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Robust Real-Time Optimization
of a Solid Oxide Fuel Cell Stack
On-line control and optimization can improve the efficiency of fuel cell systems, whilst
simultaneously ensuring that the operation remains within a safe region. Also, fuel cells
are subject to frequent variations in their power demand. This paper investigates the real-
time optimization (RTO) of a solid oxide fuel cell (SOFC) stack. An optimization problem
maximizing the efficiency subject to operating constraints is defined. Due to inevitable
model inaccuracies, the open-loop implementation of optimal inputs evaluated off-line may
be suboptimal, or worse, infeasible. Infeasibility can be avoided by controlling the con-
strained quantities. However, the constraints that determine optimal operation might
switch with varying power demand, thus requiring a change in the regulator structure. In
this paper, a control strategy that can handle plant-model mismatch and changing con-
straints in the face of varying power demand is presented and illustrated. The strategy con-
sists in the integration of RTO and model predictive control (MPC). A lumped model of the
SOFC is utilized at the RTO level. The measurements are not used to re-estimate the pa-
rameters of the SOFC model at different operating points, but to simply adapt the con-
straints in the optimization problem. The optimal solution generated by RTO is
implemented using MPC that uses a step-response model in this case. Simulation results
show that near-optimality can be obtained, and constraints are respected despite model
inaccuracies and large variations in the power demand. [DOI: 10.1115/1.4003976]
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1 Introduction

Given the prohibitive cost of nonrenewable energy sources in
today’s scenario, fuel cells are intensively investigated as alterna-
tive power sources for a broad scope of applications. Solid oxide
fuel cells (SOFCs) are energy conversion devices that produce
electrical energy by the reaction of a fuel with an oxidant. Since
SOFCs typically run continuously for long hours, and are subject
to changes in the power demand, it is desirable to keep the per-
formance optimal throughout, while ensuring the operation remains
within safety and operability constraints [1,2]. Due to changes in
the power demand during operation, and also due to external per-
turbations affecting the SOFC system, the set of optimal operating
conditions will keep varying with time. Hence, there is a need for
real-time optimization, i.e., regular adjustment of the operating var-
iables (e.g., flow rates, electric current) to maximize the perform-
ance (e.g., power output, efficiency) of the fuel cell.

Different approaches have been proposed in the literature for
controlling fuel cells. Aguiar et al. [3] discussed the use of PID
feedback control in the presence of power load changes. For the
case of a proton exchange membrane (PEM) fuel cell, Golbert and
Lewin [2,4] used a nonlinear MPC scheme with a target function
that attempts to simultaneously track changes in the power set-
point and maximize efficiency. Recently, Zhang et al. [1] applied
nonlinear MPC to a planar SOFC. However, these authors con-

sider a square control problem, i.e., without residual degrees of
freedom available for optimization. Several other control strat-
egies for fuel cells have also been reported in the literature [5–7].

RTO is typically a nonlinear program (NLP) minimizing cost
or maximizing economic productivity subject to constraints. The
underlying model is derived from steady-state mass and energy
balances and physical relationships. RTO is typically located at
the higher level of a two-level cascade structure. Then, at the
lower level, the control system implements the RTO results [8].
MPC is a natural choice for this task because of its ability to han-
dle large multivariable control problems and to accommodate
input bounds and process constraints. While originally developed
for oil refineries and power plants, the MPC technology is now
used in a wide variety of applications [9]. Recently, it has also
been proposed for the control of fuel cells [1,4].

Because accurate mathematical models are unavailable for
most industrial applications, RTO classically proceeds via a two-
step approach, namely, a parameter estimation step followed by
an optimization step. Parameter estimation is complicated by sev-
eral factors: (i) the complexity of the models and the nonconvexity
of the parameter estimation problems and (ii) the need for model
parameters to be identifiable from the available measurements.
Moreover, in the presence of structural plant-model mismatch,
parameter estimation does not necessarily lead to improved opera-
tion since matching the plant outputs does not imply that their
gradient with respect to the inputs will be matched as well [10].

The constraint-adaptation approach used in this paper avoids
the task of updating the model parameters on-line. Based on the
observation that, for a large number of optimization problems,
most of the optimization potential arises from operating the plant
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at some of the constraints [11,12], constraint-adaptation schemes
have been developed to use appropriate measurements and adjust
the constraint functions in the RTO problem [12,13].

Constraint adaptation guarantees to reach a feasible operating
point upon convergence, that is, a point that satisfies all the con-
straints. However, the iterates may follow an infeasible path, even
when adaptation is started from within the feasible region. Process
disturbances and changes in the power demand may also result in
constraint violation. Hence, MPC should implement the RTO
results while avoiding constraint violations. The approach for
integrating RTO with MPC described in this paper places high
emphasis on how the constraints are handled.

The paper is organized as follows. The SOFC system and its
mathematical model are described in Sec. 2. Section 3 formulates
the optimization problem and presents the nominal solution. The
constraint-adaptation approach to RTO is described and applied to
the SOFC system in Sec. 4. The strategy combining constraint ad-
aptation and constraint control via MPC is implemented in Sec. 5.
Finally, Sec. 6 concludes the paper.

2 Model of SOFC System

The process is represented schematically in Fig. 1. It comprises
a five-cell S-design planar SOFC stack operating in an electrically
heated furnace [14]. The stack is fueled with H2 humidified with
3% molar fraction of water. Only the electrochemical oxidation
reaction between H2 and O2 is considered. The furnace temperature
is constant at 780 �C. The gas temperatures at the entrance of the
stack are constant at 750 �C. A blower outside the furnace delivers
air to the cathode, whereas the fuel is provided directly at the
desired pressure and flow rate.

2.1 Dynamic Model. A lumped model is used, as it captures
the fundamental behavior of the SOFC while providing a good
trade-off between accuracy and fast computation. The model has
been validated from more detailed models developed at LENI-
EPFL, and it corresponds to SOFC stacks typically running at
LENI’s facilities [15,16]. The model comprises energy equations,
mole balances and electrochemical balances at the anode and
cathode. The nomenclature used is given in the SOFC model no-
menclature section, and the parameter values are given in Table 1.

2.1.1 Energy Balance. The fuel and the oxidant (air) that
enter the stack react electrochemically, releasing heat and electri-
cal power. The energy balance for the stack is

ðmcpÞstack

dTstack

dt
¼ �D _Hgases � Pel � _Qloss (1)

where the electrical power is given by

Pel ¼ UcellNcellI (2)

Only radiative heat loss from the stack is taken into account

_Qloss ¼ AstackFrSB T4
stack � T4

furnace

� �
(3)

where F is the transfer factor for radiative heat exchange between
the stack and the furnace calculated for the case of a body
enclosed into another [17].

2.1.2 Mole Balance. The mole balances consider the species
H2O and H2 at the anode and O2 and N2 at the cathode. The only
reaction taking place is the electrochemical oxidation of H2, for
which the overall reaction is

H2 þ
1

2
O2 ! H2O

From Faraday’s law, the amount of H2 participating in the reac-
tion is related to the current produced in the reaction

_nH2; reac ¼
INcell

2F
(4)

The mole balances at the anode and cathode give

_ni; an; out ¼ _ni; an; in þ mi _nH2; reac; i ¼ fH2; H2Og (5)

_nj; cath; out ¼ _nj; cath; in þ mj _nH2; reac; j ¼ fO2; N2g (6)

where mi is the stoichiometric coefficient of component i in the
reaction

2.1.3 Electrochemical Model. The electrochemical model
computes the cell potential and average current density as a func-
tion of the operating conditions, i.e., temperature, flow rates and
gas compositions. The reversible cell voltage UNernst is computed
from the change in Gibbs free enthalpy for the H2 oxidation reac-
tion as

UNernst ¼
�DGreaction

neF
(7)

This is the maximal amount of potential that can be delivered by
the cell. The actual voltage is subject to overpotentials due to
losses appearing during operation. The losses considered here
include: ohmic losses due to the ionic resistance of the electrolyte
and current collectors, activation losses due to charge transfer
kinetics, diffusion losses due to concentration gradients between
the electrode surface and the bulk flow, and losses due to the dis-
sociation of the oxygen molecules into ions on the cathode sur-
face. The effective cell potential Ucell is given by

Ucell ¼UNernst� gact;cath� gionic;elect� gdiss;cath� gdiff;an� gdiff; cath

(8)

The cathode activation overpotential is expressed by the Butler–
Volmer equation [18]

gact; cath ¼
RTstack

F
sinh�1 i

2i0; cath

� �
(9)

Fig. 1 Schematic of the SOFC stack and furnace

Table 1 Parameter values

Kinetic parameters
Eact; cath 1:53� 105 J=mol k0; cath 4:10� 1011 1=X m2

Eelect 7:62� 104 J=mol r0; elect 1:63� 104 1=X m2

R0; cath 0:92� 10�13 X m2 Ediss; cath 1:49� 105 J=mol
Cell properties

Aactive 5� 10�3 m2 Astack 4:69� 10�2 m2

mstack 2.647 kg ðmcpÞstack 2:33� 102 J=kg K
Ncell 5 FUadj 0.15
F 0.667

051001-2 / Vol. 8, OCTOBER 2011 Transactions of the ASME

Downloaded 14 Dec 2011 to 128.178.5.7. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



i0; cath ¼
2RTstack

F
k0; cath exp

�Eact; cath

RTstack

� �
(10)

The anode overpotential is relatively small and is neglected. The
Ohmic overpotential is expressed as [19]

gionic; elect ¼ i
helect

rionic; elect

� �
(11)

rionic; elect ¼ r0; elect exp
�Eelect

RTstack

� �
(12)

The concentration overpotential in the anode is calculated as

gdiff; an ¼ �
RTstack

2F
ln 1� ðFU þ FUadjÞ
� �

(13)

FU ¼ _nH2; reac

_nH2 ; an; in
(14)

where FU is the fuel utilization factor, defined as the ratio of
amount of H2 consumed to the amount of H2 at the inlet. FUadj is
an adjustment factor. The concentration overpotential in the cath-
ode is calculated as

gdiff; cath ¼ �
RTstack

2F
ln 1� FU

kair

� �
(15)

kair ¼
2 _nO2; cath; in

_nH2; an; in
(16)

where kair is the excess air ratio, defined as the amount of oxygen
to hydrogen in the feed over the stoichiometric ratio.

The overpotential loss due to the dissociation of oxygen at the
cathode is

gdiss; cath ¼ R0; cath

pO2 ; in

p0

� ��0:5

exp
Ediss; cath

RTstack

� �
i (17)

The operating conditions are listed in Table 2.

2.2 Performance Curves. A plot of cell voltage and power
density as a function of the current density is shown in Fig. 2 for
fuel inlet flow rates of 10�3 mol=s (or mass flow density of
6 ml=min cm2) and 1:2� 10�3 mol=s (7.2 ml=min cm2), and an
excess air ratio kair ¼ 3.

At _nfuel; in ¼ 10�3 mol=s, the limiting current density is 0.64
A=cm2. The maximal power density at which the cell can operate
is 0.35 W=cm2. Increasing the current further would result in a
sharp drop in power due to an increase in overpotential losses. To
deliver more power, it is necessary to increase the fuel inlet flow
rate. At _nfuel; in ¼ 1:2� 10�4 mol=s, it is possible to reach power
densities of up to 0.4 W=cm2.

3 Optimization Problem

3.1 Problem Formulation. The objective of RTO is the opti-
mization of some steady-state operating performance (e.g., mini-
mization of operating cost or maximization of efficiency), while
satisfying a number of constraints (e.g., bounds on process varia-
bles or product specifications). In the context of RTO, since it is
important to distinguish between the plant and the model, we will
use the notation ð� � �Þp for the variables associated with the plant.

The steady-state optimization problem for the plant can be for-
mulated as follows [12]

min
u

UpðuÞ : ¼ /ðu; ypÞ

s:t:HpðuÞ : ¼ hðu; ypÞ ¼ HS

GpðuÞ : ¼ gðu; ypÞ � GU

(18)

where u 2 Rnu denotes the decision (or input) variables,2 and
yp 2 Rny are the measured (or output) variables; / is the scalar
objective function to be minimized; h 2 Rnh are the equality con-
straint functions for which HS represent the setpoint values;
g 2 Rng are the inequality constraint functions for which GU rep-
resent the upper bounds. These inequality constraints include
input bounds. Also, it is assumed throughout that /, h and g are
known functions of u and y, i.e., they can be evaluated directly
from the measurements.

3.1.1 Input and Output Variables. In the case of the SOFC
system considered here, there are three degrees of freedom that
can be specified as input variables: the molar fuel flow rate at the
anode, the molar air flow rate at the cathode, and the current:

u ¼ _nfuel; in; _nair; in; I
� �T

(19)

The output variables are the stack temperature, the cell potential,
and the generated electric power:

yp ¼ Tstack; Ucell; Pel½ �T (20)

3.1.2 Objective Function and Constraints. The objective
function to maximize is the electrical efficiency of the fuel cell for
a given power demand, subject to operational constraints. Electri-
cal efficiency is defined as the fraction of chemical power con-
verted into useful power. Not all the power generated by the fuel
cell is available for use. Due to pressure loss along the air channel,

Table 2 Fixed operating conditions

Fuel feed composition 3% H2O, 97% H2 Tin (fuel and air) 750 �C
Air feed composition 21% O2, 79% N2 Tfurnace 780 �C

Fig. 2 Cell voltage and power density as a function of current
density. Solid lines: _nfuel, in 5 1023 mol=s; dot-dashed lines:
_n fuel, in 5 1.2 3 1023 mol=s.

2The notation x 2 Rn is used to indicate that x is an n-dimensional vector of real
variables.
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some power is used internally by the blower to pump air. This
power is the product of the pressure loss along the air channel and
the volumetric flow rate of air. Hence, the electrical efficiency to
maximize is

g ¼ Pel � Pblower

_nH2; an; inLHV
¼ UcellINcell � Dp _Qair=gblower

_nH2 ; an; inLHV
(21)

where the efficiency of the blower is gblower ¼ 0:4, and the
pressure loss along the air channel Dp is proportional to the
flow rate of air. LHV is the lower heating value of the fuel, which
is the amount of heat released by burning a specific quantity of
fuel.

The fuel cell is operated under a number of inequality
constraints including bounds on input and output variables. Lim-
itations on the potential and fuel utilization are set due to risks
of oxidation of the anode, which may degrade or even cause the
failure of the cell [15,18]. Operating at high current densities
will cause material damage to the cell through excessive heating
[20]. The low air-ratio limit is set to avoid high thermal gra-
dients, whilst the high limit is due to system constraints. Current
density is constrained to avoid degradation [15,20]. The con-
straint bounds are given in Table 3. The setpoint value pS

el

for the produced power density is specified as an equality
constraint.

The optimization problem can be formulated mathematically as
follows

max
_nfuel; in; _nair; in ; I

U¼ g

s:t: H : pel ¼ pS
el

G1: Tstack � TU
stack; G2: Tstack � TL

stack

G3: Ucell � UL
cell; G4: FU � FUU

G5: kair � kU
air; G6: kair � kL

air

G7: _nfuel; in � _nL
fuel; in; G8: i � iU (22)

Because the current density i and the power density pel are not
actually measured, they are considered to be proportional to the
current I, namely, i ¼ I=Aactive, and the power Pel, namely,
pel ¼ Pel=Aactive. Hence, the constraint G8 represents an input
bound on the current.

3.2 Nominal Optimization. In any practical application, the
plant mapping ypðuÞ is not known accurately. However, an ap-
proximate model is often available in the form

fðu; x; h Þ ¼ 0

y ¼ Hðu; x; h Þ

where f 2 Rnx is a set of process model equations including mass
and energy balances and thermodynamic relationships, x 2 Rnx

are the state variables, y 2 Rny are the output variables predicted
by the model, and h 2 Rnh is a set of adjustable model parame-
ters. Using one such model, the solution of the original problem
(18) can be approached by solving the following nonlinear pro-
gramming (NLP) problem

min
u

Uðu; hÞ : ¼ / u; yðu; hÞð Þ

s:t:Hðu; hÞ : ¼ h u; yðu; h Þð Þ ¼ HS

Gðu; hÞ : ¼ g u; yðu; hÞð Þ � GU (23)

Assuming that the feasible set U :¼ fu : Hðu; hÞ ¼ HS;
Gðu; hÞ � GUg is nonempty and compact for h given, and that
Uðu; h Þ is continuous on U, a minimizing solution, u	, of problem
(23) is guaranteed to exist. Furthermore, the set of active inequality
constraints at u	 is denoted by A :¼ i : Gi u	; hð Þ ¼ 0; i ¼ 1;f
…; ngg.

3.3 Effect of Plant-Model Mismatch. In this simulation
work, plant-model mismatch is considered by modifying certain
model parameters. The uncertain parameters are given in Table 4
with the values for both the plant (simulated reality) and the nomi-
nal model.

Contour maps showing the objective function and the con-
straints at steady state as functions of the input variables for dif-
ferent power density setpoints are presented in Fig. 3 for the plant
(simulated reality). These plots show the location of the plant
optimum (point P) and the constraint bounds. Since the power
density is set and the active cell area is given, the power Pel is
fixed, which determines the current as I ¼ Pel=ðUcellNcellÞ. Hence,
the input space is only two-dimensional, and it is spanned by the
air and fuel flow rates.

The set of active constraints at the optimum may change with
the requested power density. At the power density of 0.2 W=cm2,
the optimum lies on the upper bound on fuel utilization (FU). The
efficiency is about 40%. As the power setpoint is increased, the
active constraint switches to the constraint on the cell potential,
and it is not possible to reach the maximal FU. The optimal effi-
ciency therefore drops. At a higher power density (0.45 W=cm2),
the active constraint is the current density, and the optimal operat-
ing point gives around 21% efficiency.

Similar contour maps can be drawn for the nominal model
(Fig. 4). Point M indicates the location of the model optimum.
The constraints predicted by the model are different from those of
the plant. It is also possible that, for the same power density set-
point, the set of active constraints at the optimum are different for
the nominal model and the plant. For example, at the power den-
sity of 0.3 W=cm2, the active constraint for the plant is on the cell
potential, whereas both the cell potential and the fuel utilization
constraints are active for the model. Even more different, at the
power density of 0.45 W=cm2, the plant optimum is at the inter-
section of the lower bound on kair and the upper bound on the cur-
rent density, whereas the lower bound on kair is not active for the
nominal model.

4 RTO Via Constraint Adaptation

4.1 Constraint-Adaptation Scheme. In the presence of
uncertainty such as plant-model mismatch or process disturban-
ces, the constraint values predicted by the model do not quite
match those of the plant. The idea behind constraint adaptation is
to use measurements for correcting the constraint predictions
between successive RTO iterations so as to track the actual plant

Table 3 Values of constraint bounds (L: lower, U: upper)

TL
stack 730 �C TU

stack 800 oC

UL
cell 0.7 V FUU 70 %

kL
air 3 kU

air 7

_nL
fuel; in 5� 10�4 mol=s iU 0.6 A=cm2

Table 4 Values of the uncertain parameters for the plant and
the nominal model

Parameter Plant Nominal model

Eact; cath (J=mol) 1:53� 105 1:5� 105

k0; cath (1=X m2) 4:10� 1011 4:5� 1011

R0; cath (X m2) 0:92� 10�13 10�13
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constraints [12,13]. Such a correction can be made by simply off-
setting the constraint predictions as

Hðu; hÞ þ eH ¼ HS (24)

Gðu; hÞ þ eG � GU (25)

where eH 2 Rnh are the equality constraint modifiers and
eG 2 Rng the inequality constraint modifiers.

The decision variables are updated at each RTO iteration by
solving an NLP problem similar to Eq. (23), which takes the con-
straint modifiers into account. At the kth iteration, the next opti-
mal input values are computed:

u	kþ1 ¼ arg min
u

U u;hð Þ

s:t: H u;hð Þ þ eH
k ¼ HS

G u; hð Þ þ eG
k � GU (26)

where eH
k and eG

k are the constraint modifiers at the current itera-
tion. If constraint adaptation alone is applied, the new operating
point is obtained by applying the optimal inputs directly to the
plant

ukþ1 :¼ u	kþ1 (27)

However, if constraint adaptation is combined with MPC, as will
be described in Sec. 5, the real inputs are determined by the con-
troller, and the values ukþ1 to be used in the next RTO iteration
correspond to those real inputs.

Assuming that all constrained quantities can be measured at
steady state, the constraint modifiers can be updated for the next
RTO iteration as follows:

eH
kþ1 ¼ Hpðukþ1Þ �Hðukþ1; hÞ (28)

eG
kþ1 ¼ Gpðukþ1Þ �Gðukþ1; hÞ (29)

On the other hand, the model parameters h are not subject to
adaptation

The constraint-adaptation algorithm is illustrated in Fig. 5.
The approach relies on constraint measurements only, and it
does not require that gradients be estimated. However, since the
model gradients do not quite match the plant gradients, the
constraint-adaptation algorithm may terminate at a suboptimal,
yet feasible, point upon convergence. This loss of optimality
depends on the quality of the process model used in the numeri-
cal optimization step.

Fig. 3 Contour maps and operational constraints for the plant at steady state corresponding to different power density
setpoints. White area: feasible region; dotted lines: contours of the objective function; point P: optimum for the plant.

Journal of Fuel Cell Science and Technology OCTOBER 2011, Vol. 8 / 051001-5

Downloaded 14 Dec 2011 to 128.178.5.7. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4.2 Application to SOFC System. The time constant of the
fuel cell is around 40 s. A RTO period of 10 min is chosen, which
leaves sufficient time for the system to reach steady state follow-
ing an input change. The constraint-adaptation scheme is applied
using the parameter values of Table 4 for the plant and the nomi-
nal model. The nominal model corresponds to a steady-state
model, i.e., with dTstack=dt ¼ 0 in Eq. (1). Figure 6 shows the
response of some of the key variables. Initially, the plant is at
steady-state with the power density setpoint pS

el ¼ 0:4 W=cm2 and
the corresponding inputs u0 ¼ 1:9� 10�3; 14� 10�3; 26:0½ �T .
Constraint adaptation is started at t ¼ 10 min. Since the system is
not optimized up to t ¼ 10 min, the efficiency is low in this pe-
riod. Although we start at a feasible operating point, the algorithm
overestimates the adaptation of Ucell in the first RTO iteration.
This results in a slight violation of the constraint between 10 and
20 min. Convergence is practically reached at the second iteration.
At time t ¼ 40 min, the setpoint is changed to pS

el ¼ 0:2 W=cm2.
As a result, the fuel and air flow rates and the current are reduced,
and efficiency goes up. The active constraint is now FU. This con-
straint is not violated since it depends only on the input variables
that are not subject to plant-model mismatch. At t ¼ 70 min, the
setpoint is changed back to pS

el ¼ 0:4 W=cm2 and, again, there is
violation of the Ucell constraint.

Fig. 4 Contour maps and operational constraints for the nominal model at steady-state corresponding to different power den-
sity setpoints. White area: feasible region; dotted lines: contours of the objective function; point M: optimum for the model.

Fig. 5 Constraint-adaptation algorithm for real-time optimiza-
tion. The subscript k represents the iteration counter. The con-
strained quantities H, G, Hp, and Gp correspond to steady-state
operation. When implemented alone, i.e., without an additional
controller, the optimal inputs u	kþ1 are applied directly to the
plant as indicated in this figure; otherwise, the process inputs
are determined by the controller as detailed in Sec. 5.
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4.3 Accuracy of Constraint Adaptation. The accuracy of
the constraint-adaptation scheme upon convergence is illustrated
in Table 5. The performance loss, gloss, is computed as

gloss ¼
g	p � g	1

g	p
(30)

where g	p is the true optimal efficiency of the plant, and g	1 is the
objective function value obtained upon convergence of the con-
straint-adapation scheme. This optimality loss is negligible in
spite of the presence of model mismatch.

5 Robust RTO via Adaptation and Control of the

Constraints

5.1 Enforcing Constraints via MPC. Constraint adaptation
guarantees to reach a feasible operating point upon convergence.
However, in the presence of modeling errors and process distur-
bances, constraint adaptation does not ensure feasibility prior to
convergence. An additional complication is given by the fact that,
in the presence of process disturbances and changing operating
conditions, the set of active inequality constraints may change,
thus requiring a change in the regulation structure of the plant
[11,21]. Yet, constraint violations can be prevented by controlling
all the constrained quantities.

The equality constraints H are controlled at their setpoint val-
ues HS. Between the RTO iterations k and kþ 1, the subset
Gck
2 Rnck of the inequality constraints G are controlled at the

setpoints GS
ck

:¼ Gck
ðu	kþ1; hÞ þ eG

ck
.3 The controlled constraints

Gck
can be selected as the active inequality constraints at the kth

RTO iteration, thus leading to GS
ck
¼ GU

ck
. However, inactive con-

straints can be selected as well, as long as nck
� ðnu � nhÞ to avoid

over-specification. In practice, input-output selection criteria
should also guide the selection of the inequality constraints to be
included in Gck

. For example, consider the optimal operating point
predicted by the model for the case of Fig. 4(b). The optimum is
at the intersection of the cell potential and the fuel utilization con-
straints. However, because of the near collinearity between these
two constraints, if both of them were selected as controlled varia-
bles, the controlled plant would become ill-conditioned and very
sensitive to process disturbances.

The methodology for combining constraint adaptation and con-
straint control is presented next. Constraint control is imple-
mented using dynamic matrix control (DMC), which is one of the
original MPC formulations, and still one of the most popular MPC
algorithms in industry [22]. DMC uses a step response model of
truncation order n. However, other prediction models could be
used as well. Using MPC, constraint control can be implemented
between the RTO iterations k and kþ 1 by minimizing the quad-
ratic objective function

Jk uðtÞ½ � ¼
Xp

l¼1

Dl Hðtþ ljtÞ�HS
� ��� ��2þ Ql;k Gck

ðtþ ljtÞ�GS
ck

h i��� ���2

þ RlDuðtþ l� 1Þk k2
(31)

where Dl is the weighting matrix on the equality constraints, Ql; k

the weighting matrix on the controlled inequality constraints, and
Rl the weighting matrix on the rate of change of the inputs.

At current time t, the behavior of the process over p future time
steps is considered. MPC determines the next m input moves
Duðtþ ljtÞ :¼ uðtþ ljtÞ � uðtþ l� 1jtÞ, l ¼ 0;…;m� 1, with
m < p and Duðtþ ljtÞ ¼ 0; 8l � m. Only the first computed
change in the manipulated variables is implemented, and at time
tþ 1 the computation is repeated with the horizon moved by one
time interval. Implementation details can be found in Ref. [23].

Fig. 6 Real-time optimization of the SOFC stack. Solid lines: Constraint-adaptation results. Dashed lines: Power density set-
point and constraint bounds. The three inputs are the flow rates _nfuel, in and _nair, in, and the current I 5 Aactive i.

3The notation requires some explanation. Here, eG
k are the correction terms given

by Eq. (35), and eG
ck

is the subset of eG
k corresponding to the inequality constraints

that are controlled between the RTO iterations k and kþ 1. Notice that the controlled
inequality constraints might change from one iteration to the next, hence the sub-
script k added to c.
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For the case of a nonsquare control problem with more inputs
than controlled variables, i.e., nu > nck

þ nh, an additional quad-
ratic term can be added to the MPC objective function to exploit
the additional degrees of freedom towards optimality

Jk uðtÞ½ � ¼
Xp

l¼D

Dl Hðtþ ljtÞ�HS
� ��� ��2þ Ql;k Gck

ðtþ ljtÞ�GS
ck

h i��� ���2

þ RlDuðtþ l� 1Þk k2þ Slbkðtþ l� 1Þk k2
(32)

with

bkðtþ lÞ ¼ VT
kþ1 uðtþ ljtÞ � u	kþ1

� �
; l ¼ 0;…; m� 1 (33)

The columns of the matrix Vkþ1 2 Rnu�ðnu�nck
�nhÞ correspond to

directions in the input space. The vector bk 2 Rnu�nck
�nh is the

difference between the inputs along these directions and their
optimal values. The additional term Slbkðtþ l� 1Þk k2

in Eq. (32)
allows controlling the inputs to their optimal values along the
directions given by Vkþ1, thus addressing the ðnu � nck

� nhÞ re-
sidual degrees of freedom in the control problem. Vkþ1 can be
selected from information given by the steady-state model used in
the RTO optimization [24]. A good choice is to select directions
that are tangent to the constraints H and Gck

at u	kþ1. Sl is the
weighting matrix on bk.

5.2 Application to SOFC System. The same initial input
and power density setpoint changes as in Sec. 4.2 are applied.
Constraint adaptation and control is started at t¼ 10 min.

Since there are three input variables and one equality constraint,
no more than two (independent) inequality constraints can be
active simultaneously. For this SOFC system, the bounds on Tstack

do not become active with varying power demand. Furthermore,
since there is near collinearity between Ucell, FU, and i, these
constraints are not controlled simultaneously. Hence, the

quadratic objective function to be minimized by MPC can be cho-
sen as

Jk uðtÞ½ � ¼
Xp

l¼1

d2 pelðtþ ljtÞ � pS
el

� �2þq2
k Gck

ðtþ ljtÞ � GU
ck

h i2

þ Duðtþ l� 1ÞTRTRDuðtþ l� 1Þ þ s2bkðtþ l� 1Þ2

(34)

where Gck
is a constraint that is active during the kth RTO itera-

tion, chosen from among G3, G4, and G8 in Eq. (22). The remain-
ing degree of freedom is fixed by selecting Vkþ1 ¼ ½u	2; kþ1;

�u	1; kþ1; 0�T [see (33)]. This choice of Vkþ1 is equivalent to fixing

the excess air ratio kair to its optimal value given by constraint ad-
aptation at iteration k.

Combination of constraint adaptation and constraint control is
illustrated schematically in Fig. 7. At the kth RTO iteration, the
optimal solution generated by the constraint-adaptation level is
passed to the MPC level in the form of information regarding (i)
the active set Akþ1, which indicates the inequality constraint Gck

to be controlled, and (ii) an optimal target for the additional
degree of freedom, given by Vkþ1 and u	kþ1.

A time step of 2 s is chosen for MPC. The step response model
is obtained for u ¼ 0:875� 10�3; 7:15� 10�3; 20:00½ �T and its
truncation order is n ¼ 50. The length of the control and predic-
tion horizons are m ¼ 6 and p ¼ 9, respectively.

The performance of MPC is highly dependent on the weights
chosen for the different terms in the objective function and the
bounds on the input moves. These bounds for the flow rates are
chosen as DuU

1 ¼ 5� 10�3 and DuU
2 ¼ 8:33� 10�2. No bound is

used for the current as this would hinder quick tracking of the
power density setpoint. The weighting matrix for the rate of
change of the inputs is R ¼ diagð10�4; 10�2; 10�1Þ.

For the other weights, two different cases are presented in Table
6. In case 1, tracking of the power density setpoint is favored over
that of the active inequality constraint and the optimal value of
the additional degree of freedom. The response is shown in Fig. 8.
The power density tracking is virtually instantaneous, the power
density reaches its setpoint in about 20 s. However, this aggressive
policy leads to an abrupt increase of the air flow rate when the
power demand is increased at t¼ 70 min, which reduces the effi-
ciency. A less aggressive set of weights is used in case 2, for
which the smoother response is shown in Fig. 9. The peaks and
damped oscillations are eliminated at the expense of a slower
tracking of the power density setpoint, which is now reached
within 2–3 min of the change.

Fig. 7 Combination of constraint adaptation and constraint
control

Table 6 MPC weights

d q s

Case 1 5 0.005 0.01
Case 2 0.001 0.05 1

Table 5 Accuracy of the constraint-adaptation scheme

pS
el ¼ 0:2 W=cm2 pS

el ¼ 0:4 W=cm2

Plant optimum Using constraint adaptation Plant optimum Using constraint adaptation

u1 (mol=s) 5:438� 10�3 5:419� 10�3 1:226� 10�2 1:251� 10�2

u2 (mol=s) 5:346� 10�4 5:347� 10�4 1:379� 10�3 1:378� 10�3

u3 (A) 14.012 14.013 28.571 28.571
g 0.3946 0.3946 0.3016 0.3015
gloss 4:37� 10�7 3:69� 10�5
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Fig. 8 Robust real-time optimization of the SOFC stack (case 1). Solid lines: performance of constraint adaptation and
constraint control. Dashed lines: power density setpoint and constraint bounds. The three inputs are the flow rates _nfuel, in

and _nair, in, and the current I 5 Aactive i.

Fig. 9 Robust real-time optimization of the SOFC stack (case 2). Solid lines: performance of constraint adaptation and
constraint control. Dashed lines: power density setpoint and constraint bounds. The three inputs are the flow rates _nfuel, in and
_nair, in, and the current I 5 Aactive i.
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A comparison of Figs. 6 and 9 shows that the addition of con-
straint control via MPC indeed allows meeting the active con-
straints smoothly and efficiently. An additional advantage of com-
bining constraint adaptation and control regards the disturbance
rejection capability, as transient disturbances can be rejected by
the fast inner MPC loop (Fig. 7).

5.3 Performance Curve. The power density versus current
density curve is shown in Fig. 10. The location of the optimal
operating points obtained upon convergence of the RTO-MPC
scheme for two different power density setpoints are clearly indi-
cated. In both cases, optimal operation is on the left side of the
maximal power density. The constraints on current density, cell
potential, and fuel utilization have prevented the operating point
from crossing to the right of the maximal power density. Note that
the step response model used by MPC was obtained on the left
side of the maximal power density and thus would become inad-
equate if the plant operation crosses to the right side. Golbert and
Lewin [2] have reported oscillatory behavior when the MPC
model and the plant are on different sides of the maximal power
density.

6 Conclusions

This paper has considered the real-time optimization of a simple
SOFC system. A lumped dynamic model is used, which considers
the electrochemical, energy and mole balances taking place inside
the cell. An optimization problem has been formulated to maxi-
mize electrical efficiency at a given power demand, while respect-
ing a number of operating constraints. It is shown that the con-
straints that determine optimal operation vary with the power
demand. Furthermore, in the presence of model mismatch, the op-
timum given by the model may not provide a feasible operating
point, and not even the correct set of active constraints. A control
strategy combining RTO and MPC has been presented and illus-
trated through simulation. The strategy includes correction terms
based on the difference between plant measurements and model
predictions at both the RTO and MPC levels. At the RTO (steady-
state optimization) level, these correction terms are used to adapt
the constraints in the optimization problem, which is simpler than
trying to estimate the model parameters. The MPC level is
designed to implement the optimal inputs while taking care of not
violating the constraints. Note that the approach can be general-
ized to the use of modifier adaptation instead of constraint adapta-
tion, thereby seeking full process optimality [25]. The approach is
suited for more elaborated fuel cell systems, where ensuring safety
and operational constraints whilst maximizing efficiency is impor-

tant. Finally, an experimental validation of the results presented in
this paper has been conducted and will be available soon [26].

Nomenclature

Aactive ¼ active cell area (m2)
Astack ¼ area of stack exposed to the furnace (m2)

cp; stack ¼ heat capacity of stack (J=kgK)
Eact ¼ energy for reaction activation (J=mol)

Ediss ¼ activation energy for oxygen dissociation (J=mol)
Eelect ¼ activation energy for electrolyte conductivity

(J=mol)
F ¼ Faraday constant
F ¼ radiative heat exchange transfer factor

FU ¼ fuel utilization
FUadj ¼ FU adjustment factor

DGreaction ¼ free energy change for reaction (J=mol)
h ¼ thickness (m)

D _Hgases ¼ rate of enthalpy change for gases (J=s)
I ¼ current (A)
i ¼ current density (A=m2)

i0 ¼ exchange current density (A=m2)
k0 ¼ pre-exponential factor for activation overpotential
kB ¼ Boltzmann constant

LHV ¼ lower heating value for H2 (J=mol)
mstack ¼ mass of materials of stack (kg)

_n ¼ rate of molar change; molar flow rate
ne ¼ charge number of reaction

Ncell ¼ number of cells comprising the stack
Dp ¼ pressure loss (Pa)
Pel ¼ power produced by the stack (W)
pel ¼ power density (W=m2)

Pblower ¼ power consumed by blower (W)
p ¼ partial pressure (Pa)

p0 ¼ reference ambient pressure (Pa)
_Qair ¼ volumetric air flow rate (m3=s)

_Qloss ¼ rate of heat loss from stack to furnace (J=s)
R ¼ universal gas constant

R0 ¼ pre-exponential factor for O2 dissociation (X m2)
T ¼ temperature (K)

Ucell ¼ cell potential (V)
UNernst ¼ Nernst potential (V)

Greek Letters

gact ¼ activation overpotential (V)
gdiff ¼ diffusion overpotential (V)
gdiss ¼ O2 dissociation overpotential (V)
gionic ¼ ionic overpotential (V)

g ¼ SOFC efficiency
kair ¼ excess air ratio
rSB ¼ Stefan–Boltzmann constant

r0; elect ¼ ionic conductivity of electrolyte (1=X m)
m ¼ stoichiometric coefficient

Subscripts

an ¼ anode
cath ¼ cathode
cell ¼ cell

in ¼ inlet
out ¼ outlet

elect ¼ electrolyte
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