crine control of inflammation.
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