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Algorithm to find a maximum of a multilinear map over a product
of spheres.

César Massria,1,∗

aDepartment of Mathematics, FCEN, University of Buenos Aires, Argentina

Abstract

We provide an algorithm to compute the 2-norm maximum of a multilinear map over a product of
spheres. As a corollary we give a method to compute the first singular value of a linear map and
an application to the theory of entangled states in quantum physics. Also, we give an application
to find the closest rank-one tensor of a given one.
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Introduction.

A lot of problems in mathematics need to maximize a bilinear form over a product of spheres,
for example the 2-norm of a matrix is given by the maximum of the bilinear form (x, y)→ xtAy,
where‖x‖ = ‖y‖ = 1. Another interesting problem is to find the closest rank-one tensor of a
given tensor

∑
ai jk xi ⊗ y j ⊗ zk. To answer this problem one has to find the maximum of a trilinear

form over a product of three spheres (see the examples).

This article provides an algorithm to find the maximum of a multilinear map over a product
of spheres,

ℓ : Rn1+1 × . . . × Rnr+1→ Rnr+1+1, max
‖x1‖=...=‖xr ‖=1

‖ℓ(x1, . . . , xr )‖.

We have reduced the problem of finding the maximum ofℓ to a problem of finding fixed points of
a map∇ℓ : Pn1 × . . .×Pnr+1 → Pn1 × . . .×Pnr+1. The advantage of this reduction is the possibility
to count the number of extreme points ofℓ, and also, to find the fixed points of∇ℓ solving a
system of polynomial equations. There are standard algebro-geometric tools to solve systems of
polynomial equations.

In Section 1we review some concepts and definitions in algebraic geometry, such as, projec-
tive space, maps, products of projective spaces and maps between them. We use these definitions
in the article.
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In Section 2, using Lagrange’s method of multipliers, see [1,§13.7], we reduce the problem
of finding the maximum of a multilinear mapℓ, to the problem of finding fixed points of a map
∇ℓ. We compare our approach with the ones in the literature.

In Section 3we make a digression to discuss the number of extreme points of a multilinear
map over a product of spheres. We use intersection theory to count the number of fixed points
of the map∇ℓ : Pn1 × . . . × Pnr+1 → Pn1 × . . . × Pnr+1. Recall that the number of fixed points of
a generic mapF : PN → PN of degreed is 1+ d + . . . + dN. In this section we give a formula
to compute the number of extreme points of a multilinear map over a product of spheres. If the
map is generic, this number is achieved overC, and if it is not generic, this number is a bound
when the extreme points are finite. In the literature, the extreme points ofℓ are called singular
vectors (see [16]) and in this section we count them.

In Section 4we use our approach to find the maximum of a bilinear form over aproduct of
spheres. In the bilinear case, the map∇ℓ, induces a linear mapL : PN → PN, whereN is a natural
number, and we prove that for a genericq ∈ PN, the sequence{q, L(q), L2(q), . . .} converges to
the absolute maximum. In other words, the absolute maximum is an attractive fixed point ofL.
Also, with the same tools, we give an algorithm to find the spectral radius of a square matrix.

In Section 5we use the theory developed to present the algorithm. We takeadvantage of
a result in Section 2; the classes of extreme points of the multilinear form ℓ are in bijection
with the fixed points of the map∇ℓ. We reduce the problem of finding fixed points of∇ℓ to
solve a system of polynomial equations with finitely many solutions. In the literature about
computational aspects of algebraic geometry, there existsa lot of algorithms to solve a system
of polynomial equations with finitely many solutions, see [9]. This gives us the ability to find
the absolute maximum ofℓ. It is important to mention that the system of polynomial equations
obtained with our approach is slightly different from the system of polynomial equations obtained
naively from the method of Lagrange’s multipliers. Our approach in projective geometry, allows
us to find the correct solution removing some constrains. In the first part of the section, we
present a direct method to find the maximum value of a generic multilinear form over a product
of spheres. Basically, it reduces to find the spectral radiusof a matrix. In the second part of the
section, we give an algorithm to find the point (x1, . . . , xr ) ∈ Rn1+1 × . . . ×Rnr+1, where‖xi‖ = 1,
1 ≤ i ≤ r, such that|ℓ(x1, . . . , xr )| is maximum. This last algorithm, requires the extra hypothesis,
2n1, . . . , 2nr ≤ n1 + . . . + nr .

In Section 6we use the theory developed to compute a lot of examples and applications.
One of them is the ability to find the closest rank-one tensor of a given tensor. We prove that this
problem is well posed and we apply our algorithm to solve it. Another application that we will
give is related to quantum physics. It is a criterion of separability, given a quantum state, we can
say if it is separable (see Remark 22 for definitions and related concepts).

1. Review on Projective Geometry.

In this section we give basics definitions that we are going touse, such as, projective space,
maps, projective tangent space, product of projective spaces and maps between them. In this
section we are assuming that the base field isR, but all the definitions are true in the complex
case. All the notions in this section may be found in [13].

Definition 1. Let n be a natural number and letRn+1 be a real vector space of dimensionn+ 1.
Theprojective space, Pn, is the space of lines passing throw the origin inRn+1. We say that the
dimensionof Pn is n. Every nonzero vectorv in Rn+1 determines the line [v] that joinsv with the
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origin 0 ∈ Rn+1. The vectorv andλv, for λ ∈ R, λ , 0, determines the same point [v] ∈ Pn.

Let’s fix a basis{v0, . . . , vn} of Rn+1. If the coordinates, in this basis, ofv are (a0, . . . , an),
then the coordinates of the point [v] are

[v] = (a0 : . . . : an) = (λa0 : . . . : λan), λ ∈ R, λ , 0.

In general we denote [v] ∈ Pn to remark that the point [v] is represented by the vectorv ∈ Rn+1.
Also, we denote an arbitrary point in projective space,p ∈ Pn. The projective spacePn is a
compact space.

Let n and m be two natural numbers. We say that a polynomialP in n + 1 variables is
homogeneousof degree d, whered is a natural number, if

P(λx0, . . . , λxn) = λdP(x0, . . . , xn), λ ∈ R, λ , 0.

For example, a linear form is homogenous of degree 1.

A mapF fromPn toPm, denotedF : Pn→ Pm, is given bym+1 homogeneous polynomials,
F0, . . . , Fm, of degreed

F = (F0 : . . . : Fm) : Pn→ Pm, F(x) = (F0(x) : . . . : Fm(x)), x ∈ Pn.

The homogeneity of the polynomialsF0, . . . , Fm, implies that the value ofF at [v] and at [λv] is
the same inPm. We say thatF hasdegreeequal tod. Whend = 1 we say thatF is linear.

Let n1, . . . , nr be a list of natural numbers. Amultihomogeneous polynomialis a polynomial
P in variablesxi

0, . . . , x
i
ni

, for 1≤ i ≤ r, such that

P(λ1x1, . . . , λr x
r ) = λd1

1 . . . λ
dr
r P(x1, . . . , xr ), xi = (xi

0, . . . , x
i
ni

).

The vector (d1, . . . , dr) is called themultidegreeof P. For example, a multilinear form is a mul-
tihomogeneous polynomial of multidegree (1, . . . , 1).

A map F : Pn1 × . . . × Pnr → Pm, wherem ∈ N, is given bym + 1 multihomogeneous
polynomials,F0, . . . , Fm, of multidegree (d1, . . . , dr),

F(x1, . . . , xr ) = (F0(x1, . . . , xr ) : . . . : Fm(x1, . . . , xr)), xi ∈ Pni , 1 ≤ i ≤ r.

The multi-homogeneityof the polynomialsF0, . . . , Fm, implies that the value ofF at ([v1], . . . , [vr ])
and at ([λ1v1], . . . , [λrvr ]) is the same inPm. We say thatF hasmultidegree(d1, . . . , dr).

Finally, a mapF : Pn1 × . . . × Pnr → Pm1 × . . . × Pms is given bysmapsF = (F1, . . . , Fs),

Fi : Pn1 × . . . × Pnr → Pmi , 1 ≤ i ≤ s.

Note that the multidegree ofFi may differs from the multidegree ofF j , i , j. When all the forms
{F1, . . . , Fs} are multilinear, we say thatF is amultilinear map.
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Definition 2. Let n andm be two natural numbers and fix a basis forRn+1 and forRm+1. Every
vectorv ∈ Rn+1 has associated a vector space of dimensionn + 1; the tangent space, denoted
TvRn+1.

A polynomial mapF = (F0, . . . , Fm) : Rn+1 → Rm+1 such thatF(v) = w determines a linear
map,d̂Fv, called the differential ofF atv,

d̂Fv : TvR
n+1→ TwR

m+1, d̂Fv(a0, . . . , an) =


n∑

i=0

∂F0

∂xi
(v)ai, . . . ,

n∑

i=0

∂Fm

∂xi
(v)ai

 .

In projective space the situation is similar, [13, p.181]. Every pointx ∈ Pn has associated an
n-dimensional projective space; theprojective tangent space, denotedTxPn. A mapF = (F0 :
. . . : Fm) : Pn → Pm of degreed such thatF(x) = y induces a linear map between projective
tangent spaces,

dFx : TxP
n→ TyP

m, dFx(a0 : . . . : an) =


n∑

i=0

∂F0

∂xi
(x)ai : . . . :

n∑

i=0

∂Fm

∂xi
(x)ai

 .

Given that the partial derivative of a homogeneous polynomial is also homogeneous, the map
dFx is well defined.

Remark 3. Recall theEuler relationfor a homogeneous polynomialP of degreed, [13, p. 182],

N∑

i=0

∂P
∂xi

(v)vi = d · P(v), v = (v0, . . . , vN) ∈ RN+1.

The relation follows at once by differentiating both sides of the equationP(λv) = λdP(v).
If F = (F0 : . . . : FN) : PN → PN is a map of degreed and x ∈ PN is a point such that

F(x) = x, then, using the Euler relation, we getdFx(x) = x,

dFx : TxP
N → TxP

N, dFx(a0 : . . . : aN) =


N∑

i=0

∂F0

∂xi
(x)ai : . . . :

N∑

i=0

∂FN

∂xi
(x)ai

 .

In particular, if the vectorv ∈ RN+1 representsx ∈ PN, x = [v], and the matrix̂dFx represent the
linear mapdFx, (

d̂Fx

)
i+1, j+1

=
∂Fi

∂x j
(v), 0 ≤ i, j ≤ N,

then,v is an eigenvector of̂dFx. Let’s compute the eigenvalue of the eigenvectorv. Given that
F(x) = x there exists a nonzero real numberλ such that (F0(v), . . . , FN(v)) = λv. Then

λv j = F j(v) =
1
d

N∑

i=0

∂F j

∂xi
(v)vi, 0 ≤ j ≤ N.

Then, the eigenvalue ofv is d · λ, whered is the degree of the mapF.
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2. Theory for a multilinear map.

In this section we translate the problem of finding a maximum of a multilinear map to a
problem of finding fixed points. Let’s present the notation and some basics preliminaries.

Let Sn be the sphere inRn+1,

Sn = {u ∈ Rn+1 : ‖u‖ =
√
|u0|2 + . . . + |un|2 = 1},

and let〈−,−〉 : Rn+1 × Rn+1 → R be the inner product,〈x, y〉 = x0y0 + . . . + xnyn. The norm
associated to this inner product is the usual 2-norm,〈u, u〉 = ‖u‖2.

When the codomain of a map isR, we say that the map is aform.

Lemma 4. Given a multilinear mapℓ : Rn1+1 × . . . × Rnr+1 −→ Rs+1 there exists a multilinear
form ℓ̂,

ℓ̂ : Rn1+1 × . . . × Rnr+1 × Rs+1 −→ R, ℓ̂(x1, . . . , xr , y) = 〈ℓ(x1, . . . , xr ), y〉,

such that
max

‖x1‖=...=‖xr ‖=1
‖ℓ(x1, . . . , xr )‖ = max

‖x1‖=...=‖xr ‖=‖y‖=1
|ℓ̂(x1, . . . , xr , y)|.

Proof. The proof is bases on the compactness of the sphere. Let (x1, . . . , xr ) ∈ Sn1 × . . . × Snr be
a point such thatz= ℓ(x1, . . . , xr ) has the maximum norm and lety = z/‖z‖. Then

|ℓ̂(x1, . . . , xr , y)| = |〈z, y〉| = 〈z, z〉‖z‖ = ‖z‖ = ‖ℓ(x1, . . . , xr )‖ =⇒

max
‖x1‖=...=‖xr ‖=‖y‖=1

|ℓ̂(x1, . . . , xr , y)| ≥ max
‖x1‖=...=‖xr ‖=1

‖ℓ(x1, . . . , xr )‖.

Analogously, let (x1, . . . , xr , y) ∈ Sn1 × . . . × Snr × Ss be a point such that|ℓ̂(x1, . . . , xr , y)| is
maximum. Letz= ℓ(x1, . . . , xr ). Then,

|ℓ̂(x1, . . . , xr , y)| = |〈z, y〉| ≤ ‖z‖‖y‖ = ‖ℓ(x1, . . . , xr)‖ =⇒

max
‖x1‖=...=‖xr ‖=‖y‖=1

|ℓ̂(x1, . . . , xr , y)| ≤ max
‖x1‖=...=‖xr ‖=1

‖ℓ(x1, . . . , xr )‖.

As a corollary of the previous lemma, we will work with multilinear forms. Specifically, to
make the notation easiest, we will work withℓ : Rn+1 ×Rm+1 ×Rs+1 −→ R a trilinear form. Our
goal is to find the maximum ofℓ over a product of three spheres.

Using Lagrange’s method of multipliers, ([1,§13.7]), we know that the extreme points ofℓ,
overSn × Sm × Ss, satisfy



∂ℓ/∂xi(x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2αxi , 0 ≤ i ≤ n,
∂ℓ/∂y j(x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2βy j , 0 ≤ j ≤ m,
∂ℓ/∂zk(x0, . . . , xn, y0, . . . , ym, z0, . . . , zs) = 2λzk, 0 ≤ k ≤ s,

α, β, λ ∈ R, ‖x‖ = ‖y‖ = ‖z‖ = 1.
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Let’s use a better notation,

x = (x0, . . . , xn), y = (y0, . . . , ym), z= (z0, . . . , zs),

∂ℓ

∂x
(x, y, z) =

(
∂ℓ

∂x0
(x, y, z), . . . ,

∂ℓ

∂xn
(x, y, z)

)
,
∂ℓ

∂y
(x, y, z) =

(
∂ℓ

∂y0
(x, y, z), . . . ,

∂ℓ

∂ym
(x, y, z)

)
,

∂ℓ

∂z
(x, y, z) =

(
∂ℓ

∂z0
(x, y, z), . . . ,

∂ℓ

∂zs
(x, y, z)

)
, ∇ℓ(x, y, z) =

(
∂ℓ

∂x
(x, y, z),

∂ℓ

∂y
(x, y, z),

∂ℓ

∂z
(x, y, z)

)
.

Definition 5. A point (x, y, z) ∈ Sn × Sm × Ss is called anextreme pointof ℓ if it satisfies the
system of equations

∇ℓ(x, y, z) = (2αx, 2βy, 2λz),

for someα, β, λ ∈ R. Note that if (x, y, z) is an extreme point, then (±x,±y,±z) is also an extreme
point. We say that they belong to the sameclass.

Proposition 6. There is a bijection between classes of extreme points ofℓ and fixed points of the
map

∇ℓ : Pn × Pm× Ps→ Pn × Pm× Ps,

([x], [y], [z]) →
(
∂ℓ

∂x
([x], [y], [z]),

∂ℓ

∂y
([x], [y], [z]),

∂ℓ

∂z
([x], [y], [z])

)
.

Proof. Given an extreme point (x, y, z), consider ([x], [y], [z]). This assignment is independent
of the class of (x, y, z). By definition, it gives a fixed point of∇ℓ.

Given a fixed point ([x], [y], [z]) ∈ Pn × Pm × Ps of ∇ℓ, consider representativesx, y, z such
that‖x‖ = ‖y‖ = ‖z‖ = 1. Then (x, y, z) is an extreme point ofℓ.

Remark 7. The map∇ℓ : Pn × Pm × Ps→ Pn × Pm × Ps from Proposition 6 is not defined over
the closed subset

{
(x, y, z) | ∂ℓ

∂x
(x, y, z) = 0 or

∂ℓ

∂y
(x, y, z) = 0 or

∂ℓ

∂z
(x, y, z) = 0

}
⊆ Pn × Pm × Ps,

but this set is empty if and only if thehyperdeterminantof ℓ is zero. The hyperdeterminant is a
polynomial in the coefficient ofℓ, for the definition and some properties see [12,§14].

By a result in [12,§14, 1.3], if

2n, 2m, 2s≤ n+m+ s

then a generic choice ofℓ will make∇ℓ defined everywhere.

In the article [16], there is a definition of singular values and singular vectors for a multilinear
form ℓ. For example, for a trilinear formℓ, the author defined the singular vectors ofℓ as the
solutions of the system∇ℓ(x, y, z) = (2αx, 2βy, 2λz). It is the same as our definition of extreme
points. It is of interest to know the number of singular values/vectors ofℓ, and in Section 3, we
count them. In the same article, the author proved that the first singular value is the maximum of
ℓ over a product of spheres. Also, under the hypothesis 2n, 2m, 2s≤ n+m+ s, he proved that the
hyperdeterminantof ℓ is zero if and only if 0 is a singular value ofℓ. The hyperdeterminant is a
polynomial in the coefficients ofℓ, so, in the generic case, the number 0 is not a singular value
of ℓ.
There exists another article to mention, [7]. In it, the authors proposed a multidimensional sin-
gular value decomposition, but it does not preserve the properties that we need, for example, that
the first singular value ofℓ corresponds to the maximum ofℓ over a product of spheres.
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3. Number of extreme points of a multilinear form.

In this section we use Intersection Theory ([11, 8.4]) to count the number of fixed points of
a generic mapPn × Pm × Ps → Pn × Pm × Ps overC. Recall from Proposition 6 that there is a
bijection between fixed points of

∇ℓ : Pn × Pm × Ps→ Pn × Pm× Ps

and classes of extreme points of the trilinear formℓ overSn × Sm × Ss. The number of fixed
points of∇ℓ gives a bound to the number of classes of extreme points ofℓ that contains a point
with maximum value. It is known that ifF : PN → PN is a generic map of degreed, thenF has
1+ d2 + . . .+ dN fixed points, [10, 1.3]. Here we generalize this result to a generic map between
products of projective spaces.

Before we continue with this section, let’s make a survey of some related concepts that are in
the literature.

In [6], [21], [20], [5], [15] and [3] there is a notion of eigenvectors and eigenvalues associ-
ated to a multilinear formℓ. There are a lot of applications and in [5], the authors counted the
number of eigenvalues ofℓ as the number of roots of a characteristic polynomial associated to
ℓ. The idea is to look atℓ : Cn × . . . × Cn → C as a polynomial mapP : Cn → (Cn)∨ � Cn,
P(x) = ℓ(x, . . . , x,−) and then, an eigenvector ofℓ is a vectorx ∈ Cn such thatP(x) = λx. If ℓ is
m-multilinear,P has degreem−1 and as a mapPn−1→ Pn−1 it has (m−1)n−1+ (m−1)n−2+ . . .+1
fixed points, i.e. eigenvectors ofP. They arrived at this number using toric varieties and Newton
polytopes.

In [9, 7.1.4] and [19, 3.1] there is a theory of multihomogeneous Bézout number, orm-
Bézout. Them-Bézout gives an upper bound on the cardinality of the intersection of multiho-
mogeneous polynomials inPn1 × . . . × Pnk. Given that we are counting the fixed points of a map
F : Pn1 × . . . × Pnk → Pn1 × . . . × Pnk , in order to apply this formula, we need to realize the fixed
points ofF as an intersection in some product of projective spaces. Concretely, the intersection
of the graph ofF and the diagonal. Let’s make an explicit example. Assume forsimplicity, that
F is linear,F : Pn → Pn, we will see that them-Bézout formula gives a very bad bound. Recall
that the number of fixed points in this situation is the numberof eigenvectors, that is,n+1. Let’s
apply the formula to the equations of the graphΓ = {(x, F(x))} and the diagonal△ = {(x, x)}. The
points in the intersection satisfy the following equations,

((x0 : . . . : xn), (y0 : . . . : yn)) ∈ Pn × Pn, yiF j(x) = y jFi(x), xiy j = x jyi , 0 ≤ i, j ≤ n.

Note that the equations correspond to the fact that the following matrices have rank one,
(

y0 . . . yn

F0(x) . . . Fn(x)

)
,

(
x0 . . . xn

y0 . . . yn

)
.

By abuse of notation, we denote the equations,

(x, y) ∈ Pn × Pn, y = F(x), x = y.

Given that the equations have bidegree (1, 1), them-Bézout number is the coefficient ofαn+1
1 α

n+1
2

in the polynomial (α1 + α2)2n+2. It is the binomial
(
2n+2
n+1

)
, n+ 1.
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Bernstein proved in [4] that the number of solutions of asparse systemequals themixed
volumeof the correspondingNewton polytopes. A sparse system is a collection of Laurent poly-
nomials,

fi =
∑

(v1,...,vn)∈Ai

ci,v1,...,vn xv1
1 . . . x

vn
n , i = 1, . . . , n

whereAi are fixed finite subsets ofZn. Its convex hullQi = conv(Ai) ⊆ Rn is called the Newton
polytope of fi . Consider the function

R(λ1, . . . , λn) := vol(λ1Q1 + . . . + λnQn), λi ≥ 0, i = 1, . . . , n.

wherevol is the usual Euclidean volume inRn andQ+ Q′ denotes the Minkowski sum of poly-
topes. It is a fact thatR is a homogeneous polynomial and the coefficient of the monomial
λ1 . . . λn is called the mixed volume ofQ1, . . . ,Qn. The mixed volume (i.e the number of solu-
tions of a sparse system) is a very difficult number to compute by hand. In some situations, this
is possible and in the general case, there are a lot of algorithms to compute it. In our situation,
we are working with a multihomogeneous polynomial system, and using Bernstein’s theorem, in
the paper [18], the author gives a recursive formula to compute this number. In fact, it is proved
that, under some hypothesis, if the system is overR and the functions are generic, then all the
solutions are reals. Here, we present a different and more direct method using intersection theory.

In the article [16, 3] there is a definition of generalized singular values for a generic multilin-
ear form. In this section we count them.

Let’s make an introduction to Intersection Theory. The germof intersection theory is the
Fundamental Theorem of Algebra. It implies that given a generic homogeneous polynomial in
two variablesF of degreed, the set of zeroes{x ∈ P1, F(x) = 0} hasd points. Generalizing this
idea, Bézout’s theorem, says that given two generic homogeneous polynomials in three variables
of degreed ande, the set of zeroes{x ∈ P2, F1(x) = F2(x) = 0} consists ofde points. InPr

the situation is similar, ifF1, . . . , Fr are generic homogeneous polynomials of degreed1, . . . , dr

respectively, the intersection hasd1d2 . . .dr points.
To formalize these ideas, let’s introduce the Chow ring ofPr , [11, proof of Prop. 8.4]

A(Pr ) = Z[α]/(αr+1).

Every varietyX ⊆ Pr has a class, [X] ∈ A(Pr ). The intersection of two generic varietiesX ∩ Y
corresponds to the product of the classes [X].[Y] = [X ∩ Y]. Two different varieties may corre-
spond to the same class, for example, every hypersurface of degreed corresponds to the same
class,dα, whereα is the class of a hyperplane. For example,αr corresponds to the intersection
of r generic hyperplanes, i.e. a point. The product

(d1α).(d2α). . . . .(drα) = d1 . . .drα
r

corresponds to the intersection ofr generic hypersurface of degreed1, . . . , dr respectively. We
getd1 . . .dr points in the intersection as mentioned. The class of a variety of codimensionc is a
homogeneous polynomial of degreec in Z[α]/(αr+1).

The Chow ring is very useful to solve problems in enumerativegeometry. For example, to
count the number of fixed points of a generic mapPr → Pr the procedure is the following. Let
A(Pr × Pr ) be the Chow ring ofPr × Pr , it is A(Pr × Pr ) = Z[a, α]/(ar+1, αr+1), [11, Ex. 8.4.2].
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Let [△] ∈ A(Pr × Pr ) be the class of the diagonal,△ = {(x, x)}, and let [Γ] ∈ A(Pr × Pr ) be the
class of the graph ofF, Γ = {(x, F(x))}. Given that

dim△ + dimΓ = dim(Pr × Pr ),

the product [△].[Γ] is a multiple of the class of a point,darαr , [11,§8.3]. The coefficientd is the
number of fixed points ofF.

The Chow ring of a product of projective spaces, [11, Ex. 8.3.7], is

A(Pn1 × . . . × Pnk) = A(Pn1) ⊗Z . . . ⊗Z A(Pnk) = Z[α1, . . . , αk]/(α
n1+1
1 , . . . , α

nk+1
k ).

Note that inA(Pn1 × . . . × Pnk) there is only one class of a point,αn1

1 . . . α
nk

k , so there is a well
defined map calleddegree. The degree of a class is the coefficient ofαn1

1 . . . α
nk

k . It may be zero
(or negative).
The last thing to mention is that every mapF : Pn1 × . . . × Pnk → Pm1 × . . . × Pml induces a
morphism of rings, [11, Prop. 8.3 (a)],

F⋆ : A(Pm1 × . . . × Pml )→ A(Pn1 × . . . × Pnk), F⋆([X]) = [F−1(X)].

For a more extensive treatment of intersection theory, see [14,§A], [11].

Let’s use the previous introduction. First, we will computethe number of fixed points of
a generic mapF : Pr → Pr of degreed. Then, we will adapt the proof to a generic map
F : Pn×Pm×Ps→ Pn×Pm×Ps formed by multihomogeneous polynomials of some multidegree.

Proposition 8. The number of fixed points of a generic map F: Pr → Pr of degree d is

1+ d+ . . . + dr .

Proof. The following proof is standard in intersection theory. The fixed points of a mapF :
Pr → Pr may be computed inA(Pr × Pr ) as the degree of the product of the class of the graph of
F, [Γ], and the class of the diagonal, [△]. First, let’s find out the class of the diagonal,

[△] ∈ Ar (Pr × Pr ) = Z[a, α]/(ar+1, αr+1).

Being of codimensionr, the class is a homogeneous polynomial of degreer,

[△] = t0α
r + t1aαr−1 + . . . + tr−1ar−1α + tra

r , ti ∈ Z

Here,a represents a class of a hyperplane inPr andai represents the intersection ofi of these
generic hyperplanes, in other words,ai is a generic spacePr−i insidePr . Same forα andα j .
Viewed in Pr × Pr , ai is the class ofU × Pr , ai = [U × Pr ], andα j is the class ofPr × V,
α j = [Pr × V], where dimU = r − i and dimV = r − j. The classaiα j , represents a product of
general linear spacesU × V ⊆ Pr × Pr , where dimU = r − i and dimV = r − j.

The class of the diagonal is determined by the coefficientst0, . . . , tr . Note thatti = [△].ar−iαi .
Then, we need to count the number of points in (U × V) ∩ △,

(U × V) ∩ △ � U ∩ V = {p} =⇒
9



t0 = . . . = tr = 1 =⇒ [△] =
r∑

i=0

aiαr−i .

Now, let’s compute the class of the graph of a map,Γ = {(x, F(x))} ⊆ Pr × Pr ,

[Γ] ∈ Ar (Pr × Pr ) = Z[a, α]/(ar+1, αr+1),

it is also a homogeneous polynomial of degreer,

[Γ] = τ0αr + τ1aαr−1 + . . . + τr−1ar−1α + τra
r , τi ∈ Z.

Again, we haveτi = [Γ].ar−iαi so we need to count the points inΓ ∩ (U × V), where dimU = i
and dimV = r − i,

Γ ∩ (U × V) � {x ∈ U | F(x) ∈ V} = U ∩ F−1(V) ⊆ Pr .

If F is formed by homogeneous polynomials of degreed, the pull-back of a hyperplane is a
hypersurface of degreed, then

[U ∩ F−1(V)] = αi .F⋆(αr−i) = αi .F⋆(α)r−i = αi(dα)r−i = dr−iαr .

Then,U ∩ F−1(V) hasdr−i points, i.e.τi = dr−i ,

[Γ] = drαr + dr−1aαr−1 + . . . + dar−1α + ar =⇒

[△].[Γ] = (
r∑

i=0

aiαr−i)(
r∑

j=0

dr− ja jαr− j) =
r∑

i, j=0

dr− jai+ jα2r−(i+ j) =

r∑

j=0

dr− j = 1+ d+ . . . + dr .

Given that a constant map has one fixed point, we use the convention d0 = 1 for d = 0.

Let’s adapt the previous calculation toPn×Pm×Ps. We will compute the class of the diagonal
and the class of a graph, and then we will multiply them to obtain the number of fixed points.

Theorem 9. The number of fixed points of a map F= (F1, F2, F3) : Pn×Pm×Ps→ Pn×Pm×Ps

is the coefficient ofαnβmγs in the following polynomial inZ[α, β, γ],

n∑

i=0

m∑

j=0

s∑

k=0

(d1α + d2β + d3γ)n−i(e1α + e2β + e3γ)m− j( f1α + f2β + f3γ)s−kαiβ jγk,

where(d1, d2, d3), (e1, e2, e3) and( f1, f2, f3) is the multidegree of F1, F2 and F3 respectively.
For a generic map F: Pn1 × . . . × Pnk → Pn1 × . . . × Pnk the result is similar.

Proof. The class of the diagonal△ = {(x, y, z, x, y, z)} ∈ Pn × Pm × Ps × Pn × Pm × Ps, is a
homogenous polynomial of degreen+m+ s,

[△] ∈ A(Pn × Pm× Ps × Pn × Pm× Ps) = Z[α, β, γ, a, b, c]/(αn+1, βm+1, γs+1, an+1, bm+1, cs+1),

Instead of doing the same computation as before, let

π1,4 : Pn × Pm× Ps× Pn × Pm × Ps→ Pn × Pn,

10



be the projection in the first and fourth factor (same forπ2,5 andπ3,6) and let△n ⊆ Pn ×Pn be the
diagonal ofPn (same for△m and△s). Then we have

[△] = π⋆1,3([△n]).π⋆2,5([△m]).π⋆3,6([△s]) =
n∑

i=0

m∑

j=0

s∑

k=0

aiαn−ib jβm− jckγs−k.

The class ofΓ = {(x, y, z, F(x, y, z))} ⊆ Pn × Pm × Ps × Pn × Pm × Ps, is a homogeneous
polynomial of degreen+m+ s,

[Γ] =
∑

i+ j+k+i′+ j′+k′=n+m+s

τi jki ′ j′k′a
iαi′b jβ j′ckγk′ , τi jki ′ j′k′ ∈ Z =⇒

deg([△].[Γ]) =
n∑

i=0

m∑

j=0

s∑

k=0

τi jki jk .

Wheredeg is the coefficient of anαnbmβmcsγs. Note that the integerτi jki jk is the degree of
[Γ].an−iαibm− jβ jcs−kγk; the number of points in

Γ ∩ (U1 × U2 × U3 × V1 × V2 × V3),

U1,V1 ⊆ Pn, U2,V2 ⊆ Pm, U3,V3 ⊆ Ps,

dimU1 + dimV1 = n, dimU2 + dimV2 = m, dimU3 + dimV3 = s=⇒
Γ ∩ (U1 × U2 × U3 × V1 × V2 × V3) � (U1 × U2 × U3) ∩ F−1(V1 × V2 × V3) ⊆ Pn × Pm × Ps.

Let’s use the fact thatF is equal to (F1, F2, F3),

F1 : Pn × Pm× Ps→ Pn, F2 : Pn × Pm× Ps→ Pm, F3 : Pn × Pm× Ps→ Ps

where (d1, d2, d3), (e1, e2, e3) and (f1, f2, f3) is the multidegree ofF1, F2 and F3 respectively.
Then

F−1(V1 × V2 × V3) = F−1
1 (V1) ∩ F−1

2 (V2) ∩ F−1
3 (V3).

Thus, the class of the intersection that definesτi jki jk in the Chow ringA(Pn × Pm× Ps), is

τi jki jk = α
iβ jγkF⋆(αn−iβm− jγs−k) = αiβ jγkF⋆1 (αn−i)F⋆2 (βm− j)F⋆3 (γs−k) =

αiβ jγk(d1α + d2β + d3γ)n−i(e1α + e2β + e3γ)m− j( f1α + f2β + f3γ)s−k.

Example 10. Let’s apply the previous formula to∇ℓ whereℓ : S2 × S2 × S2 → R is a generic
trilinear form. The multidegree of∂ℓ/∂x, ∂ℓ/∂y and∂ℓ/∂z is (0, 1, 1), (1, 0, 1) and (1, 1, 0) re-
spectively. Then the number of fixed points of this map (overC) is equal to 37. The number 37,
according to [16, 3], is the number of generalized singular values ofℓ.

Example 11. Let’s apply the formula to count the number of eigenvectors of a generic linear
mapL : Rn+1→ Rn+1. The mapL induces a mapPn→ Pn of degree 1, then

n∑

i=0

αn−iαi =

n∑

i=0

αn = (n+ 1)αn.

The mapPn→ Pn hasn+ 1 fixed points overC, that is,L hasn+ 1 eigenvectors overC.
11



Example 12. Finally, let’s apply the formula to find the number of singular values of a generic
linear mapL : Rn+1 → Rm+1. The mapL induces a bilinear formℓ : Rn+1 × Rm+1 → R and the
bidegree of∂ℓ/∂x and∂ℓ/∂y is (0, 1) and (1, 0) respectively (assumen ≥ m).

n∑

i=0

m∑

j=0

βn−iαm− jαiβ j =

n∑

i=0

m∑

j=0

βn−i+ jαm− j+i =

m∑

j=0

βn−(n−m+ j)+ jαm− j+(n−m+ j) = (m+ 1)αnβm.

Then,∇ℓ : Pn × Pm→ Pn × Pm hasm+ 1 fixed points, that is,L hasm+ 1 singular values over
C. We used the variational definition of singular values, see [16]. In casen < m we can use the
fact that the number of non-zero singular values ofL andLt : Rm+1→ Rn+1 are the same.

4. Theory for a bilinear form.

In this section we present a method to find the maximum of a bilinear form,ℓ, over a product
of spheres,Sn × Sm. This case is very special and the method presented here doesnot work for a
general multilinear form.

The key point of this method is the fact that the partial derivatives ofℓ =
∑

ai j xiy j are linear,

∂ℓ

∂xi
(x, y) = ℓ(ei, y),

∂ℓ

∂y j
(x, y) = ℓ(x, ej), (x, y) ∈ Rn+1 × Rm+1, 0 ≤ i ≤ n, 0 ≤ j ≤ m,

whereei andej are canonical basis vectors ofRn+1 andRm+1 respectively. The map∇ℓ induces
a linear mapL : Pn+m+1→ Pn+m+1. Let (x0 : . . . : xn : y0 : . . . : ym) be a point inPn+m+1. Then

L(x0 : . . . : xn : y0 : . . . : ym) = (ℓ(e0, y) : . . . : ℓ(en, y) : ℓ(x, e0) : . . . : ℓ(x, em)) .

This map is well-defined. Letλ ∈ R, λ , 0,

L(λx0 : . . . : λxn : λy0 : . . . : λym) = (ℓ(e0, λy) : . . . : ℓ(en, λy) : ℓ(λx, e0) : . . . : ℓ(λx, em)) =

(λℓ(e0, y) : . . . : λℓ(en, y) : λℓ(x, e0) : . . . : λℓ(x, em)) = L(x0 : . . . : xn : y0 : . . . : ym).

Theorem 13. Let p= (x, y) ∈ Sn × Sm be an absolute maximum ofℓ. Then

lim
r→∞

Lr (q) = [p]

for a generic q∈ Pn+m+1.

Proof. Let A ∈ Rn+m+2×n+m+2 be a matrix representing the linear mapL. Given thatL is linear,
the differential ofL at any point,q, is equal toL,

dLq = L, ∀q ∈ Pn+m+1.

In particular, the matrixA, also represents the differential ofL at p,

A = d̂Lp.

Let {v0, . . . , vn+m+1} be a basis ofRn+m+2 formed by eigenvectors ofA. Let λi be the eigenvalue
of vi , 0 ≤ i ≤ n + m+ 1. By Remark 3 we know thatp is an eigenvector ofA with eigenvalue
ℓ(p). In particular, if the magnitude ofλ0 is maximum, then|λ0| = |ℓ(p)| and [p] = [v0].
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Let z ∈ Rn+m+2 be a vector representingq such thatz = a0v0 + . . . + an+m+1vn+m+1, a0 , 0.
Then

Lr (q) = [Ar .

n+m+1∑

i=0

aivi ] = [a0λ
r
0v0 +

n+m+1∑

i=1

aiλ
r
i vi ] = [a0v0 +

n+m+1∑

i=1

ai
λr

i

λr
0

vi ] → [a0v0] = p.

In the proof of the previous theorem, we saw that the iterations of a linear map in projective
space converges to an eigenvector of maximum eigenvalue. Inparticular, given a square matrix
A ∈ Rn+1×n+1 and a generic vectorw ∈ Rn+1, the sequence{[w], [Aw], [A2w] . . .} ⊆ Pn, converges
to a point [v]. The vectorv satisfiesAv= λv, where|λ| is spectral radius ofA.

The rate of convergence of this method is linear.

Remark 14. Let’s give an algorithm to find the absolute maximum of a generic bilinear form,

ℓ : Rn+1 × Rm+1 −→ R,

based on Theorem 13. Let∇ℓ = (∂ℓ/∂x, ∂ℓ/∂y) be the gradient ofℓ and letq be the initial
condition, whereq = (x, y), x ∈ Rn+1, x , 0 andy ∈ Rm+1, y , 0.

Input: A bilinear form ℓ : Rn+1 × Rm+1 → R.
Output: The absolute maximum (x, y) ∈ Sn × Sm.

1. Let q = q/‖q‖ and aux= (1, 0, . . . , 0).
2. While |〈q, aux〉| is different from 1 do

2.1 aux= q
2.2 q = ∇ℓ(q)
2.3 q = q/‖q‖

3. Let x = (q0, . . . ,qn), y = (qn+1, . . . ,qn+m+1).
4. Return (x/‖x‖, y/‖y‖).

The iterations stops when the points in projective space areequal, in other words, when the
cosine of the angle betweenq andauxis 1 or−1 (when they are aligned). Given that the absolute
maximum is attractive (see Theorem 13), the program ends. The maximum value is|ℓ(x, y)|.

Remark 15. We may adapt this algorithm to a multilinear form, but in the multilinear case, in
general, the absolute maximum is not an attractive fixed point. For example, the trilinear form
ℓ : R2 × R2 × R2→ R,

ℓ(x, y, z) = 6x0y0z0 + 3x1y0z0 − 6x0y1z0 + 16x1y1z0 − 14x0y0z1 − 15x1y0z1 − 11x0y1z1 + 8x1y1z1,

induces a mapP5→ P5 of degree 2 without attractive fixed points. Even more, the 4-multilinear
form ℓ : R2 × R2 × R2 × R2→ R,

ℓ(x, y, z, v) = 4x0y0z0v0 + 6x1y0z0v0 + x0y1z0v0 − 6x1y0z1v0v0 − 5x0y0z1v0+

7x1y1z0 − 5x0y1z1v0 + 2x0y0z0v1 − 3x1y0z0v1 − 7x0y1z0v1+

9x1y1z0v1 − 9x0y0z1v1 − 9x1y0z1v1 − 6x0y1z1v1 + 8x1y1z1v1,

induces a mapP7 → P7 of degree 3 with two attractive fixed points. One is the absolute maxi-
mum.
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5. Presentation of the general algorithm.

In this section we present an algorithm to find the maximum of amultilinear form over a
product of spheres. First, we reduce the problem to a system of multilinear equations and then
we resolve the system using algebro-geometric tools. In thefirst part of the section, we present
an algorithm to find the absolute maximum of a multilinear form. In the second, we give an
algorithm to find the point where the maximum occurs. This last algorithm requires some extra
hypothesis.

Proposition 16. Let ℓ : Rn+1 × Rm+1 × Rs+1 → R be a generic trilinear form. There exists a
bijection between classes of extreme points ofℓ and solutions of the following system of trilinear
equations inPn × Pm× Ps,



ℓ(x jei − xiej , y, z) = 0, 0 ≤ i < j ≤ n,
ℓ(x, y jei − yiej , z) = 0, 0 ≤ i < j ≤ m,
ℓ(x, y, zjei − ziej) = 0, 0 ≤ i < j ≤ s,

The vector ek satisfies(ek)l = 0 if l , k and(ek)k = 1.
In the multilinear case, we obtain a similar result; a systemof multilinear equations.

Proof. From Proposition 6 we know that every class of an extreme point of ℓ, is a fixed point of
∇ℓ : Pn × Pm× Ps→ Pn × Pm × Ps. If ℓ is a generic trilinear form, we know that the number of
fixed points is finite (see Section 3).

A fixed point of∇ℓ, ([x], [y], [z]), satisfies



∂ℓ/∂xi(x, y, z) = 2αxi , 0 ≤ i ≤ n,
∂ℓ/∂y j(x, y, z) = 2βy j , 0 ≤ j ≤ m,
∂ℓ/∂zk(x, y, z) = 2λzk, 0 ≤ k ≤ s,

whereα, β andλ are three nonzero real numbers. InPn × Pm× Ps, the equations are



x j∂ℓ/∂xi(x, y, z) = xi∂ℓ/∂x j(x, y, z), 0 ≤ i < j ≤ n,
y j∂ℓ/∂yi(x, y, z) = yi∂ℓ/∂y j(x, y, z), 0 ≤ i < j ≤ m,
zj∂ℓ/∂zi(x, y, z) = zi∂ℓ/∂zj(x, y, z), 0 ≤ i < j ≤ s,

The result follows from the equalities,

∂ℓ/∂xi(x, y, z) = ℓ(ei , y, z), ∂ℓ/∂y j(x, y, z) = ℓ(x, ej, z), ∂ℓ/∂zk(x, y, z) = ℓ(x, y, ek).

Let’s present the algorithm to find the absolute maximum of a generic multilinear form. The
resolution of the system is bases onEigenvalue Theorem. Let’s recall it. Consider a system of
polynomial equations with finitely many solutions inCn,



f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0
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where f1, . . . , fm are polynomials inC[x1, . . . , xn]. The quotient ring,

A = C[x1, . . . , xn]/〈 f1, . . . , fm〉,

is a finite-dimensional vector space, [9, Theorem 2.1.2]. The dimension ofA is the number of
solutions of the system.

Every polynomialf ∈ C[x1, . . . , xn], determines a linear mapM : A→ A,

M(g) = f g, g ∈ C[x1, . . . , xn],

whereg denotes the class of the polynomialg in the quotient ringA. The matrix ofM is called
themultiplication matrixassociated to the polynomialf .

Theorem(Eigenvalue Theorem). The eigenvalues of M are{ f (p1), . . . , f (pr)}, where{p1, . . . , pr}
are the solutions of the system of polynomial equations. See[9, Theorem 2.1.4] for a proof.

The algorithm in Appendix A, first generates the following system of polynomial equations,


x j∂ℓ/∂xi(x, y, z) = xi∂ℓ/∂x j(x, y, z), 0 ≤ i < j ≤ n,
y j∂ℓ/∂yi(x, y, z) = yi∂ℓ/∂y j(x, y, z), 0 ≤ i < j ≤ m,
zj∂ℓ/∂zi(x, y, z) = zi∂ℓ/∂zj(x, y, z), 0 ≤ i < j ≤ s,

x2
0 + . . . + x2

n = 1, y2
0 + . . . + y2

m = 1, z2
0 + . . . + z2

s = 1.

Then, computes the real eigenvalues,{λ0, . . . , λr }, of the multiplication matrix associated toℓ.
Finally, it returnsλi such that|λi | ≥ |λ j | for all 0 ≤ j ≤ r. This number, is the maximum ofℓ over
Sn × Sm × Ss.

For the algorithm and an implementation in Maple, see Appendix A.

Now, let’s give an algorithm to find the point (x, y, z) ∈ Sn × Sm × Ss such that|ℓ(x, y, z)| is
maximum. We need to use the following result (same notation as Eigenvalue Theorem),

Theorem. Let x = λ1x1 + . . . + λnxn be a generic linear form and let M be its multiplication
matrix. Assume that B= {1, x1, . . . , xn, . . .} is a finite basis ofA. Then, the eigenvectors of M
determine solutions of the system of polynomial equations.Specifically, if v= (v0, . . . , vn, . . .) is
an eigenvector of M such that v0 = 1, then(v1, . . . , vn) is a solution of the system of polynomial
equations. Even more, every solution is of this form. See [9,§2.1.3] for a proof.

Note that the Theorem requires that the variables{x1, . . . , xn} are elements of the basisB. It
could be the case that some variables are missing fromB. For example, ifx1, . . . , xi ∈ B, and
xi+1, . . . , xn < B, then, every missing variable, sayx j , is a linear combination of{x1, . . . , xi},

x j = a j1x1 + . . . + a ji xi , i + 1 ≤ j ≤ n

If v = (1, v1, v2 . . .) is an eigenvector ofM, the j-coordinate of the solution corresponding tov, is
a j1v1 + . . . + a ji vi . See [9,§2.1.3].

In order to apply the previous Theorem, we need to guarantee that the basisB contains all the
variables. Theaffine systemin Proposition 16 is,



x j∂ℓ/∂xi(x, y, z) = xi∂ℓ/∂x j(x, y, z), 0 ≤ i < j ≤ n,
y j∂ℓ/∂yi(x, y, z) = yi∂ℓ/∂y j(x, y, z), 0 ≤ i < j ≤ m,
zj∂ℓ/∂zi(x, y, z) = zi∂ℓ/∂zj(x, y, z), 0 ≤ i < j ≤ s,

x0 = 1, y0 = 1, z0 = 1.
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The solutions of this system determine classes of extreme points ofℓ. The genericity ofℓ implies
that all the extreme points ofℓ, (x, y, z), satisfyx0 , 0, y0 , 0, z0 , 0. Then, all the classes of
extreme points appear as the solutions of the affine system in Proposition 16.

Theorem 17. Assume thatℓ : Rn+1 × Rm+1 × Rs+1 → R is a generic trilinear form and that
2n, 2m, 2s ≤ n + m+ s, see Remark 7. Then, the basis B of the affine system in Proposition 16
contains all the variables.

In the multilinear case, we obtain a similar result.

Proof. Given that the equations in Proposition 16 are multilinear, the quotient ring,A, is multi-
graded. Let’s denoteA(d1,d2,d3) the multidegree part (d1, d2, d3), whered1, d2, d3 ≥ 0. The hy-
pothesis 2n, 2m, 2s≤ n+m+ s, implies that the following set is empty,

{
(x, y, z) ∈ Pn × Pm × Ps | ∂ℓ

∂x
(x, y, z) = 0 or

∂ℓ

∂y
(x, y, z) = 0 or

∂ℓ

∂z
(x, y, z) = 0

}
= ∅.

Then, the equations{∂ℓ/∂xi}ni=0 are linearly independent. Same for{∂ℓ/∂y j}mj=0 and{∂ℓ/∂zk}sk=0.
In the quotient ring,A, the partial derivatives, are proportional to the variables, thus, the variables
are linearly independent too. For example, a basis for the multidegree part (0, 0, 0) is {1}, and a
basis for the multidegree part (1, 0, 0) is {x0, . . . , xn}. Even more, a basis for

A(1,0,0) ⊕ A(0,1,0) ⊕ A(0,0,1)

is {x0, . . . , xn, y0, . . . , ym, z0, . . . , zs}.
Let’s add the equationsx0 = y0 = z0 = 1 to the system of polynomial equations. The

equations are not multilinear, so the corresponding quotient ring is not multi-graded,

Â = A/〈x0 − 1, y0 − 1, z0 − 1〉.

Let’s see that the variables{x1, . . . , xn, y1, . . . , ym, z1, . . . , zs} are linearly independent in̂A.
This implies that the basisB of Â, formed by monomials, contains all the variables.

n∑

i=1

αi xi +

m∑

j=1

β jy j +

s∑

k=1

λkzk = 0 ∈ Â, αi , β j, λk ∈ C =⇒

n∑

i=1

αi xi +

m∑

j=1

β jy j +

s∑

k=1

λkzk = P ∈ A, P ∈ 〈x0 − 1, y0 − 1, z0 − 1〉,

whereP is a polynomial combination ofx0 − 1, y0 − 1 andz0 − 1.
DenoteP(d1,d2,d3) the multidegree part, (d1, d2, d3), of P. Given thatA is multi-graded, we get

the following equalities inA,

P = P(1,0,0) + P(0,1,0) + P(0,0,1),

n∑

i=1

αi xi = P(1,0,0),

m∑

j=1

β jyi = P(0,1,0),

s∑

k=1

λkzk = P(0,0,1).

Using the fact that the variables{x0, . . . , xn} are linearly independent inA, we obtain thatx0 is
not a variable inP. Same fory0 andz0. Given thatP is a polynomial combination ofx0−1,y0−1
andz0 − 1, it must be 0. Then,α1 = . . . = αn = 0, β1 = . . . = βm = 0 andλ1 = . . . = λs = 0.
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Remark 18. The algorithm to find the point (x, y, z) ∈ Sn × Sm × Ss such that|ℓ(x, y, z)| is maxi-
mum, is the following.

The reader may adapt the algorithm to a multilinear form.
Input: A generic trilinear form ℓ : Rn+1 × Rm+1 × Rs+1 → R,

where 2n+ 2m+ 2s≤ n+m+ s.
Output: The absolute maximum (x, y, z) ∈ Sn × Sm × Ss.

1. Compute the system of trilinear equations of Proposition 16.

2. Add the equations x0 = y0 = z0 = 1.
3. Compute a Göbner basis for the resulting system, I.
4. Find a basis B of C[x1, . . . , xn, y1, . . . , ym, z1, . . . , zs]/I.
5. Compute the multiplication matrix of x1.

6. Compute the eigenvectors of the multiplication matrix.

7. For each eigenvector v do

7.1 Normalize v such that v = (1, v1, . . .).
7.2 Let x = (x1, . . . , xn) be such that xi = vσi where

σi is the coordinate of xi in B, 1 ≤ i ≤ n.
7.3 Same for y and z.
7.4 Normalize the points, x = x/‖x‖, y = y/‖y‖, z= z/‖z‖.
7.5 Evaluate ℓ at (x, y, z) if the coordinates are real.

7.6 Save the maximum.

8. Return the maximum, (x, y, z).

In Step 5 of the algorithm we used the linear formx1 as a generic linear form. This fact is
not restrictive. Given that the trilinear form is generic, we may suppose that the first coordinates
of the classes of extreme points ofℓ are all different. In other words, the eigenvalues of the
multiplication matrix ofx1 have multiplicity one. See [9,§2.1.3].

6. Applications and examples.

Let’s start we some applications. First, we give applications of the iterative algorithm to find
the maximum of a bilinear form. Then, we give applications ofthe general algorithm.

Remark 19. Given a real matrixA, its first singular value (the 2-norm) is given by

max
‖x‖=‖y‖=1

xtAy.

In other words, it is the maximum over a product of spheres of the bilinear form (x, y)→ xtAy.

An interesting fact of Theorem 13 is that we can find the first singular vectors and the first
singular value,|ℓ(x, y)|, of ℓ without using thespectral radius formula. Recall that the 2-norm of
a matrixA is computed using the spectral radius formula,

‖A‖2 =
√

lim
k→+∞

‖(AAt)k‖ 1
k .

Example 20. Let A ∈ R4×3 be the matrix

A =



3 2 32
2 1 36
−3 25 2
0 −1 1



Then, with the algorithm in Remark 14, we get that the 2-norm is 48.46054603. Using the
standard algorithm (the spectral radius ofAAt) we get the same number 48.46054603.
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Example 21. An interesting example is the maximum of a bilinear form overS1 × S0. Note
that the domain is a cylinder ofR3, so we can draw the whole situation. Take, for example, the
bilinear form

ℓ : R2 × R −→ R, ℓ(x, y) = 4x1y+ 2x2y.

The maximum ofℓ overS1 × S0 is the 2-norm of the vector (4, 2), that is,

‖(4, 2)‖ =
√

20� 4.472135954.

Let’s compute this using the algorithm in Remark 14. First ofall note that the gradient ofℓ
determines a vector field over the cylinder, and the iteration follows the arrow. Over the ending
point of the iteration, the flow is orthogonal to the surface.This means, that we have reached an
extreme,

max
‖x‖=|y|=1

ℓ(x, y) � 4.472135953.

Let’s give now some applications of the general algorithm, see Appendix A.

Remark 22. The first interesting application of the algorithm in Appendix A is to the theory of
entanglement. It is of interest to find the maximum of the form〈ρ,−〉 over the space ofseparable
states. The matrixρ is called astateif it is hermitian,ρ ≥ 0 and tr(ρ) = 1. It is easy to see that
the space of states is a convex set and is generated by the matrices of the formρiρ

†
i whereρi is

a column vector of norm one in a finite dimensional vector spaceH , ρi ∈ H , ‖ρi‖ = 1. The
general theory says that when we are working with two particles, we need to consider the space
of states over the tensor productH = H1 ⊗ H2. In this situation a state is calledseparableif
it is a convex combination of the form

∑
aivi ⊗ wi , wherevi is a state ofH1 andwi a state of

H2. Let’s callS ep(H) the convex space of separable states. It is true that the space of separable
states is a convex set generated by the matrices of the formxx† ⊗ yy†, wherex ∈ H1, y ∈ H2 and
‖x‖ = ‖y‖ = 1. Then

max
S ep(H)

〈ρ,−〉 = max
‖x‖=‖y‖=1

〈ρ, xx† ⊗ yy†〉.

Note that the form is not bilinear inx nor in y. Rewriting the stateρ in the formρ =
∑
λiρiρ

†
i

with 〈ρi , ρ j〉 = 0, ‖ρi‖ = 1, and using the equality〈ρi , x⊗ y〉2 = 〈ρiρ
†
i , xx† ⊗ yy†〉, we get

max
S ep(H)

〈ρ,−〉 = max
‖x‖=‖y‖=1

‖
∑ √

λi〈ρi , x⊗ y〉ρi‖2.

The resulting map
∑ √
λi〈ρi , x ⊗ y〉ρi is bilinear in x and iny and our algorithm is capable to

maximize it. See the next example.

Example 23. Suppose that we are working with the following stateρ in R4 = R2 ⊗ R2,



0.242894940524649938 −0.123994312358229969 −0.0712215842649899789 0.219784373378769966
−0.123994312358229969 0.0888784895376599772 0.111143109132249979 −0.0627261109839499926
−0.0712215842649899789 0.111143109132249979 0.361255602168969903 0.0603142605185699871

0.219784373378769966 −0.0627261109839499926 0.0603142605185699871 0.306970967813849916


.

We choose to work over the real numbers to make the expositionclear, but all the results can be
adapted to work with hermitian matrices instead of symmetric matrices. Using Cholesky and the
Singular Value Decomposition Algorithm we haveρ =

∑
λiρiρ

†
i ,

λ1 = 0.5435016101, λ2 = 0.4146107959,
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λ3 = 0.04113792919, λ4 = 0.0007496649711, λ1 + λ2 + λ3 + λ4 = 1.

ρ1 =



−0.656481390369177854
0.326643787198963642
0.245965753592146592
−0.633906040705653040


, ρ2 =



−0.0253829550629408562
−0.209402292907094082
−0.881013881627254691
−0.423463015737623016



ρ3 =



−0.444223726945872255
0.546710519336902400
−0.399219012690601172
0.586853532298337144


, ρ4 =



−0.609141338368644146
−0.741998735885678107
0.0627659808038323054
0.272846362424434330


.

With the algorithm in Appendix A to the trilinear form

ℓ(x, y, z) =
∑ √

λi〈ρi , x⊗ y〉〈ρi , z〉, (x, y, z) ∈ S1 × S1 × S3,

we get that the maximum is 0.7228016991. Finally

max
S ep(H)

〈ρ,−〉 = max
‖x‖=‖y‖=1

‖
∑ √

λi〈ρi , x⊗ y〉ρi‖2 = max
‖x‖=‖y‖=‖z‖=1

|ℓ(x, y, z)|2 �

0.72280169912 � 0.5224422962.

Note that ifρ is separable then〈ρ, ρ〉 ≤ maxS ep(H)〈ρ,−〉. This is not the case, but for example,
the following state is not separable (it is calledentangled state),



0.168106937369559950 −0.190509527669719958 −0.200004375511779936 −0.0690454833860399825
−0.190509527669719958 0.257651665981429912 0.267759084652009926 0.0985801483325399742
−0.200004375511779936 0.267759084652009926 0.320790216378169901 0.194053687463299957
−0.0690454833860399825 0.0985801483325399742 0.194053687463299957 0.253451180300149959


.

We have〈ρ, ρ〉 � 0.6620536187� 0.4862909489� maxS ep(H)〈ρ,−〉.

Remark 24. Our final application is the ability to find numerically the closest rank-one tensor
of a given tensor. In the article [8], the authors consideredthe problem of finding the best rank-
r approximation of a given tensor. They proved that forr > 1 the problem is ill-posed, but
whenr = 1 the problem has a solution, [8, 4.5]. Here we find the solution. Let’s prove that a
computation of the absolute maximum ofℓ over a product of spheres gives the closestrank-one
multilinear formto ℓ. A rank-one multilinear form is a product of linear forms,ℓ1 . . . ℓs, where
ℓi : Rni+1 → R, 1 ≤ i ≤ s. We choose to do this remark about multilinear forms, but dually, the
same is true for tensors.

For simplicity, we do the proof for a trilinear form. The proof is similar in the multilinear
case. Consider the affine Segre map (it is not an isometry)

Rn+1 × Rm+1 × Rs+1 −→ Rn+1 ⊗ Rm+1 ⊗ Rs+1, (x, y, z) −→ x⊗ y⊗ z.

Using the usual inner product in the tensor product, we identify

Rn+1 ⊗ Rm+1 ⊗ Rs+1
� (Rn+1 ⊗ Rm+1 ⊗ Rs+1)∨,

x⊗ y⊗ z−→ 〈x⊗ y⊗ z,−〉, 〈x⊗ y⊗ z, a⊗ b⊗ c〉 = 〈x, a〉〈y, b〉〈z, c〉.
We can identify the following three different notations

ℓ(x, y, z) = ℓ(x⊗ y⊗ z) = 〈ℓ, x⊗ y⊗ z〉.
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The first equality identifies a trilinear form with a linear map ℓ : Rn+1 ⊗ Rm+1 ⊗ Rs+1 → R. The
second equality identifies, under the isometry (Rn+1 ⊗Rm+1 ⊗Rs+1)∨ � Rn+1 ⊗Rm+1 ⊗Rs+1, the
linear formℓ with the tensorℓ ∈ Rn+1 ⊗ Rm+1 ⊗ Rs+1.

Let S be the immersion ofSn × Sm × Ss under the Segre map,

S = {〈x⊗ y⊗ z,−〉 : ‖x‖ = ‖y‖ = ‖z‖ = 1} ⊆ (Rn+1 ⊗ Rm+1 ⊗ Rs+1)∨.

Then, for allφ = 〈x⊗ y⊗ z,−〉 ∈ S, we have

‖ℓ − φ‖2 =
(
‖ℓ‖2 + ‖φ‖2 − 2〈ℓ, φ〉

)
= ‖ℓ‖2 + 1− 2ℓ(x, y, z).

In other words, a local maximum ofℓ is a local minimum of the distance function,‖ℓ − φ‖.
LetB be the image, under the Segre map, of a product of balls,

B = {〈x⊗ y⊗ z,−〉 : ‖x‖, ‖y‖, ‖z‖ ≤ 1} ⊆ (Rn+1 ⊗ Rm+1 ⊗ Rs+1)∨.

Note that the elements ofB are rank-one multilinear forms. It is easy to see thatB is compact
and convex, so the distance fromℓ to B is achieved inS (the border). In other words, the closest
rank-one multilinear form toℓ is an element ofS. Summing up, a computation with the algorithm
in Remark 18 of the absolute maximum ofℓ, gives a closest rank one multilinear form toℓ.

Example 25. Let ℓ : R2 × R2 × R2 × R2 −→ R be a multilinear form,

ℓ(x, y, z, t) = 4x1y1z1t1 + 6x2y1z1t1 + x1y2z1t1 + 7x2y2z1t1 − 5x1y1z2t1−

6x2y1z2t1 − 5x1y2z2t1 + 2x1y1z1t2 − 3x2y1z1t2 − 7x1y2z1t2 + 9x2y2z1t2−
9x1y1z2t2 − 9x2y1z2t2 − 6x1y2z2t2 + 8x2y2z2t2.

Using the algorithm in Remark 18, we get that the closest rankone multilinear form is

ℓ1(x)ℓ2(y)ℓ3(z)ℓ4(t),

ℓ1(x) = 0.4799354720x1− 0.8773037918x2

ℓ2(y) = 0.2732019392y1− 0.9619567040y2

ℓ3(z) = 0.7563638894z1+ 0.6541511043z2

ℓ4(t) = 0.3260948315t1+ 0.9453370622t2.

The value of the absolute maximum ofℓ is 16.71262553.

Example 26. Let v ∈ R2 ⊗ R3 be the following tensor

v = 4x1 ⊗ y1 − 9x2 ⊗ y1 + 2x1 ⊗ y2 + x2 ⊗ y2 − 5x1 ⊗ y3 − 7x2 ⊗ y3.

Using the algorithm in Remark 18 we get that the closest rank one tensor is

(0.01162554952x1 + 0.9999324213x2) ⊗ (−0.7821828869y1 + 0.08939199251y2 − 0.6166027924y3)

In this case, we can check this result. The first singular vectors of the matrix


4 −9
2 1
−5 −7

 ,

are

(0.01162554952, 0.99993242102), (−0.7821828866,0.08939199251,−0.6166027924).
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A. General Algorithm for a multilinear form.

Let’s give an algorithm to find the maximum value of generic multilinear map over a product
of spheres,

ℓ : Rn1 × . . . × Rnr → Rnr+1 , max
‖x1‖=...=‖xr ‖=1

‖ℓ(x1, . . . , xr )‖.

Recall from Section 2 that we may assume thatℓ is a multilinear form,

ℓ̂ : Rn1 × . . . × Rnr × Rnr+1 → R, max
‖x1‖=...=‖xr+1‖=1

|̂ℓ(x1, . . . , xr+1)|.

The following is a pseudocode in the trilinear case. We choose to work with Gröbner Basis
because it is implemented in most computer algebra systems (Maple, Macaulay2, Singular). In
[2], the authors proposed an algorithm without the need of Gröbner Basis. See also [9, 2.3.1].

Input: A generic trilinear form ℓ : Rn+1 × Rm+1 × Rs+1 → R.
Output: The absolute maximum (x, y, z) ∈ Sn × Sm × Ss.

1. Compute the system of trilinear equations of Proposition 16.

2. Add the polynomial equations ‖x‖2 = ‖y‖2 = ‖z‖2 = 1.
3. Compute a Göbner basis for the resulting system, I.
4. Find a basis B of C[x1, . . . , xn, y1, . . . , ym, z1, . . . , zs]/I.
5. Compute the multiplication matrix of ℓ.

6. Return the magnitude of the maximum real eigenvalue.

Let’s give an implementation of the algorithm in Maple. The code computes the maximum
of a trilinear form overSn−1 × Sm−1 × Ss−1. The reader may change the values ofn, m andsand
the trilinear form, to get different examples.
> restart;with(Groebner):with(linalg):
> n:=2:m:=2:s:=2:

> L:=6*x[1]*y[1]*z[1]+3*x[2]*y[1]*z[1]-6*x[1]*y[2]*z[1]+16*x[2]*y[2]*z[1]-
14*x[1]*y[1]*z[2]-15*x[2]*y[1]*z[2]-11*x[1]*y[2]*z[2]+8*x[2]*y[2]*z[2];

> #Step 1 and 2
> J:={add(x[i]^2,i=1..n)-1,add(y[j]^2,j=1..m)-1,add(z[k]^2,k=1..s)-1,
> seq(seq(x[i]*diff(L,x[j])-x[j]*diff(L,x[i]),j=1..i-1),i=1..n),

> seq(seq(y[i]*diff(L,y[j])-y[j]*diff(L,y[i]),j=1..i-1),i=1..m),
> seq(seq(z[i]*diff(L,z[j])-z[j]*diff(L,z[i]),j=1..i-1),i=1..s)}:

> #Step 3
> G:=Basis(J,’tord’):

> #Step 4
> ns,rv:=NormalSet(G, tord):
> #Step 5

> mulMat:=evalm(evalf(MultiplicationMatrix(L,ns,rv,G,tord))):
> #Step 6

> max(op(map(abs,map(Re,{eigenvalues(mulMat)}))));

The following is a table that shows the time, in seconds, usedto compute the maximum. In
the first column appears different values of (n,m, s), in the second, the time used to compute the
Steps 1 through 4 and in the third, the total time of the algorithm. We run a Maple 11 session on
a 2.1GHz CPU, with 2GB of memory,

(n,m, s) Steps 1-4 Total time
(2, 2, 2) 0.03 0.33
(2, 2, 3) 0.05 0.79
(2, 2, 4) 0.09 0.99
(2, 2, 5) 0.14 1.20
(2, 3, 3) 0.31 7.13
(2, 3, 4) 0.89 30.03
(3, 3, 3) 5.06 397.28
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Note that the computation of the multiplication matrix using Gröbner basis, requires most of the
time. In [2], the authors proposed an algorithm to compute the multiplication matrix ofℓ directly;
without Gröbner basis.
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[13] J. Harris, Algebraic geometry, vol. 133 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1992. A
first course.

[14] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[15] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl.,

32 (2011), pp. 1095–1124.
[16] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in Computational Advances in

Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on, dec. 2005, pp. 129 –132.
[17] C. Ling, J. Nie, L. Qi, and Y. Ye, Biquadratic optimization over unit spheres and semidefinite programming relax-

ations, SIAM J. Optim., 20 (2009), pp. 1286–1310.
[18] A. McLennan, The maximum number of real roots of a multihomogeneous system of polynomial equations, Beiträge
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