
Joint Attacks and Accrual in
Argumentation Frameworks

Antonis Bikakis
University College London (UCL), UK

a.bikakis@ucl.ac.uk

Andrea Cohen
Institute for Computer Science and Engineering, CONICET-UNS

Dept. of Computer Science and Engineering, Universidad Nacional del Sur
Bahía Blanca, Argentina

ac@cs.uns.edu.ar

Wolfgang Dvo�ák
Institute of Logic and Computation, TU Wien, Austria

dvorak@dbai.tuwien.ac.at

Giorgos Flouris
Foundation for Research and Technology - Hellas (FORTH), Greece

fgeo@ics.forth.gr

Simon Parsons
University of Lincoln, UK
sparsons@lincoln.ac.uk

Abstract

While modelling arguments, it is often useful to represent “joint attacks”,
i.e., cases where multiple arguments jointly attack another (note that this is
di�erent from the case where multiple arguments attack another in isolation).
Based on this remark, the notion of joint attacks has been proposed as a useful
extension of classical Abstract Argumentation Frameworks, and has been shown
to constitute a genuine extension in terms of expressive power. In this chapter,
we review various works considering the notion of joint attacks from various per-
spectives, including abstract and structured frameworks. Moreover, we present
results detailing the relation among frameworks with joint attacks and classi-
cal argumentation frameworks, computational aspects, and applications of joint
attacks. Last but not least, we propose a roadmap for future research on the
subject, identifying gaps in current research and important research directions.

Vol. 8 No. 6 2021
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

1 Introduction
As many have already pointed out, the work of Dung [40] is a cornerstone, arguably
the cornerstone, of current work on computational argumentation. It was the work
that introduced the notion of abstract argumentation and the idea that argumenta-
tion could be modelled just as a set of arguments and attacks between them, and it
provided an initial set of semantics — complete, grounded, preferred and stable —
for the evaluation of a set of arguments and attacks. As such, it is the work on which
all subsequent work on abstract argumentation has been built. In addition, because
many structured argumentation systems adopt the Dung semantics as a means of
establishing which arguments are acceptable, these systems are also built upon [40].

Much of the appeal of [40] lies in its elegant simplicity. The approach relies on
just two concepts — arguments and attacks — and yet these simple components
can capture a complex range of types of reasoning, reflected in the large set of se-
mantics that have been defined for abstract argumentation systems. However, this
very simplicity means that abstract argumentation has limitations in terms of what
it can represent. The limitations of representing arguments as atomic entities is
widely recognised, and is addressed by work on structured argumentation1. How-
ever, there are also limitations in the way that [40] handles interactions between
arguments. Attacks are binary, so that a given attack is from a single argument to a
single argument. Attacks are also atomic in the sense that their impact is assessed
independently of other attacks. To use the terminology of [6], an argument will be
out as soon as it is attacked by a single in argument, regardless of any other attacks
that may exist. The evaluation of an argument does not, even where arguments
have di�erent strengths, take account of whether there are multiple attacks on it.
Where strengths are taken into account, it is, e�ectively, only the strongest attacker
that matters.

These limitations, and in particular how they may be overcome, is the subject
of this chapter. We are primarily interested in the extension of the [40] model
of abstract argumentation to allow non-binary, or “joint” attacks. In particular, we
consider the “sets of attacking arguments” (SETAF) approach first suggested in [84].
In this approach it is possible to model situations in which two or more arguments
jointly attack a single argument, and we explore this approach in depth. This focus
also leads us to consider bipolar argumentation frameworks, where joint attacks are
a key element, and these frameworks, in turn, lead us to consider joint supports
between arguments. We also briefly discuss how joint attacks might be modelled in

1In some systems of structured argumentation, ASPIC+ [81] for example, it is possible to cleanly
“lift” a set of abstract arguments from a set of structured arguments in such a way that Dung-style
semantics can be applied. In other systems, DeLP [65] for example, this is not possible.

1438

Joint Attacks and Accrual in Argumentation Frameworks

structured argumentation, and touch on the rather neglected topic of accrual, which
models situations in which the strength of sets of independent attacking arguments
is an aggregate of the strengths of the arguments it contains.

The rest of this chapter is structured as follows. Section 2 motivates the study
of joint attacks. Section 3 is perhaps the most central section of the chapter. It
introduces the formal model of SETAFs, relates the model to classical abstract
argumentation models, considers the computational aspects of SETAFs, and looks
at alternative formulations for set-based attacks. Section 4 looks at the uses of joint
attacks in bipolar argumentation frameworks, and considers the models of joint
support that occur in those frameworks as well, while also discussing the use of joint
attacks to model higher-order interactions. Section 5 then briefly covers the related
topic of accrual, the combination of arguments for or against a given claim. Finally
Section 6 looks at future lines of work on joint attacks, and Section 7 provides a
brief summary and draws some conclusions.

2 Motivating the need for joint attacks
There are a number of possible motivations for work on joint attacks. One comes
from a purely formal consideration of [40]. Dung [40] considers argumentation frame-
works that take the form of a directed graph, with nodes being arguments and edges
being attacks between arguments. It is natural to consider a generalisation of these
frameworks to ones where the directed graph becomes a directed hypergraph. In its
most general form, such a framework would have nodes that represent sets of argu-
ments, and edges that represent attacks between sets of nodes2. What we study here
is a less general representation in which nodes represent single arguments, and edges
represents attacks where the attackers can be a set, but the attackee is constrained
to be a singleton. Though less general than the representation just sketched, this is,
as we discuss below, a genuine extension of the Dung argumentation framework.

This representation can also be motivated by considering knowledge that is most
elegantly represented in a formalism that allows for joint attacks. For example, taken
from [60], consider the following aspects of the UK laws governing marriage and civil

2[84] briefly considers explicitly representing the most general case of sets of arguments as both
attacker and attackee, before settling on the SETAF formalism that we describe below. As [84]
points out, SETAFs were originally devised during work that allowed arguments about Bayesian
networks — work summarised in [83] — and not only is the SETAF approach able to capture
attacks of sets of arguments on sets of arguments (by attacking each member of the attackee set
separately), but it also mirrors the structure of a Bayesian network where conditional probability
distributions capture multiple parents a�ecting a common child, but do not capture a single parent
a�ecting multiple children.

1439

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

partnerships3 (as of early 2020). One is not allowed to enter into a marriage or civil
partnership if

(a) you are under 16;

(b) you are closely related to your partner;

(c) you are not single; or

(d) you are under 18 and do not have permission to marry from your parents or
guardians.

Much of this can be represented in a standard Dung argumentation framework, with
an argument to represent the right to get married or enter a civil partnership (M),
which is attacked by arguments that represent being under 16 (A16), being closely
related (R), and not being single (NS). One might also represent case (d) with
a single argument, but this single argument captures both being under 18 and not
having permission — let’s call this argument MWP (for minor without permission).
That is fine on its own, but now consider adding additional information about the
UK legal system into the framework, [60] again, this time on voting rights. In
the UK you are allowed to vote4, unless you are under 18, and the natural way to
capture this is with an argument (V) representing the right to vote, which is attacked
by an argument (A18) representing being under 18. How, then, do we capture
the relationship between MWP , which incorporates the fact that the individual in
question is under 18, and A18? We would argue that a natural and elegant way to
do this is by replacing MWP by the argument NP , representing the fact that there
is no parental permission, and having A18 and NP jointly attack M . The resulting
SETAF is shown in Figure 1.

Just to make the point that this example of a joint attack is not contrived,
Figure 1 contains some other arguments that are found in UK legislation and have
a natural representation as a SETAF. (These all reflect the age of majority in the
UK, which, as one might expect, crops up a lot in the law.) For example, consider
the law around alcohol consumption5. In the UK, one is allowed to consume alcohol
in public (Alc), unless one is under 16, or one is under 18 and not accompanied by
an adult (NA), or one is under 18 and not having a meal (NM).

Of course, we are not claiming that using joint attacks is the only way to repre-
sent the above information. As we mentioned, it is possible to capture all of this in
a standard abstract argumentation framework, using what are e�ectively compound

3https://www.gov.uk/marriages-civil-partnerships
4https://www.gov.uk/elections-in-the-uk
5https://www.gov.uk/alcohol-young-people-law

1440

Joint Attacks and Accrual in Argumentation Frameworks

M

V

Alc

R NS

A16

A18

NP

NA

NM

Legend for arguments

M : allowed to marry
V : allowed to vote

Alc: allowed to drink alcohol in public
A16: aged under 16
A18: aged under 18

NP : no parent permission
R: related

NS: not single
NA: not accompanied by an adult

NM : not having a meal

Figure 1: Example of a SETAF, encoding a part of UK legislation.

arguments such as “under 18 and not accompanied by an adult”. Indeed, [60] shows
that it is always possible to represent a SETAF as a standard abstract argumenta-
tion framework, albeit at the cost of a possibly substantial increase in the number of
arguments. In addition to this potential cost, a cost both representational and com-
putational, we echo the sentiment expressed in [84], that using standard frameworks
rather than SETAFs in cases like that of Figure 1 tends to muddle the distinction
between arguments and attacks which is the essence of the abstract argumentation
approach.

3 Modelling joint attacks

In this section, we provide formal considerations associated with the use of collective
attacks in argumentation frameworks. These are meant to provide the basic tools
towards further formal results on the issue.

More specifically, in Section 3.1, we provide the basic formal definitions associ-
ated with SETAFs, as well as their semantics (provided both in terms of extensions,
and in terms of labellings). Moreover, a series of formal results on extensions, la-
bellings and their relations are presented, most of which are a direct adaptation of
similar results from the standard AF setting.

1441

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Section 3.2 studies the relationship among AF and SETAF, and provides answers
to the fundamental question of whether SETAFs constitute a more expressive tool
than AFs for describing arguments and their relationships.

Section 3.3 provides various computational complexity results related to SETAFs,
for di�erent problems pertaining to di�erent semantics. Moreover, algorithms and
system implementations that address these problems are considered, including re-
duction-based approaches.

Further, in Section 3.4 we discuss various alternative models of abstract and
structured argumentation accounting for collective attacks, i.e., attacks where a
group (i.e., set) of arguments can act either as the attacker, or as the attackee.

3.1 Definitions and semantics

We start our description with the formal definition of SETAFs, including their se-
mantics. In this subsection, we formally describe various types of semantics that
have been proposed in the literature, as well as relevant results that should form
the formal background and toolbox of anyone aiming to study SETAFs and their
properties.

3.1.1 AFs and AF semantics: A brief reminder

An AF was defined in [40] as a pair AF D = ÈAr , attÍ consisting of a (possibly infinite)
set of arguments Ar and a binary attack relation att on this set. In principle, an
AF is a directed graph, whose nodes correspond to arguments and whose edges
correspond to attacks, which essentially represent the fact that a certain argument
invalidates another. AFs are given semantics through extensions, which are sets of
arguments (nodes) that are non-conflicting (i.e., they do not attack each other) and,
as a group, “shield” themselves from attacks by other arguments (which are not in
the extension). The exact formal meaning given to the term “shield” gives rise to a
multitude of di�erent semantics (complete, preferred, stable, etc.) which have been
considered in the literature (e.g., see [6]).

Informally, a set of arguments S ™ Ar is: (i) a conflict-free extension of AF D i�
it contains no arguments attacking each other; (ii) an admissible extension i� it is
conflict-free and defends all its elements (i.e., for each argument a œ Ar attacking an
argument in S, there is an argument in S attacking a); (iii) a complete extension i�
it is admissible and contains all the arguments it defends; (iv) a grounded extension
i� it is minimal (w.r.t. set inclusion) among the complete extensions; (v) a preferred
extension i� it is maximal among the complete extensions; (vi) a stable extension
i� it is conflict-free and attacks all the arguments that it does not contain (i.e., all

1442

Joint Attacks and Accrual in Argumentation Frameworks

arguments in Ar \ S); (vii) a naive extension i� it is maximal among the conflict-
free extensions; (viii) a semi-stable extension i� its union with the set of arguments
it attacks is maximal among the complete extensions; (ix) an eager extension i�
it is maximal among the complete extensions that are subsets of every semi-stable
extension; (x) an ideal extension i� it is maximal among the complete extensions
that are subsets of every preferred extension; and (xi) a stage extension i� its union
with the set of arguments it attacks is maximal among the conflict-free extensions.

3.1.2 A formalism for joint attacks (SETAFs)

To formally represent the notion of joint attacks, Dung’s definition for argumentation
frameworks was extended in [84] for the case where an argument can be attacked by
a set of other arguments:

Definition 3.1. A Framework with Sets of Attacking Arguments (SETAF for
short) is a pair AF S = ÈAr , ÛÍ such that Ar is a set of arguments and Û ™ (2Ar

\

{ÿ}) ◊ Ar is the attack relation.

It is interesting to note the asymmetry in Definition 3.1: a group of arguments
can be the attacker, but not the recipient of an attack. The reason for this asymmetry
is justified in [84], where it is shown that allowing a set of arguments to be jointly
attacked by another does not add to the expressiveness of the proposed model.
Indeed, there can be two ways in which a many-to-many attack (say {a1, . . . , an} Û
{b1, . . . , bm}) can be interpreted:

1. The first, called “collective defeat” in [104], states that no bi is accepted when-
ever all of a1, . . . , an are accepted. This case can be easily modelled in the
setting of Definition 3.1 by creating m attacks of the form {a1, . . . , an} Û bi.

2. The second, called “indeterministic defeat” in [104], states that at least one of
bi should not be accepted whenever all of a1, . . . , an are accepted. This case
can also be modelled in the setting of Definition 3.1, by creating m attacks of
the form {a1, . . . , an, b1, . . . , bi≠1, bi+1, . . . , bm} Û bi.

Nevertheless, for simplicity, the attack relationship Û of Definition 3.1 can be
extended to apply among sets of arguments. Formally, we say that a set of arguments
S attacks another set of arguments T (denoted by S I T) i� there exist U ™ S, a œ T
such that U Û a. Note that we used a di�erent symbol for the extended relation,
to avoid confusion. Importantly, I does not change the semantics of the attack
and does not generalise it to attacks among sets of arguments; it is just a syntactic
shorthand.

1443

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

We will write S ”Û a when it is not the case that S Û a, and S ”I T when it is not
the case that S I T . For singleton sets, we often write S I a to denote S I {a}.
We say that S defends an argument a from a set of arguments T that attacks a, i�
S I T .

An interesting note for SETAFs, is that certain attacks may be redundant. In
particular, if we have that S Û a and SÕ Û a, for S ™ SÕ, then the latter attack is
implied by the former and is thus redundant (can be removed from the AF S without
change of semantics). This is also evident from the definition of I, which is, in a
sense, the “closure” of Û.

3.1.3 Semantics (extensions) for SETAFs

With regards to semantics, it is easy to extend the definitions provided for the AF
setting (e.g., in [40; 6]) so as to apply for the case of SETAFs (see [84; 60]). In all
the following definitions, we consider a fixed SETAF AF S = ÈAr , ÛÍ and a set of
arguments S ™ Ar .

Definition 3.2. S is said to be conflict-free i� it does not attack itself. Formally,
S is conflict-free i� S ”I S.

Definition 3.3. An argument a œ Ar is said to be acceptable with respect to S, i� S
defends a from all attacking sets of arguments in Ar . Formally, a is acceptable with
respect to S i� S I T for all T ™ Ar such that T I a. S is said to be admissible i�
it is conflict-free and each argument in S is acceptable with respect to S. Formally,
S is admissible i� S ”I S and S I T for all T ™ Ar such that T I S.

In [40], a characteristic function FAF D was defined to return the arguments
acceptable by a set of arguments in an argumentation framework AF D. This can
be easily extended for SETAF (say AF S) as follows: FAF S : 2Ar

‘æ 2Ar , such that:
FAF S (S) = {a | a is acceptable with respect to S}.

Note that admissible extensions can (equivalently) be defined in terms of the
characteristic function FAF S as any conflict-free set such that S ™ FAF S (S).

Definition 3.4. An admissible set S is called a complete extension of AF S , i� all
arguments that are acceptable with respect to S are in S. Formally, S is a complete
extension of AF S i� all the following conditions hold: (a) S ”I S; (b) S I T for all
T ™ Ar such that T I S; (c) If, for some a œ Ar , S I T for all T ™ Ar such that
T I a, then a œ S.

Obviously, complete extensions (of both AFs and SETAFs) can also be equiva-
lently defined using the characteristic function: a conflict-free set S is a complete
extension if and only if FAF S (S) = S.

1444

Joint Attacks and Accrual in Argumentation Frameworks

Definition 3.5. S is called a preferred extension of AF S , i� it is a complete ex-
tension and there is no other complete extension T such that S µ T .

In other words, a preferred extension is a maximal complete extension. In the
standard AF setting, it has been shown that preferred extensions can be equivalently
defined as maximal admissible extensions (see, e.g., [6]). It can be easily shown that
the same holds true in the SETAF setting [55].

Definition 3.6. S is called a grounded extension of AF S , i� it is a complete ex-
tension and there is no other complete extension T such that T µ S.

Essentially, grounded extensions are minimal complete extensions. Following
similar results in the AF setting ([6]) we can easily show that the following are
equivalent also in the SETAF setting:

• S is a grounded extension

• S is the complete extension such that {a œ Ar | S Û a} is minimal

• S is the complete extension such that Ar \ (S fi {a œ Ar | S Û a}) is maximal

Using the characteristic function, another equivalent characterisation can be for-
mulated, namely that S is a grounded extension if and only if it is the least fixed
point of FAF S (see also [40]).

Definition 3.7. S is called a stable extension of AF S , i� it is conflict-free and
attacks all arguments in Ar \ S.

Equivalently, S is stable if and only if S = {a | S ”I a}. Also, for a stable
extension S it holds that S fi {a | S Û a} = Ar .

Moreover, we can easily show that stable extensions are also preferred, complete
and admissible (see also [60] and Figure 4), thus S is a stable extension if and only
if S is a preferred, complete or admissible extension that attacks all arguments in
Ar \ S.

Example 3.8. Consider the SETAF shown in Figure 2, whose extensions are shown
in Table 1. Let us consider in more detail the complete extensions, which are: ÿ,
{a1}, {a2, a3, a5}. Note that, for example, {a2, a3} is admissible and conflict-free but
not complete, because it leaves out a5, which is acceptable with respect to {a2, a3}.
Similarly, {a1, a2} is not a complete extension because it is not conflict-free, whereas
{a5} and {a1, a5} are not complete extensions because they are not admissible (a5 is
not acceptable with respect to the corresponding set in either case).
Further, the minimal of the complete extensions (namely ÿ) is also grounded, whereas

1445

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

a1

a2

a3

a4

a5

a6

Figure 2: An example SETAF; set attacks are represented as arrows with multiple
sources (e.g., {a2, a3} I a4); its extensions are shown in Table 1

Extension type Extensions

Conflict-free ÿ, {a1}, {a2}, {a3}, {a4}, {a5}, {a6}, {a1, a4}, {a1, a5},
{a1, a6}, {a2, a3}, {a2, a3, a5}, {a2, a3, a6}, {a2, a4}, {a2, a5},
{a2, a6}, {a3, a4}, {a3, a5}, {a3, a6}

Admissible ÿ, {a1}, {a2}, {a3}, {a2, a3}, {a2, a3, a5}

Complete ÿ, {a1}, {a2, a3, a5}

Preferred {a1}, {a2, a3, a5}

Grounded ÿ

Stable {a2, a3, a5}

Naive {a1, a4}, {a1, a5}, {a1, a6}, {a2, a4}, {a2, a6}, {a3, a4},
{a3, a6}, {a2, a3, a5}

Semi-stable {a2, a3, a5}

Eager {a2, a3, a5}

Ideal ÿ

Stage {a2, a3, a5}

Table 1: Extensions for the SETAF of Figure 2

the maximal ones ({a1}, {a2, a3, a5}) are also preferred. The latter ({a2, a3, a5}) is
also stable, because it attacks all other arguments.
Looking at the SETAF illustrated in Figure 3, we note that it also has three com-
plete extensions (namely, {a1}, {a1, a2, a5}, {a1, a3, a4}), the first of which is also
the grounded one ({a1}), whereas the other two are the preferred ones {a1, a2, a5},
{a1, a3, a4}). However, there is no stable extension, because none of the complete
extensions attacks all other arguments in the SETAF.

1446

Joint Attacks and Accrual in Argumentation Frameworks

Definition 3.9. S is called a naive extension of AF S , i� it is conflict-free and is
maximal w.r.t. set inclusion among the conflict-free subsets of Ar .
Example 3.10. Returning to the SETAF shown in Figure 2, we note that it has
several naive extensions (see Table 1), which are essentially all the maximal subsets
of Ar that do not attack themselves. On the other hand, the SETAF of Figure 3 has
three naive extensions, namely {a2, a4}, {a1, a2, a5}, {a1, a3, a4}.
Definition 3.11. S is called a semi-stable extension of AF S , i� it is a complete
extension and the set S fi {a œ Ar | S I a} is maximal w.r.t. set inclusion among
all complete extensions of AF S .

Essentially, semi-stable semantics give up the strict requirement of stable seman-
tics that S fi {a œ Ar | S I a} = Ar , and require just that S fi {a œ Ar | S I a} is
maximal.

Just like in stable extensions, semi-stable extensions are also preferred, complete
and admissible (see also [60] and Figure 4), so the following are equivalent [55]:

• S is a semi-stable extension

• S is an admissible extension and the set S fi {a œ Ar | S I a} is maximal
w.r.t. set inclusion among all admissible extensions of AF S .

• S is a preferred extension and the set Sfi{a œ Ar | S I a} is maximal w.r.t. set
inclusion among all preferred extensions of AF S .

Example 3.12. For the SETAF illustrated in Figure 2, where a stable extension
exists, this is also the (only) semi-stable extension of the SETAF (see Table 1). How-
ever, in the SETAF of Figure 3, where no stable extension exists, one can find two
semi-stable extensions, namely: {a1, a2, a5}, {a1, a3, a4}. Each of these semi-stable
extensions attack (or contain) all arguments except one (a6 and a7 respectively).
Definition 3.13. S is called an eager extension of AF S , i� it is a maximal (with
respect to set inclusion) complete extension that is a subset of each semi-stable ex-
tension of AF S .

The maximality requirement implies that we can replace the completeness re-
quirement regarding S with admissibility, i.e., S is an eager extension of AF S , i� it
is a maximal (with respect to set inclusion) admissible extension that is a subset of
each semi-stable extension of AF S (see [55]).
Example 3.14. For the SETAF shown in Figure 2, there is only one semi-stable
extension, so this is also the eager extension. In the SETAF of Figure 3, where there
are two semi-stable extensions, the only eager extension is their intersection, i.e.,
{a1}.

1447

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

a1

a2 a3

a4 a5

a6

a7

Figure 3: An example SETAF; set attacks are represented as arrows with multiple
sources (e.g., {a1, a2} I a4); its extensions are shown in Table 2

Definition 3.15. S is called an ideal extension of AF S , i� it is a maximal (with re-
spect to set inclusion) complete extension that is a subset of each preferred extension
of AF S .

Extension type Extensions

Complete {a1}, {a1, a2, a5}, {a1, a3, a4}

Preferred {a1, a2, a5}, {a1, a3, a4}

Grounded {a1}

Stable (none exists)
Naive {a2, a4}, {a1, a2, a5}, {a1, a3, a4}

Semi-stable {a1, a2, a5}, {a1, a3, a4}

Eager {a1}

Ideal {a1}

Stage {a1, a2, a5}, {a1, a3, a4}

Table 2: Extensions for the SETAF of Figure 3

Again, we can replace the requirement of S being complete, with S being pre-
ferred, or admissible (see [55]). Moreover, since an ideal extension is a subset of
all preferred ones, it is not attacked by any preferred extension, and is in fact the
largest complete extension (and admissible set) with this property. Using similar
arguments, we can show that an ideal extension is the largest admissible set not
attacked by any admissible set, and the largest admissible set not attacked by any
complete extension [55].

Example 3.16. For the SETAF shown in Figure 2, the two preferred extensions
have an empty intersection, and ÿ happens to be a complete extension, so the only

1448

Joint Attacks and Accrual in Argumentation Frameworks

ideal extension is ÿ. Similarly, for the SETAF of Figure 3, there are two preferred
extensions, whose intersection is equal to {a1}, and this happens to be a complete
extension, so it is also ideal.

Definition 3.17. S is called a stage extension of AF S , i� it is conflict-free and
S fi {a œ Ar | S I a} is maximal among all conflict-free subsets of Ar .

Apparently, a stage extension is also naive (see also Figure 4), and, in fact, a
stage extension can be equivalently defined as a naive extension such that S fi {a œ

Ar | S I a} is maximal among all naive extensions of Ar .

Example 3.18. For the SETAF shown in Figure 2, which has a stable extension, the
(only) stage extension is the stable one, i.e., {a2, a3, a5}. For the SETAF illustrated
in Figure 3, which has no stable extension, there are two stage extensions, which
happen to be the same as the semi-stable ones, namely {a1, a2, a5}, {a1, a3, a4}. As
explained in Example 3.12, each of these semi-stable extensions attack (or contain)
all arguments except one (a6 and a7 respectively).

3.1.4 Relationships among extensions

The various extensions are related, in the sense that certain types of extensions are
stronger than others (e.g., a preferred extension is also complete, but not vice-versa).
Moreover, some types of extensions are guaranteed to exist, others are not, and some
extensions are unique. These results have been shown in various works for standard
AFs, but [60] recast them for the SETAF case.

Figure 4 summarises these results. Each arrow in the graph pointing from se-
mantics ‡ to ‡Õ indicates that every ‡-extension of a SETAF is also a ‡Õ-extension
of the same SETAF (e.g., every stable extension is also a stage extension). The
number (possibly followed by +) that appears next to each semantics indicates the
multiplicity of extensions for the specific semantics (e.g., every SETAF has at least
one preferred extension). Similarly to Dung-style AFs, for certain semantics, the
multiplicity of extensions is di�erent for finite and infinite SETAFs, i.e., SETAFs
with finite (respectively infinite) number of arguments. All such arrows are strict,
i.e., no semantics is equivalent to another. Note also that in [60] the relationship
among stage and naive semantics is missing.

3.1.5 Labellings

The semantics of AFs can be alternatively defined through labellings, as proposed
in [27]. A labelling is formally defined as a function from arguments to the set
{in, out, undec}. Intuitively, an argument belongs to the extension i� it is labelled

1449

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Conflict-free (1+)

Naive (1+)
Admissible (1+)

Complete (1+)

Preferred (1+) Grounded (1) Eager (1+, 1 for finite) Ideal (1)

Semi-stable (0+, 1+ for finite)Stage (0+, 1+ for finite)

Stable (0+)

Figure 4: Inclusion relations and multiplicity of extensions for SETAF acceptability
semantics

as in, whereas arguments labelled out are those attacked by the ones labelled in.
Finally, the undec labelling is reserved for arguments that are not accepted, but
are not attacked by an accepted argument either. Although labellings have been
originally defined for AFs only [27], an adaptation for the SETAF case appears
in [60]. Formally, a labelling is a function as follows:

Definition 3.19. Consider a SETAF AF S = ÈAr , ÛÍ. A labelling for AF S is a
total function Lab : Ar ‘æ {in, out, undec}.

Note that the labellings of a SETAF are defined over arguments (just like in
AFs [27]), not sets of arguments.

Special classes of labellings can be defined (e.g., conflict-free labellings, admis-
sible labellings, complete labellings, etc) and formally shown to correspond to the
respective extensions (conflict-free, admissible, complete, etc). The correspondence
is realised through two functions (Ext2Lab, Lab2Ext), which determine how to gen-
erate an extension given a labelling, or vice-versa. It can be shown that, if Lab is
a labelling of a certain type (e.g., complete), then Lab2Ext(Lab) is an extension of
the same type, and, vice-versa, if S is an extension of a certain type (e.g., complete),
then Ext2Lab(S) is a labelling of the same type.

In this section, we illustrate these ideas, dealing with complete labellings only,
and refer to [27] and [60] for further details. We start with the definition of the
functions Lab2Ext, Ext2Lab:

1450

Joint Attacks and Accrual in Argumentation Frameworks

Definition 3.20. Consider a SETAF AF S = ÈAr , ÛÍ, and let E be the set of all
possible extensions that can be created over AF S , L be the set of all possible labellings
that can be created over AF S . Then:

Ext2Lab: We define the function Ext2Lab : E ‘æ L such that, for S œ E, Lab =
Ext2Lab(S):

• Lab(a) = in for all a œ S

• Lab(a) = out for all a /œ S, S I a

• Lab(a) = undec for all a /œ S, S ”I a

Lab2Ext: We define the function Lab2Ext : L ‘æ E such that, for Lab œ L,
Lab2Ext(Lab) = {a œ Ar | Lab(a) = in}.

Clearly, both Ext2Lab and Lab2Ext are well-defined. Moreover, note that
Ext2Lab(S) essentially labels in those arguments that are in S, out those arguments
attacked by S, and undec the rest. On the other hand, Lab2Ext(Lab) contains only
the arguments that are labelled in by Lab.

Now, we can define complete labellings as follows:

Definition 3.21. Let AF S = ÈAr , ÛÍ be a SETAF. A labelling Lab : Ar ‘æ {in, out,
undec} of AF S is called complete i� for all a œ Ar :

1. Lab(a) = in if and only if ’S I a, ÷b œ S : Lab(b) = out

2. Lab(a) = out if and only if ÷S ™ Ar such that S I a and Lab(b) = in for all
b œ S

The next step is to prove that complete labellings correspond to complete ex-
tensions and vice-versa. The following two theorems prove these points:

Theorem 3.22. Let AF S = ÈAr , ÛÍ be a SETAF and S ™ Ar a complete extension
of AF S . Then, Ext2Lab(S) is a complete labelling of AF S .

Theorem 3.23. Let AF S = ÈAr , ÛÍ be a SETAF and Lab : Ar ‘æ {in, out, undec}

a complete labelling of AF S . Then, Lab2Ext(Lab) is a complete extension of AF S .

The above theorems show that complete labellings and complete extensions are
essentially analogous ways to define the semantics of a SETAF. Similar theorems
hold for the other types of extensions/labellings (see [60], Theorems 5.10, 5.11).

1451

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Complete extensions Complete labellings
S1 = ÿ Lab1(a1) = undec, Lab1(a2) = undec, Lab1(a3) = undec,

Lab1(a4) = undec, Lab1(a5) = undec, Lab1(a6) = undec

S2 = {a1} Lab2(a1) = in, Lab2(a2) = out, Lab2(a3) = out,
Lab2(a4) = undec, Lab2(a5) = undec, Lab2(a6) = undec

S3 = {a2, a3, a5} Lab3(a1) = out, Lab3(a2) = in, Lab3(a3) = in,
Lab3(a4) = out, Lab3(a5) = in, Lab3(a6) = out

Table 3: Complete extensions and complete labellings for the SETAF of Figure 2.

Example 3.24. Table 3 shows the complete labellings that correspond to the SETAF
of Figure 2. Comparing complete extensions with complete labellings, we see that,
e.g., the third labelling explicitly rejects a6 (because it is attacked by a5, which is
accepted), but the second one makes no explicit decision on a6, as the agent cannot
make up its mind on how to resolve the cyclic attack among a4, a5, a6. This dis-
tinction cannot be made with the corresponding complete extensions (first column of
Table 3).
Moreover, we can easily verify that:

• the labellings can be generated through the corresponding extensions, using
Definition 3.20;

• the labellings are all complete labellings (under Definition 3.21);

• the extensions could be generated from the labellings, using Definition 3.20.

Another interesting point to note is that, for complete extensions and labellings,
the relationship established by Ext2Lab, Lab2Ext, is bijective. In other words, for
every labelling Lab and extension S of a SETAF, it holds Ext2Lab(Lab2Ext(Lab)) =
Lab and Lab2Ext(Ext2Lab(S)) = S. This is true for most, but not all, types of
labellings; e.g., for admissible labellings, several di�erent labellings may correspond
to the same extension through Lab2Ext. A complete analysis of this phenomenon
can be found in [60], where the concept of proper labellings is introduced to settle
this question. Moreover, a rich set of results showing various properties of labellings
can be found in [5; 6]. Although these results have been shown for AFs, recasting
them for SETAFs is in most cases easy. Further details on the above are omitted,
and the reader is referred to [5; 6; 60; 27] for more information.

1452

Joint Attacks and Accrual in Argumentation Frameworks

3.2 Relating models for joint attacks with classical AFs

One of the obvious questions regarding SETAFs is whether they constitute a genuine
extension of standard AFs (with more expressive power), or whether they are just
a shorthand, i.e., syntactic sugar for knowledge that can be anyway represented in
the standard Dung setting.

This is a very important question, because, if it turns out that AFs can be used to
represent SETAFs, then we would be able to use the more intuitive SETAF formal-
ism for modelling the attacks among arguments, while at the same time exploiting
implementations and tools (and complexity results) developed for simple AFs to
perform reasoning over the SETAF, by exploiting these translations. In the oppo-
site case, SETAFs should be viewed as a separate, and more expressive branch of
computational argumentation, and would require a di�erent set of tools to support
reasoning over them.

Interestingly, di�erent works have addressed this problem, and answers have
been given from di�erent perspectives. In the rest of this section, we analyse four
such works, namely:

• [48], who characterise the expressive power of AFs and SETAFs based on the
notion of signatures [44], showing that SETAFs are strictly more expressive
than AFs for the most popular semantics.

• [60], who circumvent the negative result of [48] by considering an exponential-
sized translation of SETAFs to AFs and appropriate mappings among their
semantics, for various semantics.

• [94], who applies an approach similar to [60], considering various alternative
(and more condensed) translations with similar results (for the most popular
semantics).

• [20], who consider the problem of translating Abstract Dialectical Frameworks
(ADFs) [22] to AFs; given that SETAFs are a special case of ADFs, this result
can be applied for the purposes of this chapter as well, albeit for a limited set
of semantics.

3.2.1 Characterising the expressive power using signatures

The approach of [48] is based on signatures of di�erent semantics (namely complete,
grounded, preferred, stable, semi-stable, stage and naive [40; 24; 105; 19]) for AFs
and SETAFs. Signatures have been originally defined in [44] as a way to characterise
the expressive power of an AF, by way of conditions under which a candidate set of

1453

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

subsets of arguments are “realistic”, i.e., they correspond to the extensions of some
argumentation framework AF for a semantics of interest.

The idea has been extended to other types of argumentation frameworks (e.g.,
in [77; 98; 99; 100] for the ADF case [22]), and employed heavily as a means to
compare the expressiveness of di�erent argumentation frameworks with, e.g., normal
logic programs and propositional logic [99; 100].

Formally, given a set of extensions (i.e., a set of sets of arguments) E , E belongs
to the signature �AF

‡ i� there is an AF framework whose set of extensions, under
‡-semantics, is E . Similarly, one can define �k

‡, where k corresponds to a SETAF
that admits only attacks where the attacking set has arity at most k (note that �1

‡

coincides with �AF
‡ and �Œ

‡ coincides with the generic SETAF framework �SET AF
‡).

By definition, the notion of a signature expresses exactly the sets of extensions that
can be constructed given a certain framework type, and for a certain semantics.

The focus of [48] is to compute the signatures �k
‡ for the considered semantics

and for di�erent k. As an example, they define the notion of an incomparable
set of sets, where a set of sets E is incomparable i� all elements of E are pairwise
incomparable, i.e., for T, U œ E , T ™ U implies T = U . Then, they prove that the
set comprising all stable extensions of a SETAF is incomparable, i.e., �Œ

ST
= {E | E

is incomparable}.
Signatures are a powerful tool for determining expressive power. Larger signa-

tures imply that the corresponding framework type is more flexible (and thus more
expressive). In particular, if E /œ �1

‡, then this means that one cannot construct an
AF whose ‡-extensions are exactly the ones in E . Thus, by comparing �k

‡ for vari-
ous k œ {1, 2, ..., Œ}, we can determine the relative expressive power of the di�erent
framework types.

Using this reasoning, the main conclusion of the paper is that, for all the consid-
ered semantics, and for all k > 0, SETAFs that allow for collective attacks of k + 1
arguments are more expressive than SETAFs that only allow for collective attacks
of at most k arguments, because �k

‡ µ �k+1
‡ . As a corollary, SETAFs are strictly

more expressive than AFs, even if restricted to attacks of at most 2 arguments.
It is important however to interpret the above results under the correct lens.

In particular, the results of [48] tell us that certain sets of extensions that can
be constructed using SETAFs, cannot be directly constructed through AFs. More
specifically, for a given E œ �SET AF

‡ \ �AF
‡ , we know that one can create a SETAF

whose set of ‡-extensions is exactly E ; moreover, there is no AF whose set of ‡-
extensions is exactly E .

However, if we don’t insist on the direct construction, one may be able to succeed
in constructing E through some AF, but in another, indirect way. In particular, one
could define an appropriate mapping (algorithm) among sets of extensions (say f),

1454

Joint Attacks and Accrual in Argumentation Frameworks

and then construct an AF AF D whose set of extensions is, say, E
Õ, where f(E Õ) = E .

For generality, one should also define a generic way to construct AF D from the
original SETAF AF S , via some other mapping (algorithm), say g. By the results
of [48], this transformation cannot be a simple rearrangement of the attacks among
the existing arguments of the SETAF, but should necessarily involve new, artificial
arguments that would somehow encode the “collectivity of attacks”.

3.2.2 An exponential translation to encode collectivity of attacks

This approach of “expanding” the SETAF with new arguments in order to get rid
of collective attacks (and thus result in an AF) is followed in [60]. In that pa-
per, a rather straightforward translation is followed, where, for any given SETAF
AF S = ÈAr , ÛÍ, one constructs a so-called generated AF AF D = ÈAr Õ, attÍ, whose
“arguments” are all the non-empty sets of arguments of the original SETAF (i.e.,
Ar Õ = 2Ar

\ {ÿ}). The corresponding attack relation att follows in the obvious
manner from Û. In the above terminology, this is the mapping g.

Then, the authors go on to identify the relationship among the ‡-extensions of
the AF S and its corresponding generated AF D, as well as how one can identify
the ‡-extensions of AF S through the ‡-extensions of AF D, and vice versa (i.e., the
mapping f and its inverse).

Various di�erent semantics are considered, including the ones originally defined
in [40] (conflict-free, admissible, complete, grounded, preferred, stable), but also
naive [19], semi-stable [24], eager [25], ideal [41] and stage [105].

The conclusion of the above analysis is that many of the semantics (namely,
complete, preferred, grounded, stable and ideal) admit a very simple one-to-one
correspondence among the semantics of the SETAF and the generated AF. In par-
ticular, a set of arguments S ™ Ar of the SETAF (AF S) is a ‡-extension if and only
if the set 2S

\ {ÿ} is a ‡-extension of the generated AF (recall that an argument in
AF D is a set of arguments from AF S).

For conflict-free and admissible extensions, the situation is similar, except that
there are some additional ‡-extensions of AF D which do not follow this exact pat-
tern. This has e�ects on the correspondence among naive extensions as well (recall
that a naive extension is a maximal conflict-free set). Further, more convoluted
correspondences exist for semi-stable, stage, and eager semantics, where the charac-
terisations are complicated by the requirement of maximality (see [60] for details).

Complexity of characterisations put aside, the work of [60] shows that one can
model a SETAF as an AF in a way that “preserves” the semantics, in the sense that
one can determine the ‡-extensions of the SETAF by just looking at the AF (and
vice-versa). Alas, the proposed transformation for achieving this e�ect, results to

1455

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

an AF with an exponentially larger number of arguments compared to the SETAF.
Note that if we count the size of a SETAF in terms of the number of arguments plus
the number of attacks, then we may not get an exponential increase (if a su�ciently
large number of attacks exist), although the exponential increase is still true in the
worst-case scenario.

3.2.3 Considering more compact translations

A similar, but less extreme “expansion” scheme is followed in [94], where the problem
of translating SETAFs to AFs is considered, among other things. The considered
semantics are the standard Dung semantics, i.e., conflict-free, admissible, complete,
preferred, grounded and stable [40].

To perform the translation, two translation schemes (and variations thereof) are
considered: one is inspired by the so-called coalition approach and the other by the
so-called defender approach. Both have a polynomial size compared to the SETAF
(assuming that the size of the SETAF is considered to be equal to the number of
attacks plus the number of arguments).

The coalition approach is similar to the one proposed in [60], where an argument
in the AF is a set of arguments from the SETAF. However, in [94] a “condensed”
version of the translation is considered, where not all subsets of Ar are included
in the generated AF, but only those that are actually the initiators of an attack.
Di�erent ways to translate the attack relation are then considered, with di�erent
results with respect to the correspondence among the semantics of the SETAF and
the corresponding AF.

The second translation scheme is inspired by [80], and uses arguments in the
translated AF that represent “statements” regarding an argument in the SETAF
(e.g. whether it is accepted, justified, rejected etc). More precisely, for every argu-
ment a in the SETAF, two arguments are included in the AF: the argument itself (a),
as well as aÕ which stands for “a is rejected”. Moreover, every attack in the SETAF
is represented as an argument in the AF (these are called auxiliary arguments).

Then, appropriate attacks are introduced in the new framework. Namely, each
argument a attacks its corresponding aÕ, and aÕ attacks the auxiliary arguments rep-
resenting an attack involving a as an attacker. The auxiliary arguments representing
attacks, attack the corresponding recipient of the attack. In this way, a defends the
auxiliary arguments it is involved in, so if a is not accepted, the attack itself (i.e.,
the auxiliary argument representing it) will not be accepted, and thus the recipient
of the attack will be una�ected by the attack. Using this trick, the semantics of the
SETAF can be appropriately captured by the AF.

For both translations, the correspondences provided among the ‡-extensions of

1456

Joint Attacks and Accrual in Argumentation Frameworks

the SETAF and its generated AF are generally elegant, and quite similar to the
correspondences of [60] (note however that the more complex cases of semi-stable,
stage and eager semantics are not considered by [94]).

Despite that, a strong statement is made in [94] that no full exact SETAF-AF
translation can be created. This statement is based on the idea of signatures, and
follows similar lines of reasoning as in [48]. Therefore, it should be interpreted in the
sense of a direct translation, as explained also in our analysis of the results of [48].

3.2.4 An indirect translation path, through ADFs

Another interesting translation results as a corollary of the work in [20]. In that
paper, the authors do not study SETAFs, but ADFs [22]. An ADF is similar to an
AF, except that the acceptance of an argument is determined by an acceptance con-
dition (expressed as a propositional formula) over the acceptance of all its attackers.
Thus, for example, one could say that an argument is accepted i� no more than two
of its attackers are accepted, or that an argument is accepted i� all of its attackers
are accepted.

Note that the expressive power of acceptance conditions allows ADFs to model
various di�erent types of relations among arguments, including attack, support, joint
attacks or supports, as well as hybrid cases. In particular, it is easy to see that AFs
and SETAFs are special cases of ADFs [93; 77].

Three di�erent types of semantics have been defined for ADFs in [22], namely
models, well-founded models and stable models. In the special case where an ADF is
used to describe an AF (or a SETAF), models of the ADF correspond to the stable
extensions of the AF (or SETAF) and well-founded models of the ADF correspond
to the grounded extensions of the AF (or SETAF). Moreover, for this special case,
stable models of the ADF and models of the ADF coincide (see [50], Proposition 1),
so stable models of the ADF also correspond to stable extensions of the AF (or
SETAF). It should be noted here that stable models have been retrospectively re-
defined in [23], but this redefinition does not break the above correspondences (see
Theorem 4 in [23]).

In [20], the authors show that, given an ADF, one can generate an AF such
that the stable extensions of the AF correspond (in a formal manner made clear
in the paper) to the models of the ADF. A similar correspondence is also shown
among the grounded extensions of an AF and the well-founded models of the ADF,
as well as among the stable extensions of the AF and the stable models of the ADF.
Although SETAFs were not in the scope of the work of [20], the fact that SETAFs
are a special case of ADFs, allows us to apply their results to the case considered
in this chapter. Moreover, [20] show that the proposed translations are polynomial

1457

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

in size, and can also be computed in polynomial time, where the size of the original
ADF (corresponding to a SETAF) is computed as the number of arguments plus the
size of the acceptance conditions of the arguments.

3.3 Computational considerations
In this section we give an overview on complexity results of SETAFs and discuss
implementation approaches for evaluating SETAFs. As discussed in [47] under-
standing the inherent complexity of the reasoning tasks is crucial towards e�cient
implementations of argumentation systems. In particular, problems on di�erent lev-
els of complexity have di�erent limits concerning scalability and require di�erent
techniques to be implemented in a scalable manner. We first introduce the compu-
tational tasks we are interested in, then discuss their complexity, and finally discuss
algorithms and reduction-based approaches for these tasks.

3.3.1 Computational Problems

The standard problems studied in computational (abstract) argumentation are the
tasks of computing extensions of a given semantics and computing the credulous
or skeptical consequences under a given semantics [36; 47; 35]. These tasks are
investigated in the literature on algorithms, systems, and complexity of abstract
argumentation, and are the basis for the di�erent tracks of the International Com-
petition on Computational Models of Argumentation (ICCMA)6 [101; 64]. In the
following we provide formal definitions of these computational problems in the con-
text of SETAFs. To this end we will use ‡(AF S) to denote the ‡-extensions of a
SETAF AF S . We start with the function problems of computing one or all of the
extensions of a SETAF w.r.t. a semantics ‡:

• Some Extension SE‡: Given SETAF AF S , compute an extension E œ ‡(AF S).

• Enumerate Extensions EE‡: Given SETAF AF S , compute the extension-set
‡(AF S).

Beside these function problems we consider decision problems whose output is
either yes or no. These problems are of particular interest as they are well-suited for
being analysed with the techniques of complexity theory. To this end we consider
the skeptical acceptance of an argument, i.e., an argument is skeptically accepted
if it is contained in each extension, and credulous acceptance of an argument, i.e.,
an argument is credulously accepted if it is contained in some extension (for a given
semantics ‡):

6http://argumentationcompetition.org/

1458

Joint Attacks and Accrual in Argumentation Frameworks

• Credulous Acceptance Cred‡: Given SETAF AF S = ÈAr , ÛÍ and an argument
a œ Ar , is a contained in some E œ ‡(AF S)?

• Skeptical Acceptance Skept‡: Given SETAF AF S = ÈAr , ÛÍ and an argument
a œ Ar , is a contained in each E œ ‡(AF S)?

Moreover, we consider the frequently-studied problems of verifying a given ex-
tension, deciding whether a SETAF has at least one extension, and deciding whether
a SETAF has a non-empty extension. These problems are of some interest on their
own but are in particular relevant as frequent sub-tasks of reasoning procedures. We
next provide the formal definitions of these problems:

• Verification of an extension Ver‡: Given SETAF AF S = ÈAr , ÛÍ and a set of
arguments S ™ Ar , is S œ ‡(AF S)?

• Existence of an extension Exists‡: Given SETAF AF S = ÈAr , ÛÍ, is ‡(AF S) ”=
ÿ?

• Existence of a non-empty extension Exists¬ÿ

‡ : Given SETAF AF S = ÈAr , ÛÍ,
does there exist a set E ”= ÿ such that E œ ‡(AF S)?

3.3.2 Complexity results for SETAFs

We next discuss the computational complexity of the decision problems introduced
in the previous section. The rationale behind the focus on decision problems is that
tools of complexity theory are better suited for decision problems than for function
problems and that, when chosen carefully, the complexity of the decision problems
is also a good indicator for the complexity of the corresponding function problem.
In computational argumentation the credulous and skeptical acceptance decision
problems together are considered to be a good indicator for the complexity of a
semantics.

In this section we assume the reader to have basic knowledge in computational
complexity theory.7 We will consider the following complexity classes: L (logarithmic
space), P (polynomial time), NP (non-deterministic polynomial time), coNP (com-
plement of a NP problem), �P

2 (polynomial time with non-adaptive NP-oracle calls),
�P

2 (non-deterministic polynomial time with NP-oracle calls), �P
2 (complement of a

�P
2 problem), and DP

2 (intersection of a �P
2 and a �P

2 language).

7For a gentle introduction into complexity theory in the context of argumentation the reader is
referred to [47]).

1459

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

We have the following relations between these complexity classes:

L ™ P ™
NP

coNP ™ �P
2 ™

�P
2

�P
2

™ DP
2

We follow [49] and start our complexity analysis with the observation that
SETAFs generalize Dung AFs and thus all the decision problems are at least as
hard as the corresponding problem for Dung AFs (cf. [47, Table 1]). Interestingly,
one can also obtain the same upper bounds (see Table 4) as we discuss below. These
results for SETAFs show the same complexity as the corresponding Table for Dung
AFs (cf. [47, Table 1]8). However, there is a subtle di�erence between the com-
plexity results for Dung AFs and SETAFs. In both cases the complexity is stated
w.r.t. the size of the input framework, which in case of Dung AFs is often interpreted
as w.r.t. the number of arguments |Ar | in the input framework. This interpretation
is not valid for SETAFs where the number of attacks |Û | can be exponentially larger
than the number of arguments |Ar | (this even holds for normal forms where re-
dundant attacks are removed). Thus, one has to consider the complexity w.r.t. the
number of arguments plus the representation size of the attacks Û. The latter is
bounded bound by |Ar | · | Û |, i.e., is polynomially bounded in |Ar | + | Û |. We can
thus interpret the complexity results for SETAFs in Table 4 as w.r.t. |Ar | + | Û |

9.
The crucial observation towards the upper bounds is that checking basic prop-

erties of a set of arguments, although it is more evolved than in Dung AFs, can still
be performed in L. First, to test whether a set S is conflict-free one can iterate over
all attacks (T, a) œ Û and check that T fi {a} ”™ S. Second, to test S I T one can
iterate over all attacks (U, b) œ Û and test whether U ™ S and b œ T . Finally, a
simple algorithm for testing that a set S defends an argument a iterates over all
attacks (T, a) œ Û and for each of these attacks checks that S I T . That is, for all
three problems we just need to store a small number of pointers to the input which
can be done in logarithmic space.
Proposition 3.25. Given a SETAF AF S = ÈAr , ÛÍ, a set of arguments S ™ Ar ,
and an argument a œ Ar , deciding whether S is conflict-free, deciding whether S I a,
and deciding whether a œ FAF S (S) are in L.

Notice that most of the complexity upper bounds for Dung AFs are based on
the fact that these three problems can be solved in polynomial-time, and thus these

8Notice that [47, Table 1] includes CF2 semantics which has not yet been generalised to SETAFs
and is thus not included in Table 4. On the other hand, we include eager semantics which has not
been considered in [47, Table 1] (see [45, Table 2] for the complexity results of eager semantics in
Dung AFs).

9For a more fine-grained analysis of algorithms for SETAFs one might take into account the
actual representation size of the attacks, cf. [53].

1460

Joint Attacks and Accrual in Argumentation Frameworks

upper bounds also apply to SETAFs (cf. Table 4). We next exemplify this for the
credulous acceptance problem of stable semantics.

Proposition 3.26. We have that VerST œ L and CredST is NP-complete.

Proof. First, consider the verification problem VerST and an arbitrary SETAF
AF S = ÈAr , ÛÍ. We can verify that a given set S is a stable extension of AF S

by (a) checking that S is conflict-free and (b) checking that for each a œ Ar \ S we
have S I a. As both can be done in L, we obtain the L membership of VerST .

Now consider the credulous acceptance problem CredST . The NP-hardness is by
the corresponding result for AFs. For the upper bound consider an arbitrary SETAF
AF S = ÈAr , ÛÍ and an argument a œ Ar . We can decide the credulous acceptance
of a in AF S by a standard guess & check algorithm. That is, one first uses the
non-determinism to guess a set E and then use a deterministic part to verify that
E is a stable extension and contains the argument a. This gives an NP procedure
for CredST .

Next, let us consider the complexity of ideal semantics, as it is the only case
where the upper bound for Dung AFs [43] does not directly apply to SETAFs. Recall
that the ideal extension can be characterised as the maximal admissible set that is
not attacked by any other admissible set (Definition 3.15). In order to compute
the ideal extension we thus use NP-oracle queries that for each argument ask (a)
whether it is credulously accepted w.r.t. preferred semantics and (b) whether it is
attacked by some admissible set. We then consider the set E0 of all arguments that
are credulously accepted but not attacked by an admissible set. Notice that E0 is
conflict-free by construction and it is an over-approximation of the ideal extension.
We then compute the maximal admissible subset of E0 by iteratively computing
sets Ei+1 by removing arguments that are not defended by Ei until we reach a
fixed-point E. We then have that E is the ideal extension. We have that the NP-
oracle queries of the above procedure are independent of each other and thus can
be executed in parallel. Moreover, each iteration of the fixed-point computation
is in polynomial-time and the fixed-point is reached after at most n/2 iterations,
i.e., one can compute the fixed-point in polynomial time. Thus the above is a �P

2 -
algorithm for computing the ideal extension. Hence, we obtain �P

2 upper bounds
for all reasoning tasks of ideal semantics.

3.3.3 Algorithms for SETAFs

The field of algorithms for SETAFs is rather under-explored with the exception
of [82]. The former studies algorithmic ideas for preferred semantics. We recapitulate

1461

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

‡ Cred‡ Skept‡ Ver‡ Exists‡ Exists¬ÿ

‡

Conflict-free in L trivial in L trivial in L
Naive in L in L in L trivial in L
Grounded P-c P-c P-c trivial in L
Stable NP-c coNP-c in L NP-c NP-c
Admissible NP-c trivial in L trivial NP-c
Complete NP-c P-c in L trivial NP-c
Ideal �P

2 -c �P
2 -c �P

2 -c trivial �P
2 -c

Eager �P
2 -c �P

2 -c DP
2 -c trivial �P

2 -c
Preferred NP-c �P

2 -c coNP-c trivial NP-c
Semi-stable �P

2 -c �P
2 -c coNP-c trivial NP-c

Stage �P
2 -c �P

2 -c coNP-c trivial in L

Table 4: Complexity of SETAFs (C-c denotes completeness for class C).

their main observations in terms of a simple algorithm (see Algorithm 1) in the style
of today’s labelling-based algorithms ([36; 35]).

The rough idea of labelling-based algorithms is to start with all arguments un-
labelled, in each step pick an argument and then consider two branches: one where
we add the argument to the extension, i.e., labelled in; and one where we decide
that the argument is excluded from the extension, i.e., labelled out or undec (cf.
Section 3.1.5). When all arguments are labelled, one tests whether the labelling is
valid w.r.t. the considered semantics and, if so, it is added to the output. By that
procedure we would consider all possible candidates for valid labellings and thus also
obtain all the extensions. In order to design an e�cient algorithm one aims to cut
o� branches that do not lead to valid labellings as soon as possible. One approach
are the so-called label propagation rules, i.e., one uses the already fixed labels of
the arguments to conclude that other arguments have to obtain a certain label and
by that avoids unnecessary branching in the algorithm. For instance, for preferred
semantics, given the set of arguments Labin labelled in by a partial labelling Lab we
can conclude that all arguments in the set Lab+

in
, i.e., arguments a with Labin I a,

must be labelled out. Moreover, for attacks that target Labin and have only one
argument outside of Lab+

in
we have that this argument has to be labelled out. This

is captured by the set LabΩ

in
defined as LabΩ

in
= {a œ Ar | Labin fi{a} I Labin}. This

propagation of out labels is implemented in Line 8 of Algorithm 1 and triggered

1462

Joint Attacks and Accrual in Argumentation Frameworks

whenever a new argument is labelled in. Another observation is that we cannot la-
bel an argument in if this would cause a conflict in the set Labin. Many cases where
this could happen are already covered by the propagation rules for out labels, but
these rules do not cover attacks (S fi{a}, a) œ Û with S ™ Labin. This propagation is
implemented by the if condition on Line 4, which prevents the algorithm from start-
ing the branch where the argument a is added to the extension. Finally, when an
argument a is already defended by Labin then, due to the maximality of preferred
extensions, we know that this argument is in each preferred extension containing
Labin and thus we must label a by in. This propagation is implemented by the if
condition on Line 12, which prevents the algorithm from starting the branch where
the argument a is excluded from the extension.

We obtain that Algorithm 1 returns the preferred labellings of a given SETAF
AF S . Notice that the algorithm can be easily adapted to compute complete la-
bellings, by removing the maximality check on Line 16, or admissible sets, by remov-
ing the maximality check on Line 16 and the if condition on Line 12. We can roughly
estimate the running time of these algorithms by O(exp(|Ar |) · poly(|Ar |, | Û |)). No-
tably only the polynomial part depends on the number of attacks while the expo-
nential part solely depends on the number of arguments. Finally, recent work [53]
suggests to not just label arguments but also label the attacks of a SETAF. It then
studies possible label propagation-rules for stable and complete semantics and pro-
vides a linear time algorithm (linear w.r.t. the representation of the SETAF) for
grounded semantics.

3.3.4 Systems and Reduction-based Approaches

Reduction-based approaches have been successfully applied in the design of argumen-
tation systems, most prominently by systems that are based on modern SAT-solver
technology or answer-set programming [35]. For SETAFs the only system discussed
in the literature, i.e., the SETAF module of the ASPARTIX10 system [49], is based
on answer-set programming.

Reduction to Answer-set Programming. Answer-set programming (ASP)
[79; 85] is a declarative problem solving paradigm with its roots in logic program-
ming and non-monotonic reasoning. Today’s answer-set systems [66; 75] support
a rich language and are capable of solving hard problems e�ciently. Thus, ASP
is a convenient formalism to implement argumentation systems. The ASPARTIX
approach [57] to argumentation problems relies on a query-based implementation

10https://www.dbai.tuwien.ac.at/research/argumentation/aspartix

1463

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Algorithm 1 pref-lab(AF S)
Require: SETAF AF S = ÈAr , ÛÍ, global variable L

Ensure: L is the set of preferred labellings
1: L = ÿ, Lab = Èÿ, ÿ, ÿÍ

2: pref-lab(AF S , Lab)

3: function pref-lab(F, Lab)
Require: SETAF F =ÈA, RÍ, partial labelling Lab, global variable L

4: if there is an argument a œ A not labeled by Lab then

5: a Ω pick some unlabeled argument
6: if Labin fi {a} œ CF(F) then

7: LabÕ

in
= Labin fi {a},

8: LabÕ

out
= Labout fi LabÕ+

in
fi LabÕΩ

in

9: LabÕ

undec
= Labundec \ LabÕ

out

10: pref-lab(AF S , ÈLabÕ

in
, LabÕ

out
, LabÕ

undec
Í)

11: end if

12: if {a} /œ FF (Labin) then

13: pref-lab(AF S , ÈLabin, Labout, Labundec fi {a}Í)
14: end if

15: else

16: if Labin œ AD(F) and Labin ™-max among {Labin | Lab œ L} then

17: L = L fi {Lab}

18: end if

19: end if

20: endFunction

where the argumentation framework is provided as an input database, and one pro-
vides fixed queries encoding the di�erent argumentation semantics and reasoning
tasks.

Here we briefly highlight the main di�erences between the ASP encodings of
Dung AFs [57] and SETAFs [49]. To this end, we first briefly recall the basic termi-
nology for logic programs (for rigorous definitions see [35] or [36]). A logic program
(under the answer-set semantics) is a set of disjunctive rules r of the form

a1 ‚ · · · ‚ an Ω b1, . . . , bk, not bk+1, . . . , not bm

where a1, . . . , an and b1, . . . , bm are atoms, and not stands for default negation. We
refer to a as a positive literal, while we refer to not a as a default negated literal.
The head of r is the set {a1, . . . , an} and the body of r is {b1, . . . , bm}, and a rule

1464

Joint Attacks and Accrual in Argumentation Frameworks

a

b

c

arg(a). arg(b). arg(c).
att(r1, c). mem(r1, a). mem(r1, b).
att(r2, b). mem(r2, a). mem(r2, c).
att(r3, a). mem(r3, b). mem(r3, c).

fisetaf (AF S)

Figure 5: The SETAF AF S = È{a, b, c}, {({a, b}, c), ({a, c}, b), ({b, c}, a)}Í and its
ASP-encoding fisetaf (AF S).

in(Y) Ω arg(Y), not out(Y).
out(Y) Ω arg(Y), not in(Y).

blocked(R) Ω mem(R, X), out(X).
Ω in(X), att(R, X), not blocked(R).

fiCF
in(Y) Ω arg(Y), not out(Y).

out(Y) Ω arg(Y), not in(Y).
blocked(R) Ω mem(R, X), out(X).

Ω in(X), att(R, X), not blocked(R).
defeated(R) Ω att(R, X), mem(R, Y),

att(R2, Y), not blocked(R2).
Ω in(X), att(R, X), not defeated(R).

fiAD

Figure 6: ASP Encodings fiCF , fiAD for CF and AD semantics of SETAFs.

r is a constraint if n = 0. A fact is a ground rule without disjunction (n = 1) and
with an empty body. An input database is a set of facts.

In order to evaluate SETAFs with ASP, in a first step, we have to encode SETAFs
as an input database for the ASP-program. We introduce three predicates arg,
att, and mem to encode a SETAF AF S = ÈAr , ÛÍ. The predicate arg is used
to encode arguments, the latter two to encode the set attacks, i.e., att encodes
which argument is attacked by an attack and mem encode which arguments are
required to attack that argument. Notice that, this encoding uses a unique identi-
fier for each attack in Û. The encoding of a SETAF AF S = ÈAr , ÛÍ is then given
by fisetaf (AF S) = {arg(a). | for a œ Ar} fi {att(r, x). | for r œ Û and r = (S, x)} fi

{mem(r, y). | for r œ Û, r = (S, x), and y œ S} (cf. Figure 5). While arguments are
represented in the same way as in Dung AFs, Dung AFs allow for a simpler represen-
tation of attacks. That is, the encoding of AFs ([35]) only uses one binary predicate
att to encode the attacks, containing the attacker and the attacked argument of
each attack, and does not use identifiers for attacks.

When it comes to the encoding of semantics one uses predicates in(·), out(·)

1465

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

to guess whether an argument is in the extension or not (in the same way as for
AFs). Notice that the predicate out(·) encodes that an argument is not in the
extension and does not correspond to the label out. This guess builds up all possible
subsets of arguments which are then filtered by adding constraints that reflect the
specific semantics. Here the SETAF encodings di�er from the AF encodings as they
explicitly define statuses of attacks. First, we call an attack (T, a) œ Û blocked
w.r.t. a set E ™ Ar if T ”™ E. Second, we consider an attack (T, a) œ Û to be
defeated by a set E i� E I T . We will exemplary discuss the encodings fiCF , fiAD

for conflict-free sets and admissible sets respectively (cf. Figure 6). In the encoding
of the conflict-freeness, with the first two rules one guesses a subset of arguments, the
third rule computes the blocked attacks, and the constraint in the fourth line rules
out all sets that contain an argument X and have a non-blocked rule attacking X.
That is, if we compute the answer-sets of the combined program fisetaf (AF S) fi fiCF

the answer-sets correspond to the conflict-free sets, i.e., the conflict-free sets are
given by the in(·) predicate in the answer-sets. Next, we further extend fiCF to an
encoding fiAD for admissible semantics. That is, we add a rule that computes the
defeated attacks and a constraint that rules out sets where an argument of the set
is attacked by an undefeated attack. Thus, if we compute the answer-sets of the
combined program fisetaf (AF S) fi fiAD the answer-sets correspond to the admissible
sets.

Other Reduction-based Approaches. For Dung AFs and their generalisations,
several reduction-based approaches have been studied in the literature and often
resulted in argumentation systems [36]. In particular, systems based on modern
SAT-solving systems have been successful [101; 64]. Beside ASP, none of these ap-
proaches have been considered in the literature on SETAFs so far. However, very
recently a first version of the SAT-based SETAF system joukko appeared online11.
Thus, one approach towards an e�cient SETAF system would be to extend exist-
ing approaches that have been successful for AFs to SETAFs. Another approach
is to translate SETAFs to AFs or ADFs and use one of the existing systems for
these formalisms to evaluate SETAFs. Translations from SETAFs to AFs have been
presented in [94] and [60](see also Section 3.2 in this chapter). However, when us-
ing these translations one is faced with an exponential blow-up in the arguments
and thus these translations are not well-suited for computational matters. Recall,
that algorithms for SETAFs scale polynomially w.r.t. the number of attacks and
exponentially w.r.t. the number of arguments. Thus translating attacks to argu-
ments and using AFs tools can results in a serious computational overhead. Con-

11https://bitbucket.org/andreasniskanen/joukko

1466

Joint Attacks and Accrual in Argumentation Frameworks

cerning the latter, there are rather simple translations of SETAFs into ADFs [77;
93] (see Section 3.2.4) which do not increase the number of arguments. That is, one
can e�ciently encode a SETAF as an ADF and then use one of the existing systems
for ADFs, e.g., k++ADF12 [76], YADF13 [21], or DIAMOND14 [58], to evaluate the
SETAF. The attentive reader may argue that the computational complexity of ADFs
is higher than that of SETAFs and thus such a reduction might result in significant
overheads. However, modern ADF systems are sensitive to the actual complexity
of the acceptance conditions in the processed ADF and thus the overheads when
processing ADFs with acceptance conditions generated from SETAFs probably will
not be as high as one would expect from the worst-case complexity gap.

3.4 Alternative models for attacks involving sets of arguments
SETAFs have not been the only attempt to formalise collective attacks15 in argu-
mentation systems. There have been earlier or more recent related approaches, both
in abstract and structured argumentation, each of which captures a slightly di�erent
notion of collective attack and with a di�erent aim.

One of the earliest approaches to formalise collective attacks in abstract argu-
mentation was the collective argumentation theories proposed by [18]. These are
generalisations of Dung’s abstract argumentation frameworks aimed at the repre-
sentation of the semantics of disjunctive logic programs, but also, more generally, at
the description of “reasoning situations in which the conflict between incompatible
views or theories is global and cannot be reduced to particular claims made by these
theories”. [18] proposes a four-valued semantics, i.e., each argument is assigned
a subset of 2{t,f} and attacks occur among sets of arguments (e.g. S Òæ T) and
are interpreted as “at least one of the arguments in the attacked set (T) should be
rejected whenever all the arguments from the attacking set (S) are accepted”.

[33] introduced the notion of coalitions of arguments to represent sets of non-
conflicting arguments that are related via the support relation in a bipolar argu-
mentation framework (BAF). Using this notion, a bipolar argumentation framework
AF B can be translated into a Dung-style meta-argumentation framework C(AF B),
called “Coalition AF”, in which the arguments represent coalitions of arguments
of AF B and the attacks among arguments (called c-attacks) correspond to attacks
among elements of the corresponding coalitions: S c-attacks T in C(AF B), i� there

12https://www.cs.helsinki.fi/group/coreo/k++adf/
13http://www.dbai.tuwien.ac.at/proj/adf/yadf/
14http://diamond-adf.sourceforge.net/
15We use the term collective to refer to any kind of attack relation that involves sets of arguments,

either as attackers or as targets of an attack, or both.

1467

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

exist arguments a, b œ AF B such that a œ S, b œ T and a attacks b in AF B. All
arguments belonging to a coalition are then treated in the same way when comput-
ing the acceptable arguments: an argument a is acceptable (under the preferred,
stable or grounded semantics) in AF B i� it is a member of a coalition S, which is
acceptable (under the same semantics) in C(AF B).

The framework proposed in [63] also considers sets of arguments, but as recipients
of disjunctive attacks from single arguments. In this framework, the result of an
attack from an argument a that is labelled in, to a set of arguments S, is that at
least one of the arguments in S must be labelled out. Definition 2.8 and Theorem
2.9 of the same paper show how a finite disjunctive framework can be converted to
a Dung-style AF with the same set of extensions, which, combined with the results
on the relationship between SETAF and AF that we present in Section 3.2, provide
a way to associate SETAF with disjunctive argumentation frameworks. Note also
that [84] also provides a way to model disjunctive attacks using SETAFs, using the
notion of “indeterministic defeat” [104] (see Section 3.1 for details).

CumulA [103; 104] is an example of a structured argumentation model that
supports collective attacks. In this model, arguments are tree-like structures that
represent how a conclusion is supported. In order to support situations where a set
of arguments should be collectively defeated (collective defeat) or at least one of the
arguments in a set should be defeated (indeterministic defeat), it uses compound
defeaters, i.e., attack relations where either the source or the target of the attack
(or both) are sets of arguments. The meaning of a compound defeater is di�erent
than that of joint attacks in SETAFs: if all arguments in the attacking set are
undefeated, the arguments in the attacked set are defeated as a group unless one of
the arguments in the attacked set has already been defeated by another defeater. In
the latter case the compound defeater becomes inactive.

Another structured argumentation formalism that incorporates the notion of
collective attacks is the Abstract Argumentation Systems (AAS) from [106]. An AAS
is defined as a triple (L, R, Æ), where L is a language containing the symbol ‹, which
represents a contradictory proposition, R is a set of (strict and defeasible) inference
rules, and Æ is a preorder on the set of arguments, called order of conclusive force,
and determining “the relative di�erence in strength among arguments”. Arguments
are defined as chains of rules organised as trees. The notion of defeat in AAS is
used to capture and resolve conflicts among groupwise incompatible arguments: a
set of arguments X defeats an argument a if X fi {a} is incompatible (there is a
strict argument b that is based on the conclusions of X fi {a} and has conclusion ‹)
and X is not undermined by a (there is no c œ X such that a < c).

Defeasible Logic [89], which, as shown in [69] has an argumentation-theoretic
semantics, also supports a type of collective attacks, called team defeat. This logic

1468

Joint Attacks and Accrual in Argumentation Frameworks

includes a rule priority relation, which is used to resolve conflicts between rules with
contradictory conclusions. An attack on a rule r with conclusion p from a rule rÕ

with conclusion ¬p can be invalidated by another rule rÕÕ also with conclusion p
that is superior to rÕ. In this case, we say that r and rÕÕ team defeat rÕ. Using
this feature, we conclude that p is true if for every applicable rule that supports
¬p, there is a superior rule for p; in other words, if the rules for ¬p are team
defeated by the rules for p16. In order to support this feature, the argumentation-
theoretic characterisation of Defeasible Logic defines arguments as sets of proof
trees supporting the same conclusion and team defeat as a relation between two
arguments with opposite conclusions, and requires that an argument team defeats
all its attacking arguments to become acceptable. Team defeat is also supported
by other rule-based non-monotonic logics, which use preferences on rules, such as
Courteous Logic Programs [70] and Order Logic [73]. An interesting problem is to
study the possibility of mapping Defeasible Logic, or any of the other rule-based
non-monotonic logic that supports team defeat, to SETAF by defining arguments as
proof trees and by representing team defeat, between a set of rules R supporting the
same conclusion and a rule s supporting the opposite conclusion, as a joint attack
from the set of arguments that have a top rule in R to each argument that has s as
its top rule.

[10] recently introduced a semi-structured formalism for argumentation, called
LAF -ensembles, capturing a set of essential features of structured arguments, such
as their conclusion, their “attackable elements” and their subarguments. They also
defined a family of abstract argumentation frameworks, called set-based (as their
nodes correspond to sets of arguments instead of individual arguments), which are
appropriate for representing LAF -ensembles at the abstract level. In set-based ar-
gumentation frameworks, the attacks occur at the set level. The main di�erences
between set-based frameworks and SETAFs are that the former allow attacks on sets
of arguments and attacks where the source is the empty set; the latter are useful
to capture inconsistencies of the theory at the language level (e.g., incompatible
subsets of the language in Vreeswijk’s AAS [106]).

Finally, it should be noted that, as also explained in Section 3.2 and shown in [93],
ADFs are generalisations of SETAFs and can therefore model the type of collective
attacks used in SETAFs. This is done by setting the following acceptance condition
for each argument a: at least one argument from each of the sets of arguments
attacking a should be rejected.

16For a more detailed discussion on team defeat, see [17]

1469

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

4 Applications of joint attacks and models for
joint supports

The ideas behind the characterisation of abstract argumentation frameworks with
joint attacks, as those described in Section 3, have also been applied in other con-
texts. In this section we will focus on applications of joint attacks in Bipolar Ar-
gumentation Frameworks (BAFs) and argumentation frameworks with higher-order
interactions17.

Briefly, BAFs extend Dung’s AF by incorporating a support relation intended
to model a positive interaction between the elements it relates. The first works
accounting for bipolarity in abstract argumentation conceived the support relation
as a binary relation over the set of arguments in the framework (see [34; 37] for
an overview on BAFs). However, later approaches adopted a di�erent view of the
support relation, to also account for joint supports (i.e., support relations whose
source is a set of arguments) or, more generally, higher-order supports (i.e., support
relations that can target other interactions, either attacks or supports), in addition
to arguments.

In this section we will consider approaches to bipolar abstract argumentation
that make use of joint attacks, joint supports or both. Finally, we will discuss the
possibility of using joint attacks for modelling higher-order attacks and supports
(i.e., interactions whose target is another interaction) and the generalised necessary
support relation proposed in [88] and also accounted for in [31].

4.1 Flat bipolar argumentation frameworks with joint attacks or
joint supports

In [91] the authors used the SETAF as the underlying framework for representing
evidence against an argument in order to allow for evidence-based reasoning. They
introduced the Evidential Argumentation System (EAS) which further extended the
definition of SETAF by incorporating a specialised support relation to capture the
notion of evidential support. The support relation in the EAS enables to distinguish
between prima-facie and standard arguments; the former arguments do not require
support from other arguments to stand, whereas the latter must be linked to at
least one prima-facie argument through a chain of supports. Moreover, the prima-
facie arguments are supported by a special argument ÷ denoting support from the
environment or the existence of supporting evidence. Also, analogously to the attack
relation, the support relation in an EAS allows for supports to be originated on sets

17The latter are the subject of study in Chapter 1 of this handbook [29].

1470

Joint Attacks and Accrual in Argumentation Frameworks

of arguments. Formally:

Definition 4.1. An EAS is a tuple ÈAr , att, supÍ, where Ar is a set of arguments,
att ™ (2Ar

\ÿ) ◊ Ar is the attack relation, and sup ™ (2Ar
\ÿ) ◊ Ar is the support

relation. A special argument ÷ œ Ar is distinguished, such that @(X, y) œ att where
÷ œ X; and @X where (X, ÷) œ att or (X, ÷) œ sup.

The attack relation in an EAS is interpreted in the same way as the attack
relation in the SETAF. Given X ™ Ar and a œ Ar , (X, a) œ att reads as follows: if
all the arguments in X are accepted, then a cannot be accepted. In contrast, the
evidential support relation is interpreted as follows. Given X ™ Ar and a œ Ar ,
(X, a) œ sup reads as: “the acceptance of a requires the acceptance of every argument
in X”.

Since the core idea of the EAS is that valid arguments (in particular, those
originating attacks) need to trace back to the environment, the authors define the
notion of evidence supported attack (e-supported attack). Then, based on this
notion, semantics for the EAS have been characterized in [91] and then reformulated
in [95], following Dung’s methodology.

The Generalised Argumentation Frameworks with Necessities (GAFNs)
[88] (directly referred to as AFNs in [87]) are another kind of bipolar argumen-
tation frameworks that account for interactions between single arguments and sets
of arguments but in a di�erent way: a necessity relation between a set of arguments
S and an argument a means that the acceptance of a requires the acceptance of at
least one argument in S.

To illustrate the support relation of GAFNs, let us consider the following exam-
ple. Suppose that in order to be awarded with a scholarship (s) a student is required
to obtain a Bachelor’s degree with honours (bh) or justify modest income (mi). In
addition, suppose that the student has a bad mark (bm), and that having a bad
mark prevents the student from obtaining the honours (regardless of the average
of marks). We can represent this scenario by a GAFN with arguments s, bh, mi
and bm. On the other hand, there exists an attack from bm to bh, and there exists
a necessary support from the set {bh, mi} to argument s. It is important to note
that, even though the attack from bm to bh will result in bh not being accepted, this
does not prevent s from being accepted (in other words, the student will obtain the
scholarship). This is because the support towards s is originated in the set {bh, mi},
where each argument within this set provides an alternative condition for obtaining
the scholarship.

Generalised Argumentation Frameworks with Necessities are formally defined as
follows:

1471

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Definition 4.2. A Generalised Argumentation Framework with Necessities
(GAFN) is defined by a tuple ÈAr , att, supÍ where Ar is a set of arguments, att ™

Ar ◊ Ar is an attack relation and sup ™ ((2Ar
\ÿ) ◊ Ar) is a necessity relation.

In [87] the author proposed a characterisation of semantics for the GAFN, in
addition to those given in [88]. Finally, it should be noted that in [95] the authors
provided a translation allowing the transformation of a GAFN into an EAS. Briefly,
this translation is such that unsupported arguments in the GAFN will be arguments
supported by ÷ in the EAS; on the other hand, all sets of supporting arguments in
the GAFN are combined into di�erent sets of supporting arguments in the EAS by
accounting for their Cartesian product. Finally, for the attack relation it su�ces to
map the attacking arguments in the GAFN into singleton sets of attacking arguments
in the EAS. Then, [95] formally established a correspondence between the EAS and
the GAFN in terms of their semantics, and identified correspondences between the
properties of both frameworks and properties of Dung’s AF.

Example 4.3. Consider the GAFN ÈAr , att, supÍ, where:

• Ar = {a, b, c, d, e, f}

• att = {(b, a), (e, a), (c, d)}

• sup = {({b}, e), ({d, f}, e), ({a}, d)}

This AFN could be translated into the EAS ÈAr Õ, att Õ, supÕ
Í, where:

• Ar Õ = Ar fi {÷}

• att Õ = {({b}, a), ({e}, a), ({c}, d)}

• supÕ = {({b, d}, e), ({b, f}, e), ({a}, d), ({÷}, a), ({÷}, b), ({÷}, c), ({÷}, f)}

For details about the characterisation of semantics for EAS and GAFN we refer
the reader to [91] and [88; 87], respectively.

4.2 Bipolar argumentation frameworks with joint attacks or joint
supports and higher-order interactions

The ideas adopted by the EAS and the GAFN described in the previous section
were further exploited in [30] and [31], where the authors introduced the Recursive
Evidence-Based Argumentation Framework (REBAF) and the Recursive Argumen-
tation Framework with Necessity (RAFN). Briefly, these frameworks extend Dung’s

1472

Joint Attacks and Accrual in Argumentation Frameworks

AF by accounting for attack and support relations that can target not only argu-
ments, but also attacks or supports at any level18. As a result, the REBAF adopts
the evidential interpretation for the support relation of [91], whereas the RAFN
adopts the generalised necessity interpretation of support proposed in [88]. The
formal definitions of these frameworks are included below:

Definition 4.4. A Recursive Evidence-Based Argumentation Framework (REBAF)
is a tuple ÈAr , att, sup, s, t, PF Í where Ar , att and sup are pairwise disjoint sets
respectively representing the names of arguments, attacks and supports, and PF ™

Ar fiatt fisup is a set representing the prima-facie elements of the framework that do
not need to be supported. The functions s : (att fisup) ‘æ 2Ar

\ÿ and t : (att fisup) ‘æ

(Ar fiatt fi sup) respectively map each attack and support to its source and its target.

Definition 4.5. A Recursive Argumentation Framework with Necessity (RAFN) is a
tuple ÈAr , att, sup, s, tÍ, where Ar , att and sup are pairwise disjoint sets respectively
representing the names of arguments, attacks and supports. The function s : (att fi

sup) ‘æ 2Ar
\ÿ and t : (att fisup) ‘æ (Ar fiatt fisup) respectively map each attack and

support to its source and its target. It is assumed that ’– œ att, s(–) is a singleton.

Note that, according to Definition 4.4, attacks and supports in a REBAF can
have a set of arguments as their source. In contrast, by Definition 4.5, the attack
relation of a RAFN is restricted to only allow for arguments as the source of attacks.
Then, in both cases, an attack or a support can also be the target of an interaction.
Consequently, since these frameworks allow to reason about interactions in addition
to arguments, the attacks and supports are also accounted for in the acceptability
calculus.19

Semantics of REBAF and RAFN are defined using a notion of structure, defined
as a triple U = (S, �, �) such that S ™ Ar , � ™ att and � ™ sup. Then, the
notions of conflict-freeness, acceptability and admissibility as well as the subsequent
semantics are defined over these structures, with the idea that the set S represents
the set of “acceptable” arguments w.r.t. the structure U , and the sets � and �
respectively represent the sets of “valid attacks” and “valid supports” w.r.t. U . For
details about the definition of semantics for REBAF and RAFN, we refer the reader
to [30] and [31], respectively, or to Chapter 1 of this handbook [29].

18The REBAF and the RAFN are studied in more detail in Chapter 1 of this handbook [29].
19This feature is also shared by other frameworks such as the AFRA and the ASAF, discussed

in Section 4.3.

1473

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

4.3 Using joint attacks to model higher-order interactions and gen-
eralised necessary supports

Gabbay [62] proposed the Higher-Level Argumentation Frames (HLAFs), which ex-
tend Dung’s framework by allowing for attacks from arguments targeting not only
arguments, but also attacks at any level. A HLAF can be defined as follows:

Definition 4.6. Let Ar be a set of arguments. Level (0, n) argumentation frames
are defined as follows:

1. A pair (a, b) œ Ar ◊ Ar is called a level (0, 0) attack.

2. If c œ Ar and – is a level (0, n) attack then (c, –) is a level (0, n + 1) attack.

3. A level (0, n) argumentation frame is the pair ÈAr , attÍ where att contains only
level (0, m) attacks for 0 Æ m Æ n.

Note that, although the level of HLAFs is expressed in terms of pairs (0, n) with
possibly di�erent values for n, the first component of the pair denoting the level
is always 0 (the part of the level associated with the set of arguments). In partic-
ular, [62] proposed di�erent kinds of approaches in order to define the semantics
of HLAFs: the first option consists in translating a HLAF into a Dung’s AF; the
second alternative corresponds to the characterisation of labellings for HLAF, sim-
ilarly to the labellings for AFs [6]; finally, in the third approach Gabbay proposed
to translate a HLAF into a logic program. In the following, we will consider the
first translation approach, which consists of obtaining a Dung’s AF corresponding
to a HLAF. Specifically, a HLAF ÈAr , attÍ can be translated into an AF ÈArú, attú

Í,
where:

• Arú = Ar fi {x—, y— | — = (a, –) œ att}.

• attú = {(a, x—), (x—, y—), (y—, –) | — = (a, –) œ att}.

The new arguments x(a,–) and y(a,–) associated with an attack from a to – respec-
tively represent that the attack is ‘live’ or ‘dead’; moreover, Gabbay argued that the
translation of attacks as in the second bullet above is su�cient for attacks which
are under attack. This translation is illustrated in Figure 7, where two attacks
– = (a, b) œ att and — = (c, –) œ att are considered.

Then, given a set of extensions E+
1 , E+

2 , . . . , E+
n of the associated AF, the corre-

sponding extensions of the HLAF are E+
i

fl Ar , (i = 1, . . . , n).
In spite of proposing the translation described above, [62] argued that an attack

(a, b) œ att should be viewed as an independent unit, the attack of a on b, which can

1474

Joint Attacks and Accrual in Argumentation Frameworks

a b

c

–

—

a x– y– b

y—x—c

Figure 7: (LHS) HLAF with attacks – = (a, b) and — = (c, –); and (RHS) the
translation into a series of AF attacks

a

–

b

a

–

x–

xa

y– b

Figure 8: (LHS) Graphical representation of the joint attack by a and – on b,
corresponding to an attack – = (a, b); and (RHS) its translation into a sequence of
AF attacks.

be itself attacked. In particular, he stated that the preceding translation does not
serve its purpose for modelling more general situations, such as attacks originated
in other attacks (although the latter are not allowed in the frameworks of Defini-
tion 4.6). In that way, the author suggested that an attack (a, b) œ att should be
a unit kept ‘live’ unless attacked itself. Consequently, he proposed an alternative
solution making use of joint attacks: an attack – = (a, b) is translated in a way such
that the argument b is jointly attacked by two arguments a and – Then, both a and
– must be ‘live’ in order for b to be ‘dead’. The graphical representation of a joint
attack by a and – on b, corresponding to an attack – = (a, b) is shown in Figure 8
on the left.

Given this notion of joint attack, [62] proposed a further translation of joint
attacks into attacks in a Dung’s AF. This translation has some similarities with the
one introduced before for directly translating a HLAF into an AF, and is illustrated
in Figure 8 on the right for the case of a joint attack by a and – on b.

Alternatively to the translation of joint attacks into attacks at the argument
level in a Dung’s AF, [62] introduced the frames with joint attacks:

1475

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Definition 4.7. A frame with joint attacks has the form ÈAr , attÍ, where Ar is the
set of arguments and att ™ Ar ◊ Ar ◊ Ar is a ternary relation. We understand
(x, y, z) œ att as saying that the two arguments x and y are mounting a joint attack
on z.

The author remarked that single attacks can still appear in a frame with joint
attacks; these would be attacks of the form (x, x, y) œ att. It is important to note
that, following Definition 4.7, the frames with joint attacks are a particular case
of the SETAFs, where the set of arguments originating an attack is restricted to
a maximum of two elements. Consequently, the algorithms and reduction-based
approaches for SETAFs discussed in Section 3.3 could also be applied to the frames
with joint attacks.

Then, Gabbay introduced definitions analogous to those of [84], characterising
the extensional semantics of these frameworks. Finally, he proposed a translation
from HLAFs into frames with joint attacks, so that extensions of the former corre-
spond to extensions of the latter.

Definition 4.8. Let ÈAr , attÍ be a HLAF. The corresponding frame with joint at-
tacks ÈAr Õ, att Õ

Í is defined as follows:

• Ar Õ = Ar fi att

• att Õ = {(a, –, —) | – = (a, —) œ att}

Following this approach, for instance, the HLAF illustrated in Figure 9 on the
top can be translated into a frame with joint attacks (or a SETAF) like the one
depicted in Figure 9 at the bottom.

Next, we will discuss the possibility of using joint attacks for modelling attacks,
including higher-order attacks, through Gabbay’s Frames with Joint Attacks (a par-
ticular case of SETAFs) in frameworks such as the AFRA [7] or the ASAF20 [68].
We will start by briefly recalling the definition of these frameworks, as proposed by
their authors. As mentioned before, these frameworks are studied in another chapter
of this book. Thus, for more details, we refer the interested reader to Chapter 1 of
this handbook [29].

The Argumentation Framework with Recursive Attacks (AFRA) [7] generalises
Dung’s AF by incorporating a recursive attack relation where attacks are allowed to
target other attacks as well as arguments, and the attacks can occur at any level.

Definition 4.9. An Argumentation Framework with Recursive Attacks (AFRA) is
a pair ÈAr , attÍ where:

20In the case of the ASAF, initially, without supports (where such an ASAF would be an AFRA).
The means for modelling supports through joint attacks will be discussed later.

1476

Joint Attacks and Accrual in Argumentation Frameworks

a b c c

e

– — “

”

e

”

a

–

b

—

c

“

d

Figure 9: (Top) A HLAF with a higher-order attacks, where Greek letters denote
the labels of the attacks; and (Bottom) its corresponding frame with joint attacks

• Ar is a set of arguments;

• att is a set of attacks, namely pairs (a, X) such that a œ Ar and (X œ Ar or
X œ att).

Given an attack – = (a, X) œ att, a is said to be the source of –, denoted as
s(–) = a, and X is the target of –, denoted as t(–) = X. Moreover, similarly to the
notation used before for Gabbay’s HLAF, [7] introduces an abbreviated notation for
recursive attacks in the AFRA; for instance, an attack (c, (a, b)) can be expressed
as (c, –), where – = (a, b).

Then, [7] establishes the di�erent kinds of defeat that can occur between the
elements of an AFRA. A key aspect of their formalisation is that they regard attacks
(not their source arguments) as the subjects able to defeat arguments and other
attacks. Then, an attack can be made ine�ective (in other words, defeated) either
by attacking the attack itself or by attacking its source. The notions of direct defeat
and indirect defeat are introduced in [7] as follows:

1477

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Definition 4.10. Let ÈAr , attÍ be an AFRA, – œ att and X œ Ar fi att. It is said
that – defeats X, denoted – æ

R X if one of the following conditions holds:

• t(–) = X (direct defeat); or

• X = — œ att and t(–) = s(—) (indirect defeat).

Then, based on this notion of defeat, the notions of conflict-freeness, acceptabil-
ity, admissibility and extensions under di�erent semantics are introduced following
Dung’s methodology. Consequently, the extensions of an AFRA will not only contain
the accepted arguments under the corresponding semantics, but also the accepted
attacks.

Example 4.11. The arguments and attacks depicted at the top in Figure 9 corre-
spond to the AFRA ÈAr , attÍ, where Ar = {a, b, c, d, e} and att = {–, —, “, ”}, with
s(–) = a, t(–) = b, s(—) = b, t(—) = c, s(“) = c, t(“) = d, s(”) = e, t(”) = –.

Here, the direct defeats are: – æ
R b, — æ

R c, “ æ
R d and ” æ

R –. On the other
hand, the indirect defeats are: – æ

R — and — æ
R “. Consequently, — reinstates d, –

reinstates c and “, and ” reinstates – and b. As a result, for instance, the AFRA has
only one complete extension (which is also its grounded and only preferred and stable
extension), namely {a, e, ”, b, —, d}. In contrast, if we apply the SETAF semantics
on the framework depicted at the top on Figure 921, we have that the only complete
extension is {a, e, ”, b, —, “, d}.

The di�erence in the result obtained by applying the AFRA semantics, compared
to the one obtained by translating the AFRA into a SETAF and then applying the
SETAF semantics, has to do with the fact that the translation proposed in [62] does
not take into account the indirect defeats. In particular, in the above example, the
indirect defeat by — on “ is not captured, leaving “ as an accepted attack22. This
suggests that we need to establish a di�erent translation of AFRAs into SETAFs, in
order to account for the e�ect of indirect defeats. An alternative translation of an
AFRA into a SETAF could be:

Definition 4.12. Let ÈAr , attÍ be an AFRA. The corresponding SETAF ÈAr , ÛÍ is
defined as follows:

Ar = Ar fi att
Û = {({a, –}, X) | – = (a, X) œ att} fi

{({a, –}, –Õ) | – = (a, X) œ att, –Õ
œ att, s(–Õ) = X}

21As stated before, the frames with joint attacks are a particular case of SETAFs.
22The indirect defeat by – on — is not captured either; however, since – is not accepted (because

it is directly defeated by ”) it does not a�ect the outcome.

1478

Joint Attacks and Accrual in Argumentation Frameworks

e

”

a

–

b

—

c

“

d

Figure 10: SETAF corresponding to the AFRA from Example 4.11

The AFRA from Example 4.11, corresponding to the framework depicted at the
top of Figure 9, can be translated following Definition 4.12 to obtain the SETAF
depicted in Figure 10. Then, applying the SETAF semantics on that framework, the
only complete extension coincides with the one obtained with the AFRA semantics
in Example 4.11.

Let us now consider the formalization of the Attack-Support Argumentation
Framework (ASAF) [68]. Briefly, the ASAF extends Dung’s AF by incorporating
bipolar higher-order interactions. In that way, the ASAF allows for the representa-
tion and reasoning with attack and support relations not only between arguments,
but also targeting the attack and support relations themselves. In particular, the
support relation of the ASAF is interpreted as necessity [88]. That is, the necessary
support relation in the ASAF imposes the following acceptability constraints on the
elements it relates: if a supports b, then the acceptance of b implies the acceptance
of a; equivalently, the non-acceptance of a implies the non-acceptance of b. Note
that the support relation in the ASAF is set to be binary, di�erently from the neces-
sary support relation of the GAFN introduced in Section 4.1. Some of the following
definitions are taken from [2], where the background for the ASAF was succinctly
introduced.

Definition 4.13. An Attack-Support Argumentation Framework (ASAF) is a tuple
ÈAr , att, supÍ where Ar is a set of arguments, att ™ W is the attack relation, and
sup ™ W is the support relation, with W being the set iteratively defined as follows:
W = Ar ◊ Ar (basic step) and W = Ar ◊ W (iterative step). It is assumed that sup
is acyclic and att fl sup = ÿ.

1479

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

Similarly to the case of the AFRA, an attack (a, b) œ att will be denoted as
–1 = (a, b); analogously, a support (b, c) œ sup will be denoted as —1 = (b, c). Then,
for instance, an attack from d to –1 will be denoted as –2 = (d, –1). In general,
given an attack – = (a, X) œ att, a is called the source of –, denoted s(–) = a,
and X is called the target of –, denoted t(–) = X. Analogously, given a support
— = (b, Y) œ sup, b is called the source of —, denoted s(—) = b, and Y is called the
target of —, denoted t(—) = Y .

Like in the AFRA, di�erent kinds of defeat that can occur between the elements
of an ASAF. Specifically, they correspond to the two kinds of defeat identified for
the AFRA, plus two additional kinds of defeat that arise from the coexistence of the
attack and support relations.

Definition 4.14. Let � = ÈAr , att, supÍ be an ASAF, – œ att, X œ (Ar fi att fi sup)
and S ™ sup. We say that – defeats X (given S), denoted – def X given S (or
simply – def X whenever S = ÿ) i� one of the following conditions holds:

• there exists a (possibly empty) support path from t(–) to X, whose correspond-
ing set of supports is S; or

• X œ att and there exists a (possibly empty) support path from t(–) to s(X),
whose corresponding set of supports is S.

To illustrate these notions, let us consider the following example. Similarly to
Dung’s AF or the AFRA, an ASAF can be graphically represented using a graph-
like notation where two kinds of edges are considered: æ for the attack relation
and ∆ for the support relation. In addition, attacks and supports are labelled with
greek letters, following the convention that attacks are labelled with – (possibly
with subscripts) and supports are labelled with — (again, possibly with subscripts).

Example 4.15. Consider the ASAF ÈAr , att, supÍ, where Ar = {a, b, c, d, e, f,
g, h}, att = {–1, –2, –3, –4} and sup = {—1, —2, —3}, with –1 = (a, b), –2 = (c, e),
–3 = (g, f), –4 = (h, –3), —1 = (b, c), —2 = (c, d) and —3 = (f, —1). This framework is
depicted in Figure 11, and the following defeats occur: –1 def b, –2 def e, –3 def f ,
–4 def –3, –1 def c given {—1}, –1 def –2 given {—1}, –1 def d given {—1, —2},
–3 def —1 given {—3}.

The semantics of the ASAF are also defined following Dung’s methodology, ac-
counting for the notions of conflict-freeness, acceptability and admissibility, to later
characterise the complete, preferred, stable and grounded semantics of the frame-
work. It should be noted that, since the defeats in the ASAF may involve a set of
supports, these notions cannot be directly defined by considering the definitions for
AFs (see Section 3.1 and Definition 4.14).

1480

Joint Attacks and Accrual in Argumentation Frameworks

a b c d

efg

h

–1 —1 —2

–2
—3

–3

–4

Figure 11: ASAF from Example 4.15

Definition 4.16. Let � = ÈAr , att, supÍ be an ASAF and S ™ (Ar fi att fi sup).

• S is conflict-free i� @–, X œ S, @S
Õ
™ (S fl sup) such that – def X given S

Õ.

• X œ (Ar fi att fi sup) is acceptable w.r.t. S i� ’– œ att, ’T ™ sup such
that – def X given T: ÷Y œ ({–} fi T), ÷–Õ

œ S, ÷S
Õ

™ (S fl sup) such that
–Õ def Y given S

Õ.

• S is admissible i� it is conflict-free and for all X œ S, X is acceptable w.r.t.
S.

Definition 4.17. Let � = ÈAr , att, supÍ be an ASAF and S ™ (Ar fi att fi sup).

• S is a complete extension of � i� it is an admissible set and ’X œ (Ar fi att fi

sup), if X is acceptable w.r.t. S, then X œ S.

• S is a preferred extension of � i� it is a maximal (w.r.t. ™) complete extension
of �.

• S is a stable extension of � i� it is a complete extension of � and ’X œ

(Ar fi att fi sup)\S, ÷ – œ S, ÷ S
Õ
™ (S fl sup) such that – def X given S

Õ.

• S is the grounded extension of � i� it is the smallest (w.r.t. ™) complete
extension of �.

The ASAF from Example 4.15 has only one complete extension, which is also
the grounded extension and the only preferred and stable extension of the frame-
work: {a, e, f, g, h, –1, –4, —1, —2, —3}. In particular, it can be noted that whereas
–3 def —1 given {—3}, the support —1 is reinstated by –4, since –4 def –3. Then, the

1481

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

defeats from –1 on c and –2 given {—1} are also reinstated, as well as the defeat
from –1 on d given {—1, —2}.

As shown in [68], an ASAF without support is an AFRA. So, when applying the
AFRA semantics on ASAFs without supports we obtain the same outcome as the
one obtained under the ASAF semantics. Consequently, the translation of an AFRA
into a SETAF could also be applied to the ASAF; nevertheless, some adjustments
need to be made in order to account for the defeats involving a set of supports. A
possible translation of an ASAF into a SETAF is given below.

Definition 4.18. Let ÈAr , att, supÍ be an ASAF. The corresponding SETAF ÈAr , ÛÍ

is defined as follows:

Ar = Ar fi att fi sup fi {—ú
| — œ sup}

Û = {({a, –}, X) | – = (a, X) œ att} fi

{({a, –}, –Õ) | – = (a, X) œ att, –Õ
œ att, s(–Õ) = X} fi

{({a, –}, Xú) | – = (a, X) œ att, X œ sup} fi

{({a, —}, —ú), ({—ú
}, X) | — = (a, X) œ sup} fi

{({—ú
}, Xú) | — œ sup, X œ sup, t(—) = X} fi

{({—ú
}, –) | — œ sup, – œ att, t(—) = s(–)}

The ASAF from Example 4.15, corresponding to the framework depicted in Fig-
ure 11, can be translated following Definition 4.18 to obtain the SETAF depicted in
Figure 12. Then, applying the SETAF semantics on that framework, the only com-
plete extension coincides with the one obtained with the ASAF semantics, namely
{a, e, f, g, h, –1, –4, —1, —2, —3}.

Finally, we will briefly discuss the possibility of using joint attacks to model the
generalised necessity relation proposed in [88] adopted in frameworks such as the
RAFN (see Section 4.2).

Let us recall the example introduced in Section 2, represented using the SETAF
from Figure 2. There, we can think of the argument NP as providing a context
under which A18 attacks M ; that is, a person aged under 18 is not allowed to
marry whenever parent permission is not provided. So, we could think of this sit-
uation as corresponding to the existence of an attack –1 = (A18, M) and a gener-
alised necessary support —1 = ({NP}, –1). Similarly, given the restriction to drink
alcohol, arguments NA and NM can be considered as providing alternative con-
texts under which A18 attacks Alc. Therefore, we could think of representing this
situation through an attack –2 = (A18, Alc) and a generalised necessary support
—2 = ({NA, NM}, –2). This is because, in this situation, it su�ces to have either
NA or NM accepted in order to be able to accept –2 (i.e., in order for the attack
from A18 to Alc to hold).

1482

Joint Attacks and Accrual in Argumentation Frameworks

a

–1

b

—1

—
ú

1 c

—2

—
ú

2 d

–2

e

—
ú

3

g

h

–4

–3

f —3

Figure 12: SETAF corresponding to the ASAF from Example 4.15

The preceding example suggests that joint attacks (as those in the SETAF from
Figure 2) may be suitable for modelling the generalised necessary support relation
in the case of higher-order supports targeting an attack. However, for instance, if
there exists another interaction (say, an attack –3) targeting —1, we should be able
to model on the SETAF the fact that if –3 is accepted then —1 no longer holds and,
consequently, that NP does not provide a context under which the attack –1 from
A18 to M holds. Nevertheless, if the support —1 from NP to –1 is modeled by a
joint attack from NP and A18 as in Figure 2, we cannot model the attack from –3
towards —1 in the SETAF, since —1 is not made explicit in this representation.

5 Accrual

A parallel line of research in computational argumentation studies the accrual of
arguments, i.e., how arguments supporting or refuting the same claim can be com-
bined. The main di�erences between accrual and joint attacks (at least under the

1483

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

type of joint attacks used in SETAFs) is that, in joint attacks, the strength of an
argument or a combination of arguments is not considered when evaluating the e�ec-
tiveness of attacks, and each argument participating in a joint attack is an essential
element of it (in other words if an argument is missing then the attack is ine�ective),
while in accrual the strength of each argument is taken into account, and adding an
argument to an accrual makes the accrual stronger, or more generally it changes its
strength and the e�ectiveness of its attacks (or supports).

A seminal study on the accrual of arguments [96] set out three principles for
accrual:

1. An accrual is sometimes weaker than its accruing elements. This is due to the
possibility that the accruing reasons are not independent.

2. An accrual makes its elements inapplicable. More generally, any ‘larger’ ac-
crual that applies makes all its ‘lesser’ versions inapplicable. This is because
an accrual is meant to consider all available information, while the individual
arguments it consists of take only part of the information into account.

3. Flawed reasons or arguments may not accrue. Any treatment of accrual should
capture that when an individual reason or argument turns out to be flawed, it
does not take part in the accrual.

Prakken also described two general ways to formalise accrual: (a) the knowledge
representation (or else KR) approach, which requires formulating a separate rule
for each possible combination of the accruing reasons; (b) the inference approach,
where the accrual is part of the inference process, i.e., after all individual reasons
have been constructed, those that attack or support the same claim are somehow
aggregated and some mechanism is then used to resolve any conflicts between the
conflicting sets of reasons. He also proposed a formalisation of accrual using the
inference approach, according to which the conclusion of each individual defeasible
inference step is labelled with the premises of the applied defeasible inference rule:

„, „ ∆ Â |≥ Â{„,„∆Â}

and a new defeasible inference rule is introduced that takes any set of labelled
versions of a certain formula and produces the unlabelled version:

„l1 , · · · , „ln |≥ „

The attack relationships among arguments are adjusted as follows: rebuttal requires
that the two arguments support opposite conclusions that are labelled in the same

1484

Joint Attacks and Accrual in Argumentation Frameworks

way, while undercut requires that the attacking arguments have unlabelled conclu-
sions. Finally, the following rules ensure that when a set of reasons accrues, any
subset of it is inapplicable:

„l1 , · · · , „ln |≥ ¬Á„l1 , · · · , „ln≠1Ë

The proposed formalisation satisfies all principles of accrual, but has a compu-
tational drawback: it requires considering all possible accruals for every conclusion,
which may lead to an exponential increase in the number of arguments.

The idea of combining arguments for and against a claim, albeit under the name
“aggregation” rather than “accrual” was studied by argumentation researchers before
[96]. One line of work, that of Fox and colleagues, goes back at least as far as [90],
where the idea of symbolically weighing evidence is formalised in what recognisably
is a structured argumentation framework, and arguably as far back as [61] where the
idea was first applied. The formal development of that work came to a conclusion
with [72] and [59]. The former paper describes a model that links the simple form
of accrual from [90], which e�ectively just looks at the numbers or arguments for
and against a claim23, with forms of accrual which connect to probabilistic models.
The latter uses the same model to develop a hierarchy of notions of acceptability,
coming close to Dung’s work at about the same time that work was first published
[39].

CumulA [103; 104] was another structured argumentation model that dealt with
accrual. Additionally to the notion of compound defeaters, which we discussed in
Section 3.4, it also includes the notions of coordination and narrowings of arguments.
Di�erent arguments supporting the same conclusion can be combined in a coordi-
nated argument, while the narrowing of a coordinated argument a is an argument b
supporting the same conclusion as a but containing a subset of the arguments com-
bined in a (or narrowings of them). CumulA deals with accrual using compound
defeaters and the following acceptability condition for arguments: if the narrowing
of an argument a is in (meaning that the argument is accepted), then a should be
in too. As shown in [96], CumulA satisfies all three principles of accrual but the
second one (i.e. that an accrual makes its elements inapplicable) is satisfied in a way
that is too strong. Because of the acceptability condition described above, which
implies that if an accrual is out then all its narrowings are out, it cannot capture a
situation where an accrual is defeated because of subargument defeat so that some
of its narrowings can be undefeated.

More recently, [16] developed another account of accrual, based on their logic-
based approach to argumentation, though again they do not describe it as such. In

23Before dismissing such a simple model, consider how e�ective such simple models can be [38].

1485

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

[16], lines of discussion about a particular claim — the argument for it, the arguments
against it, the arguments against those arguments, and so on — are brought together
into an argument tree. Then, all argument trees for or against a claim are assembled
into an argument structure. An argument structure thus gathers everything that
is relevant to whether or not a claim should be accepted. This, of course, is not
much di�erent to what one would get from assembling all of the arguments in a
structured framework like ASPIC+ or DeLP that bear on a specific formula into
some super-structure. However, whereas most structured frameworks summarise
this higher level structure in a notion of acceptability, [16] defines a “categoriser”
which maps a structure to a number, and this can be thought of as the accrued value
of the set of arguments in the structure.

[78] proposed an approach for formalising the accrual of arguments in Defeasible
Logic Programming using the notion of a-structure, a special kind of argument
which subsumes di�erent chains of reasoning that provide support for the same
conclusion, and partial attacks among a-structures, where the attacking a-structure
generally a�ects only the narrowing of the attacked a-structure containing exactly
the arguments a�ected by the conflict. A binary preference relation on a-structures
is used to determine the relevant strength of conflicting a-structures and whether
an attack succeeds (in which case it constitutes a defeat). To deal with combined
attacks (situations where two or more a-structures simultaneously attack the same a-
structure), they define a process, called bottom-up sequential degradation, according
to which the defeats are applied in sequence with the “deeper” ones applied first. The
described framework satisfies all three principles of accrual. Its main di�erence with
the formalisation proposed in [96] is that when analysing a theory to determine the
accepted (undefeated) a-structures, it only considers maximal accruals (a-structures)
and not all possible accruals for a conclusion.

[67] proposed the use of argument weighing functions as a way to model di�erent
types of argument schemes, including some types of argument accrual, in Carneades,
a structured argumentation framework. In this framework, an argument is defined
as a tuple (s, P, c, u) where s is the scheme that the argument instantiates; P , the
premises of the argument, is a finite subset of the underlying logical language L; and
c, its conclusion, and u, its undercutter, are elements of L. Its semantics is defined
in terms of a labelling, which assigns a value from {in, out, undec} to each element
of L and a weighing function, which assigns a value from [0, 1] to each argument
and 0 to all arguments such that their undercutter is in. Gordon also provided
several examples of weighing functions, some of which are appropriate for modelling
di�erent types of accrual. To simulate convergent arguments, i.e., arguments that
at least one of its premises must be in to support their conclusion, he defined a
weighing function that assigns 1 to an argument if at least one of its premises is in

1486

Joint Attacks and Accrual in Argumentation Frameworks

and its undercutter is not in, and 0 otherwise. A weighing function that simulates
cumulative arguments, i.e., arguments whose strength increases with the number of
their acceptable premises, assigns the percentage of the premises of the argument
that are in to every argument whose undercutter is not in. Cumulative arguments
are a special type of accrual that does not satisfy Prakken’s second principle, since
cumulation can only increase the strength of an argument. Another weighing func-
tion that simulates accrual takes into account all factors (statements) that need
to be considered when evaluating the arguments for a certain issue. It does so by
assigning to each argument the proportion of its factors that are premises of the
argument and are labelled in. One limitation of this framework with respect to ac-
crual is that although it handles various forms of accrual at the level of statements,
e.g., premises or factors of an argument, it does not provide a way to handle accrual
of multiple arguments.

[97] proposed a formalisation of accrual for ASPIC+, a structured argumentation
framework where arguments are tree-like structures constructed from a knowledge
base, which is a subset of an underlying logical language L, and a set of inference,
strict or defeasible, rules. In this framework, there are two ways to attack an ar-
gument a: either at the top inference rule r of a (undercut) or at the conclusion of
r (rebuttal)24 - in both cases r must be defeasible, otherwise a cannot be attacked.
[97] extended ASPIC+ with the notion of accrual sets, which are defined relative to
a labelling of the set of arguments S. An accrual set for a literal „ œ L, denoted
as sl(„), is the set of arguments with conclusion „ satisfying the following two con-
ditions: (i) for any argument in sl(„) no immediate subargument of a is out and
no undercutter of a is in; (ii) any argument with conclusion „ whose undercutters
are out and its immediate subarguments are in must be in sl(„). The extended
framework also includes a preference relation Æ on the power set of S, such that
any set of arguments containing a strict argument is at least as preferred as ev-
ery other subset of S. It also includes a new defeat relation on arguments, called
l-defeat, which takes into account accruals: an argument a l-defeats an argument
b i� a undercuts b; or a rebuts b, and for some accrual sets for the conclusions
of a, sl(Conc(a)), and b, sl(Conc(b)), it holds that sl(Conc(a)) ⌅ sl(Conc(b)). A
characteristic function F is used to compute the labelling of a framework, which
satisfies the following conditions: an argument a is in i� all arguments that l-defeat
a are out and all immediate subarguments of a are in; a is out i� it is defeated
by an argument that is labelled in or one of its immediate subarguments are out.

24Note that these definitions are di�erent from the standard ASPIC+ where arguments can also
be attacked on their subarguments. As explained in [97], in the version of ASPIC+ considered
in this paper, arguments are constructed recursively and the recursion takes care of subargument
attacks.

1487

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

The proposed framework satisfies all principles of accrual and preserves some of the
properties of Dung’s AFs, such as the existence of complete and preferred labellings
and the relations between grounded, complete, stable and preferred semantics.

In the field of abstract argumentation, the most relevant approaches are the
frameworks with graded semantics (e.g., see [11] for an overview and a study of their
properties) or ranking semantics and social argumentation frameworks (e.g., see [74;
12; 92]). Such frameworks provide methods for assessing the strength of an argument
based on the aggregate strength of its attackers and the aggregate strength of its
supporters (and in some cases the initial valuation of the argument), capturing the
main idea of accrual. Some of their general properties are: (i) the larger the set of the
attackers on an argument, the lower the strength of the argument under attack; (ii)
the larger the set of supporters or defenders of an argument, the higher the strength
of the argument they support or defend; and (iii) an argument with 0 strength does
not have an e�ect on the strength of the arguments it attacks or supports. The last
property satisfies the third principle of accrual (i.e., that flawed arguments do not
accrue), while by considering the aggregate strength of the attackers or supporters
of an argument, they essentially satisfy the second principle, i.e., that an accrual
makes its elements inapplicable. Properties (i) and (ii), however, violate the second
principle, since they imply that an accrual is always stronger than the individual
accrued arguments.

6 Proposals for future work on joint attacks

In this section we highlight some emerging topics for future research on joint attacks
and accrual.

There are several interesting directions for further research concerning semantics
of SETAFs. Standard semantics of AFs have been generalised to SETAFs and their
basic properties and relations are settled. However, several prominent semantics
have not yet been generalised and analysed on SETAFs, e.g., cf2 [8], strong admis-
sibility [9; 26] and weak admissibility [14]. Recently, a first approach to transfer
also ranking-based semantics to SETAFs has been undertaken [108]. Properties of
AF semantics have been studied in versatile aspects [102; 13] beyond the existing
analysis for SETAFs. For instance, generalising the principle-based approach for
analysing and comparing semantics to SETAFs would be valuable for the selection
of the right argumentation semantics, and understanding the di�erent notions of
equivalence also on SETAFs is fundamental for using SETAFs in dynamic settings.
Concerning the latter, a first investigation of strong equivalence notions for SETAFs
has been done in [54].

1488

Joint Attacks and Accrual in Argumentation Frameworks

As another research direction one could consider enhancing the expressiveness
of SETAF by extending its basic model with features similar to the ones used in
extensions of the AF model, such as the introduction of a joint support relation,
weights on (joint) attacks, values promoted by (sets of) arguments, or a preference
relation among (sets of) arguments. This would allow associating SETAFs with
the corresponding AF extensions, i.e., frameworks for bipolar argumentation [3;
32], graded [71] or weighted argumentation [46], value-based [15], or preference-
based argumentation [4] respectively. A related but somehow orthogonal research
direction is the investigation of the relations of SETAFs and other extensions of AFs
concerning their expressiveness. Existing investigations in that direction are the
embedding of SETAFs in ADFs [77] and translations between SETAFs and claim-
augmented AFs [56].

The translations from SETAF to AFs discussed in Section 3.2 either had the
weakness that they might increase the size exponentially or only supported a selec-
tion of the semantics. For future research one could investigate alternative transla-
tion schemes in order to avoid this pitfall. Ideally, we would like to have a transfor-
mation that applies for all semantics and causes a polynomial increase in the size
of the framework (in the sense of [20]), while at the same time resulting in elegant
correspondences for all the semantics (unlike [60], where this is true only for some
of the semantics). Recall, that [94] provide a translation that satisfies the latter
two properties but only for a selection of the semantics, i.e., the semantics based on
complete extensions, with the exception of semi-stable semantics. Also notice that
a polynomial increase in the size of the framework can still result in an exponential
increase in the number of arguments. Thus, another open question is whether such
a potential exponential increase in the number of arguments can be avoided.

On the computational side there are several open challenges. From the theo-
retical perspective one would be interested in identifying classes of instances that
provide milder complexity than general SETAFs. One approach that has been ex-
tensively studied for AFs are the so called tractable fragments [42], i.e., special
graph classes like acyclic or bipartite, that allow for e�cient reasoning procedures.
A more general approach are graph parameters and techniques for parametrised
complexity theory that allow for algorithms which are only exponential w.r.t. a
graph parameter but polynomial in the size of the AF [51; 52]. From a more
practical view one would be interested in e�cient labelling-based algorithms [86;
36] for SETAFs as well as systems that extend methods that have been successfully
applied for AFs [35]. An important step to boost the development of such systems
would be to establish standard formats to share SETAF instances and standard
benchmark sets.

Regarding the application of joint attacks, the ideas discussed in Section 4.3 could

1489

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

be further explored. As shown in Section 4.3, the translations from an AFRA [7] or
an ASAF [68] into a SETAF yield the same outcomes as those obtained directly by
applying the AFRA or ASAF semantics, respectively. However, this was only shown
for the examples illustrated in that section. A formal analysis of this correspondence
for the general case of an arbitrary ASAF or AFRA is left for future work. In
addition, the brief discussion at the end of Section 4.3 can also be the subject of
future work, also considering the translations discussed in Section 3.2. Specifically,
studying the possibility of using the SETAF for modelling the generalised support
relation of frameworks like the RAFN [30; 31], accounting for all cases: first-order
supports, higher-order supports targeting attacks and supports, and higher-order
supports which can be themselves attacked.

Finally, the potential of collective attacks in structured models of argumentation
is rather unexplored. Consider an instantiation scheme like ASPIC+ [97], or instan-
tiations for logic programs [28] or assumption-based argumentation [1] that construct
AFs from a knowledge base. Using SETAFs instead of AFs as target formalism can
significantly reduce the number of arguments and, in certain cases one can even
ensure that each statement has a unique argument supporting that statement [56].
A first investigation in that direction is [107; 109] where SETAFs are instantiated
from Datalog knowledge bases. There is also scope for relating this kind of approach
to work on accrual and the other models that collect related arguments such as the
argument trees of [16] and the coalitions of [33].

The accrual of arguments is a less studied problem compared to joint attacks.
As we discussed in Section 5 most existing approaches are focused on structured
argumentation and only few of them satisfy all three principles proposed in [96].
There are a lot of interesting future research directions in this area such as the sys-
tematic comparison and evaluation of the frameworks that support accrual and the
development of methods for handling accrual in abstract argumentation. The latter
could rely on the recently proposed graded semantics for abstract argumentation
or may require the development of a new abstract argumentation framework that
explicitly models accrual. Another interesting direction, which could also lead to a
solution for this problem, is to study the relation between current approaches for
accrual and collective attacks and the mapping between the frameworks that deal
with these two di�erent problems.

7 Conclusions

In this chapter we have studied di�erent formalisms that account for joint attacks (or
more generally, collective attacks) in abstract argumentation. Also, we discussed the

1490

Joint Attacks and Accrual in Argumentation Frameworks

consideration of joint attacks in the literature of structured argumentation as well
as the application of joint attacks (and joint supports) in other frameworks such as
bipolar argumentation frameworks or argumentation frameworks with higher-order
interactions. We also touched upon works on argument accrual which, although
not strictly related to the existing models of joint attacks, can be considered as a
related topic. In particular, the SETAF [84] framework along with its computa-
tional complexity, algorithms and applications, was the main subject of study in
this chapter.

In Section 3.1 the basic definitions of the framework were provided, followed by
the presentation of extension-based semantics of the SETAF and the relationships
between them, as well as the introduction of labelling-based semantics for the frame-
work. Then, in Section 3.2 the expressive power of the SETAF was compared against
that of Dung’s AF [40]. For this purpose, the results and analyses reported in [48;
60; 94; 20] were accounted for. On the one hand, the characterisation of the expres-
sive power using signatures was discussed, to then consider exponential and compact
translations of SETAFs into AFs, and later discuss an indirect translation path con-
sisting of a translation of a SETAF into an ADF [22] and a translation of the latter
into an AF. The main conclusion here is that, although SETAFs could be represented
by means of Dung’s AFs, the SETAF indeed increases the expressive power of the
AF. Moreover, as discussed in Section 3.3, the translations from a SETAF into an
AF lead to an exponential blow-up in the arguments, making them not well-suited
for computational matters.

In Section 3.3 di�erent computational problems for SETAFs were characterised,
following the definition of function problems and decision problems for Dung’s AFs
(cf. [36; 47; 35]). In particular, the decision problems include determining the credu-
lous or skeptical acceptance of an argument under a given semantics, the verification
of an extension, or determining the existence of a (non-empty) extension. Then, the
computational complexity of these decision problems is addressed, and the results
are linked to the existing results for decision problems in a Dung’s AF. The conclu-
sion here is that the complexity of decision problems for SETAFs is the same as the
complexity of the corresponding problems for Dung’s AFs. Notwithstanding this,
we should note that although in both cases the complexity is stated w.r.t. the size of
the input framework, the size is interpreted di�erently for AFs and SETAFs. On the
one hand, the size of an AF is often interpreted in terms of the number of arguments
of the input framework. On the other hand, since the number of attacks in a SETAF
may be exponentially larger than the number of arguments in the framework (due
to the existence of attacks by sets of arguments), the size of a SETAF should be
interpreted in terms of the number of arguments plus the number of attacks.

Also, Section 3.3 briefly discussed the ideas behind labelling-based algorithms for

1491

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

SETAFs, illustrating the algorithm for labelling enumeration under the preferred
semantics. Moreover, as mentioned before, di�erent reduction-based approaches
for computing the extensions of a SETAF were presented. The former consists of
encoding the SETAF and its semantics in Answer-set programming [79; 85], whereas
the latter rely on translations of a SETAF into a Dung’s AF or an ADF. While the
drawbacks of the translations into AFs were pointed out above, we should note
that the translation into an ADF o�ers the possibility of using existing systems for
ADFs [76] without incurring significant overheads.

Section 3.4 recalled alternative models of abstract and structured argumentation
which account for attacks involving sets of arguments. While in SETAF, a set of
arguments can only be the source of an attack, in other models sets of arguments are
only considered as a potential target of an attack (e.g. see [63]); or as both potential
sources or targets of an attack (e.g. see [18; 33; 103]). The di�erent models also di�er
in how the arguments within a set are treated. For example, while in the framework
of [33], all arguments in a coalition are treated in the same way, i.e. they are all
either accepted or rejected, in other frameworks, such as the ones proposed in [18;
63], a successful attack on a set of arguments has as a result that at least one of the
arguments in the attacked set is rejected. Although the di�erent approaches have
di�erent aims, an interesting problem is to study the extent to which they can be
mapped to each other and whether there is a more general model that captures their
di�erent features.

Section 4 addresses the application of models for joint attacks in the context
of Bipolar Argumentation Frameworks (BAFs) and argumentation frameworks with
higher-order interactions such as those addressed in Chapter 1 [29]. First, BAFs
that make use of joint attacks, joint supports, or both are recalled, highlighting the
constraints they impose on the attack and support relations, as well as the adopted
interpretations for the notion of support. Then, generalisations of these BAFs are
presented, which incorporate higher-order interactions in order to allow for attacks
and supports targeting other attacks or supports. Later, an analysis of the possibility
of using joint attacks to model higher-order interactions is performed.

On the one hand, Section 4 considered the work by Gabbay on Higher-Level Ar-
gumentation Frames [62], as well as the proposed translations of HLAFs into Frames
with Joint Attacks (a particular case of SETAF). Then, Gabbay’s ideas are taken in
the context of the AFRA [7] and the ASAF [68], two abstract argumentation frame-
works allowing for binary higher-order interactions. Our findings are that, when
applying the translation proposed by Gabbay to obtain the SETAF associated with
an AFRA or an ASAF without supports, and then applying the SETAF semantics,
the corresponding extensions might not be as expected (since the translation does
not account for the existence of indirect defeats). Then, translations for obtaining

1492

Joint Attacks and Accrual in Argumentation Frameworks

a SETAF corresponding to an AFRA or an ASAF are proposed, and illustrated
through examples; their formalisations for the general case of an AFRA or an ASAF
are left for future research. Moreover, the possibility of using the SETAF to model
generalised necessary supports is briefly analysed in Section 4, leaving an in-depth
discussion for future work.

In Section 5 di�erent works addressing the topic of argument accrual were dis-
cussed, both at the abstract and structured levels of argumentation. As discussed
there, the main di�erence between the approaches studying argument accrual and
those accounting for joint attacks (e.g., as in SETAFs) is that the strength of the
arguments combined to originate a joint attack is not accounted for when evaluating
the e�ectiveness of attacks; notwithstanding this, each argument originating a joint
attack is an essential element in the sense that the attack becomes ine�ective when-
ever one of its source arguments is missing. In contrast, in accrual, the strength of
each argument is taken into account, and adding an argument to an accrual causes
changes in the strength and the e�ectiveness of its attacks (or supports).

Finally, as stated in Section 6, many open challenges remain for research on joint
attacks, in addition to those mentioned above.

Acknowledgements

This work was partially supported by EPSRC grant EP/P010105/1 and by Univer-
sidad Nacional del Sur grant 24/N046. The opinions expressed in this paper are
those of the authors and do not necessarily reflect the opinions of the funders. The
authors are grateful to the reviewers of this chapter for their helpful comments.

References
[1] João F. L. Alcântara, Samy Sá, and Juan Carlos Acosta Guadarrama. On the equiva-

lence between abstract dialectical frameworks and logic programs. Theory and Practice
of Logic Programming, 19(5-6):941–956, 2019.

[2] Gianvincenzo Alfano, Andrea Cohen, Sebastian Gottifredi, Sergio Greco, Francesco
Parisi, and Guillermo R. Simari. Dynamics in abstract argumentation frameworks
with recursive attack and support relations. In Proceedings of the 24th European
Conference on Artificial Intelligence, 2020.

[3] Leila Amgoud, Claudette Cayrol, Marie-Christine Lagasquie-Schiex, and Pierre Livet.
On bipolarity in argumentation frameworks. International Journal of Intelligent Sys-
tems, Bipolar Representations of Information and Preference (Part 2: reasoning and
learning), 23(10):1062–1093, 2008.

1493

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

[4] Leila Amgoud and Srdjan Vesic. Rich preference-based argumentation frameworks.
International Journal of Approximate Reasoning, 55(2):585–606, 2014.

[5] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to
argumentation semantics. The Knowledge Engineering Review, 26(4):365–410, 2011.

[6] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Abstract argumenta-
tion frameworks and their semantics. In Pietro Baroni, Dov Gabbay, Massimiliano
Giacomin, and Leendert van der Torre, editors, Handbook of Formal Argumentation,
chapter 4, pages 159–236. College Publications, 2018.

[7] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. AFRA:
Argumentation framework with recursive attacks. International Journal of Approxi-
mate Reasoning, 52:19–37, 2011.

[8] Pietro Baroni and Massimiliano Giacomin. Solving semantic problems with odd-length
cycles in argumentation. In Thomas D. Nielsen and Nevin Lianwen Zhang, editors,
Proceedings of the 7th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, pages 440–451. Springer, 2003.

[9] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-
based argumentation semantics. Artificial Intelligence, 171(10-15):675–700, 2007.

[10] Pietro Baroni, Massimiliano Giacomin, and Beishui Liao. A general semi-structured
formalism for computational argumentation: Definition, properties, and examples of
application. Artificial Intelligence, 257:158 – 207, 2018.

[11] Pietro Baroni, Antonio Rago, and Francesca Toni. From fine-grained properties to
broad principles for gradual argumentation: A principled spectrum. International
Journal of Approximate Reasoning, 105:252–286, 2019.

[12] Pietro Baroni, Marco Romano, Francesca Toni, Marco Aurisicchio, and Giorgio
Bertanza. Automatic evaluation of design alternatives with quantitative argumen-
tation. Argument & Computation, 6(1):24–49, 2015.

[13] Ringo Baumann. On the nature of argumentation semantics: Existence and unique-
ness, expressibility, and replaceability. In Pietro Baroni, Dov Gabbay, Massimiliano
Giacomin, and Leendert van der Torre, editors, Handbook of Formal Argumentation,
chapter 17, pages 839–936. College Publications, 2018. also appears in IfCoLog Journal
of Logics and their Applications 4(8):2779–2886.

[14] Ringo Baumann, Gerhard Brewka, and Markus Ulbricht. Revisiting the foundations
of abstract argumentation — semantics based on weak admissibility and weak defense.
In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pages
2742–2749. AAAI Press, 2020.

[15] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

[16] Philippe Besnard and Anthony Hunter. A logic-based theory of deductive arguments.
Artificial Intelligence, 128:203–235, 2001.

[17] David Billington, Grigoris Antoniou, Guido Governatori, and Michael Maher. An
inclusion theorem for defeasible logics. ACM Transactions on Computational Logic,

1494

Joint Attacks and Accrual in Argumentation Frameworks

12(1), November 2010.
[18] Alexander Bochman. Collective argumentation and disjunctive logic programming.

Journal of Logic and Computation, 13(3):405–428, 2003.
[19] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. An

abstract, argumentation-theoretic approach to default reasoning. Artificial Intelli-
gence, 93(1-2):63–101, 1997.

[20] Gerd Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics of abstract
dialectical frameworks and standard AFs. In Proceedings of the 22nd International
Joint Conference on Articial Intellignce, 2011.

[21] Gerhard Brewka, Martin Diller, Georg Heissenberger, Thomas Linsbichler, and Stefan
Woltran. Solving advanced argumentation problems with answer-set programming. In
Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, pages 1077–1083. AAAI Press, 2017.

[22] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wallner, and Ste-
fan Woltran. Abstract dialectical frameworks. In Pietro Baroni, Dov Gabbay, Massim-
iliano Giacomin, and Leendert van der Torre, editors, Handbook of Formal Argumen-
tation, chapter 5, pages 237–285. College Publications, 2018. also appears in IfCoLog
Journal of Logics and their Applications 4(8):2263–2318.

[23] Gerhard Brewka, Hannes Strass, Stefan Ellmauthaler, Johannes Peter Wallner, and
Stefan Woltran. Abstract dialectical frameworks revisited. In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, pages 803–809, 2013.

[24] Martin Caminada. Semi-stable semantics. In Proceedings of the 1st Conference on
Computational Models of Argument, pages 121–130, 2006.

[25] Martin Caminada. Comparing two unique extension semantics for formal argumen-
tation: Ideal and eager. In Proceedings of the 19th Belgian-Dutch Conference on
Artificial Intelligence, pages 81–87, 2007.

[26] Martin Caminada and Paul E. Dunne. Strong admissibility revisited: Theory and
applications. Argument & Computation, 10(3):277–300, 2019.

[27] Martin Caminada and Dov M. Gabbay. A logical account of formal argumentation.
Studia Logica, 93(2/3):109–145, 2009.

[28] Martin Caminada, Samy Sá, João F. L. Alcântara, and Wolfgang Dvo�ák. On the
equivalence between logic programming semantics and argumentation semantics. In-
ternational Journal of Approximate Reasoning, 58:87–111, 2015.

[29] Claudette Cayrol, Andrea Cohen, and Marie-Christine Lagasquie-Schiex. Higher-order
interactions (bipolar or not) in abstract argumentation: A state of the art. In Dov
Gabbay, Massimiliano Giacomin, Guillermo R. Simari, and Matthias Thimm, editors,
Handbook of Formal Argumentation, volume 2, chapter 1. College Publications, 2021.

[30] Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro, and Marie-Christine
Lagasquie-Schiex. Argumentation frameworks with recursive attacks and evidence-
based support. In F. Ferrarotti and S. Woltran, editors, Proceedings of the 10th In-
ternational Symposium on Foundations of Information and Knowledge Systems, pages

1495

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

150–169. Springer-Verlag, 2018.
[31] Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro, and Marie-Christine

Lagasquie-Schiex. Structure-based semantics of argumentation frameworks with
higher-order attacks and supports. In Sanjay Modgil, Katarzyna Budzynska, and
John Lawrence, editors, International Conference on Computational Models of Argu-
ment, pages 29–36. IOS Press, septembre 2018.

[32] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the acceptability of ar-
guments in bipolar argumentation frameworks. In Proceedings of the 8th European
Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
pages 378–389, 2005.

[33] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Coalitions of arguments: A
tool for handling bipolar argumentation frameworks. International Journal of Intelli-
gent Systems, 25(1):83–109, 2010.

[34] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argumenta-
tion graphs: Towards a better understanding. International Journal of Approximate
Reasoning, 54(7):876–899, 2013.

[35] Federico Cerutti, Sarah A. Gaggl, Matthias Thimm, and Johannes P. Wallner. Foun-
dations of implementations for formal argumentation. In Pietro Baroni, Dov Gabbay,
Massimiliano Giacomin, and Leendert van der Torre, editors, Handbook of Formal Ar-
gumentation, chapter 15, pages 688–767. College Publications, 2018. also appears in
IfCoLog Journal of Logics and their Applications 4(8):2623–2706.

[36] Günther Charwat, Wolfgang Dvo�ák, Sarah Alice Gaggl, Johannes Peter Wallner, and
Stefan Woltran. Methods for solving reasoning problems in abstract argumentation -
A survey. Artificial Intelligence, 220:28–63, 2015.

[37] Andrea Cohen, Sebastian Gottifredi, Alejandro Javier García, and Guillermo Ricardo
Simari. A survey of di�erent approaches to support in argumentation systems. Knowl-
edge Engineering Review, 29(5):513–550, 2014.

[38] Robyn M. Dawes. The robust beauty of improper linear models in decision making.
American Psychologist, 34(7):571, 1979.

[39] Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence, pages 852–857, Chambéry, France, 1993.

[40] Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–357, September 1995.

[41] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical
argumentation. Artificial Intelligence, 171(10-15):642–674, July 2007.

[42] Paul E. Dunne. Computational properties of argument systems satisfying graph-
theoretic constraints. Artificial Intelligence, 171(10-15):701–729, 2007.

[43] Paul E. Dunne. The computational complexity of ideal semantics. Artificial Intelli-
gence, 173(18):1559–1591, 2009.

1496

Joint Attacks and Accrual in Argumentation Frameworks

[44] Paul E. Dunne, Wolfgang Dvo�ák, Thomas Linsbichler, and Stefan Woltran. Char-
acteristics of multiple viewpoints in abstract argumentation. Artificial Intelligence,
228:153–178, 2015.

[45] Paul E. Dunne, Wolfgang Dvo�ák, and Stefan Woltran. Parametric properties of ideal
semantics. Artificial Intelligence, 202:1–28, 2013.

[46] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael
Wooldridge. Weighted argument systems: Basic definitions, algorithms, and com-
plexity results. Artificial Intelligence, 175(2):457 – 486, 2011.

[47] Wolfgang Dvo�ák and Paul E. Dunne. Computational problems in formal argumen-
tation and their complexity. In Pietro Baroni, Dov Gabbay, Massimiliano Giacomin,
and Leendert van der Torre, editors, Handbook of Formal Argumentation, chapter 14,
pages 631–687. College Publications, 2018. also appears in IfCoLog Journal of Logics
and their Applications 4(8):2557–2622.

[48] Wolfgang Dvo�ák, Jorge Fandinno, and Stefan Woltran. On the expressive power of
collective attacks. Argument & Computation, 10(2):191–230, 2019.

[49] Wolfgang Dvo�ák, Alexander Greßler, and Stefan Woltran. Evaluating SETAFs via
Answer-Set Programming. In Proceedings of the Second International Workshop on
Systems and Algorithms for Formal Argumentation, pages 10–21. CEUR-WS.org,
2018.

[50] Wolfgang Dvo�ák, Atefeh Keshavarzi Zafarghandi, and Stefan Woltran. Expressiveness
of SETAFs and support-free ADFs under 3-valued semantics. In Proceedings of the 8th
Conference on Computational Models of Argument, pages 191–202. IOS Press, 2020.

[51] Wolfgang Dvo�ák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable
fragments of abstract argumentation. Artificial Intelligence, 186:157–173, 2012.

[52] Wolfgang Dvo�ák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter
tractable algorithms for abstract argumentation. Artificial Intelligence, 186:1–37,
2012.

[53] Wolfgang Dvo�ák, Anna Rapberger, and Johannes Peter Wallner. Labelling-based al-
gorithms for SETAFs. In Proceedings of the Third International Workshop on Systems
and Algorithms for Formal Argumentation, pages 34–46. CEUR-WS.org, 2020.

[54] Wolfgang Dvo�ák, Anna Rapberger, and Stefan Woltran. Strong equivalence for ar-
gumentation frameworks with collective attacks. In Proceedings of the 42nd German
Conference on Artificial Intelligence, pages 131–145. Springer, 2019.

[55] Wolfgang Dvo�ák, Anna Rapberger, and Stefan Woltran. On the di�erent types of
collective attacks in abstract argumentation: equivalence results for SETAFs. Journal
of Logic and Computation, 30(5):1063–1107, 2020.

[56] Wolfgang Dvo�ák, Anna Rapberger, and Stefan Woltran. On the relation between
claim-augmented argumentation frameworks and collective attacks. In Proceedings of
the 24th European Conference on Artificial Intelligence, pages 721–728. IOS Press,
2020.

[57] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encodings

1497

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

for argumentation frameworks. Argument & Computation, 1(2):147–177, 2010.
[58] Stefan Ellmauthaler and Hannes Strass. The DIAMOND system for computing with

abstract dialectical frameworks. In Proceedings of the 5th Conference on Computa-
tional Models of Argumen, volume 266, pages 233–240. IOS Press, 2014.

[59] Morten Elvang-Gøransson, Paul J. Krause, and John Fox. Acceptability of arguments
as ’logical uncertainty’. In M. Clarke, R. Kruse, and S. Moral, editors, Proceedings of
the 2nd European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, pages 85–90. Springer, 1993.

[60] Giorgos Flouris and Antonis Bikakis. A comprehensive study of argumentation frame-
works with sets of attacking arguments. International Journal of Approximate Rea-
soning, 109, 03 2019.

[61] J. Fox, D. Barber, and K. D. Bardhan. Alternatives to Bayes? a quantitative com-
parison with rule-based diagnostic inference. Methods of Information in Medicine,
19:210–215, 1980.

[62] Dov M. Gabbay. Semantics for higher level attacks in extended argumentation frames.
Studia Logica, 93:357–381, 2009.

[63] Dov M. Gabbay and Michael Gabbay. Theory of disjunctive attacks, Part I. Logic
Journal of the IGPL, 24(2):186–218, 2016.

[64] Sarah Alice Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan Woltran. De-
sign and results of the second international competition on computational models of
argumentation. Artificial Intelligence, 279, 2020.

[65] Alejandro Javier García and Guillermo Ricardo Simari. Argumentation based on logic
programming. In Pietro Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert
van der Torre, editors, Handbook of Formal Argumentation, chapter 8, pages 409–435.
College Publications, 2018.

[66] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius T. Schneider. Potassco: The Potsdam answer set solving col-
lection. AI Communications, 24(2):107–124, 2011.

[67] Thomas F. Gordon. Defining argument weighing functions. Journal of Applied Logics,
5(3):747–773, 2018.

[68] Sebastian Gottifredi, Andrea Cohen, Alejandro Javier García, and Guillermo Ricardo
Simari. Characterizing acceptability semantics of argumentation frameworks with
recursive attack and support relations. Artificial Intelligence, 262:336–368, 2018.

[69] Guido Governatori and Michael J. Maher. An Argumentation-Theoretic Characteriza-
tion of Defeasible Logic. In Proceedings of the 14th European Conference on Artificial
Intelligence, pages 469–473, 2000.

[70] Benjamin N. Grosof. Prioritized conflict handling for logic programs. In Jan Maluszyn-
ski, editor, Proceedings of the 1997 International Symposium on LOgic Programming,
pages 197–211. MIT Press, 1997.

[71] Davide Grossi and Sanjay Modgil. On the graded acceptability of arguments. In
Proceedings of the 24th International Joint Conference on Artificial Intelligence, pages

1498

Joint Attacks and Accrual in Argumentation Frameworks

868–874. AAAI Press, 2015.
[72] Paul J. Krause, Simon Ambler, Morten Elvang-Gøransson, and John Fox. A logic

of argumentation for reasoning under uncertainty. Computational Intelligence, 11
(1):113–131, 1995.

[73] E. Laenens and D. Vermeir. A Fixpoint Semantics for Ordered Logic. Journal of Logic
and Computation, 1(2):159–185, 12 1990.

[74] João Leite and João G. Martins. Social abstract argumentation. In Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, Barcelona, pages
2287–2292. IJCAI/AAAI, 2011.

[75] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[76] Thomas Linsbichler, Marco Maratea, Andreas Niskanen, Johannes Peter Wallner,
and Stefan Woltran. Novel algorithms for abstract dialectical frameworks based on
complexity analysis of subclasses and SAT solving. In Jérôme Lang, editor, Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pages
1905–1911, 2018.

[77] Thomas Linsbichler, Jörg Pührer, and Hannes Strass. A uniform account of realiz-
ability in abstract argumentation. In Proceedings of the 22nd European Conference on
Artificial Intelligence, pages 252–260. IOS Press, 2016.

[78] Mauro J. Gómez Lucero, Carlos I. Chesñevar, and Guillermo R. Simari. On the accrual
of arguments in defeasible logic programming. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence, pages 804–809. Morgan Kaufmann Pub-
lishers Inc., 2009.

[79] Victor W. Marek and Miros≥aw TruszczyÒski. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm – A 25-Year Perspec-
tive, pages 375–398. Springer, 1999.

[80] Sanjay Modgil and Trevor J. M. Bench-Capon. Metalevel argumentation. Journal of
Logic and Computation, 21(6):959–1003, 09 2010.

[81] Sanjay Modgil and Henry Prakken. Abstract rule-based argumentation. In Pietro
Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der Torre, editors,
Handbook of Formal Argumentation, chapter 6, pages 287–364. College Publications,
2018. also appears in IfCoLog Journal of Logics and their Applications 4(8):2319–2406.

[82] Søren Holbech Nielsen and Simon Parsons. Computing preferred extensions for ar-
gumentation systems with sets of attacking arguments. In Proceedings of the 1st
Conference on Computational Models of Argument, pages 97–108. IOS Press, 2006.

[83] Søren Holbech Nielsen and Simon Parsons. An application of formal argumenta-
tion: Fusing Bayesian networks in multi-agent systems. Artificial Intelligence, 171(10–
15):754–775, 2007.

[84] Søren Holbech Nielsen and Simon Parsons. A generalization of Dung’s abstract frame-
work for argumentation: Arguing with sets of attacking arguments. In Proceedings

1499

Bikakis, Cohen, Dvo�ák, Flouris, Parsons

of the 3rd International Workshop on Argumentation in Multi-Agent Systems, pages
54–73, 2007.

[85] Ilkka Niemelä. Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3–4):241–
273, 1999.

[86] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for decision problems in
argument systems under preferred semantics. Artificial Intelligence, 207:23–51, 2014.

[87] Farid Nouioua. AFs with necessities: Further semantics and labelling characterization.
In 7th International Conference on Scalable Uncertainty Management, pages 120–133,
2013.

[88] Farid Nouioua and Vincent Risch. Argumentation frameworks with necessities. In
Proceedings of the 5th International Conference on Scalable Uncertainty Management,
pages 163–176, 2011.

[89] Donald Nute. Defeasible Logic, page 353?395. Oxford University Press, Inc., USA,
1994.

[90] Mike O’Neil, Andrzej J. Glowinski, and John Fox. A symbolic theory of decision-
making applied to several medical tasks. In AIME 89: Proceedings of the Second
European Conference on Artificial Intelligence in Medicine, pages 62–71. Springer,
1989.

[91] Nir Oren and Timothy J. Norman. Semantics for evidence-based argumentation. In
Proceedings of the 2nd Conference on Computational Models of Argument, pages 276–
284, 2008.

[92] Theodore Patkos, Giorgos Flouris, and Antonis Bikakis. Symmetric multi-aspect eval-
uation of comments - extended abstract. In Proceedings of the 22nd European Con-
ference on Artificial Intelligence, pages 1672–1673. IOS Press, 2016.

[93] Sylwia Polberg. Understanding the abstract dialectical framework. In Proceedings
of the 15th European Conference on Logics in Artificial Intelligence, pages 430–446,
2016.

[94] Sylwia Polberg. Developing the abstract dialectical framework. PhD thesis, TU Wien,
Institute of Information Systems, 2017. available at http://katalog.ub.tuwien.ac.

at/AC13773888.
[95] Sylwia Polberg and Nir Oren. Revisiting support in abstract argumentation systems.

In Proceedings of the 5th Conference on Computational Models of Argument, pages
369–376, 2014.

[96] Henry Prakken. A study of accrual of arguments, with applications to evidential rea-
soning. In Proceedings of the 10th International Conference on Artificial Intelligence
and Law, pages 85–94, New York, NY, USA, 2005. ACM.

[97] Henry Prakken. Modelling accrual of arguments in ASPIC+. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Law, pages 103–
112, New York, NY, USA, 2019. Association for Computing Machinery.

[98] Jörg Pührer. Realizability of three-valued semantics for abstract dialectical frame-

1500

Joint Attacks and Accrual in Argumentation Frameworks

works. Artificial Intelligence, 278, 2020.
[99] Hannes Strass. Expressiveness of two-valued semantics for abstract dialectical frame-

works. Journal of Artificial Intelligence Research, 54:193–231, 2015.
[100] Hannes Strass. The relative expressiveness of abstract argumentation and logic pro-

gramming. In Proceedings of the 29th AAAI Conference on Artificial Intelligence,
pages 1625–1631, 2015.

[101] Matthias Thimm and Serena Villata. The first international competition on com-
putational models of argumentation: Results and analysis. Artificial Intelligence,
252:267–294, 2017.

[102] Leendert van der Torre and Srdjan Vesic. The principle-based approach to abstract
argumentation semantics. In Pietro Baroni, Dov Gabbay, Massimiliano Giacomin,
and Leendert van der Torre, editors, Handbook of Formal Argumentation, chapter 16,
pages 797–838. College Publications, 2018. also appears in IfCoLog Journal of Logics
and their Applications 4(8):2735–2778.

[103] Bart Verheij. Accrual of arguments in defeasible argumentation. In Proceedings of the
Second Dutch/German Workshop on Nonmonotonic Reasoning, pages 217–224, 1995.

[104] Bart Verheij. Rules, Reasons, Arguments. Formal studies of argumentation and defeat.
PhD thesis, Universiteit Maastricht, 1996.

[105] Bart Verheij. Two approaches to dialectical argumentation: Admissible sets and ar-
gumentation stages. In In Proceedings of the International Conference on Formal and
Applied Practical Reasoning, pages 357–368. Universiteit, 1996.

[106] Gerard A. W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence,
90(1–2):225–279, February 1997.

[107] Bruno Yun, Madalina Croitoru, Srdjan Vesic, and Pierre Bisquert. NAKED: n-ary
graphs from knowledge bases expressed in Datalog±. In Proceedings of the 18th In-
ternational Conference on Autonomous Agents and MultiAgent Systems, pages 2390–
2392, 2019.

[108] Bruno Yun, Srdjan Vesic, and Madalina Croitoru. Ranking-based semantics for sets of
attacking arguments. In Proceedings of the 34th Conference on Artificial Intelligence,
pages 3033–3040. AAAI Press, 2020.

[109] Bruno Yun, Srdjan Vesic, and Madalina Croitoru. Sets of attacking arguments for
inconsistent Datalog knowledge bases. In Proceedings of the 8th Conference on Com-
putational Models of Argument, pages 419–430. IOS Press, 2020.

Received May 20211501

