
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–17

� 2015 The Author(s)

DOI: 10.1177/0037549715575197

sim.sagepub.com

Quantization-based simulation
of switched mode power supplies

Gustavo Migoni, Ernesto Kofman, Federico Bergero and Joaquı́n Fernández

Abstract
In this article we study the performance of quantized state system algorithms in the simulation of switched mode
power supplies. Under realistic modeling assumptions, these models are stiff and exhibit frequent discontinuities,
making them difficult to simulate with classic solvers. However, there are linearly implicit quantized state system
methods that can efficiently handle these types of systems, providing faster and more accurate results. In order to
corroborate these features, we first built the models corresponding to the different topologies of switched mode
power supplies, and then analyzed the resulting equation structures in order to establish whether they can be effi-
ciently simulated by linearly implicit quantized state system algorithms. Finally, we compared the simulation perfor-
mance of linearly implicit quantized state systems with the widely used DASSL solver. The results showed that the
linearly implicit quantized state systems were 3–200 times faster and noticeably more accurate than the differential
algebraic system solver.
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1. Introduction

Switching mode power supplies (SMPSs) are electronic

devices that incorporate switching regulators to convert

electrical power efficiently. The output voltage of these

sources is regulated by the electronic switches duty cycle

and the switching components should work at high fre-

quency to minimize the output ripple.

SMPSs are used in a wide area of applications where a

regulated voltage is required. They can be found inside

personal computers, battery chargers, vehicles, etc.

Simulation of SMPSs is known to be a tough issue. On

the one hand, due to the high switching frequency, classic

numerical integration methods become inefficient. To

simulate discontinuous models using methods based on

time discretization, the solver spends several computations

at each simulation step to determine whether there are any

changes in the model. Each time the model changes, the

simulation must be reinitialized. On the other hand, the

usage of realistic models of the discontinuous elements

usually leads to stiff models. Thus, implicit methods must

be used with their additional computational cost.

In recent years, a new family of ordinary differential

equation (ODE) solvers called quantized state system

(QSS) methods were developed.1–5 These algorithms, that

replace the classic time discretization by the quantization

of the state variables, have shown some advantages.

1. They have strong stability and error bound theoreti-

cal properties.1,2,6

2. They are very efficient to simulate ODE models

with frequent discontinuities.7 Due to their dense

output feature, their built-in root-solving method is

explicit and does not require any iteration to detect

discontinuities. Moreover, the simulation does not

need to be reinitialized after their occurrence.

Consequently, detecting and handling a discontinu-

ity does not add more computational cost than that

of a regular step.

3. They are very efficient in the simulation of large-

scale sparse discontinuous models.5,8 This is due

to the fact that QSS methods intrinsically track the

system activity,9 performing calculations only

where and when changes occur.

4. There are linearly implicit QSS (LIQSS) methods

that can integrate stiff systems with a certain
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structure in a very efficient way, without perform-

ing iterations or matrix inversions.5

For these reasons, the QSS methods (and particularly

LIQSS algorithms) seem to be a good option to efficiently

simulate SMPSs. Moreover, LIQSS methods have shown

important advantages over classic solvers on the simula-

tion of buck converters5 and interleaved buck converters.10

In this paper we analyze the performance and features of

LIQSS methods in the simulation of SMPSs. Specifically:

1. an exhaustive analysis of the different SMPS topol-

ogies is performed to check whether their structure

is appropriate to be efficiently integrated with

LIQSS algorithms;

2. it is shown that in most cases the topologies are

adequate and, when they are not, a simple change

of variables can be applied to obtain an appropriate

structure;

3. a comparative analysis of computational costs and

simulation errors using LIQSS and the widely used

DASSL is performed for the different SMPS topol-

ogies; we have used DASSL because SMPS mod-

els are stiff and discontinuous, conditions under

which this solver offers the best performance

among other classic algorithms usually implemen-

ted in simulation software tools.

4. a study about the growth of the computational cost

with the circuit size is also performed on an inter-

leaved buck topology.

The article is organized as follows: Section 2 provides

the background concepts that are used in the rest of the

article. Section 3 introduces the topologies and models of

SMPSs, analyzing also whether they are appropriate for

LIQSS simulation. Then, Section 4 presents the simulation

results for the different topologies. Finally, Section 5 con-

cludes the article, analyzing future lines of research.

2. Background

This section provides the background required for the rest

of the article. We give a brief description of the problems

suffered by classic numerical integration algorithms when

dealing with discontinuous systems. Then, we present the

family of QSS methods and the software tools that imple-

ment them, and finally we provide a brief introduction to

SMPS principles.

2.1. Hybrid system simulation

Hybrid systems exhibit both continuous and discrete

dynamic behavior. The interaction between the continuous

and discrete sub-models may produce sudden changes

(discontinuities) in the continuous parts that must be

handled by the numerical integration algorithms. These

discontinuities are called events, and two different cases

can be distinguished according to the nature of their occur-

rence. The events that occur at a given time, independently

of what happens in the continuous part, are called time

events. On the other hand, the events triggered when some

condition is reached by the continuous states are called

state events.

It is well known that integration along discontinuities

may lead to disastrous results on the global simulation

solution because the theoretical assumptions on which sol-

vers are founded are not met. To avoid this, the events

must be detected and handled. When a discontinuity is

detected, the simulation time must be advanced until the

exact time of its occurrence and then, after processing the

event, the simulation should be restarted in a new

situation.6

Event detection is straightforward for time events, as it

is known in advance when they occur. However, state

events require the usage of iterative routines in order to

find the time at which the event condition is met.

The whole process of event detection and handling

adds extra computational cost to the simulation. In systems

with frequent discontinuities, i.e. when events occur as fast

as the system dynamics the problem becomes critical, as

the algorithms spend more time with the event detection

and handling routines than with the numerical integration

itself.

2.2. QSS methods

Consider a time invariant ODE in its state equation system

(SES) representation

_x= f(x(t), u(t)) ð1Þ

where x(t) 2 R
n is the state vector and u(t) 2 R

m is an

input vector, which is a known piecewise constant

function.

The first-order QSS (QSS1) method1 analytically solves

an approximate ODE called a Quantized State System that

results from replacing the state vector x(t) by its quantized

version q(t)

_x(t)= f(q(t), u(t)) ð2Þ

Each component of q(t) is related with the correspond-

ing component of x(t) by the following hysteric quantiza-

tion function

qj(t)=
xj(t) ifjqj(t

�)� xj(t)j=DQj

qj(t
�) otherwise

�
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That is, qj(t) only changes when it differs from xj(t) by a

magnitude DQj defined as the quantum. After each change

in the quantized variable, it takes the same value of the

state variable, qj(t) = xj(t).

Since the quantized state trajectories qj(t) are piecewise

constant, the state derivatives _xj(t) also follow piecewise

constant trajectories and, consequently, the states xj(t) fol-

low piecewise linear trajectories. Figure 1 shows typical

QSS1 trajectories.

Due to the particular form of the trajectories, the numer-

ical solution of equation (2) is straightforward and can be

easily translated into a simple simulation algorithm.

For j = 1,.,n, let tj denote the next time at which

|qj 2 xj| = DQj. Then, the QSS1 simulation algorithm

works as follows.

1. Advance the simulation time t to the minimum tj.

2. Recompute xj(t)= xj(t
�
j )+ _xj(t

�
j ) � (t � t�j ), where

t�j was the last update time of xj, and _xj(t
�
j ) was

computed at time t�j from equation (2).

3. Take qj = xj and recompute tj (the next time at

which |qj 2 xj| = DQj).

4. For all i such that _xi explicitly depends on qj,

update xi(t)= xi(t
�
i )+ _xi(t

�
i ) � (t � t�i ), recompute

_xi(t), and recalculate ti (the next time at which

|qi 2 xi| = DQi).

5. Go back to step 1.

Note that the instant of time at which the piecewise linear

state trajectory xj(t) crosses a given threshold can be com-

puted without iterations. Thus, it is straightforward to

detect state events. Moreover, when an event occurs, it will

eventually change some state derivatives in the same way

a change in a quantized variable does during a normal step.

That way, the simulation does not need to be restarted.

In conclusion, the detection and handling of a disconti-

nuity does not take more computational effort than that of

a single step. Thus, the QSS1 method is very efficient in

simulating discontinuous systems.7

In spite of this advantage and the fact that it has some

favorable stability and error bound properties,6,11 QSS1

performs only a first-order approximation and it cannot

obtain accurate results without significantly increasing the

number of steps.

This accuracy limitation was improved by defining the

second- and third-order accurate QSS methods called

QSS22 and QSS3,3 respectively.

QSS2 and QSS3 have the same definition as QSS1

(equation (2)) except the components of q(t), which are

calculated to follow piecewise linear and piecewise para-

bolic trajectories, respectively. Figure 2 shows a typical

evolution of the state and quantized state trajectories in

QSS2.

As seen previously, the analytical solution of equation

(2) for QSS2 and QSS3 can be easily computed and the

simulation algorithm is almost identical to that of QSS1.

Consequently, QSS2 and QSS3 also share the advantages

of QSS1 when simulating discontinuous systems.

Regardless of these advantages, QSS1, QSS2, and

QSS3 methods are very inefficient for simulating stiff sys-

tems. In the presence of simultaneous slow and fast

dynamics, these methods introduce spurious high-

frequency oscillations that provoke a large number of

steps with its consequent computational cost.

To overcome this problem, the family of QSS methods

was completed with a set of algorithms called LIQSS,

which are appropriate to simulate some stiff systems.5

LIQSS methods combine the principles of QSS meth-

ods with those of linearly implicit algorithms.6 There are

LIQSS algorithms that perform first-, second-, and third-

order accurate approximations named LIQSS1, LIQSS2,

and LIQSS3, respectively.

The main idea behind LIQSS methods is inspired by

classic implicit methods that evaluate the state derivatives

Figure 1. State and quantized trajectories in the QSS1 method. Figure 2. State and quantized state trajectories in QSS2.
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at future instants of time. In classic methods, these evalua-

tions require iterations and/or matrix inversions to solve

the resulting implicit equations. However, taking into

account that QSS methods know the future value of the

quantized state (it is qj(t) 6DQj)), the implementation of

LIQSS algorithms is explicit and does not require itera-

tions or matrix inversions.

LIQSS methods share the definition of equation (2)

with QSS methods, but the quantization functions that

relate qj with xj are more involved. The resulting simula-

tion algorithm is similar to that of the QSS methods, and

they are also advantageous in the simulation of discontinu-

ous systems.

Despite being explicit algorithms, LIQSS methods are

able to integrate many stiff systems. In order to work effi-

ciently, they require the stiffness to be caused by large

entries in the main diagonal of the Jacobian matrix.

2.3. Implementation of QSS methods

The easiest way of implementing QSS methods is by

building an equivalent discrete event system specification

(DEVS) model, where the events represent changes in the

quantized variables. Based on this idea, the whole family

of QSS methods were implemented in PowerDEVS,12 a

DEVS-based simulation platform specially designed for

and adapted to simulating hybrid systems based on QSS

methods. In addition, the explicit QSS1, QSS2, and QSS3

methods were also implemented in a DEVS library of

Modelica13 and implementations of the first-order QSS1

method can also be found in CD+ + 14 and VLE.15

DEVS-based implementations of QSS methods are sim-

ple but they are not efficient.

Recently, the complete family of QSS methods was

implemented in a stand-alone QSS solver10 that improves

DEVS-based simulation times by more than one order of

magnitude.

The stand-alone QSS solver requires that the models are

described in a subset of the Modelica modeling language,16

called m-Modelica.10

2.4. Switched mode power supplies

Switched mode power supplies17 are electronic devices

that convert the available DC input voltage into a different

DC or AC output voltage by switching commutation com-

ponents at high frequency. These components are imple-

mented in circuits by transistors or thyristors operating in

cutoff and saturation states.

Due to their high efficiency, SMPSs are widely

employed in a variety of applications, including power

supplies for personal computers, battery chargers, telecom-

munications equipment, DC motor drives, etc.

The majority of the SMPS topologies used in today’s

power converters are all derived from the following three

non-isolated circuits.

1. Buck converter: which reduces the input voltage

(Vout \ Vin).

2. Boost converter: which increases the input voltage

(Vout . Vin).

3. Buck–boost converter: which can increase or

decrease the input voltage. The Cuk circuit is a

variant of this converter.

The output voltage in these topologies is regulated by con-

trolling the relationship between the amount of time the

switches are in ON state and OFF state, i.e. by controlling

the duty cycle.

A simplified circuit scheme for the buck converter is

illustrated in Figure 3.

The input voltage source Vs can be found on the left of

the circuit. The input source is connected to the switching

stage, which generates a high-frequency square signal Vsw,

with a mean value proportional to the duty cycle. This fre-

quency and duty cycle are determined by the commutation

times of the switch.

The next stage is an LC low pass filter that produces an

output voltage Vo. This stage preserves the mean value of

Vsw, but reduces the high frequency components. Therefore,

the voltage at the load has a continuous value with a small

undesired high frequency component called ripple.

In order to reduce the ripple, the switching frequency

should be very large in comparison with the dynamics of

the low pass filter.

In real applications, the ideal switch depicted in

Figure 3 is implemented by real components like transis-

tors and diodes. Some limitations appear and, for instance,

the current on the inductance L cannot become negative

since it is blocked by a diode. In such case, the circuit is

said to operate in discontinuous mode.

The remaining topologies (boost, buck–boost, etc.)

work under similar principles.

1

2

Figure 3. Ideal schematic of a buck converter.

4 Simulation: Transactions of the Society for Modeling and Simulation International

 at CONICET on April 13, 2015sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


A drawback of these topologies is that they require

working at very high frequencies in order to obtain a low

ripple. To overcome this problem, there are interleaved

versions of the SMPS.

Interleaved converters are the result of a parallel con-

nection of switching converters.18 They offer several

advantages over single power stage converters; a lower

current ripple, faster transient response to load changes,

and improved power handling capabilities. Thus, they are

widely used in several applications requiring a high-quality

input voltage, including power sources of personal com-

puters, switching audio amplifiers, etc.

3. Models for switched mode
power supplies

In this section, we develop simulation models for different

topologies of SMPSs. We first introduce mathematical

models for the commutation components (switches and

diodes) and then we derive the circuit equations and trans-

late them into m-Modelica descriptions. Finally, we ana-

lyze the structure of the models in order to verify that the

resulting stiff systems are suitable to be simulated by

LIQSS methods.

3.1. Modeling switching components of SMPS

SMPSs commutation components can be represented fol-

lowing two basic approaches.

1. They can be represented by commuting from ideal

short circuits to ideal open circuits according to

their ON or OFF state. This approach leads to vari-

able structure models, and different sets of state

equations are obtained for the different situations.

If a circuit has N commutation components, it can

be configured in 2N combinations according to the

switches states, and the model must be described

by 2N sets of equations. In order to simulate these

types of model, the simulation tools must be able

to handle variable structure systems. In addition to

these disadvantages, the ideal model of switching

components has a lack of realism and may hide

some features of the circuit behavior. This

approach is still used by some circuit simulation

software tools like PLECS,19 and it has the advan-

tage of avoiding stiffness which allows the usage

of fast explicit numerical algorithms.

2. The second approach represents switching compo-

nents as resistors with low or high value according

to their ON or OFF state. In this way, the system

equations are always the same and the only thing

that changes after commutations are the values of

certain parameters. Owing to its simplicity and rea-

lism, this is the approach followed by most simula-

tion tools like PSPICE,20 and its variants, and those

based on Modelica.21 However, this approach usu-

ally leads to stiff systems and it requires the usage

of implicit stiff–stable numerical solvers.

In this article we focus on the second approach. It is the

most realistic, it is used by most simulation tools, and it

offers more difficulties from the numerical integration

point of view.

SMPS circuits have two basic switching components:

controlled switches (usually implemented by transistors or

thyristors) and diodes. Their simplified models are devel-

oped below.

3.1.1. Controlled switch model. A controlled key is an ele-

ment that acts like an open circuit or short circuit accord-

ing to the state of a control signal. As discussed above, this

element can be modeled as a resistor Rs with a high or low

value according to the control signal. This behavior is rep-

resented by the following equation

Rs =
ROn if control = 1

ROff if control = 0

�
ð3Þ

where ROn and ROff are very low and very large resistance

values, respectively.

This behavior can be easily represented in terms of the

m-Modelica language. It corresponds to two event handlers

that are triggered when the control signal changes.

when control . 0.5 then
Rs := ROn;

end when;

when control \ 0.5 then
Rs := ROff;

end when;

3.1.2. Diode model. Figure 4 shows the current–voltage

characteristic of a real diode on the left side and a piece-

wise linear approximation on the right side. The latter is

the result of representing the OFF state by a large resis-

tance and the ON state by a small resistance.

According to this figure, the value of the diode resis-

tance RD obeys the law

Rs =
ROn if uD . 0

ROff if uD 4 0

�
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which leads to the following m-Modelica representation

when uD . 0 then
RD := ROn;

end when;

when uD \ 0 then
RD := ROff;

end when;

However, the detection of the crossing condition uD = 0

when the diode is in ON state is very difficult due to

numerical issues. The reason is that the voltage uD is very

small when RD is very small which leads to large errors in

the detection of the condition uD = 0. Thus, when the

diode is in ON state the event detection is performed using

the current iD, which leads to the following model:

when uD . 0 then
RD := ROn;

end when;

when iD \ 0 then
RD := ROff;

end when;

3.2. Models for the different topologies

As we mentioned above, there are three basic topologies

of SMPS. We shall obtain below their equations and m-

Modelica representations using the switching models

obtained before.

3.2.1. Buck converter. As was described before, the buck

converter circuit is a switched converter that generates an

output voltage lower than the input voltage.

The basic scheme of this converter was shown in

Figure 3. The two point switch is implemented in real

application by a transistor (controlled switch) and a diode

as shown in Figure 5.

Representing the switch and diode by resistors Rs and

RD as discussed above, the following space state represen-

tation of the circuit can be obtained

diL

dt
=
�iDRD � uC

L

duC

dt
=

iL � uC=R

C

ð4Þ

where

iD =
iLRs � U

Rs +RD

ð5Þ

Joining equations (4) and (5), the following m-

Modelica code represents the continuous equations of the

model

equation

der (iL) = (-iD*RD-uC)/L; //ODE Equations

der(uC) = (iL-uC/Rl)/C;

iD=(iL*Rs-U)/(Rs+RD); //Diode equations

uD=iD*RD;

The m-Modelica representation of the switch and diode

commutation laws completes the model as follows

Figure 4. Real and approximate diode characteristics.
Figure 5. Buck converter circuit.
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In this last model, we included the generation of the con-

trol signal for the controlled switch. This control signal

takes the value 1 (ON state) every T units of time and

switches to 0 after DCT units of time, where DC is the duty

cycle mentioned previously.

The usage of this control signal corresponds to an open

loop output voltage regulation. In many applications, a

closed loop strategy is preferred, where the control signal

is computed by comparing a reference with the output vol-

tage to obtain an automatically adjusted duty cycle.

The usage of open or closed loop strategies does not intro-

duce any significant difference from a numerical point of

view, so we work here with the simpler open-loop scheme.

3.2.2. Boost converter. The boost converter circuit, shown

in Figure 6, is a switched converter that generates an out-

put voltage higher than the input voltage.

Proceeding in the same manner as with the buck con-

verter, the following state equations can be obtained

diL

dt
=
�RsiL +RsiD +U

L
duC

dt
=

iD

C
� uC

RLC

ð6Þ

where

iD =
RsiL � uC

RD +Rs

ð7Þ

These equations can be translated into the following m-

Modelica code

equation

der(iL)=(U-Rs*(iL-iD))/L; //ODE Equations

der(uC)=(iD- uC/Rl)/C;

iD=(Rs*iL-uC)/(RD+Rs); //Diode equation

uD=iD*RD;

The m-Modelica representation of the switch and diode

commutation laws is identical to that of the buck

converter.

3.2.3. Buck–boost converter. Figure 7 shows the buck–boost

converter circuit. In this converter, the output voltage

magnitude can be higher or lower than the input voltage

according to the duty cycle. The output voltage polarity is

always opposite to that of the input.

Proceeding as before, the following state equations can

be derived

diL

dt
=
�uC � RDiD

L
duC

dt
=

iD

C
� uC

RLC

ð8Þ

where

algorithm
when time . nextT then //Switch ON time event
lastT:=nextT;
nextT:=nextT+T;
Rs := ROn; //control=1

end when;

when time - lastT-DC*T.0 then //Switch OFF time event
Rs := ROff; //control=0

end when;

when iD \ 0 then //Diode OFF state event
RD := ROff;

end when;

when uD.0 then //Diode ON state event
RD := ROn;

end when;

Figure 6. Boost converter circuit.
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iD =
RsiL � uC � U

RD +Rs

ð9Þ

Then, the continuous equations of the model can be

written in m-Modelica language as:

equation

der(iL) = (-uC-iD*RD)/L; //ODE Equations

der(uC) = (iD- uC/Rl)/C;

iD=(Rs*iL-uC-U)/(RD+Rs); //Diode equation

uD=iD*RD;

The m-Modelica representation of the switch and diode

commutation laws is identical to those of the buck and

boost converters.

3.2.4. Cuk converter. The Cuk converter circuit is a variant

of the buck–boost converter that also generates an output

voltage magnitude that can be greater than or less than the

input voltage magnitude, but with opposed polarity. The

basic Cuk converter circuit is shown in Figure 8.

The state equations for this Cuk converter are

diL1

dt
=

U � uC1
� RDiD

L1

duC1

dt
=

iD � iL2

C1

diL2

dt
=
�uC2

� RDiD

L2

duC2

dt
=

RLiL2
� uC2

RLC2

ð10Þ

where

iD =
Rs(iL2

+ iL1
)� uC1

RD +Rs

ð11Þ

The corresponding m-Modelica code for these equations

is

equation
der(iL1) = (U-uC1-iD*RD)/L1; //ODE
Equations
der(uC1) = (iD - iL2)/C1;
der(iL2) = (-uC2-iD*RD)/L2;
der(uC2) = (iL2 - uC2/Rl)/C2;
iD=(Rs*(iL2+iL1)-uC1)/(RD+Rs);

//Diode Equations
uD=iD*RD;

The m-Modelica representation of the switching laws is

identical to that of the previous converters.

3.3. Interleaved converters

Figure 9 shows the circuit corresponding to a four–stage

buck interleaved converter. In this circuit, each period is

divided by four. During each sub-period only one stage is

in charge of switching ON and OFF in order to feed the

load while the other stages remain in OFF state. That way,

the switching frequency off the whole circuit is four times

faster than that of the individual stages.

Figure 7. Buck–boost converter circuit. Figure 8. Cuk converter circuit.

Figure 9. Four-stage buck interleaved converters.
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The state equations for a N-stage buck converter circuit

can be written as follows

diLj

dt
=
�iDj

RDj
� uC

L
for j= 1, . . . ,N

duC

dt
=

PN
j= 1 iLj

C
� uC

RLC

ð12Þ

with

iDj
=

iLj
Rsj
� U

Rsj
+RDj

ð13Þ

which can be written in m-Modelica as

equation
for i in 1:N loop
der(iL[i]) = (-iD[i]*RD[i]-uC)/L;
iD[i]=(iL[i]*Rs[i]-U)/

(Rs[i]+RD[i]);
uD[i]=iD[i]*RD[i]s;

end
der(uC) = (sum(iL)-uC/Rl)/C;

The m-Modelica representation of the switches and

diodes commutation laws completes the model as follows

3.4. Stiffness analysis

Stiffness is related to the simultaneous presence of fast and

slow dynamics in a system. In linear systems, this feature

can be analyzed by observing the real part of the eigenva-

lues li of the Jacobian matrix Jb∂f/∂x.

Although the converters analyzed here are

nonlinear systems, their models between switching times

are linear. Moreover, taking into account that the switches

and diodes are modeled as resistors with changing

parameters, the Jacobian matrix of each converter has the

same expression, independent of the condition on the

switches.

The fact that switching components are modeled as very

large or small resistors introduces large terms in the system

Jacobian matrices, which in turn result in the presence of

some very large eigenvalues.

When these large terms are only located in the main

diagonal of the Jacobian matrix, the LIQSS methods can

efficiently integrate the resulting stiff model. Otherwise,

they introduce spurious oscillations which add a signifi-

cant computational load.

Based on these observations, we can now analyze the

Jacobian matrices resulting from the different topologies,

in order to determine which models are suitable for inte-

gration with LIQSS algorithms.

algorithm
when time . nextT then //Start of a new period
lastT:=nextT;
nextT:=nextT+T;

end when;

for i in 1:N loop
when time-lastT-T*(i-1)/N-T/100.0 then

Rs[i] := ROn; //Switch ON time event
end when;

end for;
for i in 1:N loop
when time - lastT-T*(i-1)/N-DC*T/N-T/100.0 then

Rs[i] := ROff; //Switch OFF time event
end when;

end for;
for i in 1:N loop
when iD[i]\0 then

RD[i] := ROff; //Diode OFF state event
end when;

end for;
for i in 1:N loop
when uD[i].0 then

RD[i] := ROn; //Diode ON state event
end when;

end for;
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3.4.1. Buck converter. By replacing iD in equation (4), with

the expression of equation (5), we obtain the following

Jacobian matrix:

JBuck =

�RsRD

L(Rs +RD)

�1
L

1
C

�1
RLC

2
4

3
5 ð14Þ

In this case, the switch and diode resistances, Rs and RD

only appear on the main diagonal. Thus, when they take a

large value (ROFF) a large value will only appear on the

main diagonal.

Hence, if stiffness appears as a cause of the switching

components, it will be due to a large term in the main diag-

onal and it will be properly handled by LIQSS methods.

3.4.2. Boost converter. Proceeding as before, from equa-

tions (6) and (7), the Jacobian matrix is given by

JBoost =

�RsRD

(RD +Rs)L

�Rs

(RD +Rs)L
Rs

C(RD +Rs)
� RL +RD +Rs

C(RD +Rs)RL

2
664

3
775 ð15Þ

Here, Rs and RD also appear outside the main diagonal.

However, in these matrix entries, the switch resistances

only appear in the expression

Rs

Rs +RD

ð16Þ

which always has a value less than 1. Thus, terms with

order of magnitude ROFF or 1/RON cannot appear outside

the main diagonal.

Consequently, the switch resistances cannot introduce

stiffness that is not well handled by LIQSS methods.

3.4.3. Buck–boost converter. Using equations (8) and (9)

we arrive at the same Jacobian matrix as that of the boost

converter given by equation (15). Thus, the buck–boost

converter can also be efficiently integrated using LIQSS

algorithms.

3.4.4. Cuk converter. Proceeding as previously, from equa-

tions (10) and (11) the following Jacobian matrix is

obtained

JCuk=

�RsRD

(RD +Rs)L1

�Rs

(RD +Rs)L1

�RsRD

(RD +Rs)L1
0

Rs

(RD +Rs)C1

�1
(RD +Rs)C1

�RD

(RD +Rs)C1

0

�RsRD

L2(Rs +RD)

RD

L2(Rs +RD)

�RsRD

L2(Rs +RD)

�1
L2

0 0
1

C2

�1
RLC2

2
6666666664

3
7777777775

ð17Þ

Here, we have several terms outside the main diagonal

that depend on the switch resistances. In some of them,

these resistance appear within the expression of equation

(16). In others we have

RD

Rs +RD

which can be analyzed in a similar way.

However, there are two entries outside the main diago-

nal that have the expression

RsRD

Rs +RD

which, when Rs = RD = ROFF, result in a very large value

of (ROFF /2).

Unfortunately, LIQSS methods are not ensured to work

efficiently in the presence of stiffness, with large terms

outside the main diagonal. Thus, the algorithms may intro-

duce spurious oscillations when simulating this circuit.

However, a simple change of variables can be intro-

duced to overcome this problem. By defining

i12 ¼D
L1 � iL1

� L2 � iL2

L2

and removing iL1
from equations (10) and (11), these equa-

tions become

di12

dt
=

U + uC2
� uC1

L2

duC1

dt
=

iD � iL2

C1

diL2

dt
=
�uC2

� iDRD

L2

duC2

dt
=

iL2
� uC2

=RL

L2

ð18Þ

where

iL1
=

L2i12 + L2iL2

L1

iD =
Rs(iL2

+ iL1
)� uC1

RD +Rs

ð19Þ

Then, the new Jacobian matrix is

JCuk2 =

0
�1
L2

0
1

L2
L2Rs

L1C1(RD +Rs)

�1
C1(RD +Rs)

RsL2 � RDL1

L1C1(RD +Rs)
0

�RDRs

L1(RD +Rs)

RD

L2(RD +Rs)

�RDRs(L1 + L2)

L1L2(RD +Rs)

�1
L2

0 0
1

C2

�1
C2RL

2
6666666664

3
7777777775
ð20Þ
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which still has one term that can take values of the order of

ROFF outside the main diagonal. However, in the presence

of large terms restricted to the lower or upper triangular

sub-matrix, LIQSS methods can still integrate efficiently.

This fact will be corroborated later with the simulation

results.

The m-Modelica code for the new set of equations is as

follows

equation
iL1=(L2*i12+L2*iL2)/L1;
iD=(Rs*(iL2+iL1)-uC1)/(Rd+Rs);
der(uC1) = (iD - iL2)/C1;
der(i12) = (U+uC2-uC1)/L2;
der(uC2) = (iL2 - uC2/Rl)/C2;
der(iL2) = (-uC2-iD*Rd)/L2;

3.4.5. Interleaved buck converter. From equations (12) and

(13), the following Jacobian matrix is obtained for a N-

stage interleaved buck converter

JInt =

�RD1
Rs1

L(RD1
+Rs1)

0 0 � � � 0
�1
L

0
�RD2

Rs2

L(RD2
+Rs2 )

0 � � � 0
�1
L

0 0
�RD3

Rs3

L(RD3
+Rs3)

� � � 0
�1
L

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � �RDN
RsN

L(RDN
+RsN

)

�1
L

1

C

1

C

1

C
� � � 1

C

�1
RLC

2
66666666666666664

3
77777777777777775

ð21Þ

It can be seen that the switch and diode resistances Rs

and RD only appear on the main diagonal, and we arrive at

the same conclusions as with the buck converter.

Note also that the Jacobian is a sparse matrix.

4. Simulation results

This section shows the simulation results, comparing the

performance of the LIQSS methods with the classic solver

DASSL in the simulation of the five SMPS models pre-

sented before.

In order to perform this comparison, we run a set of

experiments according to the conditions described below.

1. We simulated all sources under two different error

tolerance settings: rel.tol. = abs.tol = 1023 and

rel.tol. = abs.tol = 1025.

2. All of the simulations were performed until a final

time tf = 0.01 s.

3. The simulations were performed on an Intel i7-

3770@3.40 GHz PC under Ubuntu OS.

4. LIQSS results were obtained with the QSS stand-

alone solver described previously.

5. DASSL results were obtained with DASSRT code,

using an interface provided by the QSS stand-alone

solver, so the models simulated by DASSL and

LIQSS were exactly the same.

6. The systems were also simulated with

OpenModelica and Dymola implementations of

DASSL. However, the direct use of DASSRT

reported faster results than those of the mentioned

simulation tools. Thus, only DASSRT results are

reported.

7. In all cases, we measured the CPU time, the num-

ber of scalar function evaluations, the number of

Jacobian computations, and the relative error, com-

puted as

err =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(uC½k� � uCREF

½k�)2P
uCREF

½k�2

s
ð22Þ

where the reference solution uCREF
½k� was obtained

using DASSL with a very small error tolerance (1029).

8. The central processing unit (CPU) time was mea-

sured as the mean value of 10 simulation runs.

4.1. Buck converter

This SMPS, whose model is described in Section 3.2.1 was

simulated with the following set of parameters:

� Input source voltage: Vs = 24 V;
� Output capacity: C = 1024 F;
� Inductance: L = 1024 H;
� Load Resistance: RL = 10 O;
� Switch and diode on-state resistance: ROn = 1025O;
� Switch and diode off-state resistance: ROff = 105O;
� Switch control signal period: T = 1024 s;
� Switch control signal duty cycle: DC = 0.5.
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The transient part of the results is shown in Figure 10. As

expected for this topology, the output voltage uC(t) has a

mean value lower than the input voltage Vs and it exhibits

a small ripple at the switching frequency. The discontinu-

ous behavior of this SMPS can be clearly observed in the

current trajectory iL(t).

Table 1 compares the CPU time, the number of evalua-

tions, and the errors obtained with the different solvers.

It can be seen that all of the solvers meet the error tol-

erance requirements. Regarding simulation time, when set-

ting a small relative error tolerance (1025), the three

algorithms require similar CPU times even when the num-

ber of function evaluations performed by LIQSS2 was

approximately three times that corresponding to LIQSS3

and DASSL. This fact can be understood by observing that

discontinuity detection in LIQSS2 is cheaper than in

LIQSS3 and DASSL (to detect a discontinuity, LIQSS2

only solves a scalar linear equation) and that LIQSS2 does

not require Jacobian computations. Also, LIQSS2 has con-

tinuous steps that are internally cheaper than those of

LIQSS3 and DASSL.

For a larger tolerance (1023), which is the usual choice

for these types of circuits, the simulation using LIQSS2

was 3 times faster than using DASSL and 1.5 times faster

than using LIQSS3.

This fact is not surprising since lower order methods are

usually more efficient for simulating systems under low

accuracy requirements.

4.2. Boost converter

For the boost converter circuit, whose model was presented

in Section 3.2.2, we used the same set of parameters as for
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Figure 10. Transient trajectories for the buck converter

Table 1. Buck converter results.

Integration method Relative error Jacobian Eval. Function fi evaluations CPU [mseg]

DASSL err.tol= 1 · 10− 3 2.28 · 10− 3 3079 26,670 6.58589
err.tol.= 1 · 10− 5 9.63 · 10− 6 4474 44,772 11.6278

LIQSS2 �Qi = 1 · 10− 3 1.31 · 10− 3 − 13,286 2.26316
�Qi = 1 · 10− 5 1.06 · 10− 5 − 117,198 11.3644

LIQSS3 �Qi = 1 · 10− 3 1.09 · 10− 3 − 11,355 3.43807
�Qi = 1 · 10− 5 1.04 · 10− 5 − 35,283 11.2723
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the buck converter. Table 2 compares the performance

exhibited by the different solvers.

The results are very similar to those of the buck conver-

ter and the same explanations can be applied. However,

for a tolerance of 1025, DASSL exhibits a larger and more

sensible error than that of the LIQSS methods.

In the LIQSS methods discontinuities are exactly

detected, while in DASSL they can have certain error due

to the iteration process which increases the global simula-

tion error.

4.3. Buck–boost converter

For the buck–boost converter circuit, described in Section

3.2.3, we used the same set of parameters as for the buck

converter except for the duty cycle, which was DC = 0.25.

The performance comparison for the different solvers is

reported in Table 3.

Regarding CPU times and function evaluations, the

results are similar to those of the buck and boost

converters. However, DASSL had much larger errors than

were seen for boost converter. The relative error is

between 5 and 30 times larger than the tolerance, while

LIQSS methods meet the error requirements as expected.

4.4. Cuk converter

For the Cuk converter, using the model described in

Section 3.2.4 with the change of variables described in

Section 3.4.4, we repeated the set of parameters used for

the buck–boost converter, taking also C1 = C2 = 1024 F

and L1 = L2 = 1024 H.

Table 4 shows the performance comparison for the dif-

ferent algorithms.

Regarding simulation times, for a small error tolerance

(1025) DASSL is now faster than both LIQSS methods,

while for the larger tolerance (1023) the CPU times are

similar for the three solvers. However, DASSL errors are

almost 20 times larger than the error tolerance, while

LIQSS methods are clearly more accurate.

Table 2. Boost converter results.

Integration method Relative error Jacobian eval. Function fi evaluations CPU [mseg]

DASSL err.tol= 1 · 10− 3 1.30 · 10− 3 2215 18,778 4.94262
err.tol.= 1 · 10− 5 5.34 · 10− 5 3192 28,834 7.2436

LIQSS2 �Qi = 1 · 10− 3 1.52 · 10− 3 − 10,476 1.54468
�Qi = 1 · 10− 5 1.96 · 10− 5 − 70,628 8.25393

LIQSS3 �Qi = 1 · 10− 3 1.11 · 10− 3 − 9648 4.36562
�Qi = 1 · 10− 5 1.26 · 10− 5 − 21,420 8.18659

Table 3. Buck–boost converter results.

Integration method Relative error Jacobian eval. Function fi evaluations CPU [mseg]

DASSL err.tol= 1 · 10− 3 5.12 · 10− 3 3689 29,240 6.88186
err.tol.= 1 · 10− 5 3.04 · 10− 4 5138 46,532 11.8803

LIQSS2 �Qi = 1 · 10− 3 1.39 · 10− 3 − 14,632 2.74414
�Qi = 1 · 10− 5 1.47 · 10− 5 − 84,476 10.1215

LIQSS3 �Qi = 1 · 10− 3 5.23 · 10− 4 − 12,618 5.28576
�Qi = 1 · 10− 5 1.34 · 10− 5 − 27,912 8.23346

Table 4. Cuk converter results.

Integration method Relative error Jacobian eval. Function fi evaluations CPU [mseg]

DASSL err.tol= 1 · 10− 3 1.75 · 10− 2 2858 77,016 10.7689
err.tol.= 1 · 10− 5 1.97 · 10− 4 4270 123,200 17.3262

LIQSS2 �Qi = 1 · 10− 3 7.40 · 10− 3 − 73,082 9.6474
�Qi = 1 · 10− 5 8.71 · 10− 5 − 448,310 30.3638

LIQSS3 �Qi = 1 · 10− 3 6.07 · 10− 3 − 53,547 14.0629
�Qi = 1 · 10− 5 5.02 · 10− 5 − 97,509 23.9215
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4.5. Interleaved buck converter

For this circuit, described in Section 3.3, we used the same

set of parameters as for the buck converter, taking also

L1 = L2 = � � � = LN = 1024 H.

Figure 11 shows the output voltage uC(t) and the induc-

tance currents iLk
tð Þ k = 1, . . . , 4ð Þ for a four-stage inter-

leaved buck model. Comparing these trajectories with

those of the buck converter in Figure 10, we see that even

when the control signal of both models was the same, the

ripple amplitude at the output voltage is an appropriate

amount smaller in the interleaved model. The current tra-

jectories show the interleaved behavior of this circuit.

The performance comparison for the different solvers is

reported in Table 5.

LIQSS methods were faster than DASSL in all cases,

showing even more advantages than those observed in the

buck, boost and buck–boost converters.

As always, LIQSS methods meet the error tolerance

requirement in all cases. However, now DASSL exhibits

unacceptable errors. They are 25 times larger than the tol-

erance of 1023 and 14,000 times larger than the tolerance

of 1025. Thus, the last results are in fact invalid for com-

parison purposes.

The reason for these large errors is that each switch is

in ON state for a very short time. Thus, a small error in the

discontinuity detection may result in a large error on the

output voltage.

This model is also sparse as it can be observed in its

Jacobian matrix (equation (21)). Thus, LIQSS methods
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Figure 11. Four-stage interleaved buck converter trajectories.

Table 5. Four-stage interleaved buck converter results.

Integration method Relative error Jacobian eval. Function fi evaluations CPU [mseg]

DASSL err.tol= 1 · 10− 3 2.50 · 10− 2 12,538 435,224 29.7604
err.tol.= 1 · 10− 5 1.40 · 10− 2 16,433 620,754 42.1447

LIQSS2 �Qi = 1 · 10− 3 1.26 · 10− 3 − 61,870 8.82444
�Qi = 1 · 10− 5 1.62 · 10− 5 − 463,170 35.0696

LIQSS3 �Qi = 1 · 10− 3 8.04 · 10− 4 − 67,425 17.0736
�Qi = 1 · 10− 5 9.89 · 10− 6 − 122,958 25.9182
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have the additional advantage of efficient sparsity exploi-

tation which is reflected in a sensibly smaller number of

function evaluations, with respect to DASSL.

In order to verify this fact, we also simulated the model

varying the size from 4 to 32 stages. In each of these

experiments, we set the tolerance of each solver so that

the measured error results would be the same. That way,

we compare the CPU time required by each solver to

simulate the system obtaining identical errors.

The CPU time taken by each solver to simulate a N-

stage interleaved buck converter is depicted in Figure 12

(for an error of 1023) and Figure 13 (for an error of 1025).

Figure 12 shows that, for simulating the system with a

relative error of 1023, LIQSS2 shows the best perfor-

mance, followed by LIQSS3, and then DASSL. LIQSS2 is

3 times faster than DASSL for 4 stages and almost 200

times faster than DASSL for 32 stages.

The rapid growth of the CPU time in DASSL can be

easily explained. First, the rate of occurrence of disconti-

nuities grows linearly with the number of stages and thus,

the maximum step size is reduced accordingly. Secondly,

the dimension of the ODE grows linearly with the number

of stages and thus each full function evaluation performed

by DASSL requires more calculations. Consequently, with

smaller steps and a larger number of computations per

step, the computational cost grows quadratically (approxi-

mately) with the number of stages.

However, in LIQSS methods, each step or discontinuity

only provokes local calculations resulting in an almost lin-

ear growth of the computational cost with respect to the

number of stages.

For the error of 1025 the results are similar, except that

now LIQSS3 is faster than LIQSS2 when there are few

stages. For the accuracy settings, LIQSS3 can perform

larger steps than LIQSS2 and it sensibly reduces the num-

ber of function evaluations. However, when the number of

stages grow, discontinuities are so frequent that those

larger steps are no longer possible, and thus LIQSS2 out-

performs LIQSS3.

Anyway, both LIQSS methods are significantly faster

than DASSL for a large number of stages.

5. Conclusion

In this article we analyzed the performance of the LIQSS

algorithms in the simulation of SMPSs comparing results

with those obtained by the classic solver DASSL.

From the analysis performed we conclude that the sec-

ond order accurate LIQSS2 method results are about 3

times faster than DASSL for a standard relative error tol-

erance of 1023 in single stage circuits. For obtaining more

accurate results (relative error tolerance of 1025), LIQSS2,

LIQSS3, and DASSL show similar CPU times. However,

in all cases LIQSS methods meet the tolerance settings

while DASSL errors may have results up to 20 times

larger. Thus, LIQSS results are not only faster but also

more robust.

The efficient and exact discontinuity detection and han-

dling, and the fact that LIQSS methods do not need to

compute and invert Jacobian matrices to integrate stiff sys-

tems, explains these advantages.
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Figure 12. Interleaved buck converter: CPU time versus number of stages (err= 1 · 10− 3).
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The analysis of the interleaved buck converter allows

us to conclude that both advantages (speed and error)

become even more noticeable as the size of the circuit

grows. On a 32-stage interleaved converter, LIQSS2 is

about 200 times faster than DASSL for obtaining results

with similar accuracy.

Here, the intrinsic efficient sparsity exploitation of QSS

methods provides an additional advantage to those men-

tioned for the single stage circuits.

In spite of these advantages, we also observed some

drawbacks in the LIQSS methods. The most important lim-

itation is that LIQSS requires that stiffness is due to the

presence of large values on the Jacobian main diagonal

(without large entries at both sides of the main diagonal).

This problem appeared in the Cuk circuit but it was solved

by introducing a simple change of variables.

Another limitation is related to the accuracy order. So

far, LIQSS methods were implemented up to the third

order. Thus, when the error tolerance is too small, the

methods require too many steps. However, in the simula-

tion of circuits where the parameter uncertainties are usu-

ally large, asking for a relative tolerance lower than 1023

does not make much sense.

Regarding future lines of research, we are currently

working on the following issues:

� analyzing the performance under different model-

ing hypotheses (ideal diodes and switches, or even

more realistic models with presence of parasitic

inductances and capacitances);

� analyzing the behavior of the SMPSs in a closed

loop and with realistic loads;
� automatize the variable change procedure to obtain

a system structure adequate for LIQSS;
� creating tools to automatically translate circuit

topologies into the set of equations in m-Modelica

required by the QSS stand-alone solver so that the

LIQSS algorithms can be easily available for end-

users of circuit simulation tools.
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