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T-cell receptors (TCR) mediate immune responses recognizing peptides in complex with

major histocompatibility complexes (pMHC) displayed on the surface of cells. Resolving

the challenge of predicting the cognate pMHC target of a TCR would benefit many

applications in the field of immunology, including vaccine design/discovery and the

development of immunotherapies. Here, we developed a model for prediction of TCR

targets based on similarity to a database of TCRs with known targets. Benchmarking the

model on a large set of TCRs with known target, we demonstrated how the predictive

performance is increased (i) by focusing on CDRs rather than the full length TCR protein

sequences, (ii) by incorporating information from paired α and β chains, and (iii) integrating

information for all 6 CDR loops rather than just CDR3. Finally, we show how integration

of the structure of CDR loops, as obtained through homology modeling, boosts the

predictive power of the model, in particular in situations where no high-similarity TCRs are

available for the query. These findings demonstrate that TCRs that bind to the same target

also share, to a very high degree, sequence, and structural features. This observation has

profound impact for future development of prediction models for TCR-pMHC interactions

and for the use of such models for the rational design of T cell based therapies.
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INTRODUCTION

A central checkpoint to unleashing a cellular immune response is the recognition of peptides
presented by major histocompatibility complexes (pMHCs) by T cell receptors (TCRs). T
cells undergo thymal selection. During this selection, T cells with TCRs that either cannot
bind pMHCs (negative selection) or bind MHC molecules presenting self-peptides (positive
selection) are removed. This process results in a repertoire of T cells with highly specific
and selective TCRs, and it is estimated that each TCR can only bind a few thousand (1, 2)
distinct pMHC complexes (of a total of more than 206 possibilities, assuming up to 3 MHC
anchor positions). TCRs are composed of two subunits: α and β. Each subunit has three
loops called complementary determining regions (CDRs) that directly interact with pMHCs.
Structural studies from the last 30 years have shown that CDR3 loops usually present the
most discriminative interactions with peptides, meanwhile CDR2 loops interact mainly with the
MHC and CDR1 loops tend to present soft interactions with both peptide and MHC (3–5).
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The vast diversity of TCRs allows the recognition of an immense
number of different antigens. In the last few years, high-
throughput profiling of TCRs have become of routine use
and it has been shown that some signatures can be used to
describe in general terms the interaction between TCRs and the
cognate pMHC complex (6–11). Some studies have demonstrated
changes in T-cell populations after several stages of vaccination
or exposure to diseases using TCR sequencing (12–16). The
specificity of a TCR is most often described using only CDR3
β loop sequences. CDR1 and CDR2 β loops can be included
by sequencing TCR β V and J germline regions, thus the full β

sequence has also been used to describe the set of TCR signatures
(8, 17). Further, the pairing of β with α sequences can be used
to allow for more accurate description of the TCR binding
specificities (10, 11). This pairing can be obtained through
statistical or single cell techniques allowing the most complete
modeling of TCR:pMHC restrictions (18–22).

Knowing which pMHC a TCR would bind is a key component
toward understanding themechanisms of T cell immunity.While
this can be achieved experimentally, it is an expensive, time-
consuming, and low-throughput procedure (23–26). Given this,
it would be of great interest to develop means to predict the
cognate pMHC target(s) of a TCR based on its sequence alone.
At present, however, resolving this task remains a substantial
challenge (10, 11, 27). Recently, machine learning approaches
have been described (28, 29) that use sequence-based strategies to
infer TCR cognate target, but the performance of these methods
is severely limited by the very small volume of existing data
associating TCRs with their cognate pMHCs target.

In addition to sequence-based methodologies, approaches
based on structural information have also been suggested (30–
32). As the protein structure often is conserved despite of
sequence divergence (33), TCR structure modeling could be
helpful to compare binding specificities between TCRs with
limited sequence similarity. Some studies have shown how 3D
models of the structure of the TCR dimer can be used to
complement sequence similarity information and in this way
improve our understanding of TCR binding specificities (34–36).
Several studies have also achieved promising results in modeling
structurally TCR:pMHC complexes and using force field energy
functions to assess binding between TCRs and their cognate
pMHCs (37–41).

Here, we seek to expand these analyses to further address
the issue of TCR similarity and the potential impact on this
similarity by the different sequence and structural properties
of the TCR and CDR loops. We do this in the context of
predicting the cognate pMHC target of a TCR using a simple
inference-based approach: for a given TCR query, we search
a database of TCRs with known pMHC target(s), rank each
entry using a measure of similarity, and finally predict the TCR
target based on the most similar pMHC in the database. To
develop and benchmark this approach, we define a training set
using mouse TCRs binding peptides presented by H-2Db and
H-2Kb molecules. Next, the model is applied to an independent
evaluation dataset of TCRs that bind peptides presented by HLA-
A∗02:01. We analyze the effect of predicting TCR targets using
only CDR3 β loop sequences compared to using both CDR3s,

all CDR loops from the β chain and CDR loops from both the
α and β chains in the similarity measure. We explore the effect of
combining differentially the CDR sequence similarities to boost
the prediction performance of our method. Exploiting the fact
that full-length paired TCR sequences allow the construction
of TCR homology models, we also build TCR dimer structures
and predict TCR binding by the means of CDR loops structural
similarity. Next, we investigate how such structural information
can complement sequence information to improve TCR target
prediction, in particular when no reference sequence with high
similarity is available for the target annotation.

MATERIALS AND METHODS

Benchmarks for Mouse and Human Alleles
A data set of TCRs with known binding target and peptide MHC
restriction to HLA-A∗02:01, H-2Db, or H-2Kb was obtained
from VDJdb (42). Only entries with paired α and β CDR3
loop sequence and corresponding V and J regions annotations
were included. Next, to construct full length α and β TCR
sequences, V and J sequences were downloaded using their
accessions codes from IMGT/GENE-DB (http://www.imgt.org/
genedb/) and CDR3 segments extended by aligning the four
residues of the C-terminal end of V region to the four N-terminal
residues of CDR3 loop and aligning the four residues of the N-
terminal end of J region to the four C-terminal residues of CDR3
loop, for both α and β chains. Next, cross-reactive TCRs (the
same α and β sequences assigned to bind multiple and distinct
pMHCs) were removed. Redundant entries were removed by
clustering at threshold of 99% over the average sequence identity
between α and β subunits, and selecting the centroid of each
group. An overview of the benchmark construction is shown
in Table 1 and the number of TCRs for each pMHC is detailed
in Table S1. Starting from 3,112 entries, the final benchmark
consisted of 984 TCRs binding to H2-Db and H2-Kb, and 520
that bind HLA-A∗02:01. We used these two datasets for different
purposes. The mouse data set was used to develop the best
prediction setup, and the human data set was used to evaluate
the quality of the model.

TCR Structural Modeling and Loop
Detection
The structure of each TCR was modeled using LYRA (35). For
each TCR, templates with more than 70% average sequence

TABLE 1 | Paired TCRs benchmark statistics.

# Of paired TCRs with known pMHC target 3,112

# Of paired TCRs with known pMHC target excluding

cross-reactive TCRs

3,064

# Of paired TCRs binding HLA-A*02:01 831

# Of paired TCRs binding H2-Db 721

# Of paired TCRs binding H2-Kb 999

# Of paired TCRs binding HLA-A*02:01 excluding redundancy 520

# Of paired TCRs binding H2-Db excluding redundancy 466

# Of paired TCRs binding H2-Kb excluding redundancy 482
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identity between α and β were included in the blacklist form field
of the LYRA server to exclude them from the modeling process.
Next, the LYRA output was parsed to detect CDR1, CDR2, and
CDR3 loops for both α and β chains.

TCR Similarity Measures
Three similarity measures were used to identify the cognate
pMHC of each TCR: (i) For the global sequence similarity, the
sequence identity (SeqID) was calculated separately for the α

and β sequences using blast2seq to align the sequences, and
was defined for each chain by dividing the number of identical
residues by the minimum length between the two aligned chains.
(ii) For the CDR sequence similarity, the similarity was calculated
by comparing two TCRs using the CDR loops as defined by LYRA
annotation.We used the CDR1, CDR2, and CDR3 loops from the
α and β subunits. We calculated a similarity between CDRs using
the alignment-free Kernel function defined by Shen et al. (43),
based on the similarity between all k-mers contained within the
sequence of two loops. Briefly, this function is defined as follows:
Let B be a BLOSUM62 based similarity measure between two
amino acids, as defined by Shen et al. (43) appendix, a similarity
between two amino acid sequences u and v of the same length k
can be defined as:

K (u, v) =

k
∏

i=1

B (ui, vi)

Based on this, the sequence similarity between two CDR loops f
and g possibly with different lengths as can be defined as:

cdr
(

f , g
)

=
∑

u ⊂ f , v ⊂ g
|u| = |v| = k

k = 1, ..., min
(∣

∣f
∣

∣ ,
∣

∣g
∣

∣

)

K (u, v)

Then, we normalized this relation as follows:

CDR
(

f , g
)

=
cdr

(

f , g
)

√

cdr
(

f , f
)

cdr
(

g, g
)

This CDR similarity measure is normalized between 0 and 1
and gives higher values for similar sequences. Finally, (iii) for
similarity at structure level, we computed the Root Mean Square
Deviation (RMSD) between LYRA detected CDR loops. To do
this, Superimposer module of Biopython library was used to
structurally aligned all the α and β CDR loops simultaneously
using the LYRA numbering scheme to match alpha carbon of
the loops. After the alignment, the RMSD between pairs of CDR
loops was computed using the following procedure:

proc ComputeRMSD(cdrloop1, cdrloop2):
RMSD, N = 0, 0
for alpha_carbon1 in cdrloop1:

alpha_carbon2 =

lookup_nearest_ca(alpha_
carbon1, cdrloop2)

alpha_carbon_prime =

lookup_nearest_ca(alpha_
carbon2, cdrloop1)

if alpha_carbon1 =

alpha_carbon_prime:
d =

euclidean_distance
(alpha_carbon1,
alpha_carbon2)

RMSD + = d2

N + = 1
return (RMSD/N)1/2

TCR Target Prediction and Pipeline
Validation
As depicted in Figure 1, a TCR query is defined as a pair α and
β chains. The target of a query TCR, is predicted from the most
similar TCR in a database of TCRs with known binding targets.
Both query and database TCRs were first modeled using Lyra to
identify the CDR loops and the structure of the folded TCR. As
shown in Figure 1B, we tested the performance of the proposed
pipeline in scenarios of varying difficulty when no similar TCRs
are available to infer the target of the query. To achieve this,
before searching in the database, we removed entries havingmore
SeqID (averaged between α and β chains) with the query than a
given cutoff. In order to analyze the performance as a function
of the maximum SeqID allowed, we vary this threshold from 70
to 99%. After removal of similar entries, TCRs are ranked with
alternative loop weighting schemes with the syntax (1:1:1–1:1:1),
where the values in parentheses define the relative weight of each
loop. The first triplet identifies the three CDR alpha loops and
the second triplet the CDR beta loops. Finally, we assign a pMHC
target to the query using the top ranked TCR. We evaluated
the pipeline performance at each configuration using Adjusted
Rand Index (ARI). ARI is a corrected-by-chance generalization
of Matthew’s Correlation Coefficient for cases where the data has
more than two labels (44, 45). ARI has a value of 1 for perfect
predictions, and a value of 0 for the random model. In situations
with many labels, the ARI value will often drop substantially
below 1, even if a minor subset of predictions is misclassified.
Calculations of ARI index were performed using scikit-learn
python library.

RESULTS

In this work, we describe a framework to predict the peptide-
MHC (pMHC) binding target of a TCR query based on inference
from TCRs with known pMHC binding preference (Figure 1A).
A query TCR is scored against a database of TCRs with known
binding preference, and the pMHC target is inferred from the
top-scoring hit. In a first approach, the scoring is based on
sequence similarity over the six CDR loops (for details see
methods), and in a second model, structure similarity is added
to complement TCR linear sequence information.

To assess the impact of the different loops on the predictive
power of the model, a series of different weighting schemes were
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FIGURE 1 | TCR binding prediction and assessment. (A) TCR binding prediction pipeline using different similarities. A TCR query is searched against a database of

CDRs of different TCRs. Similarities (CDR and RMSD) are calculated as described in methods. Sequence similarity values for each CDR loop are shown in the table

above, and RMSD values for structural similarity are shown in the table below. (B) The prediction pipeline was assessed annotating each TCR removing TCRs sharing

sequence similarity above a define threshold with the query. Both CDR and RMSD similarities were tested with different weights (for details see text). Performance was

assessed using Adjusted Rand Index (ARI).

evaluated (Figure 1B). In the simplest scheme, only the CDR3 β

loop was included in the model [i.e., weighting scheme (0:0:0–
0:0:1)]. Secondly, we included the full β sequence by adding the
CDR1 and CDR2 β loops with weights (0:0:0–1:1:1). In the third
model, both α and β subunits were included using either an
equal weighting scheme (1:1:1–1:1:1), a scheme with increased
CDR3 loops relative weight [(1:1:2–1:1:2) or (1:1:4–1:1:4)], or
a scheme with differential weighting between β and α subunits
[(1:1:1–2:2:2) or (1:1:1–4:4:4)]. In the case of the global sequence
similarity (see methods), a weighting scheme combining α and
β subunits was used where SeqID(0:1) stands for using only
β subunit, SeqID(1:1) for using both α and β subunits and
SeqID(1:2) for doubling the β weight over α.

The results of benchmarking these different models on the
mouse benchmark data set are shown in Figure 2A. Here,
the performance measured in terms of the Adjusted Rand
Index (ARI) of each model is shown as a function of the
maximum sequence identity (Max SeqID) allowed between the
query TCR and TCR database (for details see methods). An

example of this is given in Figure 2B. Here, the confusion
matrix underlying the calculation of ARI is shown for the
model CDR(1:1:1–1:1:1) in the situation allowing Max SeqID
of 99% corresponding to the extreme right point in the
performance curve. The corresponding ARI value is 0.35 and the
accuracy 66%.

The performance of each model was tested for a range of
maximum sequence identity allowed between the query TCR
and TCR database (Max SeqID%) from 70 to 99%. As shown in
Figure S1, the minimum SeqID% for each TCR to other TCRs
binding the same pMHC is below 32%, which means that even
if we filter out TCRs that share more than 70% SeqID when we
search the TCR database, we will always, for each query, find
at least one other TCR sharing the given target. Predicting the
correct cognate target should therefore be possible in all cases.
Additionally, we evaluated the performance of a random model,
assigning a random TCR in the database search and obtained,
as expected, an ARI value close to zero for all Max SeqID
thresholds (Figure S2).
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FIGURE 2 | Prediction performance for H-2 (mouse) benchmark. (A) TCR binding prediction performance as a function of Max SeqID for different similarities and

weighting schemes. Increasing CDR similarities from using only CDR3 β, CDR(0:0:0–0:0:1) to all α and β CDR loops, CDR(1:1:1–1:1:1). When we use only β chain we

filter sequences using SeqID(0:1) and when we predict using both chains we filter sequences using SeqID(1:1). Error bars are estimated using bootstrap with 1,000

iterations on the final prediction outcome. (B) Confusion matrix of the prediction outcome used for ARI calculation. Predictions performed using the model with equal

weights for each CDR loop [model CDR(1:1:1–1:1:1)] using a Max SeqID TCR similarity threshold of 99% have an ARI value of 0.35. Rows and columns are labeled

with the MHC mouse allele and the first three letters of the peptide. Green circles are correctly predicted TCRs, light green circles represent correctly predicted MHC

but wrong peptide, and red circles are for wrong MHCs. Numbers <5 are omitted for clarity.

First, we investigated how the predictive performance of the
framework was improved as the sequence information included
in the model was increased. The prediction model defined by
only including the CDR3 loop of the β chain [model CDR(0:0:0–
0:0:1)] had improved performance compared to the model using
SeqID with the whole β sequence [SeqID(0:1)]. Adding the CDR1
and CDR2 loops from β subunit to the model [CDR(0:0:0–1:1:1)]
led to a general drop in performance compared to using the
CDR3 alone (Figure 2A). Only for very high similarities (Max
SeqID>97%) the performance improved when adding these
loops in addition to CDR3, suggesting that incorporation of
CDR1 and CDR2 loop similarities might be detrimental to the
model. This is further illustrated in Figure S3, where we show
the confusion matrices for the two models model CDR(0:0:0–
0:0:1) and CDR(0:0:0–1:1:1) evaluated at a Max SeqID threshold
of 92%. This figure clearly demonstrates that the fraction of cases
with wrongly predicted MHC target is increased for the model
including the CDR1 and CDR2 loop information.

Next, we added the paired α sequences to the model. Using
the complete α and β sequences [model SeqID(1:1)] led to an
improved performance compared to using only the β sequences
[model SeqID(0:1)]. Likewise, the model using the α and β

CDR3 loops together (model CDR(0:0:1–0:0:1) outperformed the
model including only CDR3 β model [CDR(0:0:0–0:0:1)]. This
model also outperformed the model including the two full length
sequences [model SeqID(1:1)]. When including the CDR1 and
CDR2 from both α and β subunits using a (1:1:1–1:1:1) weighting
scheme, we observed a general improvement of performance

compared to using only the paired CDR3 loop sequences, but
also here, we observe a small drop in performance around a Max
SeqID of 91% suggesting that a differential weighting would be
needed over the CDR3 loop similarity.

Up to this point, we have analyzed the predictive performance
as a function of maximum SeqID% allowed between the query
TCR and any entry in the TCR database. This approach could
clearly be unfair to models based on full length sequence identity
such as SeqID(1:1), since we exclude possible database entries
based on the same measure used to define the best database
target. To assess to what degree this is the case, we assessed
the prediction outcome also as a function of CDR3 similarity,
incrementally including more similar CDR3 α and β loops while
predicting using different weights (Figure S4). This benchmark
confirmed the earlier conclusions that model CDR(1:1:1–1:1:1)
outperformed all other models including SeqID(1:1).

Adjusting Weights to CDR Loop Similarity
To further investigate the relative contribution of each CDR
loop, we investigated differential weighting schemes for CDR3
over CDR1 and CDR2 loops (Figure 3). The schemes are defined
using a (1:1:X−1:1:X) scheme varying the relative weight on the
CDR3 loop or a (1:1:1–X:X:X) scheme varying the relative weight
of the β over the α chain.

We found improvements in the prediction when different
weights were applied to the CDR3 loop, and the optimal
performance was found for the model CDR(1:1:4–1:1:4). This
model outperformed both the flat model [CDR(1:1:1–1:1:1)],
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FIGURE 3 | Improving weighting schemes and adding structural similarity.

Prediction performance as a function of Max SeqID using different weights for

CDR loop similarities. Adding structural similarity CDR+RMSD with W = 0.9.

Error bars are estimated using bootstrap with 1,000 iterations on the final

prediction outcome.

the model with double relative weight on CDR [CDR(1:1:2–
1:1:2)], and demonstrated a monotonic increased in performance
from low to high sequence identities. Moreover, doubling and
quadrupling the β subunit weight over the α subunit was
investigated [models CDR(1:1:1–2:2:2) and CDR(1:1:1–4:4:4)]
but these weighting schemes consistently led to decreased
predictive power compared to the flat model [CDR(1:1:1–1:1:1)].
Other weighting schemes were investigated but did not lead
to consistent improvements in the prediction accuracy (data
not shown).

Adding Structural Modeling Improves TCR
Cognate Target Prediction
We next extended the models to also include structural
information. We constructed TCR models using LYRA with
templates sharing no more than 70% SeqID with the target to
avoid the effect of overfitting in the modeling process. Then,
we calculated CDR loops structural similarity by computing
the RMSD between two given TCRs and used these loops
similarities to predict each query (for details see Figure 1

and methods). By itself, the structure-based model performed
worse than the sequence-based approach described above
(Figure S5A). Furthermore, the flat model RMSD(1:1:1–1:1:1)
outperformed the model RMSD(1:1:4–1:1:4) with differential
CDR loop weighting (Figure S5A). This observation is most
likely due to the fact that CDR3 loops in general are modeled
with relative low accuracy, as shown previously by Gowthaman
et al. (36), limiting the predictive signal contained within the
structure of these loops. Finally, we screened relative weights

for combining structural and sequence information in a single
model. We integrated sequence and structural similarities with a
weight W in the linear model defined below:

CDR+ RMSD = W∗[1− CDR(1 : 1 : 4− 1 : 1 : 4)]

+(1−W)∗ RMSD(1 : 1 : 1− 1 : 1 : 1)/5.0

Screening different values of W, the optimal performance was
W= 0.9 (Figure S5B). The performance of this combined model
was only slightly better than the best sequence based model
CDR(1:1:4–1:1:4), with a gain more pronounced for lower values
of Max SeqID (Figure 3). We assessed the significance of this
performance gain using bootstrapping, and we found the gain to
be statistically significant only at SeqID= 70% (Figure S6).

Independent Model Evaluation on Human
TCR Targets
We now turned to the HLA-A∗02:01 data sets to validate
the prediction pipeline and the conclusions obtained from the
mouse data. As also observed in the mouse benchmark, the
performance using SeqID(1:1) was lower than using CDR
similarities (Figure 4). Consistently, the differential weighting
scheme (1:1:4–1:1:4) resulted in better predictions compared to
using the (0:0:1–0:0:1) and (1:1:1–1:1:1) schemes. We assessed
the CDR+RMSD model combining sequence and structural
information using the relative weight W = 0.9 optimized on the
mouse data, and found a significantly (p < 0.04, bootstrap test)
improved performance for Max SeqID<72% compared to the
CDR(1:1:4–1:1:4) model (Figure S6). ForMax SeqID in the range
75%<SeqID<90%, model CDR+RMSD slightly outperformed
the sequence based CDR(1:1:4–1:1:4) model, but this difference
was not statistically significant (p = 0.4, bootstrap test). As
expected, the addition of structural information at higher value of
Max SeqIDs (Max SeqID>90%), did not improve the predictive
power of the model.

As a final remark, we investigated the distribution of
prediction accuracy for each peptide at Max SeqID=70% for
the combined CDR+RMSD model (Figure 4B). It is apparent
that the prediction quality varies substantially between peptides.
This variation is, to a very high degree, related to the number
of TCRs sharing the given peptide target. For instance, the
model performs rather poorly for the peptides CVNGSCFTV
and YVLDHLIVV, both characterized by a very small number of
TCRs sharing them as target. The CINGVCWTV, ELAGIGILTV,
GLCTLVAML, and NLVPMVATV entries all share 20 or more
TCR entries and the model obtained accuracy values between 40
and 60%. Consistently, for themost populated cases GILGFVFTL
and LLWNGPMAV with more than 100 TCRs sharing each
peptide, the model obtained an accuracy of 72% (103/144) and
85% (120/142), respectively. These observations underline, as
expected, the very high dependency of the accuracy of the
proposed modeling framework to the number of TCRs in the
database known to bind a given peptide. It also suggests that
increasingly accurate predictions will be achievable as the space of
pMHC-TCR sequences becomes populated by new experimental
data documenting these interactions.
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FIGURE 4 | Validation of pipeline performance on HLA (human) benchmark. (A) Prediction performance as a function of maximum sequence identity for different

similarity models and relative weighting schemes. The combined model CDR+RMSD integrating structural similarities was made using W = 0.9 (see text). Error bars

are estimated using bootstrap with 1,000 iterations on the final prediction outcome. (B) Confusion matrix for the CDR+RMSD model at a Max SeqID threshold of 70%

(with an ARI of 0.41). Green circles are correctly predicted peptides and yellow circles represent wrong peptide predictions. Numbers lower than 5 are omitted for

clarity. In parentheses is displayed the average number of TCRs that bind the same peptide and remain after removing entries with Max SeqID > 70%.

DISCUSSION

The activation of T cells depends on specific interactions
between TCRs recognizing peptides presented by MHC. These
interactions depend almost exclusively on CDR loops. Generally,
analyses of T cell repertoires have been oriented to TCR
β chains because obtaining the paired α sequence is more
difficult and costly. Further, clonal expansion is often analyzed
by the means of sequencing only the CDR3 loop of the
TCR β sequence (11, 33). While these constrains on the TCR
sequence being generated and analyzed might be justifiable
seen from a cost perspective, it is clear that focusing only
on the TCR β chain, and in most cases only of the CDR3
β loop potentially has large and limiting implications for the
conclusions drawn and information harvested from such TCR
sequence data.

We found the predictive power of the model to improve
substantially when including the α in addition to the β chain. We
also showed that, as expected, focusing on CDR loops rather than
the full-length protein sequence led to improved performance.
Investigating the relative importance of the different CDR
loops for the predictive power of the model, we found an
increased performance for models with higher relative weight
on the CDR3 loops compared to CDR1 and CDR2. Finally, we
demonstrated that the inclusion of structural similarities in the
model improved, modestly but consistently, the accuracy of the

target prediction, in particular in situations where no sequence

with high similarity is available in the TCR database. While
being statistically significant, gain in predictive performance

obtained by including structural information was limited. We
expect this to change, as the accuracy of TCR structural modeling
tools improve (in particular for the two CDR3 loops) and the
number of available TCR structures (to be used as templates)
increases. However, as data available is limited in terms of the
diversity and the number different epitopes involved, we find
it impossible to draw conclusions about how these interactions
mediate different T cell responses. Also, we neither have enough
data to tackle the importance of each loop in the recognition
of different MHC alleles as we only have enough information
about HLA-A∗02:01 for human, and H2-Kb and H2-Db for
mouse. As well, we have only MHC class I data, and it would
be of great importance to have more MHC class II binding
TCRs to get better insights on the difference between CD4
and CD8T cell interactions with antigens. We hope some
day would be more data and more diverse in all of these
aspects in order to learn more about the regulation of the
immune response.

Predicting TCR cognate targets is a very difficult challenge
and the main limit is imposed by the lack of data availability
on this huge sequence space. This puts some barriers in our
understanding of TCR binding specificities and, the issue gets
even more complicated if we try to predict unknown binding
specificities. If this problem would be solved, our capability to
predict T cell responses would be dramatically improved, but we
are still far from achieving it. In the present work, we present
a framework to predict specificities to known cognate targets of
TCRs using an inference-based model, seeking to understand the
importance of using paired TCR sequences.
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Despite the very simple modeling approach taken here, these
findings clearly demonstrate both that paired full length sequence
information is essential for the accurate assessment of TCR
function, and that given such information, simple structural, and
sequential properties that are common between TCRs that share
cognate binding target can be identified. This observation not
only underlines the need for the generation of large TCR data sets
containing the full information about the triad involved in the
TCR:pMHC synapse, using for instance single cell basedmethods
(46), but also suggests that prediction of TCR:pMHC interactions
is feasible and thus lays the foundation for the development
and application of such models to rational design of T cell
based therapies.

It is however critical to stress that due to the availability
of data the work and results presented here are limited
to the MHC class I and CD8 TCR system. While MHC
class II and CD4 TCRs share large structural and functional
similarities to this system, several important properties sets
them apart—in particular imposed by the longer peptide
resituating in the MHC class II binding cleft. Likewise, are
the analyses presented limited to cover only three different
MHC class I molecules, and certain caution should be taken
when extrapolating the conclusions to all class I molecules.
However, as more data become available, the framework
proposed here can readily be applied to investigate if the
presented conclusions are indeed applicable to the general TCR-
pMHC system.

Finally, it is essential to reiterate that we here have
presented a framework to predict cognate targets of TCRs
using an inference-based model, seeking to understand the
importance of using paired TCR sequence and structural
information. Using an inference-based model imposes very
large limitations on the applicability of framework for the
task of general prediction of the cognate target of TCRs
since it depends on the availability of other TCRs sharing
the same target, and hence does not allow for true ab
initio predictions.

This said, our findings demonstrating an improved predictive
power when including information from the α chain in
addition to the β chain hold consistently true throughout our
benchmark calculation. This important observation not only
underlines the need for the generation of large TCR data sets
containing the full information about the triad involved in
the TCR:pMHC synapse, using for instance single cell based
methods (46), but also demonstrates that TCRs with a common
cognate target share tractable common sequence and structural
properties suggesting that prediction of TCR:pMHC interactions
is feasible and thus lays the foundation for the development
and application of such models to rational design of T cell
based therapies.
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Figure S1 | Minimum inner SeqID similarities between the TCRs that bind the

same target. (A) Mouse alleles: H-2Kb, H-2Db. (B) Human allele HLA-A∗02:01.

Figure S2 | Prediction pipeline random performance. Random prediction is

performed picking a random TCR when we search the database for the TopHit.

Error bars are estimated using bootstrap with 1,000 iterations on the final

prediction outcome.

Figure S3 | Contingency matrix for the prediction of mouse pMHC binders at a

92% Max SeqID threshold. (A) Prediction performed using only CDR3 β loop

[model CDR(0:0:0–0:0:1)] with an Adjusted Rand Index (ARI) equal to 0.14. (B)

Prediction performed using CDR1, CDR2, and CDR3 loops weighted equally

[model CDR(0:0:0–1:1:1)] with an ARI = 0.04.

Figure S4 | TCR prediction performance as a function of maximum CDR3

similarities. Using increasing CDR similarities from using only CDR3 β,

CDR(0:0:0–0:0:1) to all α and β CDR loops, CDR(1:1:1–1:1:1). When we use only

β chain we filter sequences using CDR(0:0:0–0:0:1) and when we predict using

both chains we filter sequences using CDR(0:0:1–0:0:1). Error bars are estimated

using bootstrap with 1,000 iterations on the final prediction outcome.

Figure S5 | Looking for the best weights to combine structural similarity using the

mouse benchmark. (A) RMSD prediction performance as a function of maximum

SeqID allowed in the database for different weights. (B) Grid search for

combined model weight between sequence and structural similarities different

SeqID% cutoffs.

Figure S6 | Bootstraping p-values comparing CDR+RMSD against

CDR(1:1:4–1:1:4) as a function of maximum SeqID%. Tests were performed with

1000 iterations bootstrapping on the final prediction outcome for both models and

p-value is obtained dividing by 1,000 the number of times the ARI value of

CDR(1:1:4–1:1:4) resulted better than CDR+RMSD.

Table S1 | Number of TCRs in datasets used for model discovery (mouse) and

validation (human).
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