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Abstract

The sensitivity of CERES-Maize yield predictions to uncertainty in a set of soil-related parameters and solar radiation was evaluated
in Pergamino, in the Argentine Pampas. Maize yields were simulated for Pergamino using a 31 years climatic record for a range of values
of a group of important model input variables. The input variables considered (and the range evaluated) were: soil nitrogen content at
sowing (from 20 to 80 Kg ha�1), soil organic matter content (from 1.75% to 4%), soil water storage capacity (from 150 to 200 mm), soil
water content at sowing (from 50% to 100% of total available water), soil infiltration curve number (from 76 to 82) and daily solar radi-
ation (from �20% to 12% of the historical values). Then, a sensitivity analysis using a combination of mathematical and graphical
approaches was performed to evaluate the model response to changes in the values of the input variables considered. Moreover, a sim-
plified method based on the evaluation of the model sensitivity at extreme values of the input variables is proposed to evaluate the model
non-linear responses with a reduced number of runs. Under the scenario evaluated, representative of the typical maize productions sys-
tems of the Argentine Pampas, the model results showed higher sensitivity to changes in radiation (normalized sensitivity were �0.69 and
0.45 for rainfed and irrigated conditions, respectively) than for the soil variables (normalized sensitivity ranged from 0.20 to 0.28). The
CERES-Maize model was found to have similar sensitivity for the different soil inputs. Furthermore, some of the variables evaluated (soil
curve number, soil water content at sowing and radiation under rainfed conditions) showed an important non-linear response.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Crop growth models have considerable potential in agri-
cultural research, development of cropping technologies,
and the exploration of management and policy decisions
(Boote et al., 1996). Crop modeling has provided useful
insights about the functioning of crops and agricultural
systems and, in particular, about the interactions between
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* Corresponding author. Address: Cátedra de Cerealicultura, Facultad
de Agronomı́a, Universidad de Buenos Aires, Av. San Martı́n 4453, P.O.
Box C1417DSE, Buenos Aires, Argentina. Tel./fax: +54 11 4524 8039.

E-mail address: fbert@agro.uba.ar (F.E. Bert).
crops and their environment (e.g., Meinke and Stone,
1997; Hammer, 1998; Hammer et al., 2002; Messina
et al., 1999; Jones et al., 2000). Increasingly, crop models
are steering scientific research into the genetic regulation
of plant performance and guiding crop breeding (Hammer,
1998; Hammer et al., 2002).

An important limitation to a broader, more effective use
of crop growth models is our relatively limited knowledge of
uncertainty in the models’ results. There are several alterna-
tive taxonomies of uncertainty sources (Tatang et al., 1997;
Katz, 2002). Following Katz (2002), three major sources of
uncertainty can be identified: (a) model structure, (b) mea-
surement error, and (c) natural variability. Model structure
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errors arise because of inaccurate treatment of modeled
processes, inexact numerical schemes, and inadequate reso-
lutions. This type of uncertainty reflects poor understand-
ing of processes that, therefore, are not well represented
in a model (Passioura, 1996).

Measurement errors arise when attempting to measure
an unknown physical variable. These errors include both
those of a random nature whose magnitude reflects the pre-
cision of the instrument on which the measurements are
based, and those due to systematic error (Katz, 2002).

Natural variability is a major source of uncertainty for
most environmental or geophysical variables, as they exhibit
real systematic differences over space and time, as well as
inherent randomness. Most variables relevant to crop mod-
els (e.g., soil nitrogen or water content at sowing) have high
spatial and temporal variability which makes the precise esti-
mation of these quantities difficult and costly. Values for a
quantity of interest may be available only for a limited num-
ber of sites or conditions. Consequently, many inputs to crop
models often are derived through indirect measurements,
estimations from other variables (e.g., soil infiltration curve
number, solar radiation) or measurements or estimations at
sites other than the simulation site must be used to fill data
gaps, or be considered as representative. The way in which
these derived variables are computed may introduce sub-
stantial amounts of uncertainty. Both measurement uncer-
tainty and natural variability uncertainty are associated
with incomplete or imperfect knowledge of model inputs
such as empirical quantities, simulation initial conditions,
and boundary conditions (Tatang et al., 1997).

A better knowledge of the impact of uncertainty in input
variables on results from crop models may have several
advantages. Firstly, it helps identify important uncertain-
ties for prioritizing additional research (Cullen and Frey,
1999). Also, it provides guidance to improve the quality
of assessment practices and decision support systems used
in agricultural and environmental decision-making, ulti-
mately improving their reliability, transparency and credi-
bility (Tarantola et al., 2002). Perhaps most importantly,
the characterization of uncertainty allows an evaluation
of the validity and robustness of model results, and thus
guides model use as decision support tools.

There are various methods to evaluate the impacts of
uncertainty in model input variables, each involving vari-
ous degrees of complexity, effort, and data requirements.
An overview of several of these methods can be found in
Katz (2002). In this paper, we focus on sensitivity analysis
(Saltelli, 2002), an important technique to estimate how
uncertainty in the output of a model (numerical or other-
wise) can be apportioned to different sources of uncertainty
in the model input. Sensitivity analysis is hence considered
by some as a prerequisite for model building in any setting,
be it diagnostic or prognostic (Saltelli, 2002). Indeed, the
characterization of uncertainty via sensitivity analysis can
play a critical role in model verification and validation
throughout the process of model development and refine-
ment (Frey and Patil, 2002).
Previous works have dealt with uncertainty in crop
models through analyses of the sensitivity of results to vari-
ations in input variables such as soil parameters or weather
inputs. Liu et al. (1989) carried out a sensitivity test based
on available soil, crop and meteorological parameters in
Brazil for CERES-Maize (the same model used here).
Nonhebel (1994a,b) explored the effects of inaccuracies in
temperature and radiation values on results from a model
simulating spring wheat growth. Št’astná and Žalud
(1999) explored impacts of three soil input parameters
(wilting point, saturated soil water content, and field capac-
ity) on results from the CERES-Maize and MACROS
models. Brooks et al. (2001) explored the sensitivity of
the Sirius wheat model as a preliminary step leading to
the development of a simplified meta-model. Xie et al.
(2003) tested the sensitivity of maize and sorghum yields
simulated by the Agricultural Land Management Alterna-
tives with Numerical Assessment Criteria (ALMANAC)
model in Texas.

The objective of this work is to assess the impact of
uncertainty in a group of important (and often difficult/
expensive to measure) input variables on maize yields sim-
ulated by CERES-Maize, a widely used crop growth
model, in the Pampas of Argentina. Two groups of impor-
tant agronomical model inputs are considered: (i) soil vari-
ables (N soil content at sowing, soil organic matter content,
soil water storage capacity, water soil content at sowing
and soil curve number) and (ii) climate variables (daily
solar radiation). Moreover, we propose a new approach
to evaluate model sensitivity at the extremes of the input
variables’ range to evaluate potential non-linear model
responses without increasing the required number of simu-
lations. We do not address structural uncertainty in this
work, thus the CERES-Maize model is treated as a deter-
ministic ‘‘black box’’.

2. Background

2.1. The study area

The geographic focus of this study is the Pampas of cen-
tral-eastern Argentina (Hall et al., 1992). A large propor-
tion of Argentina’s considerable crop production
originates in this region. In particular, we consider the area
around Pergamino (33�56 0 S, 60�33 0 W) in the Rolling
Pampas, a highly productive region of the Pampas where
maize cropping is concentrated (Hall et al., 1992; Paruelo
and Sala, 1993). The climate of Pergamino is temperate-
humid, with a median annual precipitation of 937 mm, a
rainfall maximum in late spring and summer, and a winter
minimum. The predominant soils are Argiudolls and Hap-
ludolls (Paruelo and Sala, 1993).

2.2. Sensitivity analysis

Sensitivity analysis (SA) is the study of how the uncer-
tainty in the output of a model (numerical or otherwise)
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can be apportioned to different sources of uncertainty in
the model input. Sensitivity analyses, thus, can be useful
for model building in any setting and in any field where
models are used (Saltelli, 2002). A thorough description
of SA methods can be found in Saltelli et al. (2000). Sensi-
tivity analysis methods have been applied in various fields,
including complex engineering systems, economics, phys-
ics, social sciences and others (see Saltelli, 1999; Frey and
Patil, 2002 for references and examples).

Frey and Patil (2002) identified three major groups of
SA methods: mathematical, statistical, and graphical. Our
approach involves a combination of mathematical and
graphical methods. The mathematical approach allows us
to estimate analytical functions that describe precisely the
output response to variations in input variables. Deriva-
tives of these functions can be used to estimate sensitivity
at the nominal scenario. The graphical approach helps us
fit response curves for each input variable and provides
an initial qualitative description of non-linearity in the
model responses.

Let us identify the output variable (in this case, simu-
lated maize yields) as Y and the input variables as vector
X = (X1,X2, . . . ,XN). The sensitivity (S) is a measure of
change in the model output variable in response to changes
in the input variables. Because the variables we consider
(see below) have different scales and units of measurement,
we use the normalized sensitivity as a measure of uncer-
tainty importance. The normalized sensitivity, estimated
for each input variable Xj, is defined as the ratio of the rel-
ative change in Y by a unit of relative change in Xj (Mor-
gan and Henrion, 1998),

Sj ¼
oY
oX j

� �
X 0

X 0
j

Y 0
: ð1Þ

The superscript 0, indicates the point X 0 ¼ ðX 0
1; . . . ;X 0

N Þ
around which the input variables are varied, referred to as
the nominal scenario. In addition, let us introduce
Y0 ” Y(X0) as the response value (i.e., maize yield) corre-
sponding to the nominal scenario. The sensitivity is a local
indicator which allows us to determine, as long as function
Y remains continuous, the first-order response when the
input variable changes. For a variation dXj, the corre-
sponding variation dY is given by

dY

Y 0
¼ Sj

dX j

X 0
j

: ð2Þ

The linear approximation (Eq. (2)) is useful when func-
tion Y is continuous, with no sharp changes around the
nominal scenario. Multiplying both members of Eq. (2)
by 100, a relation between errors (expressed as percentage)
is obtained:

DY % ¼ SjDX %: ð3Þ
If the input variables are assumed to have a statistical

distribution (not necessarily Gaussian), the central moment
of order two, the variance, gives a measure of the disper-
sion of values around the statistical mean. The root square
of the variance is the standard deviation r. With the linear
approximation, the following relation between standard
deviations holds:

r2
y �

Xn

j¼1

oY
oX j

����
X 0

� �2

r2
j : ð4Þ

Using Eqs. (1) and (4) can be rewritten in terms of the sen-
sitivity as

ry

Y 0

� �2

�
Xn

j¼1

S2
j

rj

X 0
j

 !2

: ð5Þ

As rY and rj measure the departure of the variables rel-
ative to the mean value, if a proper proportionality con-
stant is introduced, Eq. (5) can be transformed into a
relationship between the errors expressed as percentages:

DY 2
% �

Xn

j¼1

S2
j DX 2

j%: ð6Þ

Eq. (6) indicates that the square of the sensitivity represents
the relative weight of the corresponding input variable for
the calculation of the total variance of the output.

3. Methodology

3.1. Crop model analyzed

The CERES-Maize model within the DSSAT v3.5 shell
(Jones et al., 1998; Ritchie et al., 1998) was used to study
the effects of uncertainties associated with input variables
in typical maize production systems of the Argentine Pam-
pas. This model has been calibrated and validated in sev-
eral production environments including the Pampas,
where it has shown an average error of 17% in predicted
maize yields under field conditions (Guevara et al., 1999;
Mercau et al., 2001). The information required to run the
CERES-Maize model includes: (i) daily weather data (max-
imum and minimum temperature, precipitation, solar radi-
ation), (ii) soil parameters, including soil moisture and N

content at the beginning of simulations, (iii) a description
of crop management, and (iv) ‘‘genetic coefficients’’ that
describe physiological processes and developmental differ-
ences among crop hybrids or varieties.

3.2. Input variables evaluated

Both weather and soil data are important for crop
yields, as they describe the basic energy, resources, and
environment for crop growth. Within weather or soil data,
there are many variables that differ in their relative impor-
tance for yield prediction. When developing input data
sets, it is valuable to know which variables are most impor-
tant for simulation accuracy (Xie et al., 2003). We explored
the sensitivity of the CERES-Maize model to uncertainty
in two groups of important agronomic variables: (i) soil-
related variables and (ii) climatic variables (this group
included only one variable: daily solar radiation).
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Getting field-level values of these variables often
involves difficult measurements or significant costs for
equipment (e.g., an automated weather station to measure
solar radiation) or laboratory processing (e.g., analyses of
soil samples from various locations and depths). For this
reason, quantifying the importance or influence of uncer-
tainty in these variables on crop model results and subse-
quent model-based decisions has practical importance.
Below we provide a brief description of each input variable
considered.

3.2.1. Soil-related variables

Nitrogen content in the soil at sowing time (expressed as
NO3� or NH4+) is important to make decisions on fertil-
ization rates. As N is highly mobile in the soil, concentra-
tions of this nutrient are quite variable in space and time.
Organic matter content in the soil is relevant to the calcu-
lation of fertilization rates, as it is used to estimate Nitro-
gen gains due to mineralization processes. Soil water

storage capacity indicates the maximum amount of soil
water that can be used by plants. It is calculated as the dif-
ference between the soil field capacity and the wilting
point. Its value depends on the soil texture, structure,
and depth. Higher values indicate soils with more chances
to overcome moisture deficits and associated crop stresses.
Soil water content at sowing indicates the amount of soil
water available to the plants at sowing, as a percentage
of the water storage capacity. This variable provides infor-
mation about the crop’s resilience to eventual water defi-
cits during the growth cycle. Soil curve number indicates
the partitioning between runoff and infiltration in a pre-
cipitation event. It is estimated based on soil texture, field
slope, and tillage used. The CERES-Maize implementa-
tion is based on the SCS method (Soil Conservation Ser-
vice, 1972) with some modifications introduced by
Williams et al. (1984). A higher curve number indicates
that a greater proportion of precipitation will be lost as
surface runoff.

3.2.2. Climate-related variables

Daily solar radiation is usually unavailable or costly to
measure at the field. Instead, radiation often must be esti-
mated from other variables (e.g., daily temperature range,
precipitation), or values must be used from meteorological
stations some distance away. Indeed, the Pergamino radia-
tion values in the weather series used for our crop simula-
Table 1
List of input variables under study, their units, average values (Nominal Scen

Variable Symbol Unit Nom

Nitrogen content at sowing X1 Kg ha�1 50.0
Soil organic matter content X2 % 2.5
Water storage capacity X3 mm 175.0
Soil water content at sowing X4 % 80.0
Curve number X5 None 79.0
Daily solar radiation R MJ m�2 day�1 Estim

histor
tions have been derived from sunshine duration values (see
Podestá et al., 2004).

3.3. Nominal values and ranges of input variables

The nominal value selected for each input variable
describes the mean or most likely value (Patil and Frey,
2004). Table 1 shows the nominal values chosen, the overall
range of explored values, and the steps between values for
each input variable considered in the sensitivity analyses.

The nominal values for the soil input variables are typ-
ical for the Pergamino region, and their overall range
encompassed a large proportion of the observed temporal
and spatial variability of each variable in the study area
(Hall et al., 1992; Satorre, 2001).

The nominal scenario for radiation values (Table 1) was
the daily historical record for 1971–2002. To introduce dif-
ferent levels of uncertainty, the entire vector of historical
radiation was multiplied by a series of factors. By multiply-
ing the entire series by a constant factor (which would be
analogous to simulating a systematic error in radiation
measurements) we did not change the consistency among
all weather variables in the daily record. The use of a con-
stant multiplier (rather than adding or subtracting a given
value from the series) is justified because radiation residuals
were found to be proportional to the mean value (Nonhe-
bel, 1994a). To define the range of uncertainty in daily radi-
ation, we considered the typical errors in estimating this
quantity from other data (e.g., at locations where radiation
is not observed). Errors in estimating solar radiation from
sunshine duration typically are around 10% (Nonhebel,
1994a). However, sunshine duration values are not always
available and radiation then must be estimated from com-
monly observed variables (daily temperature, precipita-
tion). Errors in these estimates are larger than those
derived from sunshine duration, and can reach about
20% (Podestá et al., 2004). Such large variability, however,
may result in non-physical values (i.e., values greater than
the extra-terrestrial radiation, or negative values). For this
reason, daily solar radiation was varied between �20% and
+12% of the historical values.

3.4. Simulation of maize yields

To explore sensitivity to uncertainty in soil-related vari-
ables, the CERES-Maize model was run for each considered
ario) and amount and range of variation

inal value Range of variation Variation step

20 6 X1 6 80 5.00
1.75 6 X2 6 4 0.25
150 6 X3 6 200 5.00
50 6 X4 6 100 5.00
76 6 X5 6 82 1.00

ated values in Pergamino
ical series (1971–2002)

�20% to +12% 4%
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value of an input variable, while holding the remaining vari-
ables at their nominal levels (Table 1). When considering
solar radiation, the crop model was run for each modified
radiation series, using the observed values for the remaining
climate variables (maximum and minimum temperature,
precipitation) and holding the soil variables at their nominal
values (Table 1). Crop responses to changes in solar radia-
tion may depend on the availability of soil water (Nonhebel,
1994a,b). For this reason, we explored sensitivity to uncer-
tainty in solar radiation for two contrasting scenarios: (i)
rainfed conditions (typical of the Pergamino region), and
(ii) unlimited water supply (i.e., simulated irrigation) during
the entire crop cycle. In contrast, when analyzing sensitivity
for soil variables, only rainfed conditions were simulated.

Historical (1971-2002) daily weather data (minimum
and maximum temperature, precipitation, solar radiation)
for Pergamino were used for the crop simulations. The soil
was specified as a typical Argiudol of the Pergamino series,
with a depth of 180 cm and water storage capacity of
175 mm in the first 150 cm. The genotype considered was
DK 752, sown each year on 15 September at a density of
seven plants m�2; these constitute typical management
options in current maize production systems in the study
area. For the sake of simplicity in the interpretation of
results, fertilization was not considered in the simulations.
Because the model is unable to simulate insect and disease
management and weed competition, crop protection was
not analyzed in this work.

For each combination of input variables, 31 simulated
maize yields were obtained (one for each cropping cycle
in the historical record 1971–2002). The yields for all crop-
ping cycles were averaged and the result was considered as
the mean model response to each combination of inputs.

3.5. Exploration of model responses

Simulated yields can be plotted as a function of changes
in each input variable. These curves represent sections
across a response hyper-surface, and they intersect one
another at the nominal scenario. The set of fitted functions
may be viewed as an explicit, simplified crop yield meta-
model. This contrasts with the non-explicit, deterministic
CERES-Maize model used to simulate maize yields.

Analytical functions that describe precisely the output
response to variations in each input variable were fitted
using the software Mathematica (Wolfram, 1988). For
example, when exploring soil-related variables (X1, . . . ,X5,
Table 1), the response curve for variable N content at sow-
ing (variable X1) is formally represented by the function:

Y 1ðX 1Þ ¼ Y ðX 1;X 0
2;X

0
3;X

0
4;X

0
5Þ: ð7Þ

The function that describes the response curve for daily
radiation is

Y RðRÞ ¼ Y ðX 0;RÞ: ð8Þ
The normalized sensitivity to variation in daily radiation is
calculated as
SR ¼
100

Y 0

oY R

oR

����
X 0;R¼0

: ð9Þ

The percent error in yield is related to the percent error in
variable R through:

DY % ¼ SRDR%: ð10Þ
The derivatives of the response functions at the nominal
scenario provide a local estimator of sensitivity. As we vary
one variable at a time, the derivatives used to estimate sen-
sitivity (shown in Eq. (1)) were approximated by

oY
oX j

����
X 0

� oY j

oX j

����
X 0

j

: ð11Þ
3.6. Non-linear model responses

The approach to sensitivity analysis described above is
easy to implement, computationally inexpensive, and use-
ful to understand model behavior, but it is limited in some
aspects. For instance, any conclusions drawn on the rela-
tion between the output and an individual variable are
strictly valid around the nominal scenario, unless the model
is known to be linear. In contrast, models simulating plant-
environment interactions often are complex, non-linear
functions of the multidimensional space of input factors.
Further, often there are non-negligible interactions among
variables (i.e., the effect of changing Xi and Xj is different
from the sum of the individual effects) and different sensi-
tivity patterns may predominate in different regions of
the input space. As simple approaches to sensitivity analy-
sis are local linear methods, they do not provide informa-
tion about such global, non-linear responses.

To overcome some of the limitations of local methods
for sensitivity analysis, global methods such as combinato-
rial or Monte Carlo approaches may be used to evaluate
the function for scenarios distant from the nominal sce-
nario or to conduct joint parametric analyses (Morgan
and Henrion, 1998). The number of required simulations,
however, increases rapidly with the number of scenarios
considered and can become prohibitive when using compu-
tationally expensive models. An intermediate approach is
the nominal range sensitivity (NRS) method, in which each
input is varied from its low to its high value while keeping
other inputs at their nominal values (Frey and Patil, 2002).
The NRS approach is more than a local measure, as it eval-
uates the model for extreme values of each input, but it is
less than global because when exploring the effects of one
variable it holds all other inputs at their nominal values
(Morgan and Henrion, 1998). However, even the NRS
method involves a higher computational burden because
the number of simulations increases proportionally to the
number of nominal scenarios considered.

We introduce here a new approach that allows us to
explore sensitivity beyond the nominal scenario without
using complicated methods and without increasing the
number of simulations required. Our approach is based
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on the calculation of derivatives of the fitted response func-
tions Yj(Xj) at the extremes of the variability range of each
variable. Let us take a two-variable example. Instead of
evaluating the derivative of Y only at ðX 0

1;X
0
2Þ, the idea is

to perform the derivation with respect to X1 also at
ðX 1min;X 0

2Þ and ðX 1max;X 0
2Þ and, similarly, with respect to

X2 at ðX 0
1;X 2minÞ and ðX 0

1;X 2maxÞ. These derivations can
be done without additional model runs; we use the fitted
functions described above. In contrast, if the NRS method
were used for X1, new model runs would have to be per-
formed changing X2 values at the nominal points
ðX 1min;X 0

2Þ and ðX 1max;X 0
2Þ. The result of this example

would be three Y vs. X curves corresponding to each of
the three nominal scenarios for X1. Similarly, the number
of required model runs would increase for each additional
variable considered.

If the following definitions are made:

Y min
j � Y jðX min

j Þ; and ð12Þ
Y max

j � Y jðX max
j Þ; ð13Þ

with X min
j and X max

j ð1 6 j 6 5Þ being the lowest and highest
considered values for variable Xj, sensitivities at the ex-
tremes of the range considered can be calculated as

Smin
j ¼ oY j

oX j

� �
X min

j

X min
j

Y min
j

; and ð14Þ

Smax
j ¼ oY j

oX j

� �
X max

j

X max
j

Y max
j

: ð15Þ

Smin
R and Smax

R are calculated using Eq. (9) evaluated in the
minimum and maximum of R respectively.

4. Results and discussion

4.1. Sensitivity analysis of soil-related variables

The simulated maize yield at the nominal scenario for all
soil variables was 5854 kg ha�1 (yields averaged over all
years in the historical climate record). Fig. 1a–e show the
average maize yields simulated by varying one soil variable
at a time while holding the others at their nominal values.
Expressions for the analytical functions fitted to these
curves and the sensitivity values estimated for each variable
are shown in Table 2.

The availability of soil nitrogen increases crop biomass
production and growth rate during critical stages, leading
to higher yields. For this reason, the simulated maize yields
strongly responded to the two nitrogen-related variables
considered. Maize yield increased in response to nitrogen
content at sowing (X1; Fig. 1a). Similarly, higher values of
soil organic matter were associated with increased maize
yields (X2; Fig. 1b), since the higher the soil organic matter
content, the higher the N released through mineralization of
organic matter. Maize yields responded strongly to simu-
lated variations in both soil nitrogen and organic matter
content because the range of values considered for these
variables were relatively low in comparison with the average
crop consumption (200–300 kg N ha�1). Yield responses
may be less marked with higher N fertilization rates (in this
work, fertilization was not simulated).

All three water-related soil variables influence the
amount of water available for crop growth, and thus have
effects on maize yields. The soil water storage capacity (X3;
Fig. 1c) defines the capacity of the soil to supply water for
crop growth in the absence of precipitation or irrigation,
and thus influences the ability of the crop to overcome tem-
porary water stresses. Maize yields increased with higher
soil storage capacities (Fig. 1c). The amount of water avail-
able in the soil at sowing also influences the ability of the
crop to withstand water shortages, at least during initial
growth stages. Consequently, higher values of soil water
available at sowing (X4; Fig. 1d) also resulted in increased
maize yields. Higher soil curve numbers (X5; Fig. 1e) are
associated with a decrease in the proportion of precipita-
tion that infiltrates the soil and becomes available to the
crop. Higher curve numbers, therefore, are associated with
lower maize yields (Fig. 1e). Variations founded in maize
yields in response to changes in water-related soil variables
may be modified according to precipitations levels during
crop cycle (e.g. responses may be less marked in those years
with high precipitation).

From responses showed in Fig. 1a–e and analytical fit-
ted functions describing these responses, we estimated sen-
sitivity of each soil-related variable by differentiating Eq.
(11) and replacing the result into Eq. (1). Normalized sen-
sitivities for each variable were:

S1 ¼ 0:25; S2 ¼ 0:20; S3 ¼ 0:27;

S4 ¼ 0:20; S5 ¼ �0:28: ð16Þ

Now, replacing the last sensitivities into Eq. (6), the per-
centage error in yield for the study case can be expressed as

DY 2
% � ð0:25Þ2DX 2

1% þ ð0:20Þ2DX 2
2% þ ð0:27Þ2DX 2

3%

þ ð0:20Þ2DX 2
4% þ ð0:28Þ2DX 2

5%: ð17Þ

For all soil variables, the response is attenuated with
regards to the introduced uncertainty. For example, if
nitrogen content is overestimated by 10%, simulated yields
are overestimated by only about 2.5%.

The absolute values of normalized sensitivities for all
five soil variables lie in the range 0.2–0.3, suggesting that
these variables have comparable importance on the overall
uncertainty, at least around the nominal scenario. Saltelli
(1999) warned that simple sensitivity analysis approaches
cannot be used to rank the impact of different uncertain
input variables in determining the variation of the output
under examination, unless the model is known to be linear
or the range of variation around the nominal scenario is
small. However, as the conditions defined for the nominal
soil scenario are quite common in the target area, our
results provide first-order conclusions about how accu-
rately each variable should be described to realistically sim-
ulate grain yields.
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Fig. 1. Maize yield variations in response to changes in different soil input variables: (a) yield variations in response to different levels of nitrogen content
at sowing, (b) yield variations in response to changes in soil organic matter content, (c) yield variations in response to changes in soil water storage
capacity, (d) yield variations in response to changes in soil water content at sowing, and (e) yield variations in response to changes in the soil curve number
parameter. The points correspond to simulated values and lines to equations in Table 2.

Table 2
Yield functions Y and sensitivity S of each variable analyzed

Y(x) S

Soil-related parameters (X)
Nitrogen content at sowing (X1) Y 1ðX 1Þ ¼ 4117þ 39:63X 1 � 0:10X 2

1 � 1:40 sinðpX 1=10Þ 0.25
Soil organic matter content (X2) Y2(X2) = 4702 + 458.4X2 0.20
Water storage capacity (X3) Y 3ðX 3Þ ¼ 3575þ 14:45X 3 � 0:08X 2

3 � 6:64 sin½pðX 3 � 175Þ=8� 0.27
Soil water content at sowing (X4) Y 4ðX 4Þ ¼ 3234þ 52:87X 4 � 0:25X 2

4 þ 5:89 sin½pX 4=10� 0.20
Curve number (X5) Y 2ðX 2Þ ¼ 8443þ 42:39X 2 � 0:95X 2

2 þ 214:6 sin½pðX 2 � 79Þ=6� � 31:26 sin½pðX 2 � 79Þ=3� �0.28

Radiation (R)
80% of water content at sowing and rainfed YRr(XRr) = 5844.88 � 40.68R � 0.65R2 �0.69
Irrigation Y RiðX RiÞ ¼ 8170:23þ 37:13Rþ 7:85 cos pR

4

� �
0.45
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4.2. Sensitivity analysis of daily solar radiation

The simulated maize yield at the nominal scenario for
daily solar radiation under rainfed conditions was
5854 kg ha�1 (yields averaged over all years in the histori-
cal climate record). For the simulations assuming irriga-
tion, the average simulated maize yield was 8202 kg ha�1.
Fig. 2a–b show average maize yields simulated by varying
daily solar radiation while holding the remaining climate
variables at their historical values and soil variables at
nominal values; the two panels correspond to rainfed (a)
and irrigated (b) conditions respectively. Expressions for
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Fig. 2. Maize yield variations in response to changes in daily solar radiation under two cropping water conditions: (a) 80% of soil water content at sowing
and rainfed, and (b) unlimited water supply (crop irrigated along the entire cycle). The points correspond to simulated values and lines to equations in
Table 2.
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the fitted analytical functions, together with the estimated
sensitivity values, are shown in Table 2.

The response of maize yield to different radiation levels
depends on the availability of soil water. Under non-limit-
ing water conditions, higher radiation values help to main-
tain higher photosynthesis rates during the entire crop
cycle, resulting in greater biomass production and yields.
In contrast, under water-limited conditions higher radia-
tion values increase soil evaporation and plant transpira-
tion during early crop stages. As a result, the amount of
water available during the crop’s critical stages (i.e., silking
and start of grain filling) may be lower, resulting in higher
likelihood of water stress and low yields. These results are
consistent with those obtained by Nonhebel (1994a,b) for
simulated irrigation and rainfed conditions for spring
wheat. Xie et al. (2003) observed that variability in solar
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radiation resulted in smaller variations in maize yields
under irrigated conditions than for a rainfed scenario.

The sensitivity of the CERES-Maize model to changes
in radiation seems to be higher than for the soil-related
variables (normalized sensitivities are �0.69 and 0.45 for
rainfed and irrigated conditions, versus 0.20–0.28 for the
soil variables). For the rainfed situation, an overestimation
of global radiation produces an underestimation in yield,
whereas the opposite occurs for the irrigated condition.

4.3. Non-linear responses

Estimated sensitivities at the extremes of the range for
each input variable are shown in Fig. 3. Two major
response patterns appear to exist for the evaluated vari-
ables: near-linear and non-linear. Simulated yields showed
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a near-linear response to variations in N content at sowing
(X1), organic matter content (X2), water storage capacity
(X3) and changes in radiation under irrigated conditions.
That is, sensitivities for these variables did not change
much throughout the range of variability considered. The
lack of noticeable change in sensitivities may be due to
the fact that, under conditions typical of the target area,
the range of values explored for soil variables is not large
enough to reach saturation in crop responses to N levels
or water content. However, the estimated sensitivities could
change under different conditions. For example, higher fer-
tilization rates would decrease the importance of initial
nitrogen content or N inputs from mineralization of
organic matter. Similarly, sensitivity to water-related vari-
ables would decrease in years with high precipitation.

Non-linear simulated responses are most apparent for
soil water content at sowing (X4), soil curve number
(X5), and radiation under rainfed conditions. These
results are consistent with those shown in Figs. 1d and
e, 2c, where relatively marked changes are observed for
the slopes of the functions fitted to simulated yields. At
the extremes of the range of values considered for soil
curve number, the estimated sensitivities are lower than
�1. Because of its high normalized sensitivity, one may
think that uncertainty in curve number would magnify
greatly the errors in simulated yields. Nevertheless, as
the uncertainty for soil curve number is lower than for
other variables analyzed (this is reflected in the narrow
range of values considered), the impacts on overall error
in yields will be limited.

5. Summary and conclusions

An important limitation to a more effective use of crop
growth models is our relatively limited knowledge of uncer-
tainty in the models’ results. Surprisingly, despite the wide
use of these models in many regions and for many pur-
poses, there is a relatively small body of literature (see Sec-
tion 1) on the effects of uncertainty in input variables on
model results.

A sensitivity analysis approach was used to evaluate the
response of yields simulated by the CERES-Maize crop
model to uncertainty in a set of important soil and climatic
input variables. A combination of mathematical and gra-
phic approaches allowed us to define the basic shape of
responses to changes in each input variable and, subse-
quently, to fit analytic functions that described those
responses. The fitted curves may be viewed as part of an
explicit, simplified crop yield meta-model, and thus can
be used to replace model simulations in some situations.
Near the nominal scenario, all soil variables considered
have comparable incidence on yield uncertainty. In con-
trast, the effects of uncertainty in solar radiation appear
to be more important on simulated yields than those of soil
variables. However, even for radiation, possible errors in
the input variables around the central values would be
dampened by the model.
Simple approaches to sensitivity analysis often involve
local linear methods that do not provide information about
potential non-linear model responses. Various approaches
have been proposed to address this shortcoming, but the
number of simulations required often increases rapidly
and can become prohibitive when using computationally
expensive models. In this paper we introduce a new
approach to explore sensitivity beyond the nominal sce-
nario without increasing the number of simulations
required. The approach is based on the calculation of deriv-
atives of fitted response functions at the extremes of the var-
iability range of each variable. Application of the proposed
approach helped us identify portions of the input variable
space (e.g., high or low soil curve numbers) where uncer-
tainty is actually magnified by the model and interpretation
of results should be careful.

The characterization of uncertainty in model responses to
input variables has important implications for model design
and interpretation, and for future data collection efforts. The
variability in simulated yields that occurs over the range of
uncertainty of the inputs represents a fundamental limit to
the accuracy that models can achieve. Thus, there are likely
to be no benefits for yield prediction by including excessive
detail in crop models (Brooks et al., 2001). Also, understand-
ing the impact of uncertainty of different variables on model
results helps to set priorities for collection of enhanced input
data sets. For instance, the large importance on crop model
results of solar radiation values (detected in this work and
others) suggests that attention should be focused on improv-
ing the availability and quality of radiation observations or
estimations. Further, the characterization of uncertainty,
together with a realistic assessment of the quality of available
input data, allows an appropriate evaluation of the validity
and robustness of model results, and guides interpretation
of results for decision support.
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