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The recent upraise of interest in the dynamics of the brain resting activity opens a number
of new and different questions. A fundamental one is related to the character of correla-

tions of healthy large scale brain activity. These studies focus on the linear correlation of
the spontaneous activity between brain sites. Here we present a different approach, instead
to estimate the average linear correlation of activity between pairs of brain sites, we ask:
what are average sequels in space and time of a big event (i.e., a thunder). By strobing these
events we find that on average the activity variations with opposite sign are correlated in
time, over a temporal scale of few seconds, exposing a critical balance between excitation
and depression opposing forces.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An increasing number of reports deals with spontane-
ous brain dynamics at large scale. It is known that the brain
activity at this coarse scale organizes into relatively few
spatio-temporal patterns, as revealed experimentally in re-
cent years [1]. A wide range of experiments using
functional Magnetic Resonance Imaging (fMRI) have
emphasized that these spatial clusters of coherent activity,
termed Resting State Networks (RSN) [2], are specifically
associated with neuronal systems responsible for sensory,
cognitive and behavioral functions [3]. Furthermore, the
pattern of correlations in these networks has been shown
to change with various cognitive and pathophysiological
conditions [1]. At the same time studies have shown that
the RSN activity exhibits peculiar scaling properties,
resembling dynamics near the critical point of a second
order phase transition [4-6], consistent with evidence
showing that the brain at rest is near a critical point [7].
More precisely, these empirical findings are in line with
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experimental results on spontaneous activity in cortical
systems in vitro and in vivo [8-10] and with computational
modeling results [11-18]. Indeed, spontaneous neuronal
activity generally exhibits slow oscillations between bur-
sty periods, followed by substantially quiet periods. Bursts
can last from a few to several hundreds of milliseconds
and, if analyzed at a finer temporal scale, show a complex
structure in terms of neuronal avalanches. In vitro experi-
ments allow to record avalanche activity [8,19] from ma-
ture organotypic cultures of rat somatosensory cortex
where they spontaneously emerge in superficial layers.
The size and duration of neuronal avalanches follow power
law distributions with very stable exponents, which is a
typical feature of a system acting in a critical state, where
large fluctuations are present and the response does not
have a characteristic size. The same critical behavior has
been measured also in vivo from rat cortical layers during
early post-natal development [20], from the cortex of
awake adult rhesus monkeys [10], using microelectrode ar-
ray recordings, as well as for dissociated neurons from rat
hippocampus [21,22] or leech ganglia [21]. Operating at a
critical level, far from an uncorrelated subcritical or a too
correlated supercritical regime, may optimize information
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management and transmission in real brains, as recently
confirmed by experiments [23].

The emergence of power law distributions has been
interpreted in terms of self-organized criticality (SOC) [4].
The term SOC usually refers to a mechanism of slow energy
accumulation and fast energy redistribution driving the
system toward a critical state, where the avalanche exten-
sions and durations follow power law distributions. The
simplicity of the mechanism at the basis of SOC has sug-
gested that many physical and biological phenomena char-
acterized by power laws in the size distribution represent
natural realizations of the SOC idea. For instance, SOC has
been proposed to model earthquakes [24,25], the evolution
of biological systems [26], solar flare occurrence [27], fluc-
tuations in confined plasma [28], snow avalanches [29],
and rainfall [30]. Understanding the brain electrical activ-
ity at large scale is a fundamental issue, which cannot be
derived from the abundance of information at the micro-
scopic level. As an analogy, weather forecasting hardly
could be inferred from local data in the absence of a good
model of large scale atmosphere dynamics.

This special issue is dedicated to our colleague and
friend Werner who knew first-hand how important the
global picture can be to understand the brain. In multiple
occasions in the last years of his long tenure as a brilliant
physiologist he insisted on the importance of applying con-
cepts coming from different fields to the understanding of
brain dynamics. In particular, Werner adopted in his stud-
ies methods coming from critical phenomena and complex
systems [31] noticing that “the molecular rearrangement
becomes at the macroscopic level manifest as a set of qual-
itatively new properties that could not be deduced from
the microscopic state change, nor could it be anticipated
from the prior macroscopic state” [32]. This interdisciplin-
ary approach indeed represents a conceptual framework
able to provide new insights into brain dynamics.

The interest for mesoscopic brain dynamics is not new,
of course. It is inspiring to read that the father of brain
modeling Warren McCulloch, more than 60 years ago,
was concerned with the same issues than Werner and us
today. Together with Dusser de Barenne, Warren
McCulloch and colleagues [36,37] experimented inducing
local seizures by applying small drops of strychnine in sev-
eral regions of the monkey cortex while recording cortical
electrical activity simultaneously in twenty sites across the
entire cortex. This clever technique, mastered by Dusser de
Barenne, received the name of strychnine neuronography,
which can be considered the earliest attempt to study
brain functional connectivity, by inducing some liminal
activity in a given area and recording the co-active cortical
sites. Typically, they noticed that the initial activity in-
duced by the strychnine remained local, and did not spread
to the entire cortex. However, not without surprise, they
noted that, less often, the activity was recorded in very
far away locations.

Fig. 1 (redrawn from the original sketches in [35]) sum-
marizes these early observations together with our own
rough estimations in Panel D. Filled circles in Panel D rep-
resent the distribution of edge lengths, computed from the
drawing in Panel A as the Euclidean distance (using arbi-
trary units) between the location of each strychnine

instillation and the resulting activation site/s. Note that,
despite the scarcity of the data, the results demonstrate
long range correlations, the exponent being similar to the
estimations using fMRI [34]. For example an application
in the frontal cortex induced sometimes activity as far as
to the occipital cortex. Nowadays, is not difficult to admit
that frontal activation will evoke visual images and vice
versa, however McCulloch knew that much before us.

2. Conditional probability approach

Here we present a statistical analysis of experimental
data of functional magnetic resonance inspired by a novel
interdisciplinary approach: we apply a method developed
to detect correlations in magnitude, time and spatial loca-
tion between successive earthquakes [38] in seismic cata-
logs. This analysis is very difficult to perform since
statistical noise hides the presence of correlations. The
method, comparing probabilities evaluated in the real cat-
alog with a catalog made uncorrelated by reshuffling, is
able to subtract the effect of noise. Our aim is to investigate
the existence and features of spatio-temporal correlations
in activity variations. More precisely, the analysis aims at
enlightening the structure of these correlations and their
relationship with the spatial and temporal distance be-
tween successive variations. The study focuses on correla-
tions between large events, analogously to a recent work
[39] that analyzed the gradual and continuous changes in
the brain blood oxygenated level dependent (BOLD) signal
to estimate functional connectivity from resting BOLD
events triggered average. The activity B(7;, t) is monitored
at each voxel i as function of time. Data are recorded in
time every 6t = 2.5 s, therefore time is measured in unit
of 5t. We focus our study only on extreme activity events
(thunders) and therefore analyze voxels for which B(r;, t)
is larger than a given threshold B. = 18,000, value that se-
lects the largest 10% of the entire activity range. Namely,
we substitute the below-threshold values with zero and
leave the above-threshold values of B(7,t) unchanged.
The local activity variations at each voxel are evaluated
as s;(t) = B(7, t + ot) — B(7i,t), which can have positive
and negative values. As a first attempt, we simply calculate
the average cross-correlation function on the entire set of
data as

G(T) = ((Si(t + 1) = si(O)(S;(E+ T) = 55(8))) (1)

where the bar indicates the temporal average, whereas
brackets stand for the average over all possible voxel cou-
ples. In order to evaluate the role of statistical noise on this
quantity, we calculate G(7) also in a catalog where s;(t) val-
ues are reshuffled in time and space. In this way, the data
set we generate is uncorrelated by construction and there-
fore should show a cross-correlation function fluctuating
around zero. The amplitude of fluctuations is a measure
of the statistical noise present in the catalog. In Fig. 2 we
plot G(t) for both data sets. In the original catalog the
cross-correlation exhibits strong fluctuations over a range
comparable to the one measured in the uncorrelated data
set. It is therefore quite difficult to extract information on
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Fig. 1. McCulloch experiments inducing local seizures by instillation of strychnine. Panel A and B are from chimpanzee experiments [35]. Panel A shows a
summary of the sites where the strychnine was applied (filled circled) and the sites of the cortex which fired by the topical application. Besides the local
ones, long range activations crossing the entire cortex were often observed. Panel B illustrates the adjacency matrix summarizing which areas - on average
- were activated by the strychnine application. Panel C shows similar results obtained by McCulloch and colleagues in Macaca Mulata [37] mapping the
entire cortex and basal ganglia. Panel D depicts (note the double logarithmic axis) the edge length density distribution computed from McCulloch’s drawing
in Panel A. The dashed line with slope 2 illustrates, for comparison, the average edge-length density found in recent fMRI experiments [34]. Reproduced

from [33].
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Fig. 2. Cross-correlation function for the variations in the experimental
data set (black line) and in the data set generated by reshuffling the
original data over time and voxels (red line). (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

correlations by a direct measurement from the original
experimental catalog.

We describe here the recent statistical method devel-
oped to analyze correlations in seismic catalogs [38]. The
basic idea of the method is to compare the behavior of con-
ditional probabilities evaluated in an experimental catalog
and in a synthetic catalog containing the same data but

reshuffled in time and space. In such catalog, by definition,
eventual spatio-temporal correlations are destroyed. We
analyze the temporal series of s;(t). We define the quantity
At =t' —t > 0 as the temporal distance between two vari-
ations occurring at times t and t’, which can assume values
from 1 to 400 in units of 6t = 2.5 s. Analogously, we define
the Euclidean distance between two voxels [ and m as
Ar =| 7| — T |, where T is the three dimensional position
of the center of a voxel. Furthermore, we define
As = si(t') —sp(t) as the difference between variations
occurring at a temporal distance At at any couple of voxels
I, m whose spatial distance is Ar. We also evaluate
As* = si(t') —s7,(t*) where s* is value of s taken at random
in the entire series. This quantity corresponds to the differ-
ence in deviations between any couple of voxels in a cata-
log where the entire series s;(t) is reshuffled in time and
voxels. Hence, As* is the difference of variations within a
catalog where a variation is uncorrelated to previous ones
by construction.
We then define the conditional probability

N(x07y0) (2)

Plax <xo [ &y <o) == 5

where N(xo,Y,) is the number of couples of subsequent
events with both Ax <x, and Ay <y, and N(y,) is the
number of couples with Ay < y,. In the following Ax or
Ay will be used to indicate, depending on cases, Ar, At, As
or As*. Our method is schematically presented in Fig. 3.



F. Lombardi et al./Chaos, Solitons & Fractals 55 (2013) 102-108 105

10000 — ; ‘ :
p(P) I 1
8000 - -
6000 - -
o(s, | t)
4000 : 0o 7
2000 : .
: x 3P(s, | t;)
0 L ‘: | | L |
0,24 0,26 0,28 0,3

P(As <s, | At <ty)

Fig. 3. The distribution p(P) of P(As* < so | At < to) for to =5sand s, =0
(black circles) evaluated for 10° configurations of the reshuffled catalog.
p(P) is well fitted by a Gaussian (red line) with mean value
Q(So, to) = 0.2511 and standard deviation ¢ (so, tp) = 0.0044. The evalua-
tion of P(As < so | At < t) for the same sy and ¢, in the real catalog (black
line)  provides the  value 0.3041. As a consequence
SP(S0,to) = 0.0530 ~ 12.00(So, to). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article.)

Keeping s, and t, fixed, we compute the quantity
P(As* < so | At < tg) for several independent random real-
izations of the reshuffled catalog, obtaining the distribu-
tion p[P(As’ <So | At < tp)]. Taking 10°> independent
realizations of the variation reshuffling, for each sy and to,
we find that p[P(As* < so | At < tp)] is Gaussian distributed
with mean value Q(so, tp) and standard deviation & (So, to).
Analogous behavior is obtained for P(As* < sq | Ar < 1y)
and we similarly define Q(so, 7o) and (So,10). The relevant
quantity is 6P(So,¥) = P(As < so | Ay < ¥o) — Q(S0.Yo), i.€.,
the difference between the value of P(As < so | Ay < ¥,)
in the real catalog and its mean value in reshuffled cata-
logs. If the absolute value | 6P(so,Y,) | is different than zero,
a significant difference in the number of couples satisfying
both conditions exists between the real and the random
series. In particular, if | 5P(so,Y,) | is larger than zero it is
more likely to find couples of data satisfying both condi-
tions in the real rather than in the random catalog. Since
in the random catalog correlations are destroyed by con-
struction and only statistical noise affects the data, the dif-
ference in conditional probabilities is due to physical
correlations in voxel activity. In our analysis, we conclude
that significant non-zero correlations between magnitudes
of successive variations exist if | 6P(So,¥) |> (S0, Yo)-

In Fig. 3 we explicitly compare p[P(As* < Sp | At < to)]
with P(As < sp | At < to) for sp = 0 and to = 5 s. We clearly
observe the existence of non-zero correlations, since
SP(So, to) =~ 12.00(So, to). For a deeper understanding of
the nature of the observed correlations, the above analysis
has been extended to different values of sq, ry and t,.

In Fig. 4 we plot the JP(so, tp) as a function of s, for dif-
ferent values of to. The error bar of each point is the stan-
dard deviation ¢ (sp,tp) defined above. To have a finer
understanding of the features of temporal correlations
we analyze separately the four different cases: (a) the suc-
cessive local variations are both positive, (b) both negative
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Fig. 4. The quantity 6P(so, tp) as a function of s, for to = 5, 25, 125, 175,
225 s. For each t, and so the error bar is the standard deviation ¢ (so, to).
Different panels consider all possible combinations of sign of successive
variations.

and (c,d) have different signs. These are independent of
each other and the total probability is the superposition
of the different cases. We notice that the number of cou-
ples in the denominator of Eq. (2) is the same for each case.
We first discuss the case of successive variations with the
same sign ((a) and (b)): We observe that, in both cases,
for small t, and for a wide range of sp values, variations
are strongly anticorrelated. More precisely, this implies
that in panel (a), where only consecutive variations with
the same positive sign are considered, the number of cou-
ples in the real catalog is smaller than the average number
of couples in the reshuffled catalogs, for almost all so. This
means that, at times shorter than 5 s, consecutive varia-
tions with the same positive sign are less frequent than
in the uncorrelated case, i.e., such variations are anti-corre-
lated. At longer temporal distances, variations become
completely uncorrelated (6P(So, to) = 0), namely the proba-
bility to observe two successive variations with the same
sign is the same as in a reshuffled catalog. Conversely,
the analysis of variations with different signs provides
interesting insights: for case (c), the quantity As is always
positive and therefore 5P(so, to) is simply equal to zero for
negative so. Conversely, for positive s, data show strong
correlations rapidly decreasing with the temporal distance,
namely it is probable that a local decrease in voxel activity
is followed by an activity enhancement close in time. Since
SP(sp, to) for to = 5 s tends to a constant value for so < 300,
i.e., contributions from more couples do not arise for larger
So. We can infer that typically successive activity variations
tend to differ by a quantity smaller than ~300.

Strong correlations are also observed in case (d), where
the quantity As is always negative and therefore 6P(so, to)
assumes a constant value for the entire range of positive
So. It is interesting to stress that this happens since the
same number of couples contributes to the conditional
probability evaluated in the real catalog. However this
number is not necessarily equal to the average number
obtained for reshuffled catalogs and therefore
SP(So, to) # 0. In this case data suggest that a local increase
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in activity induces, after a short delay, a successive activity
depression. By extrapolating to zero 5P(So, tp) for negative
So, we find the sy value smaller than any variation recorded
in the catalog. We then find that successive activity varia-
tions tend to differ by values larger than ~—900. In both
cases correlations rapidly decrease in time and variations
become uncorrelated over a temporal distance of about
100 s. The overall analysis suggests that successive activity
enhancements or depressions are strongly unlikely if close
in time and completely uncorrelated over longer temporal
scales. Conversely, turning off activity in some voxels trig-
gers activity enhancements in other voxels after a short
time delay, and vice versa. Variations of different signs
show, indeed, a stronger evidence of correlations suggest-
ing that the system activity realizes a sort of homeostatic
balance compensating local variations.

These results can be better enlightened by evaluating
the derivative d’%‘;m which represents the probability dif-
ference to observe As = s, conditioned to At < ty (Fig. 5).
As expected, the total area underlying the four different
cases of dP/ds, is zero. Also in this case, deviations with
different signs are analyzed separately. As observed for
Fig. 4, deviations with the same sign (case (a) and (b)),
are strongly anticorrelated. Conversely, variations with
opposite signs (case (¢) and (d)) show clear evidence of
correlations over a temporal scale of few seconds. Data
confirm that the most probable value for successive varia-
tions difference is about 300 for case (c), whereas the most
probable value is —600 for case (d). This value is larger
than —900 as inferred from Fig. 4.

We have performed the same analysis imposing the
condition on the voxel e Euclidean distance (Fig. 6). Con-
cerning this point we need to specify that, since we are
focusing our analysis of high activity voxels by imposing
a threshold value B, to B(f;,t;), we cannot explore the en-
tire spatial range since for B. = 18,000 the maximum dis-
tance observed for active voxels is about 70 mm. In this
case, error bars are larger and therefore conclusions must
be drawn more carefully. Variations with the same sign
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(case (a) and (b)) show an interesting behavior for
OP(so,10) ~ 0: Successive positive variations appear to be
mostly anticorrelated. Conversely it is likely to observe
successive depressions in activity over distances on the
cm scale. Since the maximum of 6P(sp, 7o) is at sop = 0, these
successive depressions tend to have the same amplitude.
Data suggest that activity dampening propagates over
neighboring voxels. On the other hand, variations with
opposite sign (case (c)) give indication of correlation over
an Euclidean distance up to 100 mm, the expected decay
at longer distances is not measurable due to the poor sta-
tistics of data. Conversely, case (d) apparently suggests
that a local small enhancement is likely followed by a
depression within distances on the cm scale, whose sum
of absolute values is in the range ]0,200[. However, data
exhibit large error bars and therefore it is difficult to draw
any clear conclusion. To clarify this point a more careful
analysis is needed in order to decrease the error bars.

3. Discussion

This study was inspired by the farseeing work of Ger-
hard Werner who strongly supported the relevance of
interdisciplinary approaches to the understanding of brain
dynamics. Since 2003, when spontaneous activity in corti-
cal slices was first found to follow scale-free statistical dis-
tributions in size and duration, increasing experimental
evidences and theoretical models have been reported in
the literature supporting the emergence of evidence of
scale invariance in the cortex. Although strongly debated,
such results refer to many different in vitro and in vivo
preparations (awake monkeys, anesthetized rats and cats,
in vitro slices and dissociated cultures), suggesting that
power law distributions and scale free correlations are a
very general and robust feature of cortical activity that
has been conserved across species as specific substrate
for information storage, transmission and processing.
Equally important is that the features reminiscent of scale
invariance and criticality are observed at scale spanning
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from the level of interacting arrays of neurons all the way
up to correlations across the entire brain. A fundamental
feature of systems acting close to a critical point is the
emergence of complex properties due to the interactions
of many degrees of freedom. The existence of long-range
spatio-temporal correlations in a system close to a critical
point is a fundamental ingredient at the basis of complex
behavior.

Here we make use of the analogy between energy re-
lease in earthquake occurrence and bursts of brain activity
measured in fMRI signals. Attention is focused on records
with large amplitude in analogy with observations in seis-
mic occurrence: large earthquakes trigger a sequence of
successive events whose rate decays in time as the Omori
law and whose spatial location diffuses away from the
mainshock epicenter. Our aim is to understand if variations
in brain activity are simply driven by local mechanisms, or
rather variations occurring close in time and space are able
to affect the activity in a particular brain region. This ques-
tion has indeed an even wider scope: The understanding of
the temporal organization of activity can shed some light
on the mechanisms organizing brain activity on a larger
scale. For instance, the analysis of correlations in earth-
quake occurrence has shown that magnitudes of succes-
sive earthquakes are correlated, in particular the
successive event tends to have a size close but smaller than
the previous one. This feature is in perfect agreement with
the picture of earthquake occurrence as a process redistrib-
uting elastic stress over a surrounding region leading to the
occurrence of successive events. Other stochastic pro-
cesses, for instance solar flares, while following similar sta-
tistical laws, exhibit temporal correlations with different
features, namely the following flare tends to have a size
close but larger than the previous one. In this process the
physical mechanisms controlling magnetic energy release
have different features [40].

The analysis performed on extreme events in BOLD sig-
nals suggests that activity variations with opposite sign,
namely activity enhancements and depressions, are corre-
lated in time at least over a temporal scale of some sec-
onds. This result suggests that the system tends to realize
an activity balance, where depressions are compensated
by successive enhancements and vice versa. Interestingly,
it is not observed that local enhancements in voxel activity
trigger further enhancements after a time delay, as it could
be simply expected from the propagation of activity at the
level of individual neurons. Neither it is observed that
depressions in activity induce further depressions. The
analysis indicates an homeostatic balance in the activity
as a mechanism controlling the temporal organization.
From the point of view of the spatial correlations, the anal-
ysis is affected by stronger statistical noise and therefore
conclusions are less evident. However, data suggest that
the leading event is the depression in voxel activity which
may induce both enhancement or further depression in
neighboring voxels.

Appendix A. FMRI data acquisition and preprocessing

The human brain data discussed are taken from
experiments previously reported [34]. Data were obtained,

after informed consent, from seven healthy, right-handed
human subjects (data used in this paper corresponds to
Subject 1, set 4). They were recorded by a Siemens-Trio
3.0 Tesla imaging system using a birdcage radio-frequency
head coil. Blood oxygenation level-dependent single-shot
echo-planar T2-weighted imaging was obtained using scan
repeat time of 2.5 s, echo time of 30 ms, flip angle 90, and
field 256 mm. Data were preprocessed using the package
FSL (http://www.fmrib.ox.ac.uk/fsl). Preprocessing of BOLD
signal was performed using FMRIB Expert Analysis Tool
(http://www.fmrib.ox.ac.uk/fsl), including motion correc-
tion using MCFLIRT, slice-timing correction using Fourier-
space time-series phase-shifting, non-brain removal using
BET and spatial smoothing using a Gaussian kernel of
full-width-half-maximum 5 mm. All procedures employed
were approved by Northwestern University Institutional
Review Board.
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