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and BNT162b2 vaccines against SARS-CoV-2 virus 
among 57 healthy adult Hungarian volunteers.

Vaccine development has become the main tool 
for reducing COVID-19 cases and severity of dis-
ease [1]. Several vaccine strategies have been devel-
oped that use different molecular platforms, namely 
nucleic acid-based, non-replicating viral vector-
based, inactivated whole virus-based, or recombinant 
subunit-based vaccines [2]. Up to date, the World 
Health Organization (WHO) has granted emergency 
approval for the use of 10 vaccine [3]. Despite their 
differences, all these vaccines have reproducibly elic-
ited a protective immune response against SARS-
CoV-2 infections of significant magnitude in clinical 
trials [2]. Earlier studies on COVID-19 infections 
confirmed that virus invasion induces innate immu-
nity [4]. Several studies have reported the production 
of antibodies with neutralizing capacities, along with 
broad cellular immune responses that help in clear-
ance of the virus [5–10]. Effective protection against 
SARS-CoV-2 is thus mediated by both antibody-
mediated humoral immunity and T cell-mediated cel-
lular immunity [11].

Seven inactivated virus-based vaccines are in 
phase 1 or 2 clinical trials, with eight (2/3) in phase 
3 and one in phase 4 [12]. The two inactivated vac-
cines most widely used are CoronaVac from Sino-
vac Research and Development Co. Ltd. (hereinafter 
Sinovac) and BBIBP-CorV from Sinopharm, from 
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the China National Biotec Group Co. and Beijing 
Institute of Biological Products (hereinafter Sinop-
harm). These two vaccines received the WHO emer-
gency use grant [13]. Sinopharm Phase 3 clinical 
trials carried out in Argentina (Clinical Trial Identi-
fier: NCT04560881) [14], Bahrain, Jordan, Egypt, 
and UAE (Clinical Trial Identifier: NCT04510207), 
(Registration Number: ChiCTR2000034780) evalu-
ate the incidence of COVID-19 in individuals that 
have received two doses of the vaccine. Studies 
on inactivated virus-based vaccines, however, are 
still scarce. Phase 3 trials of the Sinovac vaccine in 
Chile and Turkey suggest that inactivated SARS-
CoV-2 vaccines effectively prevent COVID-19 and 
have a good safety profile [15, 16]. More recently, 
two studies from Chile and Sri Lanka assessed the 
magnitude of T cell response among Sinovac recipi-
ents [17, 18]. Sinovac induced increases in basal 
lymphocyte subsets including CD3 + , CD8 + , and 
CD56 + cells. Although vaccination triggered produc-
tion of antibodies, a decrease in CD19 + B lympho-
cytes was reported. Cellular immune responses were 
also triggered after vaccination, including increases 
of T CD4 + , T CD8 + , and NK cells. Despite these 
findings, the adaptive immune response induced by 
inactivated vaccines remains to be clarified and is 
currently controversial in vaccine development and 
application. Using suitable adjuvants, inactivated 
vaccines could also induce cellular immunity [6]. 
Genetic vaccines such as AZD1222, (viral DNA vec-
tor vaccine, UK), BNT162b1 (mRNA vaccine, USA), 
and mRNA-1273(mRNA vaccine, USA), on the 
other hand, generate Th1-dominated cellular immune 
responses [19, 20].

To address this gap in knowledge, it will be par-
ticularly significant to clarify the immune changes 
induced by an inactivated vaccine so that mean-
ingful comparisons of vaccine effectiveness across 
platforms can be made. At present, induction of 
Th1-dominated cellular immune responses has been 
suggested only for the BBV152 vaccine (Bharat 
Biotech COVAXIN). It was reported that BBV152 
vaccine adjuvanted with aluminum hydroxide gel 
(Algel), or TLR7/8 agonist chemisorbed Algel evoked 
a Th1-dominated cellular immune response [21]. The 
Sinopharm and Sinovac vaccines used beta-propio-
lactone-inactivated aluminum hydroxide adjuvants 
which specifically induced Th2-dominated cellular 
immune response [5, 9, 10]. Aluminum hydroxide 

activates the NLRP3 receptor subunit of the inflam-
masome and promotes the secretion of high-levels of 
inflammasome-derived IL-1β and IL-18, thus activat-
ing proinflammatory mechanisms of the immune sys-
tem [22]. Furthermore, aluminum adjuvants enhance 
the adaptive immune response mediated by Th2 cells 
and activate the function of B lymphocytes to induce 
antibody production. The Sinopharm vaccine evoked 
a Th2-type cell response with decreased IFN-γ and 
increased IL-5, while the Sinovac vaccine evoked a 
Th2 type cell response with increases in both IL-5 
and IL-8. Changes in specific lymphocyte subsets dif-
fered between the two vaccines, with the Sinopharm 
vaccine showing increases in T and B lymphocyte 
subsets, and the Sinovac vaccine showing increases 
in T and NK lymphocyte subsets [23]. The study 
focused on the Sinopharm vaccine did not detect sig-
nificant changes in various cytokines (including T 
helper 2 cell-related cytokines IL-4, IL-5, and IL-10) 
[24]. Moreover, the Th2-dominated cellular immune 
response evoked by the Sinopharm vaccine promoted 
humoral immunity and the production of antibod-
ies. Furthermore, vaccination with Sinopharm also 
caused a modest cellular immune response.

The observational and longitudinal study from 
Vályi-Nagy et  al. compared the adaptive (humoral 
and T cell-mediated) immune responses elicited by 
Sinopharm and BNT162b2 vaccines against SARS-
CoV-2 virus among 57 healthy adult Hungarian vol-
unteers [25]. The immune response was also stud-
ied in a control group of COVID-19 convalescent 
individuals for whom time-after infection was not 
defined. This important study is the first compara-
tive analysis of adaptive immunity to Sinopharm and 
BNT162b2 shortly after their second dose. Irrespec-
tive of the vaccine received, the specific-humoral 
response against SARS-CoV-2 among all individuals 
was detectable. However, anti-SARS-CoV-2 antibody 
levels were significantly higher among individuals 
vaccinated with two doses of BNT162b2 compared to 
Sinopharm (99.4% versus 71.0%, respectively). This 
difference was even higher among individuals with 
verified prior SARS-CoV-2 infection, reflecting an 
immune-strengthening effect also known as “hybrid 
immunity” that refers to immunity arising from infec-
tion followed by vaccination. While both platforms 
resulted in the development of measurable specific 
anti-spike (RBD, S1/S2) serum IgG responses, anti-
spike serum IgA antibodies were detectable for all 
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BNT162b2 vaccine recipients but only for 70% of the 
individuals vaccinated with Sinopharm. In contrast, 
only Sinopharm vaccinees had anti-nucleocapsid IgG 
antibodies.

Because the phenotype of lymphocyte populations 
in blood was examined in individuals vaccinated with 
Sinopharm but not in those who received BNT162b2, 
comparisons between phenotypes of lymphocyte 
populations for groups inoculated with these vaccines 
could not be performed.

Only small differences were found among mRNA 
(BNT162b2) and inactivated virus (Sinopharm) par-
ticipants for specific T cell response measured as 
cumulative number of IFNγ-secreting cells. However, 
specificity varied: the mRNA vaccine BNT162b2 
induced T cell responses that narrowly target the 
spike protein most susceptible to mutations, whereas 
the inactivated virus vaccine Sinopharm elicited 
much broader responses against epitopes of spike, 
nucleocapsid, and membrane proteins. Because the 
Sinopharm vaccine targeted many more epitopes as 
compared with the BNT162b2 vaccine, vaccination 
with Sinopharm could mitigate the impact of immune 
escape by new mutations in SARS-CoV-2. Individu-
als from both groups with prior exposure to SARS-
CoV-2 showed a slightly but not uniformly stronger 
T cell response compared to naïve volunteers. Inter-
estingly, the magnitude and specificity of the T cell 
response to SARS-CoV-2 structural proteins (S, N, 
and M) were similar in healthy volunteers and in con-
valescent patients vaccinated with Sinopharm, while 
volunteers that received the BNT162b2 produced 
a stronger T cell response restricted to the spike-
derived peptides.

Moreover, higher inter-individual differences in 
antibody and T cell responses were observed in the 
BNT162b2 cohort as compared to the Sinopharm 
cohort. This could be explained by the lower num-
ber of immunodominant epitopes in the spike-based 
vaccine as compared to the inactivated SARS-CoV-2 
virus vaccine, where epitopes presented will vary 
with differences in HLA alleles expressed. The 
observations reported by Vályi-Nagy et  al. are of 
high interest because they pioneer the comparison 
of immune responses elicited by nucleic acid-based 
and inactivated virus-based SARS-CoV-2 vaccines. 
Future studies using larger sample sizes, longer fol-
low-up periods, and including groups of diverse ages 
(children, adolescents, older adults) are warranted.

The relative contributions of anti-spike versus anti-
nucleocapsid responses in the induction and main-
tenance of effective anti-SARS-CoV-2 immunity 
after vaccine challenge are largely unexplored. It is 
clear that both virus-specific antibodies and T lym-
phocytes are present in patients who recovered from 
COVID-19 [26]. In this regard, an estimated half-
life of 200 days for a broad-based immune response 
was found among convalescent individuals, includ-
ing humoral and cellular polyfunctional virus spe-
cific CD4 + and CD8 + T cell responses. The CD4 + T 
cell response targeted various SARS-CoV-2 proteins 
comparably, whereas the CD8 + T cell response 
preferentially targeted the nucleoprotein, highlight-
ing the potential importance of including nucleopro-
tein sequences as an additional immunogen in future 
nucleic acid-based vaccines [27]. Notably, anti-nucle-
ocapsid IgG antibodies, or at least a subset of them, 
have virus-neutralizing activity. Therefore, immune 
responses targeting the nucleocapsid determinants 
could be important to broaden epitope coverage and 
immune effector mechanisms [28].

Several investigators have shown that vaccination 
of convalescent people can yield neutralizing antibod-
ies with increased potency and breadth which can be 
up to a thousand-fold higher than those induced by 
infection or vaccination alone, suggesting that one 
way of controlling the pandemic may be the induc-
tion of a hybrid immunity-like response using a third 
booster dose [29–32]. The data presented by Vályi-
Nagy et al. suggests that the Sinopharm vaccine could 
elicit a T cell response in naïve individuals that is 
comparable to that seen in convalescent patients [25]. 
Hence, administration of two-doses of Sinopharm that 
would mimic a “wild-type virus” primary infection, 
followed by a heterologous prime-boost with DNA 
or mRNA-based vaccines could provide a strategy to 
increase vaccine effectiveness. The humoral immune 
responses elicited by this “heterologous vaccination” 
strategy were recently evaluated in COVID-19-naïve 
Lebanon individuals. These studies found higher anti-
spike IgG geometric mean titers in volunteers that 
received “heterologous vaccination” as compared to 
homologous BNT162b2 immunization [33]. Similar 
studies should be carried out in countries with limited 
access to mRNA vaccines where large populations 
have received one or two doses Sinopharm or Sinovac 
vaccines, in which second or booster doses of mRNA 
vaccines may be an effective strategy to significantly 
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increase immunogenicity induced by inactivated virus 
vaccines alone, thus potentially providing protection 
both against existing and emerging variants.
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